This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/geometry.py is in python-ufl 1.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
"Types for representing symbolic expressions for geometric quantities."

# Copyright (C) 2008-2014 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009.
# Modified by Kristian B. Oelgaard, 2009
# Modified by Marie E. Rognes 2012

from collections import defaultdict
from ufl.log import warning, error, deprecate
from ufl.assertions import ufl_assert
from ufl.common import istr, EmptyDict
from ufl.terminal import Terminal
from ufl.protocols import id_or_none
from ufl.cell import as_cell, cellname2dim, cell2dim, cellname2facetname, affine_cells, Cell, ProductCell
from ufl.domain import as_domain, Domain, extract_domains, join_domains, ProductDomain

"""

Possible coordinate bootstrapping:

Xf = Xf[q]
    FacetCoordinate = quadrature point on facet (ds,dS)

X = X[q]
    CellCoordinate = quadrature point on cell (dx)

x = x[q]
    SpatialCoordinate = quadrature point from input array (dc)


Jacobians of mappings between coordinates:

Jcf = dX/dXf = grad_Xf X(Xf)
    CellFacetJacobian

Jxc = dx/dX = grad_X x(X)
    Jacobian

Jxf = dx/dXf = grad_Xf x(Xf)  =  Jxc Jcf = dx/dX dX/dXf = grad_X x(X) grad_Xf X(Xf)
    FacetJacobian = Jacobian * CellFacetJacobian


Possible computation of X from Xf:

X = Jcf Xf + X0f
    CellCoordinate = CellFacetJacobian * FacetCoordinate + CellFacetOrigin


Possible computation of x from X:

x = f(X)
    SpatialCoordinate = sum_k xdofs_k * xphi_k(X)

x = Jxc X + x0
    SpatialCoordinate = Jacobian * CellCoordinate + CellOrigin


Possible computation of x from Xf:

x = x(X(Xf))

x = Jxf Xf + x0f
    SpatialCoordinate = FacetJacobian * FacetCoordinate + FacetOrigin


Inverse relations:

X = K * (x - x0)
    CellCoordinate = JacobianInverse * (SpatialCoordinate - CellOrigio)

Xf = FK * (x - x0f)
    FacetCoordinate = FacetJacobianInverse * (SpatialCoordinate - FacetOrigin)

Xf = CFK * (X - X0f)
    FacetCoordinate = CellFacetJacobianInverse * (CellCoordinate - CellFacetOrigin)

"""


# --- Expression node types

class GeometricQuantity(Terminal):
    __slots__ = ("_domain",)
    def __init__(self, domain):
        Terminal.__init__(self)
        self._domain = as_domain(domain)

    def domains(self):
        return (self._domain,)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # NB! Geometric quantities are piecewise constant by default. Override if needed.
        return True

    def shape(self):
        "Scalar shaped."
        # NB! Geometric quantities are scalar by default. Override if needed.
        return ()

    def signature_data(self, domain_numbering):
        "Signature data of geometric quantities depend on the domain numbering."
        return (type(self).__name__,) + self._domain.signature_data(domain_numbering)

    def __str__(self):
        return self._uflclass.name

    def __repr__(self):
        return "%s(%r)" % (self._uflclass.__name__, self._domain)

    def __hash__(self):
        if self._hash is None:
            self._hash = hash((type(self).__name__,) + self._domain.hash_data())
        return self._hash

    def __eq__(self, other):
        return isinstance(other, self._uflclass) and other._domain == self._domain

class GeometricCellQuantity(GeometricQuantity):
    __slots__ = []

class GeometricFacetQuantity(GeometricQuantity):
    __slots__ = []


# --- Coordinate represented in different coordinate systems

class SpatialCoordinate(GeometricCellQuantity):
    """UFL geometry representation: The coordinate in a domain.

    In the context of expression integration,
    represents the domain coordinate of each quadrature point.

    In the context of expression evaluation in a point,
    represents the value of that point.
    """
    __slots__ = ()
    name = "x"

    def shape(self):
        g = self._domain.geometric_dimension()
        return (g,)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only case this is true is if the domain is a vertex cell.
        t = self._domain.topological_dimension()
        return t == 0

    def evaluate(self, x, mapping, component, index_values):
        if component == ():
            if isinstance(x, (tuple,list)):
                return float(x[0])
            else:
                return float(x)
        else:
            return float(x[component[0]])

class CellCoordinate(GeometricCellQuantity):
    """UFL geometry representation: The coordinate in a reference cell.

    In the context of expression integration,
    represents the reference cell coordinate of each quadrature point.

    In the context of expression evaluation in a point in a cell,
    represents that point in the reference coordinate system of the cell.
    """
    __slots__ = ()
    name = "X"

    def shape(self):
        t = self._domain.topological_dimension()
        return (t,)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only case this is true is if the domain is a vertex cell.
        t = self._domain.topological_dimension()
        return t == 0

class FacetCoordinate(GeometricFacetQuantity):
    """UFL geometry representation: The coordinate in a reference cell of a facet.

    In the context of expression integration over a facet,
    represents the reference facet coordinate of each quadrature point.

    In the context of expression evaluation in a point on a facet,
    represents that point in the reference coordinate system of the facet.
    """
    __slots__ = ()
    name = "Xf"

    def shape(self):
        t = self._domain.topological_dimension()
        return (t-1,)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only case this is true is if the domain is an interval cell (with a vertex facet).
        t = self._domain.topological_dimension()
        return t <= 1


# --- Origin of coordinate systems in larger coordinate systems

class CellOrigin(GeometricCellQuantity):
    """UFL geometry representation: The spatial coordinate corresponding to origin of a reference cell."""
    __slots__ = ()
    name = "x0"

    def shape(self):
        g = self._domain.geometric_dimension()
        return (g,)

    def is_cellwise_constant(self):
        return True

class FacetOrigin(GeometricFacetQuantity):
    """UFL geometry representation: The spatial coordinate corresponding to origin of a reference facet."""
    __slots__ = ()
    name = "x0f"

    def shape(self):
        g = self._domain.geometric_dimension()
        return (g,)

class CellFacetOrigin(GeometricFacetQuantity):
    """UFL geometry representation: The reference cell coordinate corresponding to origin of a reference facet."""
    __slots__ = ()
    name = "X0f"

    def shape(self):
        t = self._domain.topological_dimension()
        return (t,)


# --- Jacobians of mappings between coordinate systems

class Jacobian(GeometricCellQuantity):
    """UFL geometry representation: The Jacobian of the mapping from reference cell to spatial coordinates.

    J_ij = dx_i/dX_j
    """
    __slots__ = ()
    name = "J"

    def shape(self):
        g = self._domain.geometric_dimension()
        t = self._domain.topological_dimension()
        return (g, t)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()

class FacetJacobian(GeometricFacetQuantity):
    """UFL geometry representation: The Jacobian of the mapping from reference facet to spatial coordinates.

      FJ_ij = dx_i/dXf_j

    The FacetJacobian is the product of the Jacobian and CellFacetJacobian:

      FJ = dx/dXf = dx/dX dX/dXf = J * CFJ

    """
    __slots__ = ()
    name = "FJ"

    def shape(self):
        g = self._domain.geometric_dimension()
        t = self._domain.topological_dimension()
        return (g, t-1)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()

class CellFacetJacobian(GeometricFacetQuantity): # dX/dXf
    """UFL geometry representation: The Jacobian of the mapping from reference facet to reference cell coordinates.

    CFJ_ij = dX_i/dXf_j
    """
    __slots__ = ()
    name = "CFJ"

    def shape(self):
        t = self._domain.topological_dimension()
        return (t, t-1)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # This is always a constant mapping between two reference coordinate systems.
        return True


# --- Determinants (signed or pseudo) of geometry mapping Jacobians

class JacobianDeterminant(GeometricCellQuantity):
    """UFL geometry representation: The determinant of the Jacobian.

    Represents the signed determinant of a square Jacobian or the pseudo-determinant of a non-square Jacobian.
    """
    __slots__ = ()
    name = "detJ"

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()

class FacetJacobianDeterminant(GeometricFacetQuantity):
    """UFL geometry representation: The pseudo-determinant of the FacetJacobian."""
    __slots__ = ()
    name = "detFJ"

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()

class CellFacetJacobianDeterminant(GeometricFacetQuantity):
    """UFL geometry representation: The pseudo-determinant of the CellFacetJacobian."""
    __slots__ = ()
    name = "detCFJ"

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()


# --- Inverses (signed or pseudo) of geometry mapping Jacobians

class JacobianInverse(GeometricCellQuantity):
    """UFL geometry representation: The inverse of the Jacobian.

    Represents the inverse of a square Jacobian or the pseudo-inverse of a non-square Jacobian.
    """
    __slots__ = ()
    name = "K"

    def shape(self):
        g = self._domain.geometric_dimension()
        t = self._domain.topological_dimension()
        return (t, g)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()

class FacetJacobianInverse(GeometricFacetQuantity):
    """UFL geometry representation: The pseudo-inverse of the FacetJacobian."""
    __slots__ = ()
    name = "FK"

    def shape(self):
        g = self._domain.geometric_dimension()
        t = self._domain.topological_dimension()
        return (t-1, g)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()

class CellFacetJacobianInverse(GeometricFacetQuantity):
    """UFL geometry representation: The pseudo-inverse of the CellFacetJacobian."""
    __slots__ = ()
    name = "CFK"

    def shape(self):
        t = self._domain.topological_dimension()
        return (t-1, t)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # Only true for a piecewise linear coordinate field in simplex cells
        return self._domain.is_piecewise_linear_simplex_domain()


# --- Types representing normal or tangent vectors

class FacetNormal(GeometricFacetQuantity):
    """UFL geometry representation: The outwards pointing normal vector of the current facet."""
    __slots__ = ()
    name = "n"

    def shape(self):
        g = self._domain.geometric_dimension()
        return (g,)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # TODO: For product cells, this depends on which facet. Seems like too much work to fix right now.
        # Only true for a piecewise linear coordinate field with simplex _facets_
        x = self._domain.coordinates()
        facet_cellname = cellname2facetname.get(self._domain.cell().cellname()) # Allowing None if unknown..
        return (x is None or x.element().degree() == 1) and (facet_cellname in affine_cells) # .. which will become false.

class CellNormal(GeometricCellQuantity):
    """UFL geometry representation: The upwards pointing normal vector of the current manifold cell."""
    __slots__ = ()
    name = "cell_normal"

    def shape(self):
        g = self._domain.geometric_dimension()
        return (g,)

# TODO: Implement in the rest of fenics
#class FacetTangents(GeometricFacetQuantity):
#    """UFL geometry representation: The tangent vectors of the current facet."""
#    __slots__ = ()
#    name = "t"
#
#    def shape(self):
#        g = self._domain.geometric_dimension()
#        t = self._domain.topological_dimension()
#        return (t-1,g)
#
#    def is_cellwise_constant(self): # NB! Copied from FacetNormal
#        "Return whether this expression is spatially constant over each cell."
#        # TODO: For product cells, this depends on which facet. Seems like too much work to fix right now.
#        # Only true for a piecewise linear coordinate field with simplex _facets_
#        x = self._domain.coordinates()
#        facet_cellname = cellname2facetname.get(self._domain.cell().cellname()) # Allowing None if unknown..
#        return (x is None or x.element().degree() == 1) and (facet_cellname in affine_cells) # .. which will become false.

# TODO: Implement in the rest of fenics
#class CellTangents(GeometricCellQuantity):
#    """UFL geometry representation: The tangent vectors of the current manifold cell."""
#    __slots__ = ()
#    name = "cell_tangents"
#
#    def shape(self):
#        g = self._domain.geometric_dimension()
#        t = self._domain.topological_dimension()
#        return (t,g)


# --- Types representing midpoint coordinates

# TODO: Implement in the rest of fenics
#class CellMidpoint(GeometricCellQuantity):
#    """UFL geometry representation: The midpoint coordinate of the current cell."""
#    __slots__ = ()
#    name = "cell_midpoint"
#
#    def shape(self):
#        g = self._domain.geometric_dimension()
#        return (g,)

# TODO: Implement in the rest of fenics
#class FacetMidpoint(GeometricFacetQuantity):
#    """UFL geometry representation: The midpoint coordinate of the current facet."""
#    __slots__ = ()
#    name = "facet_midpoint"
#
#    def shape(self):
#        g = self._domain.geometric_dimension()
#        return (g,)


# --- Types representing measures of the cell and entities of the cell, typically used for stabilisation terms

# TODO: Clean up this set of types? Document!

class CellVolume(GeometricCellQuantity):
    """UFL geometry representation: The volume of the cell."""
    __slots__ = ()
    name = "volume"

class Circumradius(GeometricCellQuantity):
    """UFL geometry representation: The circumradius of the cell."""
    __slots__ = ()
    name = "circumradius"

#class CellSurfaceArea(GeometricCellQuantity):
#    """UFL geometry representation: The total surface area of the cell."""
#    __slots__ = ()
#    name = "surfacearea"

class FacetArea(GeometricFacetQuantity):
    """UFL geometry representation: The area of the facet."""
    __slots__ = ()
    name = "facetarea"

#class FacetDiameter(GeometricFacetQuantity):
#    """UFL geometry representation: The diameter of the facet."""
#    __slots__ = ()
#    name = "facetdiameter"

class MinFacetEdgeLength(GeometricFacetQuantity):
    """UFL geometry representation: The minimum edge length of the facet."""
    __slots__ = ()
    name = "minfacetedgelength"

class MaxFacetEdgeLength(GeometricFacetQuantity):
    """UFL geometry representation: The maximum edge length of the facet."""
    __slots__ = ()
    name = "maxfacetedgelength"


# --- Types representing other stuff

class CellOrientation(GeometricCellQuantity):
    """UFL geometry representation: The orientation (+1/-1) of the current cell.

    For non-manifold cells (tdim == gdim), this equals the sign
    of the Jacobian determinant, i.e. +1 if the physical cell is
    oriented the same way as the reference cell and -1 otherwise.

    For manifold cells of tdim==gdim-1 this is input data belonging
    to the mesh, used to distinguish between the sides of the manifold.
    """
    __slots__ = ()
    name = "cell_orientation"

# This doesn't quite fit anywhere. Make a special set of symbolic terminal types instead?
class QuadratureWeight(GeometricQuantity):
    """UFL geometry representation: The current quadrature weight.

    Only used inside a quadrature context.
    """
    __slots__ = ()
    name = "weight"

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        # The weight usually varies with the quadrature points
        return False


# --- Attach deprecated cell properties

# TODO: Remove this deprecated part after a release or two.

def _deprecated_dim(self):
    """The dimension of the cell.

    Only valid if the geometric and topological dimensions are the same.
    """
    deprecate("cell.d is deprecated, please use one of cell.topological_dimension(), cell.geometric_dimension(), domain.topological_dimension() or domain.geometric_dimension() instead.")
    ufl_assert(self.topological_dimension() == self.geometric_dimension(),
               "Cell.d is undefined when geometric and topological dimensions are not the same.")
    return self.geometric_dimension()

def _deprecated_geometric_quantity(name, cls):
    def f(self):
        "UFL geometry value. Deprecated, please use the constructor types instead."
        deprecate("cell.%s is deprecated, please use %s(domain) instead" % (name, cls.__name__))
        return cls(as_domain(self))
    return f

Cell.d = property(_deprecated_dim)
Cell.x = property(_deprecated_geometric_quantity("x", SpatialCoordinate))
Cell.n = property(_deprecated_geometric_quantity("n", FacetNormal))
Cell.volume = property(_deprecated_geometric_quantity("volume", CellVolume))
Cell.circumradius = property(_deprecated_geometric_quantity("circumradius", Circumradius))
Cell.facet_area = property(_deprecated_geometric_quantity("facet_area", FacetArea))