This file is indexed.

/usr/share/gocode/src/github.com/shirou/gopsutil/internal/common/binary.go is in golang-github-shirou-gopsutil-dev 2.17.08-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
package common

// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package binary implements simple translation between numbers and byte
// sequences and encoding and decoding of varints.
//
// Numbers are translated by reading and writing fixed-size values.
// A fixed-size value is either a fixed-size arithmetic
// type (int8, uint8, int16, float32, complex64, ...)
// or an array or struct containing only fixed-size values.
//
// The varint functions encode and decode single integer values using
// a variable-length encoding; smaller values require fewer bytes.
// For a specification, see
// http://code.google.com/apis/protocolbuffers/docs/encoding.html.
//
// This package favors simplicity over efficiency. Clients that require
// high-performance serialization, especially for large data structures,
// should look at more advanced solutions such as the encoding/gob
// package or protocol buffers.
import (
	"errors"
	"io"
	"math"
	"reflect"
)

// A ByteOrder specifies how to convert byte sequences into
// 16-, 32-, or 64-bit unsigned integers.
type ByteOrder interface {
	Uint16([]byte) uint16
	Uint32([]byte) uint32
	Uint64([]byte) uint64
	PutUint16([]byte, uint16)
	PutUint32([]byte, uint32)
	PutUint64([]byte, uint64)
	String() string
}

// LittleEndian is the little-endian implementation of ByteOrder.
var LittleEndian littleEndian

// BigEndian is the big-endian implementation of ByteOrder.
var BigEndian bigEndian

type littleEndian struct{}

func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 }

func (littleEndian) PutUint16(b []byte, v uint16) {
	b[0] = byte(v)
	b[1] = byte(v >> 8)
}

func (littleEndian) Uint32(b []byte) uint32 {
	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}

func (littleEndian) PutUint32(b []byte, v uint32) {
	b[0] = byte(v)
	b[1] = byte(v >> 8)
	b[2] = byte(v >> 16)
	b[3] = byte(v >> 24)
}

func (littleEndian) Uint64(b []byte) uint64 {
	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}

func (littleEndian) PutUint64(b []byte, v uint64) {
	b[0] = byte(v)
	b[1] = byte(v >> 8)
	b[2] = byte(v >> 16)
	b[3] = byte(v >> 24)
	b[4] = byte(v >> 32)
	b[5] = byte(v >> 40)
	b[6] = byte(v >> 48)
	b[7] = byte(v >> 56)
}

func (littleEndian) String() string { return "LittleEndian" }

func (littleEndian) GoString() string { return "binary.LittleEndian" }

type bigEndian struct{}

func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 }

func (bigEndian) PutUint16(b []byte, v uint16) {
	b[0] = byte(v >> 8)
	b[1] = byte(v)
}

func (bigEndian) Uint32(b []byte) uint32 {
	return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
}

func (bigEndian) PutUint32(b []byte, v uint32) {
	b[0] = byte(v >> 24)
	b[1] = byte(v >> 16)
	b[2] = byte(v >> 8)
	b[3] = byte(v)
}

func (bigEndian) Uint64(b []byte) uint64 {
	return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
		uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
}

func (bigEndian) PutUint64(b []byte, v uint64) {
	b[0] = byte(v >> 56)
	b[1] = byte(v >> 48)
	b[2] = byte(v >> 40)
	b[3] = byte(v >> 32)
	b[4] = byte(v >> 24)
	b[5] = byte(v >> 16)
	b[6] = byte(v >> 8)
	b[7] = byte(v)
}

func (bigEndian) String() string { return "BigEndian" }

func (bigEndian) GoString() string { return "binary.BigEndian" }

// Read reads structured binary data from r into data.
// Data must be a pointer to a fixed-size value or a slice
// of fixed-size values.
// Bytes read from r are decoded using the specified byte order
// and written to successive fields of the data.
// When reading into structs, the field data for fields with
// blank (_) field names is skipped; i.e., blank field names
// may be used for padding.
// When reading into a struct, all non-blank fields must be exported.
func Read(r io.Reader, order ByteOrder, data interface{}) error {
	// Fast path for basic types and slices.
	if n := intDataSize(data); n != 0 {
		var b [8]byte
		var bs []byte
		if n > len(b) {
			bs = make([]byte, n)
		} else {
			bs = b[:n]
		}
		if _, err := io.ReadFull(r, bs); err != nil {
			return err
		}
		switch data := data.(type) {
		case *int8:
			*data = int8(b[0])
		case *uint8:
			*data = b[0]
		case *int16:
			*data = int16(order.Uint16(bs))
		case *uint16:
			*data = order.Uint16(bs)
		case *int32:
			*data = int32(order.Uint32(bs))
		case *uint32:
			*data = order.Uint32(bs)
		case *int64:
			*data = int64(order.Uint64(bs))
		case *uint64:
			*data = order.Uint64(bs)
		case []int8:
			for i, x := range bs { // Easier to loop over the input for 8-bit values.
				data[i] = int8(x)
			}
		case []uint8:
			copy(data, bs)
		case []int16:
			for i := range data {
				data[i] = int16(order.Uint16(bs[2*i:]))
			}
		case []uint16:
			for i := range data {
				data[i] = order.Uint16(bs[2*i:])
			}
		case []int32:
			for i := range data {
				data[i] = int32(order.Uint32(bs[4*i:]))
			}
		case []uint32:
			for i := range data {
				data[i] = order.Uint32(bs[4*i:])
			}
		case []int64:
			for i := range data {
				data[i] = int64(order.Uint64(bs[8*i:]))
			}
		case []uint64:
			for i := range data {
				data[i] = order.Uint64(bs[8*i:])
			}
		}
		return nil
	}

	// Fallback to reflect-based decoding.
	v := reflect.ValueOf(data)
	size := -1
	switch v.Kind() {
	case reflect.Ptr:
		v = v.Elem()
		size = dataSize(v)
	case reflect.Slice:
		size = dataSize(v)
	}
	if size < 0 {
		return errors.New("binary.Read: invalid type " + reflect.TypeOf(data).String())
	}
	d := &decoder{order: order, buf: make([]byte, size)}
	if _, err := io.ReadFull(r, d.buf); err != nil {
		return err
	}
	d.value(v)
	return nil
}

// Write writes the binary representation of data into w.
// Data must be a fixed-size value or a slice of fixed-size
// values, or a pointer to such data.
// Bytes written to w are encoded using the specified byte order
// and read from successive fields of the data.
// When writing structs, zero values are written for fields
// with blank (_) field names.
func Write(w io.Writer, order ByteOrder, data interface{}) error {
	// Fast path for basic types and slices.
	if n := intDataSize(data); n != 0 {
		var b [8]byte
		var bs []byte
		if n > len(b) {
			bs = make([]byte, n)
		} else {
			bs = b[:n]
		}
		switch v := data.(type) {
		case *int8:
			bs = b[:1]
			b[0] = byte(*v)
		case int8:
			bs = b[:1]
			b[0] = byte(v)
		case []int8:
			for i, x := range v {
				bs[i] = byte(x)
			}
		case *uint8:
			bs = b[:1]
			b[0] = *v
		case uint8:
			bs = b[:1]
			b[0] = byte(v)
		case []uint8:
			bs = v
		case *int16:
			bs = b[:2]
			order.PutUint16(bs, uint16(*v))
		case int16:
			bs = b[:2]
			order.PutUint16(bs, uint16(v))
		case []int16:
			for i, x := range v {
				order.PutUint16(bs[2*i:], uint16(x))
			}
		case *uint16:
			bs = b[:2]
			order.PutUint16(bs, *v)
		case uint16:
			bs = b[:2]
			order.PutUint16(bs, v)
		case []uint16:
			for i, x := range v {
				order.PutUint16(bs[2*i:], x)
			}
		case *int32:
			bs = b[:4]
			order.PutUint32(bs, uint32(*v))
		case int32:
			bs = b[:4]
			order.PutUint32(bs, uint32(v))
		case []int32:
			for i, x := range v {
				order.PutUint32(bs[4*i:], uint32(x))
			}
		case *uint32:
			bs = b[:4]
			order.PutUint32(bs, *v)
		case uint32:
			bs = b[:4]
			order.PutUint32(bs, v)
		case []uint32:
			for i, x := range v {
				order.PutUint32(bs[4*i:], x)
			}
		case *int64:
			bs = b[:8]
			order.PutUint64(bs, uint64(*v))
		case int64:
			bs = b[:8]
			order.PutUint64(bs, uint64(v))
		case []int64:
			for i, x := range v {
				order.PutUint64(bs[8*i:], uint64(x))
			}
		case *uint64:
			bs = b[:8]
			order.PutUint64(bs, *v)
		case uint64:
			bs = b[:8]
			order.PutUint64(bs, v)
		case []uint64:
			for i, x := range v {
				order.PutUint64(bs[8*i:], x)
			}
		}
		_, err := w.Write(bs)
		return err
	}

	// Fallback to reflect-based encoding.
	v := reflect.Indirect(reflect.ValueOf(data))
	size := dataSize(v)
	if size < 0 {
		return errors.New("binary.Write: invalid type " + reflect.TypeOf(data).String())
	}
	buf := make([]byte, size)
	e := &encoder{order: order, buf: buf}
	e.value(v)
	_, err := w.Write(buf)
	return err
}

// Size returns how many bytes Write would generate to encode the value v, which
// must be a fixed-size value or a slice of fixed-size values, or a pointer to such data.
// If v is neither of these, Size returns -1.
func Size(v interface{}) int {
	return dataSize(reflect.Indirect(reflect.ValueOf(v)))
}

// dataSize returns the number of bytes the actual data represented by v occupies in memory.
// For compound structures, it sums the sizes of the elements. Thus, for instance, for a slice
// it returns the length of the slice times the element size and does not count the memory
// occupied by the header. If the type of v is not acceptable, dataSize returns -1.
func dataSize(v reflect.Value) int {
	if v.Kind() == reflect.Slice {
		if s := sizeof(v.Type().Elem()); s >= 0 {
			return s * v.Len()
		}
		return -1
	}
	return sizeof(v.Type())
}

// sizeof returns the size >= 0 of variables for the given type or -1 if the type is not acceptable.
func sizeof(t reflect.Type) int {
	switch t.Kind() {
	case reflect.Array:
		if s := sizeof(t.Elem()); s >= 0 {
			return s * t.Len()
		}

	case reflect.Struct:
		sum := 0
		for i, n := 0, t.NumField(); i < n; i++ {
			s := sizeof(t.Field(i).Type)
			if s < 0 {
				return -1
			}
			sum += s
		}
		return sum

	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
		reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
		reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128, reflect.Ptr:
		return int(t.Size())
	}

	return -1
}

type coder struct {
	order ByteOrder
	buf   []byte
}

type decoder coder
type encoder coder

func (d *decoder) uint8() uint8 {
	x := d.buf[0]
	d.buf = d.buf[1:]
	return x
}

func (e *encoder) uint8(x uint8) {
	e.buf[0] = x
	e.buf = e.buf[1:]
}

func (d *decoder) uint16() uint16 {
	x := d.order.Uint16(d.buf[0:2])
	d.buf = d.buf[2:]
	return x
}

func (e *encoder) uint16(x uint16) {
	e.order.PutUint16(e.buf[0:2], x)
	e.buf = e.buf[2:]
}

func (d *decoder) uint32() uint32 {
	x := d.order.Uint32(d.buf[0:4])
	d.buf = d.buf[4:]
	return x
}

func (e *encoder) uint32(x uint32) {
	e.order.PutUint32(e.buf[0:4], x)
	e.buf = e.buf[4:]
}

func (d *decoder) uint64() uint64 {
	x := d.order.Uint64(d.buf[0:8])
	d.buf = d.buf[8:]
	return x
}

func (e *encoder) uint64(x uint64) {
	e.order.PutUint64(e.buf[0:8], x)
	e.buf = e.buf[8:]
}

func (d *decoder) int8() int8 { return int8(d.uint8()) }

func (e *encoder) int8(x int8) { e.uint8(uint8(x)) }

func (d *decoder) int16() int16 { return int16(d.uint16()) }

func (e *encoder) int16(x int16) { e.uint16(uint16(x)) }

func (d *decoder) int32() int32 { return int32(d.uint32()) }

func (e *encoder) int32(x int32) { e.uint32(uint32(x)) }

func (d *decoder) int64() int64 { return int64(d.uint64()) }

func (e *encoder) int64(x int64) { e.uint64(uint64(x)) }

func (d *decoder) value(v reflect.Value) {
	switch v.Kind() {
	case reflect.Array:
		l := v.Len()
		for i := 0; i < l; i++ {
			d.value(v.Index(i))
		}

	case reflect.Struct:
		t := v.Type()
		l := v.NumField()
		for i := 0; i < l; i++ {
			// Note: Calling v.CanSet() below is an optimization.
			// It would be sufficient to check the field name,
			// but creating the StructField info for each field is
			// costly (run "go test -bench=ReadStruct" and compare
			// results when making changes to this code).
			if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" {
				d.value(v)
			} else {
				d.skip(v)
			}
		}

	case reflect.Slice:
		l := v.Len()
		for i := 0; i < l; i++ {
			d.value(v.Index(i))
		}

	case reflect.Int8:
		v.SetInt(int64(d.int8()))
	case reflect.Int16:
		v.SetInt(int64(d.int16()))
	case reflect.Int32:
		v.SetInt(int64(d.int32()))
	case reflect.Int64:
		v.SetInt(d.int64())

	case reflect.Uint8:
		v.SetUint(uint64(d.uint8()))
	case reflect.Uint16:
		v.SetUint(uint64(d.uint16()))
	case reflect.Uint32:
		v.SetUint(uint64(d.uint32()))
	case reflect.Uint64:
		v.SetUint(d.uint64())

	case reflect.Float32:
		v.SetFloat(float64(math.Float32frombits(d.uint32())))
	case reflect.Float64:
		v.SetFloat(math.Float64frombits(d.uint64()))

	case reflect.Complex64:
		v.SetComplex(complex(
			float64(math.Float32frombits(d.uint32())),
			float64(math.Float32frombits(d.uint32())),
		))
	case reflect.Complex128:
		v.SetComplex(complex(
			math.Float64frombits(d.uint64()),
			math.Float64frombits(d.uint64()),
		))
	}
}

func (e *encoder) value(v reflect.Value) {
	switch v.Kind() {
	case reflect.Array:
		l := v.Len()
		for i := 0; i < l; i++ {
			e.value(v.Index(i))
		}

	case reflect.Struct:
		t := v.Type()
		l := v.NumField()
		for i := 0; i < l; i++ {
			// see comment for corresponding code in decoder.value()
			if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" {
				e.value(v)
			} else {
				e.skip(v)
			}
		}

	case reflect.Slice:
		l := v.Len()
		for i := 0; i < l; i++ {
			e.value(v.Index(i))
		}

	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		switch v.Type().Kind() {
		case reflect.Int8:
			e.int8(int8(v.Int()))
		case reflect.Int16:
			e.int16(int16(v.Int()))
		case reflect.Int32:
			e.int32(int32(v.Int()))
		case reflect.Int64:
			e.int64(v.Int())
		}

	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		switch v.Type().Kind() {
		case reflect.Uint8:
			e.uint8(uint8(v.Uint()))
		case reflect.Uint16:
			e.uint16(uint16(v.Uint()))
		case reflect.Uint32:
			e.uint32(uint32(v.Uint()))
		case reflect.Uint64:
			e.uint64(v.Uint())
		}

	case reflect.Float32, reflect.Float64:
		switch v.Type().Kind() {
		case reflect.Float32:
			e.uint32(math.Float32bits(float32(v.Float())))
		case reflect.Float64:
			e.uint64(math.Float64bits(v.Float()))
		}

	case reflect.Complex64, reflect.Complex128:
		switch v.Type().Kind() {
		case reflect.Complex64:
			x := v.Complex()
			e.uint32(math.Float32bits(float32(real(x))))
			e.uint32(math.Float32bits(float32(imag(x))))
		case reflect.Complex128:
			x := v.Complex()
			e.uint64(math.Float64bits(real(x)))
			e.uint64(math.Float64bits(imag(x)))
		}
	}
}

func (d *decoder) skip(v reflect.Value) {
	d.buf = d.buf[dataSize(v):]
}

func (e *encoder) skip(v reflect.Value) {
	n := dataSize(v)
	for i := range e.buf[0:n] {
		e.buf[i] = 0
	}
	e.buf = e.buf[n:]
}

// intDataSize returns the size of the data required to represent the data when encoded.
// It returns zero if the type cannot be implemented by the fast path in Read or Write.
func intDataSize(data interface{}) int {
	switch data := data.(type) {
	case int8, *int8, *uint8:
		return 1
	case []int8:
		return len(data)
	case []uint8:
		return len(data)
	case int16, *int16, *uint16:
		return 2
	case []int16:
		return 2 * len(data)
	case []uint16:
		return 2 * len(data)
	case int32, *int32, *uint32:
		return 4
	case []int32:
		return 4 * len(data)
	case []uint32:
		return 4 * len(data)
	case int64, *int64, *uint64:
		return 8
	case []int64:
		return 8 * len(data)
	case []uint64:
		return 8 * len(data)
	}
	return 0
}