This file is indexed.

/usr/share/pari/pari.desc is in libpari-dev 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
Function: !_
Class: basic
Section: symbolic_operators
C-Name: gnot
Prototype: G
Help: !_
Description: 
 (negbool):bool:parens                $1
 (bool):negbool:parens                $1

Function: #_
Class: basic
Section: symbolic_operators
C-Name: glength
Prototype: lG
Help: #x: number of non code words in x, number of characters for a string.
Description: 
 (vecsmall):lg      lg($1)
 (vec):lg           lg($1)
 (pol):small        lgpol($1)
 (gen):small        glength($1)

Function: %
Class: basic
Section: symbolic_operators
C-Name: pari_get_hist
Prototype: D0,L,
Help: last history item.

Function: %#
Class: basic
Section: symbolic_operators
C-Name: pari_get_histtime
Prototype: lD0,L,
Help: time to compute last history item.

Function: +_
Class: basic
Section: symbolic_operators
Help: +_
Description: 
 (small):small:parens                      $1
 (int):int:parens:copy                     $1
 (real):real:parens:copy                   $1
 (mp):mp:parens:copy                       $1
 (gen):gen:parens:copy                     $1

Function: -_
Class: basic
Section: symbolic_operators
C-Name: gneg
Prototype: G
Help: -_
Description: 
 (small):small:parens           -$(1)
 (int):int                      negi($1)
 (real):real                    negr($1)
 (mp):mp                        mpneg($1)
 (gen):gen                      gneg($1)
 
 (Fp):Fp     Fp_neg($1, p)
 (FpX):FpX   FpX_neg($1, p)
 (Fq):Fq     Fq_neg($1, T, p)
 (FqX):FqX   FqX_neg($1, T, p)

Function: Catalan
Class: basic
Section: transcendental
C-Name: mpcatalan
Prototype: p
Help: Catalan=Catalan(): Catalan's number with current precision.
Description: 
 ():real:prec        mpcatalan($prec)
Doc: Catalan's constant $G = \sum_{n>=0}\dfrac{(-1)^n}{(2n+1)^2}=0.91596\cdots$.
 Note that \kbd{Catalan} is one of the few reserved names which cannot be
 used for user variables.

Function: Col
Class: basic
Section: conversions
C-Name: gtocol0
Prototype: GD0,L,
Help: Col(x, {n}): transforms the object x into a column vector of dimension n.
Description: 
 (gen):vec     gtocol($1)
Doc: 
 transforms the object $x$ into a column vector. The dimension of the
 resulting vector can be optionally specified via the extra parameter $n$.
 
 If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
 vector has a single component, except when $x$ is
 
 \item a vector or a quadratic form (in which case the resulting vector
 is simply the initial object considered as a row vector),
 
 \item a polynomial or a power series. In the case of a polynomial, the
 coefficients of the vector start with the leading coefficient of the
 polynomial, while for power series only the significant coefficients are
 taken into account, but this time by increasing order of degree.
 In this last case, \kbd{Vec} is the reciprocal function of \kbd{Pol} and
 \kbd{Ser} respectively,
 
 \item a matrix (the column of row vector comprising the matrix is returned),
 
 \item a character string (a vector of individual characters is returned).
 
 In the last two cases (matrix and character string), $n$ is meaningless and
 must be omitted or an error is raised. Otherwise, if $n$ is given, $0$
 entries are appended at the end of the vector if $n > 0$, and prepended at
 the beginning if $n < 0$. The dimension of the resulting vector is $|n|$.
Variant: \fun{GEN}{gtocol}{GEN x} is also available.

Function: Colrev
Class: basic
Section: conversions
C-Name: gtocolrev0
Prototype: GD0,L,
Help: Colrev(x, {n}): transforms the object x into a column vector of
 dimension n in reverse order with respect to Col(x, {n}). Empty vector if x
 is omitted.
Description: 
 (gen):vec     gtocolrev($1)
Doc: 
 as $\kbd{Col}(x, -n)$, then reverse the result. In particular,
 \kbd{Colrev} is the reciprocal function of \kbd{Polrev}: the
 coefficients of the vector start with the constant coefficient of the
 polynomial and the others follow by increasing degree.
Variant: \fun{GEN}{gtocolrev}{GEN x} is also available.

Function: DEBUGLEVEL
Class: gp2c
C-Name: DEBUGLEVEL
Prototype: v
Description: 
 ():small                         DEBUGLEVEL

Function: Euler
Class: basic
Section: transcendental
C-Name: mpeuler
Prototype: p
Help: Euler=Euler(): Euler's constant with current precision.
Description: 
 ():real:prec        mpeuler($prec)
Doc: Euler's constant $\gamma=0.57721\cdots$. Note that
 \kbd{Euler} is one of the few reserved names which cannot be used for
 user variables.

Function: I
Class: basic
Section: transcendental
C-Name: gen_I
Prototype: 
Help: I=I(): square root of -1.
Description: 
Doc: the complex number $\sqrt{-1}$.

Function: List
Class: basic
Section: conversions
C-Name: gtolist
Prototype: DG
Help: List({x=[]}): transforms the vector or list x into a list. Empty list
 if x is omitted.
Description: 
 ():list           mklist()
 (gen):list        gtolist($1)
Doc: 
 transforms a (row or column) vector $x$ into a list, whose components are
 the entries of $x$. Similarly for a list, but rather useless in this case.
 For other types, creates a list with the single element $x$. Note that,
 except when $x$ is omitted, this function creates a small memory leak; so,
 either initialize all lists to the empty list, or use them sparingly.
Variant: The variant \fun{GEN}{mklist}{void} creates an empty list.

Function: Map
Class: basic
Section: conversions
C-Name: gtomap
Prototype: DG
Help: Map({x}): converts the matrix [a_1,b_1;a_2,b_2;...;a_n,b_n] to the map a_i->b_i.
Doc: A ``Map'' is an associative array, or dictionary: a data
 type composed of a collection of (\emph{key}, \emph{value}) pairs, such that
 each key appears just once in the collection. This function
 converts the matrix $[a_1,b_1;a_2,b_2;\dots;a_n,b_n]$ to the map $a_i\mapsto
 b_i$.
 \bprog
 ? M = Map(factor(13!));
 ? mapget(M,3)
 %2 = 5
 @eprog\noindent If the argument $x$ is omitted, creates an empty map, which
 may be filled later via \tet{mapput}.

Function: Mat
Class: basic
Section: conversions
C-Name: gtomat
Prototype: DG
Help: Mat({x=[]}): transforms any GEN x into a matrix. Empty matrix if x is
 omitted.
Description: 
 ():vec        cgetg(1, t_MAT)
 (gen):vec     gtomat($1)
Doc: 
 transforms the object $x$ into a matrix.
 If $x$ is already a matrix, a copy of $x$ is created.
 If $x$ is a row (resp. column) vector, this creates a 1-row (resp.
 1-column) matrix, \emph{unless} all elements are column (resp.~row) vectors
 of the same length, in which case the vectors are concatenated sideways
 and the attached big matrix is returned.
 If $x$ is a binary quadratic form, creates the attached $2\times 2$
 matrix. Otherwise, this creates a $1\times 1$ matrix containing $x$.
 
 \bprog
 ? Mat(x + 1)
 %1 =
 [x + 1]
 ? Vec( matid(3) )
 %2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
 ? Mat(%)
 %3 =
 [1 0 0]
 
 [0 1 0]
 
 [0 0 1]
 ? Col( [1,2; 3,4] )
 %4 = [[1, 2], [3, 4]]~
 ? Mat(%)
 %5 =
 [1 2]
 
 [3 4]
 ? Mat(Qfb(1,2,3))
 %6 =
 [1 1]
 
 [1 3]
 @eprog

Function: Mod
Class: basic
Section: conversions
C-Name: gmodulo
Prototype: GG
Help: Mod(a,b): creates 'a modulo b'.
Description: 
 (small, small):gen         gmodulss($1, $2)
 (small, gen):gen           gmodulsg($1, $2)
 (gen, gen):gen             gmodulo($1, $2)
Doc: in its basic form, creates an intmod or a polmod $(a \mod b)$; $b$ must
 be an integer or a polynomial. We then obtain a \typ{INTMOD} and a
 \typ{POLMOD} respectively:
 \bprog
 ? t = Mod(2,17); t^8
 %1 = Mod(1, 17)
 ? t = Mod(x,x^2+1); t^2
 %2 = Mod(-1, x^2+1)
 @eprog\noindent If $a \% b$ makes sense and yields a result of the
 appropriate type (\typ{INT} or scalar/\typ{POL}), the operation succeeds as
 well:
 \bprog
 ? Mod(1/2, 5)
 %3 = Mod(3, 5)
 ? Mod(7 + O(3^6), 3)
 %4 = Mod(1, 3)
 ? Mod(Mod(1,12), 9)
 %5 = Mod(1, 3)
 ? Mod(1/x, x^2+1)
 %6 = Mod(-1, x^2+1)
 ? Mod(exp(x), x^4)
 %7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)
 @eprog
 If $a$ is a complex object, ``base change'' it to $\Z/b\Z$ or $K[x]/(b)$,
 which is equivalent to, but faster than, multiplying it by \kbd{Mod(1,b)}:
 \bprog
 ? Mod([1,2;3,4], 2)
 %8 =
 [Mod(1, 2) Mod(0, 2)]
 
 [Mod(1, 2) Mod(0, 2)]
 ? Mod(3*x+5, 2)
 %9 = Mod(1, 2)*x + Mod(1, 2)
 ? Mod(x^2 + y*x + y^3, y^2+1)
 %10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)
 @eprog
 
 This function is not the same as $x$ \kbd{\%} $y$, the result of which
 has no knowledge of the intended modulus $y$. Compare
 \bprog
 ? x = 4 % 5; x + 1
 %1 = 5
 ? x = Mod(4,5); x + 1
 %2 = Mod(0,5)
 @eprog Note that such ``modular'' objects can be lifted via \tet{lift} or
 \tet{centerlift}. The modulus of a \typ{INTMOD} or \typ{POLMOD} $z$ can
 be recovered via \kbd{$z$.mod}.

Function: O
Class: basic
Section: polynomials
C-Name: ggrando
Prototype: 
Help: O(p^e): p-adic or power series zero with precision given by e.
Doc: if $p$ is an integer
 greater than $2$, returns a $p$-adic $0$ of precision $e$. In all other
 cases, returns a power series zero with precision given by $e v$, where $v$
 is the $X$-adic valuation of $p$ with respect to its main variable.
Variant: \fun{GEN}{zeropadic}{GEN p, long e} for a $p$-adic and
 \fun{GEN}{zeroser}{long v, long e} for a power series zero in variable $v$.

Function: O(_^_)
Class: basic
Section: programming/internals
C-Name: ggrando
Prototype: GD1,L,
Help: O(p^e): p-adic or power series zero with precision given by e.
Description: 
 (gen):gen          ggrando($1, 1)
 (1,small):gen      ggrando(gen_1, $2)
 (int,small):gen    zeropadic($1, $2)
 (gen,small):gen    ggrando($1, $2)
 (var,small):gen    zeroser($1, $2)

Function: Pi
Class: basic
Section: transcendental
C-Name: mppi
Prototype: p
Help: Pi=Pi(): the constant pi, with current precision.
Description: 
 ():real:prec        mppi($prec)
Doc: the constant $\pi$ ($3.14159\cdots$). Note that \kbd{Pi} is one of the few
 reserved names which cannot be used for user variables.

Function: Pol
Class: basic
Section: conversions
C-Name: gtopoly
Prototype: GDn
Help: Pol(t,{v='x}): convert t (usually a vector or a power series) into a
 polynomial with variable v, starting with the leading coefficient.
Description: 
 (gen,?var):pol  gtopoly($1, $2)
Doc: 
 transforms the object $t$ into a polynomial with main variable $v$. If $t$
 is a scalar, this gives a constant polynomial. If $t$ is a power series with
 non-negative valuation or a rational function, the effect is similar to
 \kbd{truncate}, i.e.~we chop off the $O(X^k)$ or compute the Euclidean
 quotient of the numerator by the denominator, then change the main variable
 of the result to $v$.
 
 The main use of this function is when $t$ is a vector: it creates the
 polynomial whose coefficients are given by $t$, with $t[1]$ being the leading
 coefficient (which can be zero). It is much faster to evaluate
 \kbd{Pol} on a vector of coefficients in this way, than the corresponding
 formal expression $a_n X^n + \dots + a_0$, which is evaluated naively exactly
 as written (linear versus quadratic time in $n$). \tet{Polrev} can be used if
 one wants $x[1]$ to be the constant coefficient:
 \bprog
 ? Pol([1,2,3])
 %1 = x^2 + 2*x + 3
 ? Polrev([1,2,3])
 %2 = 3*x^2 + 2*x + 1
 @eprog\noindent
 The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
 \kbd{Vecrev}).
 \bprog
 ? Vec(Pol([1,2,3]))
 %1 = [1, 2, 3]
 ? Vecrev( Polrev([1,2,3]) )
 %2 = [1, 2, 3]
 @eprog\noindent
 
 \misctitle{Warning} This is \emph{not} a substitution function. It will not
 transform an object containing variables of higher priority than~$v$.
 \bprog
 ? Pol(x + y, y)
   ***   at top-level: Pol(x+y,y)
   ***                 ^----------
   *** Pol: variable must have higher priority in gtopoly.
 @eprog

Function: Polrev
Class: basic
Section: conversions
C-Name: gtopolyrev
Prototype: GDn
Help: Polrev(t,{v='x}): convert t (usually a vector or a power series) into a
 polynomial with variable v, starting with the constant term.
Description: 
 (gen,?var):pol  gtopolyrev($1, $2)
Doc: 
 transform the object $t$ into a polynomial
 with main variable $v$. If $t$ is a scalar, this gives a constant polynomial.
 If $t$ is a power series, the effect is identical to \kbd{truncate}, i.e.~it
 chops off the $O(X^k)$.
 
 The main use of this function is when $t$ is a vector: it creates the
 polynomial whose coefficients are given by $t$, with $t[1]$ being the
 constant term. \tet{Pol} can be used if one wants $t[1]$ to be the leading
 coefficient:
 \bprog
 ? Polrev([1,2,3])
 %1 = 3*x^2 + 2*x + 1
 ? Pol([1,2,3])
 %2 = x^2 + 2*x + 3
 @eprog
 The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
 \kbd{Vecrev}).

Function: Qfb
Class: basic
Section: conversions
C-Name: Qfb0
Prototype: GGGDGp
Help: Qfb(a,b,c,{D=0.}): binary quadratic form a*x^2+b*x*y+c*y^2. D is
 optional (0.0 by default) and initializes Shanks's distance if b^2-4*a*c>0.
Doc: creates the binary quadratic form\sidx{binary quadratic form}
 $ax^2+bxy+cy^2$. If $b^2-4ac>0$, initialize \idx{Shanks}' distance
 function to $D$. Negative definite forms are not implemented,
 use their positive definite counterpart instead.
Variant: Also available are
 \fun{GEN}{qfi}{GEN a, GEN b, GEN c} (assumes $b^2-4ac<0$) and
 \fun{GEN}{qfr}{GEN a, GEN b, GEN c, GEN D} (assumes $b^2-4ac>0$).

Function: Ser
Class: basic
Section: conversions
C-Name: gtoser
Prototype: GDnDP
Help: Ser(s,{v='x},{d=seriesprecision}): convert s into a power series with
 variable v and precision d, starting with the constant coefficient.
Doc: transforms the object $s$ into a power series with main variable $v$
 ($x$ by default) and precision (number of significant terms) equal to
 $d \geq 0$ ($d = \kbd{seriesprecision}$ by default). If $s$ is a
 scalar, this gives a constant power series in $v$ with precision \kbd{d}.
 If $s$ is a polynomial, the polynomial is truncated to $d$ terms if needed
 \bprog
 ? Ser(1, 'y, 5)
 %1 = 1 + O(y^5)
 ? Ser(x^2,, 5)
 %2 = x^2 + O(x^7)
 ? T = polcyclo(100)
 %3 = x^40 - x^30 + x^20 - x^10 + 1
 ? Ser(T, 'x, 11)
 %4 = 1 - x^10 + O(x^11)
 @eprog\noindent The function is more or less equivalent with multiplication by
 $1 + O(v^d)$ in theses cases, only faster.
 
 If $s$ is a vector, on the other hand, the coefficients of the vector are
 understood to be the coefficients of the power series starting from the
 constant term (as in \tet{Polrev}$(x)$), and the precision $d$ is ignored:
 in other words, in this case, we convert \typ{VEC} / \typ{COL} to the power
 series whose significant terms are exactly given by the vector entries.
 Finally, if $s$ is already a power series in $v$, we return it verbatim,
 ignoring $d$ again. If $d$ significant terms are desired in the last two
 cases, convert/truncate to \typ{POL} first.
 \bprog
 ? v = [1,2,3]; Ser(v, t, 7)
 %5 = 1 + 2*t + 3*t^2 + O(t^3)  \\ 3 terms: 7 is ignored!
 ? Ser(Polrev(v,t), t, 7)
 %6 = 1 + 2*t + 3*t^2 + O(t^7)
 ? s = 1+x+O(x^2); Ser(s, x, 7)
 %7 = 1 + x + O(x^2)  \\ 2 terms: 7 ignored
 ? Ser(truncate(s), x, 7)
 %8 = 1 + x + O(x^7)
 @eprog\noindent
 The warning given for \kbd{Pol} also applies here: this is not a substitution
 function.

Function: Set
Class: basic
Section: conversions
C-Name: gtoset
Prototype: DG
Help: Set({x=[]}): convert x into a set, i.e. a row vector with strictly
 increasing coefficients. Empty set if x is omitted.
Description: 
 ():vec           cgetg(1,t_VEC)
 (gen):vec        gtoset($1)
Doc: 
 converts $x$ into a set, i.e.~into a row vector, with strictly increasing
 entries with respect to the (somewhat arbitrary) universal comparison function
 \tet{cmp}. Standard container types \typ{VEC}, \typ{COL}, \typ{LIST} and
 \typ{VECSMALL} are converted to the set with corresponding elements. All
 others are converted to a set with one element.
 \bprog
 ? Set([1,2,4,2,1,3])
 %1 = [1, 2, 3, 4]
 ? Set(x)
 %2 = [x]
 ? Set(Vecsmall([1,3,2,1,3]))
 %3 = [1, 2, 3]
 @eprog

Function: Str
Class: basic
Section: conversions
C-Name: Str
Prototype: s*
Help: Str({x}*): concatenates its (string) argument into a single string.
Description: 
 (gen):genstr:copy:parens      $genstr:1
 (gen,gen):genstr              Str(mkvec2($1, $2))
 (gen,gen,gen):genstr          Str(mkvec3($1, $2, $3))
 (gen,gen,gen,gen):genstr      Str(mkvec4($1, $2, $3, $4))
 (gen,...):genstr              Str(mkvecn($#, $2))
Doc: 
 converts its argument list into a
 single character string (type \typ{STR}, the empty string if $x$ is omitted).
 To recover an ordinary \kbd{GEN} from a string, apply \kbd{eval} to it. The
 arguments of \kbd{Str} are evaluated in string context, see \secref{se:strings}.
 
 \bprog
 ? x2 = 0; i = 2; Str(x, i)
 %1 = "x2"
 ? eval(%)
 %2 = 0
 @eprog\noindent
 This function is mostly useless in library mode. Use the pair
 \tet{strtoGEN}/\tet{GENtostr} to convert between \kbd{GEN} and \kbd{char*}.
 The latter returns a malloced string, which should be freed after usage.
 %\syn{NO}

Function: Strchr
Class: basic
Section: conversions
C-Name: Strchr
Prototype: G
Help: Strchr(x): converts x to a string, translating each integer into a
 character.
Doc: 
 converts $x$ to a string, translating each integer
 into a character.
 \bprog
 ? Strchr(97)
 %1 = "a"
 ? Vecsmall("hello world")
 %2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
 ? Strchr(%)
 %3 = "hello world"
 @eprog

Function: Strexpand
Class: basic
Section: conversions
C-Name: Strexpand
Prototype: s*
Help: Strexpand({x}*): concatenates its (string) argument into a single
 string, performing tilde expansion.
Doc: 
 converts its argument list into a
 single character string (type \typ{STR}, the empty string if $x$ is omitted).
 Then perform \idx{environment expansion}, see \secref{se:envir}.
 This feature can be used to read \idx{environment variable} values.
 \bprog
 ? Strexpand("$HOME/doc")
 %1 = "/home/pari/doc"
 @eprog
 
 The individual arguments are read in string context, see \secref{se:strings}.
 %\syn{NO}

Function: Strprintf
Class: basic
Section: programming/specific
C-Name: Strprintf
Prototype: ss*
Help: Strprintf(fmt,{x}*): returns a string built from the remaining
 arguments according to the format fmt.
Doc: returns a string built from the remaining arguments according to the
 format fmt. The format consists of ordinary characters (not \%), printed
 unchanged, and conversions specifications. See \kbd{printf}.
 %\syn{NO}

Function: Strtex
Class: basic
Section: conversions
C-Name: Strtex
Prototype: s*
Help: Strtex({x}*): translates its (string) arguments to TeX format and
 returns the resulting string.
Doc: 
 translates its arguments to TeX
 format, and concatenates the results into a single character string (type
 \typ{STR}, the empty string if $x$ is omitted).
 
 The individual arguments are read in string context, see \secref{se:strings}.
 %\syn{NO}

Function: Vec
Class: basic
Section: conversions
C-Name: gtovec0
Prototype: GD0,L,
Help: Vec(x, {n}): transforms the object x into a vector of dimension n.
Description: 
 (gen):vec        gtovec($1)
Doc: 
 transforms the object $x$ into a row vector. The dimension of the
 resulting vector can be optionally specified via the extra parameter $n$.
 
 If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
 vector has a single component, except when $x$ is
 
 \item a vector or a quadratic form: returns the initial object considered as a
 row vector,
 
 \item a polynomial or a power series: returns a vector consisting of the coefficients.
 In the case of a polynomial, the coefficients of the vector start with the leading
 coefficient of the polynomial, while for power series only the significant coefficients
 are taken into account, but this time by increasing order of degree.
 \kbd{Vec} is the reciprocal function of \kbd{Pol} for a polynomial and of
 \kbd{Ser} for a power series,
 
 \item a matrix: returns the vector of columns comprising the matrix,
 
 \item a character string: returns the vector of individual characters,
 
 \item a map: returns the vector of the domain of the map,
 
 \item an error context (\typ{ERROR}): returns the error components, see
 \tet{iferr}.
 
 In the last four cases (matrix, character string, map, error), $n$ is
 meaningless and must be omitted or an error is raised. Otherwise, if $n$ is
 given, $0$ entries are appended at the end of the vector if $n > 0$, and
 prepended at the beginning if $n < 0$. The dimension of the resulting vector
 is $|n|$. Variant: \fun{GEN}{gtovec}{GEN x} is also available.

Function: Vecrev
Class: basic
Section: conversions
C-Name: gtovecrev0
Prototype: GD0,L,
Help: Vecrev(x, {n}): transforms the object x into a vector of dimension n
 in reverse order with respect to Vec(x, {n}). Empty vector if x is omitted.
Description: 
 (gen):vec     gtovecrev($1)
Doc: 
 as $\kbd{Vec}(x, -n)$, then reverse the result. In particular,
 \kbd{Vecrev} is the reciprocal function of \kbd{Polrev}: the
 coefficients of the vector start with the constant coefficient of the
 polynomial and the others follow by increasing degree.
Variant: \fun{GEN}{gtovecrev}{GEN x} is also available.

Function: Vecsmall
Class: basic
Section: conversions
C-Name: gtovecsmall0
Prototype: GD0,L,
Help: Vecsmall(x, {n}): transforms the object x into a VECSMALL of dimension n.
Description: 
 (gen):vecsmall                gtovecsmall($1)
Doc: 
 transforms the object $x$ into a row vector of type \typ{VECSMALL}. The
 dimension of the resulting vector can be optionally specified via the extra
 parameter $n$.
 
 This acts as \kbd{Vec}$(x,n)$, but only on a limited set of objects:
 the result must be representable as a vector of small integers.
 If $x$ is a character string, a vector of individual characters in ASCII
 encoding is returned (\tet{Strchr} yields back the character string).
Variant: \fun{GEN}{gtovecsmall}{GEN x} is also available.

Function: [_.._]
Class: basic
Section: programming/internals
C-Name: vecrange
Prototype: GG
Help: [a..b] = [a,a+1,...,b]
Description: 
 (gen,gen):vec     vecrange($1, $2)
 (small,small):vec vecrangess($1, $2)

Function: [_|_<-_,_;_]
Class: basic
Section: programming/internals
C-Name: vecexpr1
Prototype: mGVDEDE
Help: [a(x)|x<-b,c(x);...]
Wrapper: (,,G,bG)
Description: 
 (gen,,closure):gen         veccatapply(${3 cookie}, ${3 wrapper}, $1)
 (gen,,closure,closure):gen veccatselapply(${4 cookie}, ${4 wrapper}, ${3 cookie}, ${3 wrapper}, $1)

Function: [_|_<-_,_]
Class: basic
Section: programming/internals
C-Name: vecexpr0
Prototype: GVDEDE
Help: [a(x)|x<-b,c(x)] = apply(a,select(c,b))
Wrapper: (,,G,bG)
Description: 
 (gen,,closure):gen         vecapply(${3 cookie}, ${3 wrapper}, $1)
 (gen,,,closure):gen        vecselect(${4 cookie}, ${4 wrapper}, $1)
 (gen,,closure,closure):gen vecselapply(${4 cookie}, ${4 wrapper}, ${3 cookie}, ${3 wrapper}, $1)

Function: _!
Class: basic
Section: symbolic_operators
C-Name: mpfact
Prototype: L
Help: n!: factorial of n.
Description: 
 (small):int                        mpfact($1)

Function: _!=_
Class: basic
Section: symbolic_operators
C-Name: gne
Prototype: GG
Help: _!=_
Description: 
 (small, small):bool:parens             $(1) != $(2)
 (lg, lg):bool:parens                   $(1) != $(2)
 (small, int):bool:parens               cmpsi($1, $2) != 0
 (int, small):bool:parens               cmpis($1, $2) != 0
 (int, 1):negbool                       equali1($1)
 (int, -1):negbool                      equalim1($1)
 (int, int):negbool                     equalii($1, $2)
 (real,real):bool                       cmprr($1, $2) != 0
 (mp, mp):bool:parens                   mpcmp($1, $2) != 0
 (errtyp, errtyp):bool:parens           $(1) != $(2)
 (errtyp, #str):bool:parens             $(1) != $(errtyp:2)
 (#str, errtyp):bool:parens             $(errtyp:1) != $(2)
 (typ, typ):bool:parens                 $(1) != $(2)
 (typ, #str):bool:parens                $(1) != $(typ:2)
 (#str, typ):bool:parens                $(typ:1) != $(2)
 (str, str):bool                        strcmp($1, $2)
 (small, gen):negbool                   gequalsg($1, $2)
 (gen, small):negbool                   gequalgs($1, $2)
 (gen, gen):negbool                     gequal($1, $2)

Function: _%=_
Class: basic
Section: symbolic_operators
C-Name: gmode
Prototype: &G
Help: x%=y: shortcut for x=x%y.
Description: 
 (*small, small):small:parens            $1 = smodss($1, $2)
 (*int, small):int:parens                $1 = modis($1, $2)
 (*int, int):int:parens                  $1 = modii($1, $2)
 (*pol, gen):gen:parens                  $1 = gmod($1, $2)
 (*gen, small):gen:parens                $1 = gmodgs($1, $2)
 (*gen, gen):gen:parens                  $1 = gmod($1, $2)

Function: _%_
Class: basic
Section: symbolic_operators
C-Name: gmod
Prototype: GG
Help: x%y: Euclidean remainder of x and y.
Description: 
 (small, small):small            smodss($1, $2)
 (small, int):int                modsi($1, $2)
 (int, small):small              smodis($1, $2)
 (int, int):int                  modii($1, $2)
 (gen, small):gen                gmodgs($1, $2)
 (small, gen):gen                gmodsg($1, $2)
 (gen, gen):gen                  gmod($1, $2)
 
 (FpX,FpX):FpX                   FpX_rem($1, $2, p)
 (FqX,FqX):FqX                   FqX_rem($1, $2, T, p)

Function: _&&_
Class: basic
Section: symbolic_operators
C-Name: andpari
Prototype: GE
Help: _&&_
Description: 
 (bool, bool):bool:parens               $(1) && $(2)

Function: _'
Class: basic
Section: symbolic_operators
C-Name: deriv
Prototype: GDn
Help: x': derivative of x with respect to the main variable.
Description: 
 (gen):gen                      deriv($1,-1)
 
 (FpX):FpX                      FpX_deriv($1, p)
 (FqX):FqX                      FqX_deriv($1, T, p)

Function: _(_)
Class: basic
Section: symbolic_operators
Help: f(a,b,...): evaluates the function f on a,b,...
Description: 
 (gen):gen          closure_callgenall($1, 0)
 (gen,gen):gen      closure_callgen1($1, $2)
 (gen,gen,gen):gen  closure_callgen2($1, $2, $3)
 (gen,gen,...):gen  closure_callgenall($1, ${nbarg 1 sub}, $3)

Function: _*=_
Class: basic
Section: symbolic_operators
C-Name: gmule
Prototype: &G
Help: x*=y: shortcut for x=x*y.
Description: 
 (*small, small):small:parens             $1 *= $(2)
 (*int, small):int:parens                 $1 = mulis($1, $2)
 (*int, int):int:parens                   $1 = mulii($1, $2)
 (*real, small):real:parens               $1 = mulrs($1, $2)
 (*real, int):real:parens                 $1 = mulri($1, $2)
 (*real, real):real:parens                $1 = mulrr($1, $2)
 (*mp, mp):mp:parens                      $1 = mpmul($1, $2)
 (*pol, small):gen:parens                 $1 = gmulgs($1, $2)
 (*pol, gen):gen:parens                   $1 = gmul($1, $2)
 (*vec, gen):gen:parens                   $1 = gmul($1, $2)
 (*gen, small):gen:parens                 $1 = gmulgs($1, $2)
 (*gen, gen):gen:parens                   $1 = gmul($1, $2)

Function: _*_
Class: basic
Section: symbolic_operators
C-Name: gmul
Prototype: GG
Help: x*y: product of x and y.
Description: 
 (small, small):small:parens     $(1)*$(2)
 (int, small):int                mulis($1, $2)
 (small, int):int                mulsi($1, $2)
 (int, int):int                  mulii($1, $2)
 (0, mp):small                   ($2, 0)/*for side effect*/
 (#small, real):real             mulsr($1, $2)
 (small, real):mp                mulsr($1, $2)
 (real, small):mp                mulrs($1, $2)
 (real, real):real               mulrr($1, $2)
 (mp, mp):mp                     mpmul($1, $2)
 (gen, small):gen                gmulgs($1, $2)
 (small, gen):gen                gmulsg($1, $2)
 (vecsmall, vecsmall):vecsmall   perm_mul($1, $2)
 (gen, gen):gen                  gmul($1, $2)
 
 (usmall,Fp):Fp                  Fp_mulu($2, $1, p)
 (small,Fp):Fp                   Fp_muls($2, $1, p)
 (Fp, usmall):Fp                 Fp_mulu($1, $2, p)
 (Fp, small):Fp                  Fp_muls($1, $2, p)
 (usmall,FpX):FpX                FpX_mulu($2, $1, p)
 (FpX, usmall):FpX               FpX_mulu($1, $2, p)
 (Fp, FpX):FpX                   FpX_Fp_mul($2, $1, p)
 (FpX, Fp):FpX                   FpX_Fp_mul($1, $2, p)
 (FpX, FpX):FpX                  FpX_mul($1, $2, p)
 
 (usmall,Fq):Fq                  Fq_mulu($2, $1, T, p)
 (Fq, usmall):Fq                 Fq_mulu($1, $2, T, p)
 (Fq,Fp):Fq                      Fq_Fp_mul($1, $2, T, p)
 (Fp,Fq):Fq                      Fq_Fp_mul($2, $1, T, p)
 (usmall,FqX):FqX                FqX_mulu($2, $1, T, p)
 (FqX, usmall):FqX               FqX_mulu($1, $2, T, p)
 (FqX,Fp):FqX                    FqX_Fp_mul($1, $2, T, p)
 (Fp,FqX):FqX                    FqX_Fp_mul($2, $1, T, p)
 (Fq, FqX):FqX                   FqX_Fq_mul($2, $1, T, p)
 (FqX, Fq):FqX                   FqX_Fq_mul($1, $2, T, p)
 (FqX, FqX):FqX                  FqX_mul($1, $2, T, p)

Function: _++
Class: basic
Section: symbolic_operators
C-Name: gadd1e
Prototype: &
Help: x++
Description: 
 (*bptr):bptr                            ++$1
 (*small):small                          ++$1
 (*lg):lg                                ++$1
 (*int):int:parens                       $1 = addis($1, 1)
 (*real):real:parens                     $1 = addrs($1, 1)
 (*mp):mp:parens                         $1 = mpadd($1, gen_1)
 (*pol):pol:parens                       $1 = gaddgs($1, 1)
 (*gen):gen:parens                       $1 = gaddgs($1, 1)

Function: _+=_
Class: basic
Section: symbolic_operators
C-Name: gadde
Prototype: &G
Help: x+=y: shortcut for x=x+y.
Description: 
 (*small, small):small:parens             $1 += $(2)
 (*lg, small):lg:parens                   $1 += $(2)
 (*int, small):int:parens                 $1 = addis($1, $2)
 (*int, int):int:parens                   $1 = addii($1, $2)
 (*real, small):real:parens               $1 = addrs($1, $2)
 (*real, int):real:parens                 $1 = addir($2, $1)
 (*real, real):real:parens                $1 = addrr($1, $2)
 (*mp, mp):mp:parens                      $1 = mpadd($1, $2)
 (*pol, small):gen:parens                 $1 = gaddgs($1, $2)
 (*pol, gen):gen:parens                   $1 = gadd($1, $2)
 (*vec, gen):gen:parens                   $1 = gadd($1, $2)
 (*gen, small):gen:parens                 $1 = gaddgs($1, $2)
 (*gen, gen):gen:parens                   $1 = gadd($1, $2)

Function: _+_
Class: basic
Section: symbolic_operators
C-Name: gadd
Prototype: GG
Help: x+y: sum of x and y.
Description: 
 (lg, 1):small:parens            $(1)
 (small, small):small:parens     $(1) + $(2)
 (lg, small):lg:parens           $(1) + $(2)
 (small, lg):lg:parens           $(1) + $(2)
 (int, small):int                addis($1, $2)
 (small, int):int                addsi($1, $2)
 (int, int):int                  addii($1, $2)
 (real, small):real              addrs($1, $2)
 (small, real):real              addsr($1, $2)
 (real, real):real               addrr($1, $2)
 (mp, real):real                 mpadd($1, $2)
 (real, mp):real                 mpadd($1, $2)
 (mp, mp):mp                     mpadd($1, $2)
 (gen, small):gen                gaddgs($1, $2)
 (small, gen):gen                gaddsg($1, $2)
 (gen, gen):gen                  gadd($1, $2)
 
 (Fp, Fp):Fp                     Fp_add($1, $2, p)
 (FpX, Fp):FpX                   FpX_Fp_add($1, $2, p)
 (Fp, FpX):FpX                   FpX_Fp_add($2, $1, p)
 (FpX, FpX):FpX                  FpX_add($1, $2, p)
 (Fq, Fq):Fq                     Fq_add($1, $2, T, p)
 (FqX, Fq):FqX                   FqX_Fq_add($1, $2, T, p)
 (Fq, FqX):FqX                   FqX_Fq_add($2, $1, T, p)
 (FqX, FqX):FqX                  FqX_add($1, $2, T, p)

Function: _--
Class: basic
Section: symbolic_operators
C-Name: gsub1e
Prototype: &
Help: x--
Description: 
 (*bptr):bptr                          --$1
 (*small):small                        --$1
 (*lg):lg                              --$1
 (*int):int:parens                     $1 = subis($1, 1)
 (*real):real:parens                   $1 = subrs($1, 1)
 (*mp):mp:parens                       $1 = mpsub($1, gen_1)
 (*pol):pol:parens                     $1 = gsubgs($1, 1)
 (*gen):gen:parens                     $1 = gsubgs($1, 1)

Function: _-=_
Class: basic
Section: symbolic_operators
C-Name: gsube
Prototype: &G
Help: x-=y: shortcut for x=x-y.
Description: 
 (*small, small):small:parens             $1 -= $(2)
 (*lg, small):lg:parens                   $1 -= $(2)
 (*int, small):int:parens                 $1 = subis($1, $2)
 (*int, int):int:parens                   $1 = subii($1, $2)
 (*real, small):real:parens               $1 = subrs($1, $2)
 (*real, int):real:parens                 $1 = subri($1, $2)
 (*real, real):real:parens                $1 = subrr($1, $2)
 (*mp, mp):mp:parens                      $1 = mpsub($1, $2)
 (*pol, small):gen:parens                 $1 = gsubgs($1, $2)
 (*pol, gen):gen:parens                   $1 = gsub($1, $2)
 (*vec, gen):gen:parens                   $1 = gsub($1, $2)
 (*gen, small):gen:parens                 $1 = gsubgs($1, $2)
 (*gen, gen):gen:parens                   $1 = gsub($1, $2)

Function: _-_
Class: basic
Section: symbolic_operators
C-Name: gsub
Prototype: GG
Help: x-y: difference of x and y.
Description: 
 (small, small):small:parens     $(1) - $(2)
 (lg, small):lg:parens           $(1) - $(2)
 (int, small):int                subis($1, $2)
 (small, int):int                subsi($1, $2)
 (int, int):int                  subii($1, $2)
 (real, small):real              subrs($1, $2)
 (small, real):real              subsr($1, $2)
 (real, real):real               subrr($1, $2)
 (mp, real):real                 mpsub($1, $2)
 (real, mp):real                 mpsub($1, $2)
 (mp, mp):mp                     mpsub($1, $2)
 (gen, small):gen                gsubgs($1, $2)
 (small, gen):gen                gsubsg($1, $2)
 (gen, gen):gen                  gsub($1, $2)
 
 (Fp, Fp):Fp                     Fp_sub($1, $2, p)
 (Fp, FpX):FpX                   Fp_FpX_sub($1, $2, p)
 (FpX, Fp):FpX                   FpX_Fp_sub($1, $2, p)
 (FpX, FpX):FpX                  FpX_sub($1, $2, p)
 (Fq, Fq):Fq                     Fq_sub($1, $2, T, p)
 (FqX, FqX):FqX                  FqX_sub($1, $2, T, p)

Function: _.a1
Class: basic
Section: member_functions
C-Name: member_a1
Prototype: mG
Help: _.a1
Description: 
 (ell):gen:copy        ell_get_a1($1)

Function: _.a2
Class: basic
Section: member_functions
C-Name: member_a2
Prototype: mG
Help: _.a2
Description: 
 (ell):gen:copy        ell_get_a2($1)

Function: _.a3
Class: basic
Section: member_functions
C-Name: member_a3
Prototype: mG
Help: _.a3
Description: 
 (ell):gen:copy        ell_get_a3($1)

Function: _.a4
Class: basic
Section: member_functions
C-Name: member_a4
Prototype: mG
Help: _.a4
Description: 
 (ell):gen:copy        ell_get_a4($1)

Function: _.a6
Class: basic
Section: member_functions
C-Name: member_a6
Prototype: mG
Help: _.a6
Description: 
 (ell):gen:copy         ell_get_a6($1)

Function: _.area
Class: basic
Section: member_functions
C-Name: member_area
Prototype: mG
Help: _.area

Function: _.b2
Class: basic
Section: member_functions
C-Name: member_b2
Prototype: mG
Help: _.b2
Description: 
 (ell):gen:copy         ell_get_b2($1)

Function: _.b4
Class: basic
Section: member_functions
C-Name: member_b4
Prototype: mG
Help: _.b4
Description: 
 (ell):gen:copy        ell_get_b4($1)

Function: _.b6
Class: basic
Section: member_functions
C-Name: member_b6
Prototype: mG
Help: _.b6
Description: 
 (ell):gen:copy               ell_get_b6($1)

Function: _.b8
Class: basic
Section: member_functions
C-Name: member_b8
Prototype: mG
Help: _.b8
Description: 
 (ell):gen:copy        ell_get_b8($1)

Function: _.bid
Class: basic
Section: member_functions
C-Name: member_bid
Prototype: mG
Help: _.bid
Description: 
 (bnr):gen:copy                 bnr_get_bid($1)
 (gen):gen:copy                 member_bid($1)

Function: _.bnf
Class: basic
Section: member_functions
C-Name: member_bnf
Prototype: mG
Help: _.bnf
Description: 
 (bnf):bnf:parens               $1
 (bnr):bnf:copy:parens          $bnf:1
 (gen):bnf:copy                 member_bnf($1)

Function: _.c4
Class: basic
Section: member_functions
C-Name: member_c4
Prototype: mG
Help: _.c4
Description: 
 (ell):gen:copy        ell_get_c4($1)

Function: _.c6
Class: basic
Section: member_functions
C-Name: member_c6
Prototype: mG
Help: _.c6
Description: 
 (ell):gen:copy        ell_get_c6($1)

Function: _.clgp
Class: basic
Section: member_functions
C-Name: member_clgp
Prototype: mG
Help: _.clgp
Description: 
 (bnf):clgp:copy:parens         $clgp:1
 (bnr):clgp:copy:parens         $clgp:1
 (clgp):clgp:parens             $1
 (gen):clgp:copy                member_clgp($1)

Function: _.codiff
Class: basic
Section: member_functions
C-Name: member_codiff
Prototype: mG
Help: _.codiff

Function: _.cyc
Class: basic
Section: member_functions
C-Name: member_cyc
Prototype: mG
Help: _.cyc
Description: 
 (bnr):vec:copy                 bnr_get_cyc($1)
 (bnf):vec:copy                 bnf_get_cyc($1)
 (clgp):vec:copy                gel($1, 2)
 (gen):vec:copy                 member_cyc($1)

Function: _.diff
Class: basic
Section: member_functions
C-Name: member_diff
Prototype: mG
Help: _.diff
Description: 
 (nf):gen:copy                  nf_get_diff($1)
 (gen):gen:copy                 member_diff($1)

Function: _.disc
Class: basic
Section: member_functions
C-Name: member_disc
Prototype: mG
Help: _.disc
Description: 
 (nf):int:copy                  nf_get_disc($1)
 (ell):gen:copy                 ell_get_disc($1)
 (gen):gen:copy                 member_disc($1)

Function: _.e
Class: basic
Section: member_functions
C-Name: member_e
Prototype: mG
Help: _.e
Description: 
 (prid):small        pr_get_e($1)

Function: _.eta
Class: basic
Section: member_functions
C-Name: member_eta
Prototype: mG
Help: _.eta

Function: _.f
Class: basic
Section: member_functions
C-Name: member_f
Prototype: mG
Help: _.f
Description: 
 (prid):small       pr_get_f($1)

Function: _.fu
Class: basic
Section: member_functions
C-Name: member_fu
Prototype: G
Help: _.fu
Description: 
 (bnr):void                $"ray units not implemented"
 (bnf):gen:copy         bnf_get_fu($1)
 (gen):gen              member_fu($1)

Function: _.futu
Class: basic
Section: member_functions
C-Name: member_futu
Prototype: mG
Help: _.futu

Function: _.gen
Class: basic
Section: member_functions
C-Name: member_gen
Prototype: mG
Help: _.gen
Description: 
 (bnr):vec:copy        bnr_get_gen($1)
 (bnf):vec:copy        bnf_get_gen($1)
 (gal):vec:copy        gal_get_gen($1)
 (clgp):vec:copy       gel($1, 3)
 (prid):gen:copy       pr_get_gen($1)
 (gen):gen:copy        member_gen($1)

Function: _.group
Class: basic
Section: member_functions
C-Name: member_group
Prototype: mG
Help: _.group
Description: 
 (gal):vec:copy        gal_get_group($1)
 (gen):vec:copy        member_group($1)

Function: _.index
Class: basic
Section: member_functions
C-Name: member_index
Prototype: mG
Help: _.index
Description: 
 (nf):int:copy                  nf_get_index($1)
 (gen):int:copy                 member_index($1)

Function: _.j
Class: basic
Section: member_functions
C-Name: member_j
Prototype: mG
Help: _.j
Description: 
 (ell):gen:copy        ell_get_j($1)

Function: _.mod
Class: basic
Section: member_functions
C-Name: member_mod
Prototype: mG
Help: _.mod

Function: _.nf
Class: basic
Section: member_functions
C-Name: member_nf
Prototype: mG
Help: _.nf
Description: 
 (nf):nf:parens                $1
 (gen):nf:copy                 member_nf($1)

Function: _.no
Class: basic
Section: member_functions
C-Name: member_no
Prototype: mG
Help: _.no
Description: 
 (bnr):int:copy                 bnr_get_no($1)
 (bnf):int:copy                 bnf_get_no($1)
 (clgp):int:copy                gel($1, 1)
 (gen):int:copy                 member_no($1)

Function: _.omega
Class: basic
Section: member_functions
C-Name: member_omega
Prototype: mG
Help: _.omega

Function: _.orders
Class: basic
Section: member_functions
C-Name: member_orders
Prototype: mG
Help: _.orders
Description: 
 (gal):vecsmall:copy   gal_get_orders($1)

Function: _.p
Class: basic
Section: member_functions
C-Name: member_p
Prototype: mG
Help: _.p
Description: 
 (gal):int:copy                 gal_get_p($1)
 (prid):int:copy                pr_get_p($1)
 (gen):int:copy                 member_p($1)

Function: _.pol
Class: basic
Section: member_functions
C-Name: member_pol
Prototype: mG
Help: _.pol
Description: 
 (gal):gen:copy                 gal_get_pol($1)
 (nf):gen:copy                  nf_get_pol($1)
 (gen):gen:copy                 member_pol($1)

Function: _.polabs
Class: basic
Section: member_functions
C-Name: member_polabs
Prototype: mG
Help: _.polabs

Function: _.r1
Class: basic
Section: member_functions
C-Name: member_r1
Prototype: mG
Help: _.r1
Description: 
 (nf):small                     nf_get_r1($1)
 (gen):int:copy                 member_r1($1)

Function: _.r2
Class: basic
Section: member_functions
C-Name: member_r2
Prototype: mG
Help: _.r2
Description: 
 (nf):small                     nf_get_r2($1)
 (gen):int:copy                 member_r2($1)

Function: _.reg
Class: basic
Section: member_functions
C-Name: member_reg
Prototype: mG
Help: _.reg
Description: 
 (bnr):real             $"ray regulator not implemented"
 (bnf):real:copy        bnf_get_reg($1)
 (gen):real:copy        member_reg($1)

Function: _.roots
Class: basic
Section: member_functions
C-Name: member_roots
Prototype: mG
Help: _.roots
Description: 
 (gal):vec:copy                 gal_get_roots($1)
 (nf):vec:copy                  nf_get_roots($1)
 (gen):vec:copy                 member_roots($1)

Function: _.sign
Class: basic
Section: member_functions
C-Name: member_sign
Prototype: mG
Help: _.sign
Description: 
 (nf):vec:copy                  gel($1, 2)
 (gen):vec:copy                 member_sign($1)

Function: _.t2
Class: basic
Section: member_functions
C-Name: member_t2
Prototype: G
Help: _.t2
Description: 
 (gen):vec                      member_t2($1)

Function: _.tate
Class: basic
Section: member_functions
C-Name: member_tate
Prototype: mG
Help: _.tate

Function: _.tu
Class: basic
Section: member_functions
C-Name: member_tu
Prototype: G
Help: _.tu
Description: 
 (gen):gen:copy        member_tu($1)

Function: _.tufu
Class: basic
Section: member_functions
C-Name: member_tufu
Prototype: mG
Help: _.tufu

Function: _.zk
Class: basic
Section: member_functions
C-Name: member_zk
Prototype: mG
Help: _.zk
Description: 
 (nf):vec:copy         nf_get_zk($1)
 (gen):vec:copy        member_zk($1)

Function: _.zkst
Class: basic
Section: member_functions
C-Name: member_zkst
Prototype: mG
Help: _.zkst
Description: 
 (bnr):gen:copy        bnr_get_bid($1)

Function: _/=_
Class: basic
Section: symbolic_operators
C-Name: gdive
Prototype: &G
Help: x/=y: shortcut for x=x/y.
Description: 
 (*small, gen):void                $"cannot divide small: use \= instead."
 (*int, gen):void                  $"cannot divide int: use \= instead."
 (*real, real):real:parens               $1 = divrr($1, $2)
 (*real, small):real:parens              $1 = divrs($1, $2)
 (*real, mp):real:parens                 $1 = mpdiv($1, $2)
 (*mp, real):mp:parens                   $1 = mpdiv($1, $2)
 (*pol, gen):gen:parens                  $1 = gdiv($1, $2)
 (*vec, gen):gen:parens                  $1 = gdiv($1, $2)
 (*gen, small):gen:parens                $1 = gdivgs($1, $2)
 (*gen, gen):gen:parens                  $1 = gdiv($1, $2)

Function: _/_
Class: basic
Section: symbolic_operators
C-Name: gdiv
Prototype: GG
Help: x/y: quotient of x and y.
Description: 
 (0, mp):small                   ($2, 0)/*for side effect*/
 (1, real):real                  invr($2)
 (#small, real):real             divsr($1, $2)
 (small, real):mp                divsr($1, $2)
 (real, small):real              divrs($1, $2)
 (real, real):real               divrr($1, $2)
 (real, mp):real                 mpdiv($1, $2)
 (mp, real):mp                   mpdiv($1, $2)
 (1, gen):gen                    ginv($2)
 (gen, small):gen                gdivgs($1, $2)
 (small, gen):gen                gdivsg($1, $2)
 (gen, gen):gen                  gdiv($1, $2)
 
 (Fp, 2):Fp                       Fp_halve($1, p)
 (Fp, Fp):Fp                     Fp_div($1, $2, p)
 (Fq, 2):Fq                       Fq_halve($1, T, p)
 (Fq, Fq):Fq                     Fq_div($1, $2, T, p)

Function: _<<=_
Class: basic
Section: symbolic_operators
C-Name: gshiftle
Prototype: &L
Help: x<<=y: shortcut for x=x<<y.
Description: 
 (*small, small):small:parens             $1 <<= $(2)
 (*int, small):int:parens                 $1 = shifti($1, $2)
 (*mp, small):mp:parens                   $1 = mpshift($1, $2)
 (*gen, small):mp:parens                  $1 = gshift($1, $2)

Function: _<<_
Class: basic
Section: symbolic_operators
C-Name: gshift
Prototype: GL
Help: x<<y
Description: 
 (int, small):int               shifti($1, $2)
 (mp, small):mp                 mpshift($1, $2)
 (gen, small):mp                gshift($1, $2)

Function: _<=_
Class: basic
Section: symbolic_operators
C-Name: gle
Prototype: GG
Help: x<=y: return 1 if x is less or equal to y, 0 otherwise.
Description: 
 (small, small):bool:parens              $(1) <= $(2)
 (small, lg):bool:parens                 $(1) < $(2)
 (lg, lg):bool:parens                    $(1) <= $(2)
 (small, int):bool:parens                cmpsi($1, $2) <= 0
 (int, lg):bool:parens                   cmpis($1, $2) < 0
 (int, small):bool:parens                cmpis($1, $2) <= 0
 (int, int):bool:parens                  cmpii($1, $2) <= 0
 (mp, mp):bool:parens                    mpcmp($1, $2) <= 0
 (str, str):bool:parens                  strcmp($1, $2) <= 0
 (small, gen):bool:parens                gcmpsg($1, $2) <= 0
 (gen, small):bool:parens                gcmpgs($1, $2) <= 0
 (gen, gen):bool:parens                  gcmp($1, $2) <= 0

Function: _<_
Class: basic
Section: symbolic_operators
C-Name: glt
Prototype: GG
Help: x<y: return 1 if x is strictly less than y, 0 otherwise.
Description: 
 (small, small):bool:parens              $(1) < $(2)
 (lg, lg):bool:parens                    $(1) < $(2)
 (lg, small):bool:parens                 $(1) <= $(2)
 (small, int):bool:parens                cmpsi($1, $2) < 0
 (int, small):bool:parens                cmpis($1, $2) < 0
 (int, int):bool:parens                  cmpii($1, $2) < 0
 (mp, mp):bool:parens                    mpcmp($1, $2) < 0
 (str, str):bool:parens                  strcmp($1, $2) < 0
 (small, gen):bool:parens                gcmpsg($1, $2) < 0
 (gen, small):bool:parens                gcmpgs($1, $2) < 0
 (gen, gen):bool:parens                  gcmp($1, $2) < 0

Function: _===_
Class: basic
Section: symbolic_operators
C-Name: gidentical
Prototype: iGG
Help: a === b : true if a and b are identical

Function: _==_
Class: basic
Section: symbolic_operators
C-Name: geq
Prototype: GG
Help: _==_
Description: 
 (small, small):bool:parens             $(1) == $(2)
 (lg, lg):bool:parens                   $(1) == $(2)
 (small, int):bool:parens               cmpsi($1, $2) == 0
 (mp, 0):bool                           !signe($1)
 (int, 1):bool                          equali1($1)
 (int, -1):bool                         equalim1($1)
 (int, small):bool:parens               cmpis($1, $2) == 0
 (int, int):bool                        equalii($1, $2)
 (gen, 0):bool                          gequal0($1)
 (gen, 1):bool                          gequal1($1)
 (gen, -1):bool                         gequalm1($1)
 (real,real):bool                       cmprr($1, $2) == 0
 (mp, mp):bool:parens                   mpcmp($1, $2) == 0
 (errtyp, errtyp):bool:parens           $(1) == $(2)
 (errtyp, #str):bool:parens             $(1) == $(errtyp:2)
 (#str, errtyp):bool:parens             $(errtyp:1) == $(2)
 (typ, typ):bool:parens                 $(1) == $(2)
 (typ, #str):bool:parens                $(1) == $(typ:2)
 (#str, typ):bool:parens                $(typ:1) == $(2)
 (str, str):negbool                     strcmp($1, $2)
 (small, gen):bool                      gequalsg($1, $2)
 (gen, small):bool                      gequalgs($1, $2)
 (gen, gen):bool                        gequal($1, $2)

Function: _>=_
Class: basic
Section: symbolic_operators
C-Name: gge
Prototype: GG
Help: x>=y: return 1 if x is greater or equal to y, 0 otherwise.
Description: 
 (small, small):bool:parens              $(1) >= $(2)
 (lg, lg):bool:parens                    $(1) >= $(2)
 (lg, small):bool:parens                 $(1) > $(2)
 (small, int):bool:parens                cmpsi($1, $2) >= 0
 (int, small):bool:parens                cmpis($1, $2) >= 0
 (int, int):bool:parens                  cmpii($1, $2) >= 0
 (mp, mp):bool:parens                    mpcmp($1, $2) >= 0
 (str, str):bool:parens                  strcmp($1, $2) >= 0
 (small, gen):bool:parens                gcmpsg($1, $2) >= 0
 (gen, small):bool:parens                gcmpgs($1, $2) >= 0
 (gen, gen):bool:parens                  gcmp($1, $2) >= 0

Function: _>>=_
Class: basic
Section: symbolic_operators
C-Name: gshiftre
Prototype: &L
Help: x>>=y: shortcut for x=x>>y.
Description: 
 (*small, small):small:parens             $1 >>= $(2)
 (*int, small):int:parens                 $1 = shifti($1, -$(2))
 (*mp, small):mp:parens                   $1 = mpshift($1, -$(2))
 (*gen, small):mp:parens                  $1 = gshift($1, -$(2))

Function: _>>_
Class: basic
Section: symbolic_operators
C-Name: gshift_right
Prototype: GL
Help: x>>y
Description: 
 (small, small):small:parens     $(1)>>$(2)
 (int, small):int                shifti($1, -$(2))
 (mp, small):mp                  mpshift($1, -$(2))
 (gen, small):mp                 gshift($1, -$(2))

Function: _>_
Class: basic
Section: symbolic_operators
C-Name: ggt
Prototype: GG
Help: x>y: return 1 if x is strictly greater than y, 0 otherwise.
Description: 
 (small, small):bool:parens              $(1) > $(2)
 (lg, lg):bool:parens                    $(1) > $(2)
 (small, lg):bool:parens                 $(1) >= $(2)
 (small, int):bool:parens                cmpsi($1, $2) > 0
 (int, small):bool:parens                cmpis($1, $2) > 0
 (int, int):bool:parens                  cmpii($1, $2) > 0
 (mp, mp):bool:parens                    mpcmp($1, $2) > 0
 (str, str):bool:parens                  strcmp($1, $2) > 0
 (small, gen):bool:parens                gcmpsg($1, $2) > 0
 (gen, small):bool:parens                gcmpgs($1, $2) > 0
 (gen, gen):bool:parens                  gcmp($1, $2) > 0

Function: _ZX_resultant_worker
Class: basic
Section: programming/internals
C-Name: ZX_resultant_worker
Prototype: GGGG
Help: worker for ZX_resultant

Function: _[_,]
Class: basic
Section: symbolic_operators
Help: x[y,]: y-th row of x.
Description: 
 (mp,small):gen                 $"Scalar has no rows"
 (vec,small):vec                rowcopy($1, $2)
 (gen,small):vec                rowcopy($1, $2)

Function: _[_,_]
Class: basic
Section: symbolic_operators
Help: x[i{,j}]: i coefficient of a vector, i,j coefficient of a matrix
Description: 
 (mp,small):gen                 $"Scalar has no components"
 (mp,small,small):gen           $"Scalar has no components"
 (vecsmall,small):small         $(1)[$2]
 (vecsmall,small,small):gen     $"Vecsmall are single-dimensional"
 (list,small):gen:copy          gel(list_data($1), $2)
 (vec,small):gen:copy           gel($1, $2)
 (vec,small,small):gen:copy     gcoeff($1, $2, $3)
 (gen,small):gen:copy           gel($1, $2)
 (gen,small,small):gen:copy     gcoeff($1, $2, $3)

Function: _[_.._,_.._]
Class: basic
Section: symbolic_operators
C-Name: matslice0
Prototype: GD0,L,D0,L,D0,L,D0,L,
Help: x[a..b,c..d] = [x[a,c],  x[a+1,c],  ...,x[b,c];
                      x[a,c+1],x[a+1,c+1],...,x[b,c+1];
                        ...       ...          ...
                      x[a,d],  x[a+1,d]  ,...,x[b,d]]

Function: _[_.._]
Class: basic
Section: symbolic_operators
C-Name: vecslice0
Prototype: GD0,L,L
Help: x[a..b] = [x[a],x[a+1],...,x[b]]

Function: _\/=_
Class: basic
Section: symbolic_operators
C-Name: gdivrounde
Prototype: &G
Help: x\/=y: shortcut for x=x\/y.
Description: 
 (*int, int):int:parens                         $1 = gdivround($1, $2)
 (*pol, gen):gen:parens                         $1 = gdivround($1, $2)
 (*gen, gen):gen:parens                         $1 = gdivround($1, $2)

Function: _\/_
Class: basic
Section: symbolic_operators
C-Name: gdivround
Prototype: GG
Help: x\/y: rounded Euclidean quotient of x and y.
Description: 
 (int, int):int                        gdivround($1, $2)
 (gen, gen):gen                        gdivround($1, $2)

Function: _\=_
Class: basic
Section: symbolic_operators
C-Name: gdivente
Prototype: &G
Help: x\=y: shortcut for x=x\y.
Description: 
 (*small, small):small:parens                   $1 /= $(2)
 (*int, int):int:parens                         $1 = gdivent($1, $2)
 (*pol, gen):gen:parens                         $1 = gdivent($1, $2)
 (*gen, gen):gen:parens                         $1 = gdivent($1, $2)

Function: _\_
Class: basic
Section: symbolic_operators
C-Name: gdivent
Prototype: GG
Help: x\y: Euclidean quotient of x and y.
Description: 
 (small, small):small:parens             $(1)/$(2)
 (int, small):int                        truedivis($1, $2)
 (small, int):int                        gdiventsg($1, $2)
 (int, int):int                          truedivii($1, $2)
 (gen, small):gen                        gdiventgs($1, $2)
 (small, gen):gen                        gdiventsg($1, $2)
 (gen, gen):gen                          gdivent($1, $2)

Function: _^_
Class: basic
Section: symbolic_operators
C-Name: gpow
Prototype: GGp
Help: x^y: compute x to the power y.
Description: 
 (int, 2):int                sqri($1)
 (int, 3):int                powiu($1, 3)
 (int, 4):int                powiu($1, 4)
 (int, 5):int                powiu($1, 5)
 (real, -1):real             invr($1)
 (mp, -1):mp                 ginv($1)
 (gen, -1):gen               ginv($1)
 (real, 2):real              sqrr($1)
 (mp, 2):mp                  mpsqr($1)
 (gen, 2):gen                gsqr($1)
 (int, small):gen            powis($1, $2)
 (real, small):real          gpowgs($1, $2)
 (gen, small):gen            gpowgs($1, $2)
 (real, int):real            powgi($1, $2)
 (gen, int):gen              powgi($1, $2)
 (gen, gen):gen:prec         gpow($1, $2, $prec)
 
 (Fp, 2):Fp                  Fp_sqr($1, p)
 (Fp, usmall):Fp             Fp_powu($1, $2, p)
 (Fp, small):Fp              Fp_pows($1, $2, p)
 (Fp, int):Fp                Fp_pow($1, $2, p)
 (FpX, 2):FpX                FpX_sqr($1, p)
 (FpX, usmall):FpX           FpX_powu($1, $2, p)
 (Fq, 2):Fq                  Fq_sqr($1, T, p)
 (Fq, usmall):Fq             Fq_powu($1, $2, T, p)
 (Fq, int):Fq                Fq_pow($1, $2, T, p)
 (Fq, 2):Fq                  Fq_sqr($1, T, p)
 (Fq, usmall):Fq             Fq_powu($1, $2, T, p)
 (Fq, int):Fq                Fq_pow($1, $2, T, p)
 (FqX, 2):FqX                FqX_sqr($1, T, p)
 (FqX, usmall):FqX           FqX_powu($1, $2, T, p)

Function: _^s
Class: basic
Section: programming/internals
C-Name: gpowgs
Prototype: GL
Help: return x^n where n is a small integer

Function: __
Class: basic
Section: symbolic_operators
Help: __
Description: 
 (genstr, genstr):genstr                gconcat($1, $2)
 (genstr, gen):genstr                   gconcat($1, $2)
 (gen, genstr):genstr                   gconcat($1, $2)
 (gen, gen):genstr                      gconcat($genstr:1, $2)

Function: _avma
Class: gp2c_internal
Description: 
 ():pari_sp                avma

Function: _badtype
Class: gp2c_internal
Help: Code to check types. If not void, will be used as if(...).
Description: 
 (int):bool:parens              typ($1) != t_INT
 (real):bool:parens             typ($1) != t_REAL
 (mp):negbool                   is_intreal_t(typ($1))
 (vec):negbool                  is_matvec_t(typ($1))
 (vecsmall):bool:parens         typ($1) != t_VECSMALL
 (pol):bool:parens              typ($1) != t_POL
 (*nf):void:parens              $1 = checknf($1)
 (*bnf):void:parens             $1 = checkbnf($1)
 (bnr):void                     checkbnr($1)
 (prid):void                    checkprid($1)
 (clgp):void                    checkabgrp($1)
 (ell):void                     checkell($1)
 (*gal):gal:parens              $1 = checkgal($1)

Function: _cast
Class: gp2c_internal
Help: (type1):type2 : cast expression of type1 to type2
Description: 
 (void):bool           0
 (#negbool):bool       ${1 value not}
 (negbool):bool        !$(1)
 (small_int):bool
 (usmall):bool
 (small):bool
 (lg):bool:parens      $(1)!=1
 (bptr):bool           *$(1)
 (gen):bool            !gequal0($1)
 (real):bool           signe($1)
 (int):bool            signe($1)
 (mp):bool             signe($1)
 (pol):bool            signe($1)
 
 (void):negbool        1
 (#bool):negbool       ${1 value not}
 (bool):negbool        !$(1)
 (lg):negbool:parens   $(1)==1
 (bptr):negbool        !*$(1)
 (gen):negbool         gequal0($1)
 (int):negbool         !signe($1)
 (real):negbool        !signe($1)
 (mp):negbool          !signe($1)
 (pol):negbool         !signe($1)
 
 (bool):small_int
 (typ):small_int
 (small):small_int
 
 (bool):usmall
 (typ):usmall
 (small):usmall
 
 (bool):small
 (typ):small
 (small_int):small
 (usmall):small
 (bptr):small           *$(1)
 (int):small            itos($1)
 (int):usmall           itou($1)
 (#lg):small:parens     ${1 value 1 sub}
 (lg):small:parens      $(1)-1
 (gen):small            gtos($1)
 (gen):usmall           gtou($1)
 
 (void):int             gen_0
 (-2):int               gen_m2
 (-1):int               gen_m1
 (0):int                gen_0
 (1):int                gen_1
 (2):int                gen_2
 (bool):int             stoi($1)
 (small):int            stoi($1)
 (usmall):int           utoi($1)
 (mp):int
 (gen):int
 
 (mp):real
 (gen):real
 
 (int):mp
 (real):mp
 (gen):mp
 
 (#bool):lg:parens             ${1 1 value add}
 (bool):lg:parens              $(1)+1
 (#small):lg:parens            ${1 1 value add}
 (small):lg:parens             $(1)+1
 
 (gen):error
 (gen):closure
 (gen):vecsmall
 
 (nf):vec
 (bnf):vec
 (bnr):vec
 (ell):vec
 (clgp):vec
 (prid):vec
 (gal):vec
 (gen):vec
 
 (gen):list
 
 (pol):var      varn($1)
 (gen):var      gvar($1)
 
 (var):pol      pol_x($1)
 (gen):pol
 
 (int):gen
 (mp):gen
 (vecsmall):gen
 (vec):gen
 (list):gen
 (pol):gen
 (genstr):gen
 (error):gen
 (closure):gen
 (Fp):gen
 (FpX):gen
 (Fq):gen
 (FqX):gen
 
 (gen):genstr GENtoGENstr($1)
 (str):genstr strtoGENstr($1)
 
 (gen):str GENtostr_unquoted($1)
 (genstr):str GSTR($1)
 (typ):str type_name($1)
 (errtyp):str numerr_name($1)
 
 (#str):typ  ${1 str_format}
 (#str):errtyp  ${1 str_format}
 
 (bnf):nf              bnf_get_nf($1)
 (gen):nf
 (bnr):bnf             bnr_get_bnf($1)
 (gen):bnf
 (gen):bnr
 (bnf):clgp            bnf_get_clgp($1)
 (bnr):clgp            bnr_get_clgp($1)
 (gen):clgp
 (gen):ell
 (gen):gal
 (gen):prid
 
 (Fp):Fq

Function: _cgetg
Class: gp2c_internal
Description: 
 (lg,#str):gen              cgetg($1, ${2 str_raw})
 (gen,lg,#str):gen          $1 = cgetg($2, ${3 str_raw})

Function: _const_expr
Class: gp2c_internal
Description: 
 (str):gen       readseq($1)

Function: _const_quote
Class: gp2c_internal
Description: 
 (str):var       fetch_user_var($1)

Function: _const_real
Class: gp2c_internal
Description: 
 (str):real:prec       strtor($1, $prec)

Function: _const_smallreal
Class: gp2c_internal
Description: 
 (0):real:prec       real_0($prec)
 (1):real:prec       real_1($prec)
 (-1):real:prec      real_m1($prec)
 (small):real:prec   stor($1, $prec)

Function: _decl_base
Class: gp2c_internal
Description: 
 (C!void)            void
 (C!long)            long
 (C!ulong)           ulong
 (C!int)             int
 (C!GEN)             GEN
 (C!char*)           char
 (C!byteptr)         byteptr
 (C!pari_sp)         pari_sp
 (C!func_GG)         GEN
 (C!forprime_t)      forprime_t
 (C!forcomposite_t)  forcomposite_t
 (C!forpart_t)       forpart_t
 (C!forvec_t)        forvec_t

Function: _decl_ext
Class: gp2c_internal
Description: 
 (C!char*)         *$1
 (C!func_GG)       (*$1)(GEN, GEN)

Function: _def_TeXstyle
Class: default
Section: default
C-Name: sd_TeXstyle
Prototype: 
Help: 
Doc: the bits of this default allow
 \kbd{gp} to use less rigid TeX formatting commands in the logfile. This
 default is only taken into account when $\kbd{log} = 3$. The bits of
 \kbd{TeXstyle} have the following meaning
 
 2: insert \kbd{\bs right} / \kbd{\bs left} pairs where appropriate.
 
 4: insert discretionary breaks in polynomials, to enhance the probability of
 a good line break.
 
 The default value is \kbd{0}.

Function: _def_breakloop
Class: default
Section: default
C-Name: sd_breakloop
Prototype: 
Help: 
Doc: if true, enables the ``break loop'' debugging mode, see
 \secref{se:break_loop}.
 
 The default value is \kbd{1} if we are running an interactive \kbd{gp}
 session, and \kbd{0} otherwise.

Function: _def_colors
Class: default
Section: default
C-Name: sd_colors
Prototype: 
Help: 
Doc: this default is only usable if \kbd{gp}
 is running within certain color-capable terminals. For instance \kbd{rxvt},
 \kbd{color\_xterm} and modern versions of \kbd{xterm} under X Windows, or
 standard Linux/DOS text consoles. It causes \kbd{gp} to use a small palette of
 colors for its output. With xterms, the colormap used corresponds to the
 resources \kbd{Xterm*color$n$} where $n$ ranges from $0$ to $15$ (see the
 file \kbd{misc/color.dft} for an example). Accepted values for this
 default are strings \kbd{"$a_1$,\dots,$a_k$"} where $k\le7$ and each
 $a_i$ is either
 
 \noindent\item the keyword \kbd{no} (use the default color, usually
 black on transparent background)
 
 \noindent\item an integer between 0 and 15 corresponding to the
 aforementioned colormap
 
 \noindent\item a triple $[c_0,c_1,c_2]$ where $c_0$ stands for foreground
 color, $c_1$ for background color, and $c_2$ for attributes (0 is default, 1
 is bold, 4 is underline).
 
 The output objects thus affected are respectively error messages,
 history numbers, prompt, input line, output, help messages, timer (that's
 seven of them). If $k < 7$, the remaining $a_i$ are assumed to be $no$. For
 instance
 %
 \bprog
 default(colors, "9, 5, no, no, 4")
 @eprog
 \noindent
 typesets error messages in color $9$, history numbers in color $5$, output in
 color $4$, and does not affect the rest.
 
 A set of default colors for dark (reverse video or PC console) and light
 backgrounds respectively is activated when \kbd{colors} is set to
 \kbd{darkbg}, resp.~\kbd{lightbg} (or any proper prefix: \kbd{d} is
 recognized as an abbreviation for \kbd{darkbg}). A bold variant of
 \kbd{darkbg}, called \kbd{boldfg}, is provided if you find the former too
 pale.
 
 \emacs In the present version, this default is incompatible with PariEmacs.
 Changing it will just fail silently (the alternative would be to display
 escape sequences as is, since Emacs will refuse to interpret them).
 You must customize color highlighting from the PariEmacs side, see its
 documentation.
 
 The default value is \kbd{""} (no colors).

Function: _def_compatible
Class: default
Section: default
C-Name: sd_compatible
Prototype: 
Help: 
Doc: Obsolete. This default is now a no-op.
Obsolete: 2014-10-11

Function: _def_datadir
Class: default
Section: default
C-Name: sd_datadir
Prototype: 
Help: 
Doc: the name of directory containing the optional data files. For now,
 this includes the \kbd{elldata}, \kbd{galdata}, \kbd{galpol}, \kbd{seadata}
 packages.
 
 The default value is \kbd{/usr/local/share/pari}, or the override specified
 via \kbd{Configure --datadir=}.

Function: _def_debug
Class: default
Section: default
C-Name: sd_debug
Prototype: 
Help: 
Doc: debugging level. If it is non-zero, some extra messages may be printed,
 according to what is going on (see~\b{g}).
 
 The default value is \kbd{0} (no debugging messages).

Function: _def_debugfiles
Class: default
Section: default
C-Name: sd_debugfiles
Prototype: 
Help: 
Doc: file usage debugging level. If it is non-zero, \kbd{gp} will print
 information on file descriptors in use, from PARI's point of view
 (see~\b{gf}).
 
 The default value is \kbd{0} (no debugging messages).

Function: _def_debugmem
Class: default
Section: default
C-Name: sd_debugmem
Prototype: 
Help: 
Doc: memory debugging level. If it is non-zero, \kbd{gp} will regularly print
 information on memory usage. If it's greater than 2, it will indicate any
 important garbage collecting and the function it is taking place in
 (see~\b{gm}).
 
 \noindent {\bf Important Note:} As it noticeably slows down the performance,
 the first functionality (memory usage) is disabled if you're not running a
 version compiled for debugging (see Appendix~A).
 
 The default value is \kbd{0} (no debugging messages).

Function: _def_echo
Class: default
Section: default
C-Name: sd_echo
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). When \kbd{echo}
 mode is on, each command is reprinted before being executed. This can be
 useful when reading a file with the \b{r} or \kbd{read} commands. For
 example, it is turned on at the beginning of the test files used to check
 whether \kbd{gp} has been built correctly (see \b{e}).
 
 The default value is \kbd{0} (no echo).

Function: _def_factor_add_primes
Class: default
Section: default
C-Name: sd_factor_add_primes
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on,
 the integer factorization machinery calls \tet{addprimes} on prime
 factors that were difficult to find (larger than $2^{24}$), so they are
 automatically tried first in other factorizations. If a routine is performing
 (or has performed) a factorization and is interrupted by an error or via
 Control-C, this lets you recover the prime factors already found. The
 downside is that a huge \kbd{addprimes} table unrelated to the current
 computations will slow down arithmetic functions relying on integer
 factorization; one should then empty the table using \tet{removeprimes}.
 
 The default value is \kbd{0}.

Function: _def_factor_proven
Class: default
Section: default
C-Name: sd_factor_proven
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). By
 default, the factors output by the integer factorization machinery are
 only pseudo-primes, not proven primes. If this toggle is
 set, a primality proof is done for each factor and all results depending on
 integer factorization are fully proven. This flag does not affect partial
 factorization when it is explicitly requested. It also does not affect the
 private table managed by \tet{addprimes}: its entries are included as is in
 factorizations, without being tested for primality.
 
 The default value is \kbd{0}.

Function: _def_format
Class: default
Section: default
C-Name: sd_format
Prototype: 
Help: 
Doc: of the form x$.n$, where x (conversion style)
 is a letter in $\{\kbd{e},\kbd{f},\kbd{g}\}$, and $n$ (precision) is an
 integer; this affects the way real numbers are printed:
 
 \item If the conversion style is \kbd{e}, real numbers are printed in
 \idx{scientific format}, always with an explicit exponent,
 e.g.~\kbd{3.3 E-5}.
 
 \item In style \kbd{f}, real numbers are generally printed in
 \idx{fixed floating point format} without exponent, e.g.~\kbd{0.000033}. A
 large real number, whose integer part is not well defined (not enough
 significant digits), is printed in style~\kbd{e}. For instance
 \kbd{10.\pow 100} known to ten significant digits is always printed in style
 \kbd{e}.
 
 \item In style \kbd{g}, non-zero real numbers are printed in \kbd{f} format,
 except when their decimal exponent is $< -4$, in which case they are printed
 in \kbd{e} format. Real zeroes (of arbitrary exponent) are printed in \kbd{e}
 format.
 
 The precision $n$ is the number of significant digits printed for real
 numbers, except if $n<0$ where all the significant digits will be printed
 (initial default 28, or 38 for 64-bit machines). For more powerful formatting
 possibilities, see \tet{printf} and \tet{Strprintf}.
 
 The default value is \kbd{"g.28"} and \kbd{"g.38"} on 32-bit and
 64-bit machines, respectively.

Function: _def_graphcolormap
Class: default
Section: default
C-Name: sd_graphcolormap
Prototype: 
Help: 
Doc: a vector of colors, to be
 used by hi-res graphing routines. Its length is arbitrary, but it must
 contain at least 3 entries: the first 3 colors are used for background,
 frame/ticks and axes respectively. All colors in the colormap may be freely
 used in \tet{plotcolor} calls.
 
 A color is either given as in the default by character strings or by an RGB
 code. For valid character strings, see the standard \kbd{rgb.txt} file in X11
 distributions, where we restrict to lowercase letters and remove all
 whitespace from color names. An RGB code is a vector with 3 integer entries
 between 0 and 255. For instance \kbd{[250, 235, 215]} and
 \kbd{"antiquewhite"} represent the same color. RGB codes are cryptic but
 often easier to generate.
 
 The default value is [\kbd{"white"}, \kbd{"black"}, \kbd{"blue"},
 \kbd{"violetred"}, \kbd{"red"}, \kbd{"green"}, \kbd{"grey"},
 \kbd{"gainsboro"}].

Function: _def_graphcolors
Class: default
Section: default
C-Name: sd_graphcolors
Prototype: 
Help: 
Doc: entries in the
 \tet{graphcolormap} that will be used to plot multi-curves. The successive
 curves are drawn in colors
 
 \kbd{graphcolormap[graphcolors[1]]}, \kbd{graphcolormap[graphcolors[2]]},
   \dots
 
 cycling when the \kbd{graphcolors} list is exhausted.
 
 The default value is \kbd{[4,5]}.

Function: _def_help
Class: default
Section: default
C-Name: sd_help
Prototype: 
Help: 
Doc: name of the external help program to use from within \kbd{gp} when
 extended help is invoked, usually through a \kbd{??} or \kbd{???} request
 (see \secref{se:exthelp}), or \kbd{M-H} under readline (see
 \secref{se:readline}).
 
 The default value is the path to the \kbd{gphelp} script we install.

Function: _def_histfile
Class: default
Section: default
C-Name: sd_histfile
Prototype: 
Help: 
Doc: name of a file where
 \kbd{gp} will keep a history of all \emph{input} commands (results are
 omitted). If this file exists when the value of \kbd{histfile} changes,
 it is read in and becomes part of the session history. Thus, setting this
 default in your gprc saves your readline history between sessions. Setting
 this default to the empty string \kbd{""} changes it to
 \kbd{$<$undefined$>$}
 
 The default value is \kbd{$<$undefined$>$} (no history file).

Function: _def_histsize
Class: default
Section: default
C-Name: sd_histsize
Prototype: 
Help: 
Doc: \kbd{gp} keeps a history of the last
 \kbd{histsize} results computed so far, which you can recover using the
 \kbd{\%} notation (see \secref{se:history}). When this number is exceeded,
 the oldest values are erased. Tampering with this default is the only way to
 get rid of the ones you do not need anymore.
 
 The default value is \kbd{5000}.

Function: _def_lines
Class: default
Section: default
C-Name: sd_lines
Prototype: 
Help: 
Doc: if set to a positive value, \kbd{gp} prints at
 most that many lines from each result, terminating the last line shown with
 \kbd{[+++]} if further material has been suppressed. The various \kbd{print}
 commands (see \secref{se:gp_program}) are unaffected, so you can always type
 \kbd{print(\%)} or \b{a} to view the full result. If the actual screen width
 cannot be determined, a ``line'' is assumed to be 80 characters long.
 
 The default value is \kbd{0}.

Function: _def_linewrap
Class: default
Section: default
C-Name: sd_linewrap
Prototype: 
Help: 
Doc: if set to a positive value, \kbd{gp} wraps every single line after
 printing that many characters.
 
 The default value is \kbd{0} (unset).

Function: _def_log
Class: default
Section: default
C-Name: sd_log
Prototype: 
Help: 
Doc: this can be either 0 (off) or 1, 2, 3
 (on, see below for the various modes). When logging mode is turned on, \kbd{gp}
 opens a log file, whose exact name is determined by the \kbd{logfile}
 default. Subsequently, all the commands and results will be written to that
 file (see \b{l}). In case a file with this precise name already existed, it
 will not be erased: your data will be \emph{appended} at the end.
 
 The specific positive values of \kbd{log} have the following meaning
 
 1: plain logfile
 
 2: emit color codes to the logfile (if \kbd{colors} is set).
 
 3: write LaTeX output to the logfile (can be further customized using
 \tet{TeXstyle}).
 
 The default value is \kbd{0}.

Function: _def_logfile
Class: default
Section: default
C-Name: sd_logfile
Prototype: 
Help: 
Doc: name of the log file to be used when the \kbd{log} toggle is on.
 Environment and time expansion are performed.
 
 The default value is \kbd{"pari.log"}.

Function: _def_nbthreads
Class: default
Section: default
C-Name: sd_nbthreads
Prototype: 
Help: 
Doc: Number of threads to use for parallel computing.
 The exact meaning an default depend on the \kbd{mt} engine used:
 
 \item \kbd{single}: not used (always one thread).
 
 \item \kbd{pthread}: number of threads (unlimited, default: number of core)
 
 \item \kbd{mpi}: number of MPI process to use (limited to the number allocated by \kbd{mpirun},
 default: use all allocated process).

Function: _def_new_galois_format
Class: default
Section: default
C-Name: sd_new_galois_format
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on,
 the \tet{polgalois} command will use a different, more
 consistent, naming scheme for Galois groups. This default is provided to
 ensure that scripts can control this behavior and do not break unexpectedly.
 
 The default value is \kbd{0}. This value will change to $1$ (set) in the next
 major version.

Function: _def_output
Class: default
Section: default
C-Name: sd_output
Prototype: 
Help: 
Doc: there are three possible values: 0
 (=~\var{raw}), 1 (=~\var{prettymatrix}), or 3
 (=~\var{external} \var{prettyprint}). This
 means that, independently of the default \kbd{format} for reals which we
 explained above, you can print results in three ways:
 
 \item \tev{raw format}, i.e.~a format which is equivalent to what you
 input, including explicit multiplication signs, and everything typed on a
 line instead of two dimensional boxes. This can have several advantages, for
 instance it allows you to pick the result with a mouse or an editor, and to
 paste it somewhere else.
 
 \item \tev{prettymatrix format}: this is identical to raw format, except
 that matrices are printed as boxes instead of horizontally. This is
 prettier, but takes more space and cannot be used for input. Column vectors
 are still printed horizontally.
 
 \item \tev{external prettyprint}: pipes all \kbd{gp}
 output in TeX format to an external prettyprinter, according to the value of
 \tet{prettyprinter}. The default script (\tet{tex2mail}) converts its input
 to readable two-dimensional text.
 
 Independently of the setting of this default, an object can be printed
 in any of the three formats at any time using the commands \b{a} and \b{m}
 and \b{B} respectively.
 
 The default value is \kbd{1} (\var{prettymatrix}).

Function: _def_parisize
Class: default
Section: default
C-Name: sd_parisize
Prototype: 
Help: 
Doc: \kbd{gp}, and in fact any program using the PARI
 library, needs a \tev{stack} in which to do its computations; \kbd{parisize}
 is the stack size, in bytes. It is recommended to increase this
 default using a \tet{gprc}, to the value you believe PARI should be happy
 with, given your typical computation. We strongly recommend to also
 set \tet{parisizemax} to a much larger value, about what you believe your
 machine can stand: PARI will then try to fit its computations within about
 \kbd{parisize} bytes, but will increase the stack size if needed (up to
 \kbd{parisizemax}). Once the memory intensive computation is over, PARI
 will restore the stack size to the originally requested \kbd{parisize}.
 
 The default value is 4M, resp.~8M on a 32-bit, resp.~64-bit machine.

Function: _def_parisizemax
Class: default
Section: default
C-Name: sd_parisizemax
Prototype: 
Help: 
Doc: \kbd{gp}, and in fact any program using the PARI library, needs a
 \tev{stack} in which to do its computations.  If non-zero,  \kbd{parisizemax}
 is the maximum size the stack can grow to, in bytes.  If zero, the stack will
 not automatically grow, and will be limited to the value of \kbd{parisize}.
 
 We strongly recommend to set \tet{parisizemax} to a non-zero value, about
 what you believe your machine can stand: PARI will then try to fit its
 computations within about \kbd{parisize} bytes, but will increase the stack
 size if needed (up to \kbd{parisizemax}). Once the memory intensive
 computation is over, PARI will restore the stack size to the originally
 requested \kbd{parisize}.
 
 The default value is $0$.

Function: _def_path
Class: default
Section: default
C-Name: sd_path
Prototype: 
Help: 
Doc: this is a list of directories, separated by colons ':'
 (semicolons ';' in the DOS world, since colons are preempted for drive names).
 When asked to read a file whose name is not given by an absolute path
 (does not start with \kbd{/}, \kbd{./} or \kbd{../}), \kbd{gp} will look for
 it in these directories, in the order they were written in \kbd{path}. Here,
 as usual, \kbd{.} means the current directory, and \kbd{..} its immediate
 parent. Environment expansion is performed.
 
 The default value is \kbd{".:\til:\til/gp"} on UNIX systems,
 \kbd{".;C:\bs;C:\bs GP"} on DOS, OS/2 and Windows, and \kbd{"."} otherwise.

Function: _def_prettyprinter
Class: default
Section: default
C-Name: sd_prettyprinter
Prototype: 
Help: 
Doc: the name of an external prettyprinter to use when
 \kbd{output} is~3 (alternate prettyprinter). Note that the default
 \tet{tex2mail} looks much nicer than the built-in ``beautified
 format'' ($\kbd{output} = 2$).
 
 The default value is \kbd{"tex2mail -TeX -noindent -ragged -by\_par"}.

Function: _def_primelimit
Class: default
Section: default
C-Name: sd_primelimit
Prototype: 
Help: 
Doc: \kbd{gp} precomputes a list of
 all primes less than \kbd{primelimit} at initialization time, and can build
 fast sieves on demand to quickly iterate over primes up to the \emph{square}
 of \kbd{primelimit}. These are used by many arithmetic functions, usually for
 trial division purposes. The maximal value is $2^{32} - 2049$ (resp $2^{64} -
 2049$) on a 32-bit (resp.~64-bit) machine, but values beyond $10^8$,
 allowing to iterate over primes up to $10^{16}$, do not seem useful.
 
 Since almost all arithmetic functions eventually require some table of prime
 numbers, PARI guarantees that the first 6547 primes, up to and
 including 65557, are precomputed, even if \kbd{primelimit} is $1$.
 
 This default is only used on startup: changing it will not recompute a new
 table.
 
 \misctitle{Deprecated feature} \kbd{primelimit} was used in some
 situations by algebraic number theory functions using the
 \tet{nf_PARTIALFACT} flag (\tet{nfbasis}, \tet{nfdisc}, \tet{nfinit}, \dots):
 this assumes that all primes $p > \kbd{primelimit}$ have a certain
 property (the equation order is $p$-maximal). This is never done by default,
 and must be explicitly set by the user of such functions. Nevertheless,
 these functions now provide a more flexible interface, and their use
 of the global default \kbd{primelimit} is deprecated.
 
 \misctitle{Deprecated feature} \kbd{factor(N, 0)} was used to partially
 factor integers by removing all prime factors $\leq$ \kbd{primelimit}.
 Don't use this, supply an explicit bound: \kbd{factor(N, bound)},
 which avoids relying on an unpredictable global variable.
 
 The default value is \kbd{500k}.

Function: _def_prompt
Class: default
Section: default
C-Name: sd_prompt
Prototype: 
Help: 
Doc: a string that will be printed as
 prompt. Note that most usual escape sequences are available there: \b{e} for
 Esc, \b{n} for Newline, \dots, \kbd{\bs\bs} for \kbd{\bs}. Time expansion is
 performed.
 
 This string is sent through the library function \tet{strftime} (on a
 Unix system, you can try \kbd{man strftime} at your shell prompt). This means
 that \kbd{\%} constructs have a special meaning, usually related to the time
 and date. For instance, \kbd{\%H} = hour (24-hour clock) and \kbd{\%M} =
 minute [00,59] (use \kbd{\%\%} to get a real \kbd{\%}).
 
 If you use \kbd{readline}, escape sequences in your prompt will result in
 display bugs. If you have a relatively recent \kbd{readline} (see the comment
 at the end of \secref{se:def,colors}), you can brace them with special sequences
 (\kbd{\bs[} and \kbd{\bs]}), and you will be safe. If these just result in
 extra spaces in your prompt, then you'll have to get a more recent
 \kbd{readline}. See the file \kbd{misc/gprc.dft} for an example.
 
 \emacs {\bf Caution}: PariEmacs needs to know about the prompt pattern to
 separate your input from previous \kbd{gp} results, without ambiguity. It is
 not a trivial problem to adapt automatically this regular expression to an
 arbitrary prompt (which can be self-modifying!). See PariEmacs's
 documentation.
 
 The default value is \kbd{"? "}.

Function: _def_prompt_cont
Class: default
Section: default
C-Name: sd_prompt_cont
Prototype: 
Help: 
Doc: a string that will be printed
 to prompt for continuation lines (e.g. in between braces, or after a
 line-terminating backslash). Everything that applies to \kbd{prompt}
 applies to \kbd{prompt\_cont} as well.
 
 The default value is \kbd{""}.

Function: _def_psfile
Class: default
Section: default
C-Name: sd_psfile
Prototype: 
Help: 
Doc: name of the default file where
 \kbd{gp} is to dump its PostScript drawings (these are appended, so that no
 previous data are lost). Environment and time expansion are performed.
 
 The default value is \kbd{"pari.ps"}.

Function: _def_readline
Class: default
Section: default
C-Name: sd_readline
Prototype: 
Help: 
Doc: switches readline line-editing
 facilities on and off. This may be useful if you are running \kbd{gp} in a Sun
 \tet{cmdtool}, which interacts badly with readline. Of course, until readline
 is switched on again, advanced editing features like automatic completion
 and editing history are not available.
 
 The default value is \kbd{1}.

Function: _def_realbitprecision
Class: default
Section: default
C-Name: sd_realbitprecision
Prototype: 
Help: 
Doc: the number of significant bits used to convert exact inputs given to
 transcendental functions (see \secref{se:trans}), or to create
 absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
 instance). Unless you tamper with the \tet{format} default, this is also
 the number of significant bits used to print a \typ{REAL} number;
 \kbd{format} will override this latter behaviour, and allow you to have a
 large internal precision while outputting few digits for instance.
 
 Note that most PARI's functions currently handle precision on a word basis (by
 increments of 32 or 64 bits), hence bit precision may be a little larger
 than the number of bits you expected. For instance to get 10 bits of
 precision, you need one word of precision which, on a 64-bit machine,
 correspond to 64 bits. To make things even more confusing, this internal bit
 accuracy is converted to decimal digits when printing floating point numbers:
 now 64 bits correspond to 19 printed decimal digits
 ($19 <  \log_{10}(2^{64}) < 20$).
 
 The value returned when typing \kbd{default(realbitprecision)} is the internal
 number of significant bits, not the number of printed decimal digits:
 \bprog
 ? default(realbitprecision, 10)
 ? \pb
       realbitprecision = 64 significant bits
 ? default(realbitprecision)
 %1 = 64
 ? \p
       realprecision = 3 significant digits
 ? default(realprecision)
 %2 = 19
 @eprog\noindent Note that \tet{realprecision} and \kbd{\bs p} allow
 to view and manipulate the internal precision in decimal digits.
 
 The default value is \kbd{128}, resp.~\kbd{96}, on a 64-bit, resp~.32-bit,
 machine.

Function: _def_realprecision
Class: default
Section: default
C-Name: sd_realprecision
Prototype: 
Help: 
Doc: the number of significant digits used to convert exact inputs given to
 transcendental functions (see \secref{se:trans}), or to create
 absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
 instance). Unless you tamper with the \tet{format} default, this is also
 the number of significant digits used to print a \typ{REAL} number;
 \kbd{format} will override this latter behaviour, and allow you to have a
 large internal precision while outputting few digits for instance.
 
 Note that PARI's internal precision works on a word basis (by increments of
 32 or 64 bits), hence may be a little larger than the number of decimal
 digits you expected. For instance to get 2 decimal digits you need one word
 of precision which, on a 64-bit machine, actually gives you 19 digits ($19 <
 \log_{10}(2^{64}) < 20$). The value returned when typing
 \kbd{default(realprecision)} is the internal number of significant digits,
 not the number of printed digits:
 \bprog
 ? default(realprecision, 2)
       realprecision = 19 significant digits (2 digits displayed)
 ? default(realprecision)
 %1 = 19
 @eprog
 The default value is \kbd{38}, resp.~\kbd{28}, on a 64-bit, resp.~32-bit,
 machine.

Function: _def_recover
Class: default
Section: default
C-Name: sd_recover
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If you change this to $0$, any
 error becomes fatal and causes the gp interpreter to exit immediately. Can be
 useful in batch job scripts.
 
 The default value is \kbd{1}.

Function: _def_secure
Class: default
Section: default
C-Name: sd_secure
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on, the \tet{system} and
 \tet{extern} command are disabled. These two commands are potentially
 dangerous when you execute foreign scripts since they let \kbd{gp} execute
 arbitrary UNIX commands. \kbd{gp} will ask for confirmation before letting
 you (or a script) unset this toggle.
 
 The default value is \kbd{0}.

Function: _def_seriesprecision
Class: default
Section: default
C-Name: sd_seriesprecision
Prototype: 
Help: 
Doc: number of significant terms
 when converting a polynomial or rational function to a power series
 (see~\b{ps}).
 
 The default value is \kbd{16}.

Function: _def_simplify
Class: default
Section: default
C-Name: sd_simplify
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). When the PARI library computes
 something, the type of the
 result is not always the simplest possible. The only type conversions which
 the PARI library does automatically are rational numbers to integers (when
 they are of type \typ{FRAC} and equal to integers), and similarly rational
 functions to polynomials (when they are of type \typ{RFRAC} and equal to
 polynomials). This feature is useful in many cases, and saves time, but can
 be annoying at times. Hence you can disable this and, whenever you feel like
 it, use the function \kbd{simplify} (see Chapter 3) which allows you to
 simplify objects to the simplest possible types recursively (see~\b{y}).
 \sidx{automatic simplification}
 
 The default value is \kbd{1}.

Function: _def_sopath
Class: default
Section: default
C-Name: sd_sopath
Prototype: 
Help: 
Doc: this is a list of directories, separated by colons ':'
 (semicolons ';' in the DOS world, since colons are preempted for drive names).
 When asked to \tet{install} an external symbol from a shared library whose
 name is not given by an absolute path (does not start with \kbd{/}, \kbd{./}
 or \kbd{../}), \kbd{gp} will look for it in these directories, in the order
 they were written in \kbd{sopath}. Here, as usual, \kbd{.} means the current
 directory, and \kbd{..} its immediate parent. Environment expansion is
 performed.
 
 The default value is \kbd{""}, corresponding to an empty list of
 directories: \tet{install} will use the library name as input (and look in
 the current directory if the name is not an absolute path).

Function: _def_strictargs
Class: default
Section: default
C-Name: sd_strictargs
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on, all arguments to \emph{new}
 user functions are mandatory unless the function supplies an explicit default
 value.
 Otherwise arguments have the default value $0$.
 
 In this example,
 \bprog
   fun(a,b=2)=a+b
 @eprog
 \kbd{a} is mandatory, while \kbd{b} is optional. If \kbd{strictargs} is on:
 \bprog
 ? fun()
  ***   at top-level: fun()
  ***                 ^-----
  ***   in function fun: a,b=2
  ***                    ^-----
  ***   missing mandatory argument 'a' in user function.
 @eprog
 This applies to functions defined while \kbd{strictargs} is on. Changing \kbd{strictargs}
 does not affect the behavior of previously defined functions.
 
 The default value is \kbd{0}.

Function: _def_strictmatch
Class: default
Section: default
C-Name: sd_strictmatch
Prototype: 
Help: 
Doc: Obsolete. This toggle is now a no-op.
Obsolete: 2014-10-11

Function: _def_threadsize
Class: default
Section: default
C-Name: sd_threadsize
Prototype: 
Help: 
Doc: In parallel mode, each thread needs its own private \tev{stack} in which
 to do its computations, see \kbd{parisize}. This value determines the size
 in bytes of the stacks of each thread, so the total memory allocated will be
 $\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$.
 
 If set to $0$, the value used is the same as \kbd{parisize}.
 
 The default value is $0$.

Function: _def_threadsizemax
Class: default
Section: default
C-Name: sd_threadsizemax
Prototype: 
Help: 
Doc: In parallel mode, each threads needs its own private \tev{stack} in which
 to do its computations, see \kbd{parisize}. This value determines the maximal
 size in bytes of the stacks of each thread, so the total memory allocated will
 be between $\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$. and
 $\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsizemax}$.
 
 If set to $0$, the value used is the same as \kbd{threadsize}.
 
 The default value is $0$.

Function: _def_timer
Class: default
Section: default
C-Name: sd_timer
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). Every instruction sequence
 in the gp calculator (anything ended by a newline in your input) is timed,
 to some accuracy depending on the hardware and operating system. When
 \tet{timer} is on, each such timing is printed immediately before the
 output as follows:
 \bprog
 ? factor(2^2^7+1)
 time = 108 ms.     \\ this line omitted if 'timer' is 0
 %1 =
 [     59649589127497217 1]
 
 [5704689200685129054721 1]
 @eprog\noindent (See also \kbd{\#} and \kbd{\#\#}.)
 
 The time measured is the user \idx{CPU time}, \emph{not} including the time
 for printing the results. If the time is negligible ($< 1$ ms.), nothing is
 printed: in particular, no timing should be printed when defining a user
 function or an alias, or installing a symbol from the library.
 
 The default value is \kbd{0} (off).

Function: _default_check
Class: gp2c_internal
Help: Code to check for the default marker
Description: 
 (C!GEN):bool    !$(1)
 (var):bool      $(1) == -1

Function: _default_marker
Class: gp2c_internal
Help: Code for default value of GP function
Description: 
 (C!GEN)      NULL
 (var)        -1
 (small)      0
 (str)        ""

Function: _derivfun
Class: basic
Section: programming/internals
C-Name: derivfun0
Prototype: GGp
Help: _derivfun(closure,[args]) numerical derivation of closure with respect to
 the first variable at (args).

Function: _diffptr
Class: gp2c_internal
Help: Table of difference of primes.
Description: 
 ():bptr        diffptr

Function: _err_primes
Class: gp2c_internal
Description: 
 ():void  pari_err(e_MAXPRIME)

Function: _err_type
Class: gp2c_internal
Description: 
 (str,gen):void  pari_err_TYPE($1,$2)

Function: _eval_mnemonic
Class: basic
Section: programming/internals
C-Name: eval_mnemonic
Prototype: lGs
Help: Convert a mnemonic string to a flag.

Function: _factor_Aurifeuille
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille
Prototype: GL
Help: _factor_Aurifeuille(a,d): return an algebraic factor of Phi_d(a), a != 0

Function: _factor_Aurifeuille_prime
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille_prime
Prototype: GL
Help: _factor_Aurifeuille_prime(p,d): return an algebraic factor of Phi_d(p), p prime

Function: _forcomposite_init
Class: gp2c_internal
Help: Initialize forcomposite_t.
Description: 
 (forcomposite,int):void                  forcomposite_init(&$1, $2, NULL)
 (forcomposite,int,int):void              forcomposite_init(&$1, $2, $3)

Function: _forcomposite_next
Class: gp2c_internal
Help: Compute the next composite.
Description: 
 (forcomposite):int                       forcomposite_next(&$1)

Function: _formatcode
Class: gp2c_internal
Description: 
 (#small):void                    $1
 (small):small                    %ld
 (#str):void                      $%1
 (str):str                        %s
 (gen):gen                        %Ps

Function: _forpart_init
Class: gp2c_internal
Help: Initialize forpart_t
Description: 
 (forpart,small,?gen,?gen):void      forpart_init(&$1, $2, $3, $4)

Function: _forpart_next
Class: gp2c_internal
Help: Compute the next part
Description: 
 (forpart):vecsmall                  forpart_next(&$1)

Function: _forprime_init
Class: gp2c_internal
Help: Initialize forprime_t.
Description: 
 (forprime,int,?int):void             forprime_init(&$1, $2, $3);

Function: _forprime_next
Class: gp2c_internal
Help: Compute the next prime from the diffptr table.
Description: 
 (*small,*bptr):void  NEXT_PRIME_VIADIFF($1, $2)

Function: _forprime_next_
Class: gp2c_internal
Help: Compute the next prime.
Description: 
 (forprime):int                       forprime_next(&$1)

Function: _forvec_init
Class: gp2c_internal
Help: Initializes parameters for forvec.
Description: 
 (forvec, gen, ?small):void    forvec_init(&$1, $2, $3)

Function: _forvec_next
Class: gp2c_internal
Help: Initializes parameters for forvec.
Description: 
 (forvec):vec    forvec_next(&$1)

Function: _gc_needed
Class: gp2c_internal
Description: 
 (pari_sp):bool                gc_needed($1, 1)

Function: _gerepileall
Class: gp2c_internal
Description: 
 (pari_sp,gen):void:parens    $2 = gerepilecopy($1, $2)
 (pari_sp,gen,...):void       gerepileall($1, ${nbarg 1 sub}, ${stdref 3 code})

Function: _gerepileupto
Class: gp2c_internal
Description: 
 (pari_sp, int):int               gerepileuptoint($1, $2)
 (pari_sp, mp):mp                 gerepileuptoleaf($1, $2)
 (pari_sp, vecsmall):vecsmall     gerepileuptoleaf($1, $2)
 (pari_sp, vec):vec               gerepileupto($1, $2)
 (pari_sp, gen):gen               gerepileupto($1, $2)

Function: _iferr_CATCH
Class: gp2c_internal
Description: 
  (0)               pari_CATCH(CATCH_ALL)
  (small)           pari_CATCH2(__iferr_old$1, CATCH_ALL)

Function: _iferr_CATCH_reset
Class: gp2c_internal
Description: 
  (0):void      pari_CATCH_reset()
  (small):void  pari_CATCH2_reset(__iferr_old$1)

Function: _iferr_ENDCATCH
Class: gp2c_internal
Description: 
  (0)        pari_ENDCATCH
  (small)    pari_ENDCATCH2(__iferr_old$1)

Function: _iferr_error
Class: gp2c_internal
Description: 
  ():error pari_err_last()

Function: _iferr_rethrow
Class: gp2c_internal
Description: 
  (error):void    pari_err(0, $1)

Function: _low_stack_lim
Class: gp2c_internal
Description: 
 (pari_sp,pari_sp):bool        low_stack($1, stack_lim($2, 1))

Function: _maxprime
Class: gp2c_internal
Description: 
 ():small                maxprime()

Function: _multi_if
Class: basic
Section: programming/internals
C-Name: ifpari_multi
Prototype: GE*
Help: internal variant of if() that allows more than 3 arguments.

Function: _ndec2nbits
Class: gp2c_internal
Description: 
 (small):small      ndec2nbits($1)

Function: _ndec2prec
Class: gp2c_internal
Description: 
 (small):small      ndec2prec($1)

Function: _norange
Class: gp2c_internal
Description: 
 ():small    LONG_MAX

Function: _parapply_worker
Class: basic
Section: programming/internals
C-Name: parapply_worker
Prototype: GG
Help: _parapply_worker(d,C): evaluate the closure C on d.

Function: _pareval_worker
Class: basic
Section: programming/internals
C-Name: pareval_worker
Prototype: G
Help: _pareval_worker(C): evaluate the closure C.

Function: _parfor_worker
Class: basic
Section: programming/internals
C-Name: parfor_worker
Prototype: GG
Help: _parfor_worker(i,C): evaluate the closure C on i and return [i,C(i)]

Function: _parvector_worker
Class: basic
Section: programming/internals
C-Name: parvector_worker
Prototype: GG
Help: _parvector_worker(i,C): evaluate the closure C on i.

Function: _polint_worker
Class: basic
Section: programming/internals
C-Name: nmV_polint_center_tree_worker
Prototype: GGGGG
Help: used for parallel chinese
Doc: used for parallel chinese

Function: _polmodular_worker
Class: basic
Section: programming/internals
C-Name: polmodular_worker
Prototype: UUUGGGGLGG
Help: used by polmodular
Doc: used by polmodular

Function: _proto_code
Class: gp2c_internal
Help: Code for argument of a function
Description: 
 (var)          n
 (C!long)       L
 (C!ulong)      U
 (C!GEN)        G
 (C!char*)      s

Function: _proto_max_args
Class: gp2c_internal
Help: Max number of arguments supported by install.
Description: 
 (20)

Function: _proto_ret
Class: gp2c_internal
Help: Code for return value of functions
Description: 
 (C!void)       v
 (C!int)        i
 (C!long)       l
 (C!ulong)      u
 (C!GEN)

Function: _safecoeff
Class: basic
Section: symbolic_operators
Help: safe version of x[a], x[,a] and x[a,b]. Must be lvalues.
Description: 
 (vecsmall,small):small         *safeel($1, $2)
 (list,small):gen:copy          *safelistel($1, $2)
 (gen,small):gen:copy           *safegel($1, $2)
 (gen,small,small):gen:copy     *safegcoeff($1, $2, $3)

Function: _stack_lim
Class: gp2c_internal
Description: 
 (pari_sp,small):pari_sp       stack_lim($1, $2)

Function: _strtoclosure
Class: gp2c_internal
Description: 
 (str):closure               strtofunction($1)
 (str,gen,...):closure       strtoclosure($1, ${nbarg 1 sub}, $3)

Function: _tovec
Class: gp2c_internal
Help: Create a vector holding the arguments (shallow)
Description: 
 ():vec                      cgetg(1, t_VEC)
 (gen):vec                   mkvec($1)
 (gen,gen):vec               mkvec2($1, $2)
 (gen,gen,gen):vec           mkvec3($1, $2, $3)
 (gen,gen,gen,gen):vec       mkvec4($1, $2, $3, $4)
 (gen,gen,gen,gen,gen):vec   mkvec5($1, $2, $3, $4, $5)
 (gen,...):vec               mkvecn($#, $2)

Function: _tovecprec
Class: gp2c_internal
Help: Create a vector holding the arguments and prec (shallow)
Description: 
 ():vec:prec                mkvecs($prec)
 (gen):vec:prec             mkvec2($1, stoi($prec))
 (gen,gen):vec:prec         mkvec3($1, $2, stoi($prec))
 (gen,gen,gen):vec:prec     mkvec4($1, $2, $3, stoi($prec))
 (gen,gen,gen,gen):vec:prec mkvec5($1, $2, $3, $4, stoi($prec))
 (gen,...):vec:prec         mkvecn(${nbarg 1 add}, $2, stoi($prec))

Function: _type_preorder
Class: gp2c_internal
Help: List of chains of type preorder.
Description: 
 (empty, void, bool, small, int, mp, gen)
 (empty, real, mp)
 (empty, bptr, small)
 (empty, bool, lg, small)
 (empty, bool, small_int, small)
 (empty, bool, usmall, small)
 (empty, void, negbool, bool)
 (empty, typ, str, genstr,gen)
 (empty, errtyp, str)
 (empty, vecsmall, gen)
 (empty, vec, gen)
 (empty, list, gen)
 (empty, closure, gen)
 (empty, error, gen)
 (empty, bnr, bnf, nf, vec)
 (empty, bnr, bnf, clgp, vec)
 (empty, ell, vec)
 (empty, prid, vec)
 (empty, gal, vec)
 (empty, var, pol, gen)
 (empty, Fp, Fq, gen)
 (empty, FpX, FqX, gen)

Function: _typedef
Class: gp2c_internal
Description: 
 (empty)        void
 (void)         void
 (negbool)      long
 (bool)         long
 (small_int)    int
 (usmall)       ulong
 (small)        long
 (int)          GEN
 (real)         GEN
 (mp)           GEN
 (lg)           long
 (vecsmall)     GEN
 (vec)          GEN
 (list)         GEN
 (var)          long
 (pol)          GEN
 (gen)          GEN
 (closure)      GEN
 (error)        GEN
 (genstr)       GEN
 (str)          char*
 (bptr)         byteptr
 (forcomposite) forcomposite_t
 (forpart)      forpart_t
 (forprime)     forprime_t
 (forvec)       forvec_t
 (func_GG)      func_GG
 (pari_sp)      pari_sp
 (typ)          long
 (errtyp)       long
 (nf)           GEN
 (bnf)          GEN
 (bnr)          GEN
 (ell)          GEN
 (clgp)         GEN
 (prid)         GEN
 (gal)          GEN
 (Fp)           GEN
 (FpX)          GEN
 (Fq)           GEN
 (FqX)          GEN

Function: _u_forprime_init
Class: gp2c_internal
Help: Initialize forprime_t (ulong version).
Description: 
 (forprime,small,):void              u_forprime_init(&$1, $2, LONG_MAX);
 (forprime,small,small):void         u_forprime_init(&$1, $2, $3);

Function: _u_forprime_next
Class: gp2c_internal
Help: Compute the next prime (ulong version).
Description: 
 (forprime):small                   u_forprime_next(&$1)

Function: _void_if
Class: basic
Section: programming/internals
C-Name: ifpari_void
Prototype: vGDIDI
Help: internal variant of if() that does not return a value.

Function: _wrap_G
Class: gp2c_internal
C-Name: gp_call
Prototype: G
Description: 
  (gen):gen    $1

Function: _wrap_GG
Class: gp2c_internal
C-Name: gp_call2
Prototype: GG
Description: 
  (gen):gen    $1

Function: _wrap_Gp
Class: gp2c_internal
C-Name: gp_callprec
Prototype: Gp
Description: 
  (gen):gen    $1

Function: _wrap_bG
Class: gp2c_internal
C-Name: gp_callbool
Prototype: lG
Description: 
  (bool):bool   $1

Function: _wrap_vG
Class: gp2c_internal
C-Name: gp_callvoid
Prototype: lG
Description: 
  (void):small  0

Function: _||_
Class: basic
Section: symbolic_operators
C-Name: orpari
Prototype: GE
Help: x||y: inclusive OR.
Description: 
 (bool, bool):bool:parens               $(1) || $(2)

Function: _~
Class: basic
Section: symbolic_operators
C-Name: gtrans
Prototype: G
Help: x~: transpose of x.
Description: 
 (vec):vec                        gtrans($1)
 (gen):gen                        gtrans($1)

Function: abs
Class: basic
Section: transcendental
C-Name: gabs
Prototype: Gp
Help: abs(x): absolute value (or modulus) of x.
Description: 
 (small):small    labs($1)
 (int):int        mpabs($1)
 (real):real      mpabs($1)
 (mp):mp          mpabs($1)
 (gen):gen:prec        gabs($1, $prec)
Doc: absolute value of $x$ (modulus if $x$ is complex).
 Rational functions are not allowed. Contrary to most transcendental
 functions, an exact argument is \emph{not} converted to a real number before
 applying \kbd{abs} and an exact result is returned if possible.
 \bprog
 ? abs(-1)
 %1 = 1
 ? abs(3/7 + 4/7*I)
 %2 = 5/7
 ? abs(1 + I)
 %3 = 1.414213562373095048801688724
 @eprog\noindent
 If $x$ is a polynomial, returns $-x$ if the leading coefficient is
 real and negative else returns $x$. For a power series, the constant
 coefficient is considered instead.

Function: acos
Class: basic
Section: transcendental
C-Name: gacos
Prototype: Gp
Help: acos(x): arc cosine of x.
Doc: principal branch of $\cos^{-1}(x) = -i \log (x + i\sqrt{1-x^2})$.
 In particular, $\Re(\text{acos}(x))\in [0,\pi]$ and if $x\in \R$ and $|x|>1$,
 then $\text{acos}(x)$ is complex. The branch cut is in two pieces:
 $]-\infty,-1]$ , continuous with quadrant II, and $[1,+\infty[$, continuous
 with quadrant IV. We have $\text{acos}(x) = \pi/2 - \text{asin}(x)$ for all
 $x$.

Function: acosh
Class: basic
Section: transcendental
C-Name: gacosh
Prototype: Gp
Help: acosh(x): inverse hyperbolic cosine of x.
Doc: principal branch of $\cosh^{-1}(x) = 2
  \log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2})$. In particular,
 $\Re(\text{acosh}(x))\geq 0$ and
 $\Im(\text{acosh}(x))\in ]-\pi,\pi]$; if $x\in \R$ and $x<1$, then
 $\text{acosh}(x)$ is complex.

Function: addhelp
Class: basic
Section: programming/specific
C-Name: addhelp
Prototype: vrs
Help: addhelp(sym,str): add/change help message for the symbol sym.
Doc: changes the help message for the symbol \kbd{sym}. The string \var{str}
 is expanded on the spot and stored as the online help for \kbd{sym}. It is
 recommended to document global variables and user functions in this way,
 although \kbd{gp} will not protest if you don't.
 
 You can attach a help text to an alias, but it will never be
 shown: aliases are expanded by the \kbd{?} help operator and we get the help
 of the symbol the alias points to. Nothing prevents you from modifying the
 help of built-in PARI functions. But if you do, we would like to hear why you
 needed it!
 
 Without \tet{addhelp}, the standard help for user functions consists of its
 name and definition.
 \bprog
 gp> f(x) = x^2;
 gp> ?f
 f =
   (x)->x^2
 
 @eprog\noindent Once addhelp is applied to $f$, the function code is no
 longer included. It can still be consulted by typing the function name:
 \bprog
 gp> addhelp(f, "Square")
 gp> ?f
 Square
 
 gp> f
 %2 = (x)->x^2
 @eprog

Function: addprimes
Class: basic
Section: number_theoretical
C-Name: addprimes
Prototype: DG
Help: addprimes({x=[]}): add primes in the vector x to the prime table to
 be used in trial division. x may also be a single integer. Composite
 "primes" are NOT allowed.
Doc: adds the integers contained in the
 vector $x$ (or the single integer $x$) to a special table of
 ``user-defined primes'', and returns that table. Whenever \kbd{factor} is
 subsequently called, it will trial divide by the elements in this table.
 If $x$ is empty or omitted, just returns the current list of extra
 primes.
 
 The entries in $x$ must be primes: there is no internal check, even if
 the \tet{factor_proven} default is set. To remove primes from the list use
 \kbd{removeprimes}.

Function: agm
Class: basic
Section: transcendental
C-Name: agm
Prototype: GGp
Help: agm(x,y): arithmetic-geometric mean of x and y.
Doc: arithmetic-geometric mean of $x$ and $y$. In the
 case of complex or negative numbers, the optimal AGM is returned
 (the largest in absolute value over all choices of the signs of the square
 roots).  $p$-adic or power series arguments are also allowed. Note that
 a $p$-adic agm exists only if $x/y$ is congruent to 1 modulo $p$ (modulo
 16 for $p=2$). $x$ and $y$ cannot both be vectors or matrices.

Function: alarm
Class: basic
Section: programming/specific
C-Name: gp_alarm
Prototype: D0,L,DE
Help: alarm({s = 0},{code}): if code is omitted, trigger an "e_ALARM"
 exception after s seconds, cancelling any previously set alarm; stop a pending
 alarm if s = 0 or is omitted. Otherwise, evaluate code, aborting after s
 seconds.
Doc: if \var{code} is omitted, trigger an \var{e\_ALARM} exception after $s$
 seconds, cancelling any previously set alarm; stop a pending alarm if $s =
 0$ or is omitted.
 
 Otherwise, if $s$ is positive, the function evaluates \var{code},
 aborting after $s$ seconds. The return value is the value of \var{code} if
 it ran to completion before the alarm timeout, and a \typ{ERROR} object
 otherwise.
 \bprog
   ? p = nextprime(10^25); q = nextprime(10^26); N = p*q;
   ? E = alarm(1, factor(N));
   ? type(E)
   %3 = "t_ERROR"
   ? print(E)
   %4 = error("alarm interrupt after 964 ms.")
   ? alarm(10, factor(N));   \\ enough time
   %5 =
   [ 10000000000000000000000013 1]
 
   [100000000000000000000000067 1]
 @eprog\noindent Here is a more involved example: the function
 \kbd{timefact(N,sec)} below tries to factor $N$ and gives up after \var{sec}
 seconds, returning a partial factorisation.
 \bprog
 \\ Time-bounded partial factorization
 default(factor_add_primes,1);
 timefact(N,sec)=
 {
   F = alarm(sec, factor(N));
   if (type(F) == "t_ERROR", factor(N, 2^24), F);
 }
 @eprog\noindent We either return the factorization directly, or replace the
 \typ{ERROR} result by a simple bounded factorization \kbd{factor(N, 2\pow 24)}.
 Note the \tet{factor_add_primes} trick: any prime larger than $2^{24}$
 discovered while attempting the initial factorization is stored and
 remembered. When the alarm rings, the subsequent bounded factorization finds
 it right away.
 
 \misctitle{Caveat} It is not possible to set a new alarm \emph{within}
 another \kbd{alarm} code: the new timer erases the parent one.

Function: algabsdim
Class: basic
Section: algebras
C-Name: algabsdim
Prototype: lG
Help: algabsdim(al): dimension of the algebra al over its prime subfield.
Doc: Given an algebra \var{al} output by \tet{alginit} or by
 \tet{algtableinit}, returns the dimension of \var{al} over its prime subfield
 ($\Q$ or $\F_p$).
 \bprog
 ? nf = nfinit(y^3-y+1);
 ? A = alginit(nf, [-1,-1]);
 ? algabsdim(A)
 %3 = 12
 @eprog

Function: algadd
Class: basic
Section: algebras
C-Name: algadd
Prototype: GGG
Help: algadd(al,x,y): element x+y in al.
Doc: Given two elements $x$ and $y$ in \var{al}, computes their sum $x+y$ in
 the algebra~\var{al}.
 \bprog
 ? A = alginit(nfinit(y),[-1,1]);
 ? algadd(A,[1,0]~,[1,2]~)
 %2 = [2, 2]~
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: algalgtobasis
Class: basic
Section: algebras
C-Name: algalgtobasis
Prototype: GG
Help: algalgtobasis(al,x): transforms the element x of the algebra al into a
 column vector on the integral basis of al.
Doc: Given an element \var{x} in the central simple algebra \var{al} output
 by \tet{alginit}, transforms it to a column vector on the integral basis of
 \var{al}. This is the inverse function of \tet{algbasistoalg}.
 \bprog
 ? A = alginit(nfinit(y^2-5),[2,y]);
 ? algalgtobasis(A,[y,1]~)
 %2 = [0, 2, 0, -1, 2, 0, 0, 0]~
 ? algbasistoalg(A,algalgtobasis(A,[y,1]~))
 %3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~
 @eprog

Function: algaut
Class: basic
Section: algebras
C-Name: algaut
Prototype: mG
Help: algaut(al): the stored automorphism of the splitting field of the
 cyclic algebra al.
Doc: Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
 \tet{alginit}, returns the automorphism $\sigma$.
 \bprog
 ? nf = nfinit(y);
 ? p = idealprimedec(nf,7)[1];
 ? p2 = idealprimedec(nf,11)[1];
 ? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
 ? algaut(A)
 %5 = -1/3*x^2 + 1/3*x + 26/3
 @eprog

Function: algb
Class: basic
Section: algebras
C-Name: algb
Prototype: mG
Help: algb(al): the element b of the center of the cyclic algebra al used
 to define it.
Doc: Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
 \tet{alginit}, returns the element $b\in K$.
 \bprog
 nf = nfinit(y);
 ? p = idealprimedec(nf,7)[1];
 ? p2 = idealprimedec(nf,11)[1];
 ? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
 ? algb(A)
 %5 = Mod(-77, y)
 @eprog

Function: algbasis
Class: basic
Section: algebras
C-Name: algbasis
Prototype: mG
Help: algbasis(al): basis of the stored order of the central simple algebra al.
Doc: Given an central simple algebra \var{al} output by \tet{alginit}, returns
 a $\Z$-basis of the order~${\cal O}_0$ stored in \var{al} with respect to the
 natural order in \var{al}. It is a maximal order if one has been computed.
 \bprog
 A = alginit(nfinit(y), [-1,-1]);
 ? algbasis(A)
 %2 =
 [1 0 0 1/2]
 
 [0 1 0 1/2]
 
 [0 0 1 1/2]
 
 [0 0 0 1/2]
 @eprog

Function: algbasistoalg
Class: basic
Section: algebras
C-Name: algbasistoalg
Prototype: GG
Help: algbasistoalg(al,x): transforms the column vector x on the integral
 basis of al into an element of al in algebraic form.
Doc: Given an element \var{x} in the central simple algebra \var{al} output
 by \tet{alginit}, transforms it to its algebraic representation in \var{al}.
 This is the inverse function of \tet{algalgtobasis}.
 \bprog
 ? A = alginit(nfinit(y^2-5),[2,y]);
 ? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);
 ? liftall(z)
 %3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4]~
 ? algalgtobasis(A,z)
 %4 = [0, 1, 0, 0, 2, -3, 0, 0]~
 @eprog

Function: algcenter
Class: basic
Section: algebras
C-Name: algcenter
Prototype: mG
Help: algcenter(al): center of the algebra al.
Doc: If \var{al} is a table algebra output by \tet{algtableinit}, returns a
 basis of the center of the algebra~\var{al} over its prime field ($\Q$ or
 $\F_p$). If \var{al} is a central simple algebra output by \tet{alginit},
 returns the center of~\var{al}, which is stored in \var{al}.
 
 A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
 generated by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
 such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$: the diagonal matrices
 form the center.
 \bprog
 ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
 ? A = algtableinit(mt);
 ? algcenter(A) \\ = (I_2)
 %3 =
 [1]
 
 [0]
 
 [0]
 @eprog
 
 An example in the central simple case:
 
 \bprog
 ? nf = nfinit(y^3-y+1);
 ? A = alginit(nf, [-1,-1]);
 ? algcenter(A).pol
 %3 = y^3 - y + 1
 @eprog

Function: algcentralproj
Class: basic
Section: algebras
C-Name: alg_centralproj
Prototype: GGD0,L,
Help: algcentralproj(al,z,{maps=0}): projections of the algebra al on the
 orthogonal central idempotents z[i].
Doc: Given a table algebra \var{al} output by \tet{algtableinit} and a
 \typ{VEC} $\var{z}=[z_1,\dots,z_n]$ of orthogonal central idempotents,
 returns a \typ{VEC} $[al_1,\dots,al_n]$ of algebras such that
 $al_i = z_i\, al$. If $\var{maps}=1$, each $al_i$ is a \typ{VEC}
 $[quo,proj,lift]$ where \var{quo} is the quotient algebra, \var{proj} is a
 \typ{MAT} representing the projection onto this quotient and \var{lift} is a
 \typ{MAT} representing a lift.
 
 A simple example: $\F_2\oplus \F_4$, generated by~$1=(1,1)$, $e=(1,0)$
 and~$x$ such that~$x^2+x+1=0$. We have~$e^2=e$, $x^2=x+1$ and~$ex=0$.
 \bprog
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,2);
 ? e = [0,1,0]~;
 ? e2 = algsub(A,[1,0,0]~,e);
 ? [a,a2] = algcentralproj(A,[e,e2]);
 ? algdim(a)
 %6 = 1
 ? algdim(a2)
 %7 = 2
 @eprog

Function: algchar
Class: basic
Section: algebras
C-Name: algchar
Prototype: mG
Help: algchar(al): characteristic of the algebra al.
Doc: Given an algebra \var{al} output by \tet{alginit} or \tet{algtableinit},
 returns the characteristic of \var{al}.
 \bprog
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,13);
 ? algchar(A)
 %3 = 13
 @eprog

Function: algcharpoly
Class: basic
Section: algebras
C-Name: algcharpoly
Prototype: GGDn
Help: algcharpoly(al,b,{v='x}): (reduced) characteristic polynomial of b in
 \var{al}, with respect to the variable $v$.
Doc: Given an element $b$ in \var{al}, returns its characteristic polynomial
 as a polynomial in the variable $v$. If \var{al} is a table algebra output
 by \tet{algtableinit}, returns the absolute characteristic polynomial of
 \var{b}, which is an element of $\F_p[v]$ or~$\Q[v]$; if \var{al} is a
 central simple algebra output by \tet{alginit}, returns the reduced
 characteristic polynomial of \var{b}, which is an element of $K[v]$ where~$K$
 is the center of \var{al}.
 \bprog
 ? al = alginit(nfinit(y), [-1,-1]); \\ (-1,-1)_Q
 ? algcharpoly(al, [0,1]~)
 %2 = x^2 + 1
 @eprog
 
 Also accepts a square matrix with coefficients in \var{al}.

Function: algdecomposition
Class: basic
Section: algebras
C-Name: alg_decomposition
Prototype: G
Help: algdecomposition(al): semisimple decomposition of the algebra al.
Doc: \var{al} being a table algebra output by \tet{algtableinit}, returns
 $[J,[al_1,\dots,al_n]]$ where $J$ is a basis of the Jacobson radical of
 \var{al} and $al_1,\dots,al_n$ are the simple factors of the semisimple
 algebra $al/J$.

Function: algdegree
Class: basic
Section: algebras
C-Name: algdegree
Prototype: lG
Help: algdegree(al): degree of the central simple algebra al.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, returns
 the degree of \var{al}.
 \bprog
 ? nf = nfinit(y^3-y+1);
 ? A = alginit(nf, [-1,-1]);
 ? algdegree(A)
 %3 = 2
 @eprog

Function: algdep
Class: basic
Section: linear_algebra
C-Name: algdep0
Prototype: GLD0,L,
Help: algdep(z,k,{flag=0}): algebraic relations up to degree n of z, using
 lindep([1,z,...,z^(k-1)], flag).
Doc: \sidx{algebraic dependence}
 $z$ being real/complex, or $p$-adic, finds a polynomial (in the variable
 \kbd{'x}) of degree at most
 $k$, with integer coefficients, having $z$ as approximate root. Note that the
 polynomial which is obtained is not necessarily the ``correct'' one. In fact
 it is not even guaranteed to be irreducible. One can check the closeness
 either by a polynomial evaluation (use \tet{subst}), or by computing the
 roots of the polynomial given by \kbd{algdep} (use \tet{polroots} or
 \tet{polrootspadic}).
 
 Internally, \tet{lindep}$([1,z,\ldots,z^k], \fl)$ is used. A non-zero value of
 $\fl$ may improve on the default behavior if the input number is known to a
 \emph{huge} accuracy, and you suspect the last bits are incorrect: if $\fl > 0$
 the computation is done with an accuracy of $\fl$ decimal  digits; to get
 meaningful results,  the parameter $\fl$ should be smaller than the number of
 correct decimal digits in the input.
 But default values are usually sufficient, so try without $\fl$ first:
 \bprog
 ? \p200
 ? z = 2^(1/6)+3^(1/5);
 ? algdep(z, 30);      \\ right in 280ms
 ? algdep(z, 30, 100); \\ wrong in 169ms
 ? algdep(z, 30, 170); \\ right in 288ms
 ? algdep(z, 30, 200); \\ wrong in 320ms
 ? \p250
 ? z = 2^(1/6)+3^(1/5); \\ recompute to new, higher, accuracy !
 ? algdep(z, 30);      \\ right in 329ms
 ? algdep(z, 30, 200); \\ right in 324ms
 ? \p500
 ? algdep(2^(1/6)+3^(1/5), 30); \\ right in 677ms
 ? \p1000
 ? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.5s
 @eprog\noindent
 The changes in \kbd{realprecision} only affect the quality of the
 initial approximation to $2^{1/6} + 3^{1/5}$, \kbd{algdep} itself uses
 exact operations. The size of its operands depend on the accuracy of the
 input of course: more accurate input means slower operations.
 
 Proceeding by increments of 5 digits of accuracy, \kbd{algdep} with default
 flag produces its first correct result at 195 digits, and from then on a
 steady stream of correct results:
 \bprog
   \\ assume T contains the correct result, for comparison
   forstep(d=100, 250, 5, localprec(d);\
     print(d, " ", algdep(2^(1/6)+3^(1/5),30) == T))
 @eprog
 
 The above example is the test case studied in a 2000 paper by Borwein and
 Lisonek: Applications of integer relation algorithms, \emph{Discrete Math.},
 {\bf 217}, p.~65--82. The version of PARI tested there was 1.39, which
 succeeded reliably from precision 265 on, in about 200 as much time as the
 current version.
Variant: Also available is \fun{GEN}{algdep}{GEN z, long k} ($\fl=0$).

Function: algdim
Class: basic
Section: algebras
C-Name: algdim
Prototype: lG
Help: algdim(al): dimension of the algebra al.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, returns
 the dimension of \var{al} over its center. Given a table algebra \var{al}
 output by \tet{algtableinit}, returns the dimension of \var{al} over its prime
 subfield ($\Q$ or $\F_p$).
 \bprog
 ? nf = nfinit(y^3-y+1);
 ? A = alginit(nf, [-1,-1]);
 ? algdim(A)
 %3 = 4
 @eprog

Function: algdisc
Class: basic
Section: algebras
C-Name: algdisc
Prototype: G
Help: algdisc(al): discriminant of the stored order of the algebra al.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, computes
 the discriminant of the order ${\cal O}_0$ stored in \var{al}, that is the
 determinant of the trace form $\rm{Tr} : {\cal O}_0\times {\cal O}_0 \to \Z$.
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-3,1-y]);
 ? [PR,h] = alghassef(A);
 %3 = [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])]
 ? n = algdegree(A);
 ? D = algabsdim(A);
 ? h = vector(#h, i, n - gcd(n,h[i]));
 ? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
 %4 = 12960000
 ? algdisc(A)
 %5 = 12960000
 @eprog

Function: algdivl
Class: basic
Section: algebras
C-Name: algdivl
Prototype: GGG
Help: algdivl(al,x,y): element x\y in al.
Doc: Given two elements $x$ and $y$ in \var{al}, computes their left quotient
 $x\backslash y$ in the algebra \var{al}: an element $z$ such that $xz=y$ (such
 an element is not unique when $x$ is a zerodivisor). If~$x$ is invertible, this
 is the same as $x^{-1}y$. Assumes that $y$ is left divisible by $x$ (i.e. that
 $z$ exists). Also accepts matrices with coefficients in~\var{al}.

Function: algdivr
Class: basic
Section: algebras
C-Name: algdivr
Prototype: GGG
Help: algdivr(al,x,y): element x/y in al.
Doc: Given two elements $x$ and $y$ in \var{al}, return $xy^{-1}$. Also accepts
 matrices with coefficients in \var{al}.

Function: alggroup
Class: basic
Section: algebras
C-Name: alggroup
Prototype: GDG
Help: alggroup(gal, {p=0}): constructs the group algebra of gal over Q (resp. Fp).
Doc: initialize the group algebra~$K[G]$ over~$K=\Q$ ($p$ omitted) or~$\F_p$
 where~$G$ is the underlying group of the \kbd{galoisinit} structure~\var{gal}.
 The input~\var{gal} is also allowed to be a \typ{VEC} of permutations that is
 closed under products.
 
 Example:
 \bprog
 ? K = nfsplitting(x^3-x+1);
 ? gal = galoisinit(K);
 ? al = alggroup(gal);
 ? algissemisimple(al)
 %4 = 1
 ? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
 ? al2 = alggroup(G, 2);
 ? algissemisimple(al2)
 %8 = 0
 @eprog

Function: alghasse
Class: basic
Section: algebras
C-Name: alghasse
Prototype: GG
Help: alghasse(al,pl): the hasse invariant of the central simple algebra al at
 the place pl.
Doc: Given a central simple algebra \var{al} output by \tet{alginit} and a prime
 ideal or an integer between $1$ and $r_1+r_2$, returns a \typ{FRAC} $h$ : the
 local Hasse invariant of \var{al} at the place specified by \var{pl}.
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,y]);
 ? alghasse(A, 1)
 %3 = 1/2
 ? alghasse(A, 2)
 %4 = 0
 ? alghasse(A, idealprimedec(nf,2)[1])
 %5 = 1/2
 ? alghasse(A, idealprimedec(nf,5)[1])
 %6 = 0
 @eprog

Function: alghassef
Class: basic
Section: algebras
C-Name: alghassef
Prototype: mG
Help: alghassef(al): the hasse invariant of the central simple algebra al at finite places.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, returns
 a \typ{VEC} $[\kbd{PR}, h_f]$ describing the local Hasse invariants at the
 finite places of the center: \kbd{PR} is a \typ{VEC} of primes and $h_f$ is a
 \typ{VECSMALL} of integers modulo the degree $d$ of \var{al}.
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,2*y-1]);
 ? [PR,hf] = alghassef(A);
 ? PR
 %4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
 ? hf
 %5 = Vecsmall([1, 0])
 @eprog

Function: alghassei
Class: basic
Section: algebras
C-Name: alghassei
Prototype: mG
Help: alghassei(al): the hasse invariant of the central simple algebra al
 at infinite places.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, returns
 a \typ{VECSMALL} $h_i$ of $r_1$ integers modulo the degree $d$ of \var{al},
 where $r_1$ is the number of real places of the center: the local Hasse
 invariants of \var{al} at infinite places.
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,y]);
 ? alghassei(A)
 %3 = Vecsmall([1, 0])
 @eprog

Function: algindex
Class: basic
Section: algebras
C-Name: algindex
Prototype: lGDG
Help: algindex(al,{pl}): the index of the central simple algebra al. If pl is
 set, it should be a prime ideal of the center or an integer between 1 and
 r1+r2, and in that case return the local index at the place pl instead.
Doc: Return the index of the central simple algebra~$A$ over~$K$ (as output by
 alginit), that is the degree~$e$ of the unique central division algebra~$D$
 over $K$ such that~$A$ is isomorphic to some matrix algebra~$M_d(D)$. If
 \var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
 and~$r_1+r_2$, and in that case return the local index at the place \var{pl}
 instead.
 
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,y]);
 ? algindex(A, 1)
 %3 = 2
 ? algindex(A, 2)
 %4 = 1
 ? algindex(A, idealprimedec(nf,2)[1])
 %5 = 2
 ? algindex(A, idealprimedec(nf,5)[1])
 %6 = 1
 ? algindex(A)
 %7 = 2
 @eprog

Function: alginit
Class: basic
Section: algebras
C-Name: alginit
Prototype: GGDnD1,L,
Help: alginit(B, C, {v}, {flag = 1}): initialize the central simple algebra
 defined by data B, C. If flag = 1, compute a maximal order.
Doc: initialize the central simple algebra defined by data $B$, $C$ and
 variable $v$, as follows.
 
 \item (multiplication table) $B$ is the base number field $K$ in \tet{nfinit}
 form, $C$ is a ``multiplication table'' over $K$.
 As a $K$-vector space, the algebra is generated by a basis
 $(e_1 = 1,\dots, e_n)$; the table is given as a \typ{VEC} of $n$ matrices in
 $M_n(K)$, giving the left multiplication by the basis elements $e_i$, in the
 given basis.
 Assumes that $e_1= 1$, that the multiplication table is integral, and that
 $K[e_1,\dots,e_n]$ describes a central simple algebra over $K$.
 \bprog
 { m_i = [0,-1,0, 0;
          1, 0,0, 0;
          0, 0,0,-1;
          0, 0,1, 0];
   m_j = [0, 0,-1,0;
          0, 0, 0,1;
          1, 0, 0,0;
          0,-1, 0,0];
   m_k = [0, 0, 0, 0;
          0, 0,-1, 0;
          0, 1, 0, 0;
          1, 0, 0,-1];
   A = alginit(nfinit(y), [matid(4), m_i,m_j,m_k],  0); }
 @eprog represents (in a complicated way) the quaternion algebra $(-1,-1)_\Q$.
 See below for a simpler solution.
 
 \item (cyclic algebra) $B$ is an \kbd{rnf} structure attached to a cyclic
 number field extension $L/K$ of degree $d$, $C$ is a \typ{VEC}
 \kbd{[sigma,b]} with 2 components: \kbd{sigma} is a \typ{POLMOD} representing
 an automorphism generating $\text{Gal}(L/K)$, $b$ is an element in $K^*$. This
 represents the cyclic algebra~$(L/K,\sigma,b)$. Currently the element $b$ has
 to be integral.
 \bprog
  ? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
  ? A = alginit(F, [Mod(x^2,T), 3]);
 @eprog defines the cyclic algebra $(L/\Q, \sigma, 3)$, where
 $L = \Q(\zeta_5)$ and $\sigma:\zeta\mapsto\zeta^2$ generates
 $\text{Gal}(L/\Q)$.
 
 \item (quaternion algebra, special case of the above) $B$ is an \kbd{nf}
 structure attached to a number field $K$, $C = [a,b]$ is a vector
 containing two elements of $K^*$ with $a$ not a square in $K$, returns the quaternion algebra $(a,b)_K$.
 The variable $v$ (\kbd{'x} by default) must have higher priority than the
 variable of $K$\kbd{.pol} and is used to represent elements in the splitting
 field $L = K[x]/(x^2-a)$.
 \bprog
  ? Q = nfinit(y); A = alginit(Q, [-1,-1]);  \\@com $(-1,-1)_\Q$
 @eprog
 
 \item (algebra/$K$ defined by local Hasse invariants)
 $B$ is an \kbd{nf} structure attached to a number field $K$,
 $C = [d, [\kbd{PR},h_f], h_i]$ is a triple
 containing an integer $d > 1$, a pair $[\kbd{PR}, h_f]$ describing the
 Hasse invariants at finite places, and $h_i$ the Hasse invariants
 at archimedean (real) places. A local Hasse invariant belongs to $(1/d)\Z/\Z
 \subset \Q/\Z$, and is given either as a \typ{FRAC} (lift to $(1/d)\Z$),
 a \typ{INT} or \typ{INTMOD} modulo $d$ (lift to $\Z/d\Z$); a whole vector
 of local invariants can also be given as a \typ{VECSMALL}, whose
 entries are handled as \typ{INT}s. \kbd{PR} is a list of prime ideals
 (\kbd{prid} structures), and $h_f$ is a vector of the same length giving the
 local invariants at those maximal ideals. The invariants at infinite real
 places are indexed by the real roots $K$\kbd{.roots}: if the Archimedean
 place $v$ is attached to the $j$-th root, the value of
 $h_v$ is given by $h_i[j]$, must be $0$ or $1/2$ (or~$d/2$ modulo~$d$), and
 can be nonzero only if~$d$ is even.
 
 By class field theory, provided the local invariants $h_v$ sum to $0$, up
 to Brauer equivalence, there is a unique central simple algebra over $K$
 with given local invariants and trivial invariant elsewhere. In particular,
 up to isomorphism, there is a unique such algebra $A$ of degree $d$.
 
 We realize $A$ as a cyclic algebra through class field theory. The variable $v$
 (\kbd{'x} by default) must have higher priority than the variable of
 $K$\kbd{.pol} and is used to represent elements in the (cyclic) splitting
 field extension $L/K$ for $A$.
 
 \bprog
  ? nf = nfinit(y^2+1);
  ? PR = idealprimedec(nf,5); #PR
  %2 = 2
  ? hi = [];
  ? hf = [PR, [1/3,-1/3]];
  ? A = alginit(nf, [3,hf,hi]);
  ? algsplittingfield(A).pol
  %6 = x^3 - 21*x + 7
 @eprog
 
 \item (matrix algebra, toy example) $B$ is an \kbd{nf} structure attached
 to a number field $K$, $C = d$ is a positive integer. Returns a cyclic
 algebra isomorphic to the matrix algebra $M_d(K)$.
 
 In all cases, this function computes a maximal order for the algebra by default,
 which may require a lot of time. Setting $\fl = 0$ prevents this computation.
 
 The pari object representing such an algebra $A$ is a \typ{VEC} with the
 following data:
 
  \item A splitting field $L$ of $A$ of the same degree over $K$ as $A$, in
 \kbd{rnfinit} format, accessed with \kbd{algsplittingfield}.
 
  \item The same splitting field $L$ in \kbd{nfinit} format.
 
  \item The Hasse invariants at the real places of $K$, accessed with
 \kbd{alghassei}.
 
  \item The Hasse invariants of $A$ at the finite primes of $K$ that ramify in
 the natural order of $A$, accessed with \kbd{alghassef}.
 
  \item A basis of an order ${\cal O}_0$ expressed on the basis of the natural
 order, accessed with \kbd{algbasis}.
 
  \item A basis of the natural order expressed on the basis of ${\cal O}_0$,
 accessed with \kbd{alginvbasis}.
 
  \item The left multiplication table of ${\cal O}_0$ on the previous basis,
 accessed with \kbd{algmultable}.
 
  \item The characteristic of $A$ (always $0$), accessed with \kbd{algchar}.
 
  \item The absolute traces of the elements of the basis of ${\cal O}_0$.
 
  \item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$ of degree
 $d$, a \typ{VEC} $[\sigma,\sigma^2,\dots,\sigma^{d-1}]$. The function
 \kbd{algaut} returns $\sigma$.
 
  \item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$, the
 element $b$, accessed with \kbd{algb}.
 
  \item If $A$ was constructed with its multiplication table $mt$ over $K$,
 the \typ{VEC} of \typ{MAT} $mt$, accessed with \kbd{algrelmultable}.
 
  \item If $A$ was constructed with its multiplication table $mt$ over $K$,
 a \typ{VEC} with three components: a \typ{COL} representing an element of $A$
 generating the splitting field $L$ as a maximal subfield of $A$, a \typ{MAT}
 representing an $L$-basis ${\cal B}$ of $A$ expressed on the $\Z$-basis of
 ${\cal O}_0$, and a \typ{MAT} representing the $\Z$-basis of ${\cal O}_0$
 expressed on ${\cal B}$. This data is accessed with \kbd{algsplittingdata}.

Function: alginv
Class: basic
Section: algebras
C-Name: alginv
Prototype: GG
Help: alginv(al,x): element 1/x in al.
Doc: Given an element $x$ in \var{al}, computes its inverse $x^{-1}$ in the
 algebra \var{al}. Assumes that $x$ is invertible.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? alginv(A,[1,1,0,0]~)
 %2 = [1/2, 1/2, 0, 0]~
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: alginvbasis
Class: basic
Section: algebras
C-Name: alginvbasis
Prototype: mG
Help: alginvbasis(al): basis of the natural order of the central simple algebra
 al in terms of the stored order.
Doc: Given an central simple algebra \var{al} output by \tet{alginit}, returns
 a $\Z$-basis of the natural order in \var{al} with respect to the
 order~${\cal O}_0$ stored in \var{al}.
 \bprog
 A = alginit(nfinit(y), [-1,-1]);
 ? alginvbasis(A)
 %2 =
 [1 0 0 -1]
 
 [0 1 0 -1]
 
 [0 0 1 -1]
 
 [0 0 0  2]
 @eprog

Function: algisassociative
Class: basic
Section: algebras
C-Name: algisassociative
Prototype: iGD0,G,
Help: algisassociative(mt,p=0): true (1) if the multiplication table mt is
 suitable for algtableinit(mt,p), false (0) otherwise.
Doc: Returns 1 if the multiplication table \kbd{mt} is suitable for
 \kbd{algtableinit(mt,p)}, 0 otherwise. More precisely, \kbd{mt} should be
 a \typ{VEC} of $n$ matrices in $M_n(K)$, giving the left multiplications
 by the basis elements $e_1, \dots, e_n$ (structure constants).
 We check whether the first basis element $e_1$ is $1$ and $e_i(e_je_k) =
 (e_ie_j)e_k$ for all $i,j,k$.
 \bprog
  ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
  ? algisassociative(mt)
  %2 = 1
 @eprog
 
 May be used to check a posteriori an algebra: we also allow \kbd{mt} as
 output by \tet{algtableinit} ($p$ is ignored in this case).

Function: algiscommutative
Class: basic
Section: algebras
C-Name: algiscommutative
Prototype: iG
Help: algiscommutative(al): test whether the algebra al is commutative.
Doc: \var{al} being a table algebra output by \tet{algtableinit} or a central
 simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
 commutative.
 \bprog
 ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
 ? A = algtableinit(mt);
 ? algiscommutative(A)
 %3 = 0
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,2);
 ? algiscommutative(A)
 %6 = 1
 @eprog

Function: algisdivision
Class: basic
Section: algebras
C-Name: algisdivision
Prototype: iGDG
Help: algisdivision(al,{pl}): test whether the central simple algebra al is a
 division algebra. If pl is set, it should be a prime ideal of the center or an
 integer between 1 and r1+r2, and in that case test whether al is locally a
 division algebra at the place pl instead.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, test
 whether \var{al} is a division algebra. If \var{pl} is set, it should be a
 prime ideal of~$K$ or an integer between~$1$ and~$r_1+r_2$, and in that case
 test whether \var{al} is locally a division algebra at the place \var{pl}
 instead.
 
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,y]);
 ? algisdivision(A, 1)
 %3 = 1
 ? algisdivision(A, 2)
 %4 = 0
 ? algisdivision(A, idealprimedec(nf,2)[1])
 %5 = 1
 ? algisdivision(A, idealprimedec(nf,5)[1])
 %6 = 0
 ? algisdivision(A)
 %7 = 1
 @eprog

Function: algisdivl
Class: basic
Section: algebras
C-Name: algisdivl
Prototype: iGGGD&
Help: algisdivl(al,x,y,{&z}): tests whether y is left divisible by x and sets z
 to the left quotient x\y.
Doc: Given two elements $x$ and $y$ in \var{al}, tests whether $y$ is left
 divisible by $x$, that is whether there exists~$z$ in \var{al} such
 that~$xz=y$, and sets $z$ to this element if it exists.
 \bprog
 ? A = alginit(nfinit(y), [-1,1]);
 ? algisdivl(A,[x+2,-x-2]~,[x,1]~)
 %2 = 0
 ? algisdivl(A,[x+2,-x-2]~,[-x,x]~,&z)
 %3 = 1
 ? z
 %4 = [Mod(-2/5*x - 1/5, x^2 + 1), 0]~
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: algisinv
Class: basic
Section: algebras
C-Name: algisinv
Prototype: iGGD&
Help: algisinv(al,x,{&ix}): tests whether x is invertible and sets ix to the
 inverse of x.
Doc: Given an element $x$ in \var{al}, tests whether $x$ is invertible, and sets
 $ix$ to the inverse of $x$.
 \bprog
 ? A = alginit(nfinit(y), [-1,1]);
 ? algisinv(A,[-1,1]~)
 %2 = 0
 ? algisinv(A,[1,2]~,&ix)
 %3 = 1
 ? ix
 %4 = [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: algisramified
Class: basic
Section: algebras
C-Name: algisramified
Prototype: iGDG
Help: algisramified(al,{pl}): test whether the central simple algebra al is
 ramified, i.e. not isomorphic to a matrix ring over its center. If pl is set,
 it should be a prime ideal of the center or an integer between 1 and r1+r2, and
 in that case test whether al is locally ramified at the place pl instead.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, test
 whether \var{al} is ramified, i.e. not isomorphic to a matrix algebra over its
 center. If \var{pl} is set, it should be a prime ideal of~$K$ or an integer
 between~$1$ and~$r_1+r_2$, and in that case test whether \var{al} is locally
 ramified at the place \var{pl} instead.
 
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,y]);
 ? algisramified(A, 1)
 %3 = 1
 ? algisramified(A, 2)
 %4 = 0
 ? algisramified(A, idealprimedec(nf,2)[1])
 %5 = 1
 ? algisramified(A, idealprimedec(nf,5)[1])
 %6 = 0
 ? algisramified(A)
 %7 = 1
 @eprog

Function: algissemisimple
Class: basic
Section: algebras
C-Name: algissemisimple
Prototype: iG
Help: algissemisimple(al): test whether the algebra al is semisimple.
Doc: \var{al} being a table algebra output by \tet{algtableinit} or a central
 simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
 semisimple.
 \bprog
 ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
 ? A = algtableinit(mt);
 ? algissemisimple(A)
 %3 = 0
 ? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \\ quaternion algebra (-1,-1)
 ? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
 ? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];
 ? mt = [matid(4), m_i, m_j, m_k];
 ? A = algtableinit(mt);
 ? algissemisimple(A)
 %9 = 1
 @eprog

Function: algissimple
Class: basic
Section: algebras
C-Name: algissimple
Prototype: iGD0,L,
Help: algissimple(al, {ss = 0}): test whether the algebra al is simple.
Doc: \var{al} being a table algebra output by \tet{algtableinit} or a central
 simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
 simple. If $\var{ss}=1$, assumes that the algebra~\var{al} is semisimple
 without testing it.
 \bprog
 ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
 ? A = algtableinit(mt); \\ matrices [*,*; 0,*]
 ? algissimple(A)
 %3 = 0
 ? algissimple(A,1) \\ incorrectly assume that A is semisimple
 %4 = 1
 ? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];
 ? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
 ? m_k=[0,0,0,-1;0,0,b,0;0,1,0,0;1,0,0,0];
 ? mt = [matid(4), m_i, m_j, m_k];
 ? A = algtableinit(mt); \\ quaternion algebra (-1,-1)
 ? algissimple(A)
 %10 = 1
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,2); \\ direct sum F_4+F_2
 ? algissimple(A)
 %13 = 0
 @eprog

Function: algissplit
Class: basic
Section: algebras
C-Name: algissplit
Prototype: iGDG
Help: algissplit(al,{pl}): test whether the central simple algebra al is
 split, i.e. isomorphic to a matrix ring over its center. If pl is set, it
 should be a prime ideal of the center or an integer between 1 and r1+r2, and in
 that case test whether al is locally split at the place pl instead.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, test
 whether \var{al} is split, i.e. isomorphic to a matrix algebra over its center.
 If \var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
 and~$r_1+r_2$, and in that case test whether \var{al} is locally split at the
 place \var{pl} instead.
 
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,y]);
 ? algissplit(A, 1)
 %3 = 0
 ? algissplit(A, 2)
 %4 = 1
 ? algissplit(A, idealprimedec(nf,2)[1])
 %5 = 0
 ? algissplit(A, idealprimedec(nf,5)[1])
 %6 = 1
 ? algissplit(A)
 %7 = 0
 @eprog

Function: alglathnf
Class: basic
Section: algebras
C-Name: alglathnf
Prototype: GG
Help: alglathnf(al,m): the lattice generated by the columns of m.
Doc: Given an algebra \var{al} and a square invertible matrix \var{m} with size
 the dimension of \var{al}, returns the lattice generated by the columns of
 \var{m}.
 \bprog
 ? al = alginit(nfinit(y^2+7), [-1,-1]);
 ? a = [1,1,-1/2,1,1/3,-1,1,1]~;
 ? mt = algleftmultable(al,a);
 ? lat = alglathnf(al,mt);
 ? lat[2]
 %5 = 1/6
 @eprog

Function: algleftmultable
Class: basic
Section: algebras
C-Name: algleftmultable
Prototype: GG
Help: algleftmultable(al,x): left multiplication table of x.
Doc: Given an element \var{x} in \var{al}, computes its left multiplication
 table. If \var{x} is given in basis form, returns its multiplication table on
 the integral basis; if \var{x} is given in algebraic form, returns its
 multiplication table on the basis corresponding to the algebraic form of
 elements of \var{al}. In every case, if \var{x} is a \typ{COL} of length $n$,
 then the output is a $n\times n$ \typ{MAT}.
 Also accepts a square matrix with coefficients in \var{al}.
 
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algleftmultable(A,[0,1,0,0]~)
 %2 =
 [0 -1  1  0]
 
 [1  0  1  1]
 
 [0  0  1  1]
 
 [0  0 -2 -1]
 @eprog

Function: algmul
Class: basic
Section: algebras
C-Name: algmul
Prototype: GGG
Help: algmul(al,x,y): element x*y in al.
Doc: Given two elements $x$ and $y$ in \var{al}, computes their product $x*y$
 in the algebra~\var{al}.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algmul(A,[1,1,0,0]~,[0,0,2,1]~)
 %2 = [2, 3, 5, -4]~
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: algmultable
Class: basic
Section: algebras
C-Name: algmultable
Prototype: mG
Help: algmultable(al): multiplication table of al over its prime subfield.
Doc: 
 returns a multiplication table of \var{al} over its
 prime subfield ($\Q$ or $\F_p$), as a \typ{VEC} of \typ{MAT}: the left
 multiplication tables of basis elements. If \var{al} was output by
 \tet{algtableinit}, returns the multiplication table used to define \var{al}.
 If \var{al} was output by \tet{alginit}, returns the multiplication table of
 the order~${\cal O}_0$ stored in \var{al}.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? M = algmultable(A);
 ? #M
 %3 = 4
 ? M[1]  \\ multiplication by e_1 = 1
 %4 =
 [1 0 0 0]
 
 [0 1 0 0]
 
 [0 0 1 0]
 
 [0 0 0 1]
 
 ? M[2]
 %5 =
 [0 -1  1  0]
 
 [1  0  1  1]
 
 [0  0  1  1]
 
 [0  0 -2 -1]
 @eprog

Function: algneg
Class: basic
Section: algebras
C-Name: algneg
Prototype: GG
Help: algneg(al,x): element -x in al.
Doc: Given an element $x$ in \var{al}, computes its opposite $-x$ in the
 algebra \var{al}.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algneg(A,[1,1,0,0]~)
 %2 = [-1, -1, 0, 0]~
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: algnorm
Class: basic
Section: algebras
C-Name: algnorm
Prototype: GG
Help: algnorm(al,x): (reduced) norm of x.
Doc: Given an element \var{x} in \var{al}, computes its norm. If \var{al} is
 a table algebra output by \tet{algtableinit}, returns the absolute norm of
 \var{x}, which is an element of $\F_p$ of~$\Q$; if \var{al} is a central
 simple algebra output by \tet{alginit}, returns the reduced norm of \var{x},
 which is an element of the center of \var{al}.
 \bprog
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,19);
 ? algnorm(A,[0,-2,3]~)
 %3 = 18
 @eprog
 
 Also accepts a square matrix with coefficients in \var{al}.

Function: algpoleval
Class: basic
Section: algebras
C-Name: algpoleval
Prototype: GGG
Help: algpoleval(al,T,b): T in K[X] evaluate T(b) in al.
Doc: Given an element $b$ in \var{al} and a polynomial $T$ in $K[X]$,
 computes $T(b)$ in \var{al}.

Function: algpow
Class: basic
Section: algebras
C-Name: algpow
Prototype: GGG
Help: algpow(al,x,n): element x^n in al.
Doc: Given an element $x$ in \var{al} and an integer $n$, computes the
 power $x^n$ in the algebra \var{al}.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algpow(A,[1,1,0,0]~,7)
 %2 = [8, -8, 0, 0]~
 @eprog
 
 Also accepts a square matrix with coefficients in \var{al}.

Function: algprimesubalg
Class: basic
Section: algebras
C-Name: algprimesubalg
Prototype: G
Help: algprimesubalg(al): prime subalgebra of the positive characteristic,
 semisimple algebra al.
Doc: \var{al} being the output of \tet{algtableinit} representing a semisimple
 algebra of positive characteristic, returns a basis of the prime subalgebra
 of~\var{al}. The prime subalgebra of~\var{al} is the subalgebra fixed by the
 Frobenius automorphism of the center of \var{al}. It is abstractly isomorphic
 to a product of copies of $\F_p$.
 \bprog
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,2);
 ? algprimesubalg(A)
 %3 =
 [1 0]
 
 [0 1]
 
 [0 0]
 @eprog

Function: algquotient
Class: basic
Section: algebras
C-Name: alg_quotient
Prototype: GGD0,L,
Help: algquotient(al,I,{flag=0}): quotient of the algebra al by the two-sided
 ideal I.
Doc: \var{al} being a table algebra output by \tet{algtableinit} and \var{I}
 being a basis of a two-sided ideal of \var{al} represented by a matrix,
 returns the quotient $\var{al}/\var{I}$. When $\var{flag}=1$, returns a
 \typ{VEC} $[\var{al}/\var{I},\var{proj},\var{lift}]$ where \var{proj} and
 \var{lift} are matrices respectively representing the projection map and a
 section of it.
 \bprog
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,2);
 ? AQ = algquotient(A,[0;1;0]);
 ? algdim(AQ)
 %4 = 2
 @eprog

Function: algradical
Class: basic
Section: algebras
C-Name: algradical
Prototype: G
Help: algradical(al): Jacobson radical of the algebra al.
Doc: \var{al} being a table algebra output by \tet{algtableinit}, returns a
 basis of the Jacobson radical of the algebra \var{al} over its prime field
 ($\Q$ or $\F_p$).
 
 Here is an example with $A = \Q[x]/(x^2)$, generated by $(1,x)$:
 \bprog
 ? mt = [matid(2),[0,0;1,0]];
 ? A = algtableinit(mt);
 ? algradical(A) \\ = (x)
 %3 =
 [0]
 
 [1]
 @eprog
 
 Another one with $2\times 2$ upper triangular matrices over $\Q$, generated
 by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$, such that $a^2 =
 0$, $ab = a$, $ba = 0$, $b^2 = b$:
 \bprog
 ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
 ? A = algtableinit(mt);
 ? algradical(A) \\ = (a)
 %6 =
 [0]
 
 [1]
 
 [0]
 @eprog

Function: algramifiedplaces
Class: basic
Section: algebras
C-Name: algramifiedplaces
Prototype: G
Help: algramifiedplaces(al): vector of the places of the center of al that
 ramify in al. Each place is described as an integer between 1 and r1 or as a
 prime ideal.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, return a
 \typ{VEC} containing the list of places of the center of \var{al} that are
 ramified in \var{al}. Each place is described as an integer between~$1$
 and~$r_1$ or as a prime ideal.
 
 \bprog
 ? nf = nfinit(y^2-5);
 ? A = alginit(nf, [-1,y]);
 ? algramifiedplaces(A)
 %3 = [1, [2, [2, 0]~, 1, 2, 1]]
 @eprog

Function: algrandom
Class: basic
Section: algebras
C-Name: algrandom
Prototype: GG
Help: algrandom(al,b): random element in al with coefficients in [-b,b].
Doc: Given an algebra \var{al} and an integer \var{b}, returns a random
 element in \var{al} with coefficients in~$[-b,b]$.

Function: algrelmultable
Class: basic
Section: algebras
C-Name: algrelmultable
Prototype: mG
Help: algrelmultable(al): multiplication table of the central simple
 algebra al over its center.
Doc: Given a central simple algebra \var{al} output by \tet{alginit} defined by a multiplication table over its center (a number field), returns this multiplication table.
 \bprog
 ? nf = nfinit(y^3-5); a = y; b = y^2;
 ? {m_i = [0,a,0,0;
           1,0,0,0;
           0,0,0,a;
           0,0,1,0];}
 ? {m_j = [0, 0,b, 0;
           0, 0,0,-b;
           1, 0,0, 0;
           0,-1,0, 0];}
 ? {m_k = [0, 0,0,-a*b;
           0, 0,b,   0;
           0,-a,0,   0;
           1, 0,0,   0];}
 ? mt = [matid(4), m_i, m_j, m_k];
 ? A = alginit(nf,mt,'x);
 ? M = algrelmultable(A);
 ? M[2] == m_i
 %8 = 1
 ? M[3] == m_j
 %9 = 1
 ? M[4] == m_k
 %10 = 1
 @eprog

Function: algsimpledec
Class: basic
Section: algebras
C-Name: algsimpledec
Prototype: GD0,L,
Help: algsimpledec(al,{flag=0}): decomposition into simple algebras of the
 semisimple algebra al.
Doc: \var{al} being the output of \tet{algtableinit} representing a semisimple
 algebra, returns a \typ{VEC} $[\var{al}_1,\var{al}_2,\dots,\var{al}_n]$ such
 that~\var{al} is isomorphic to the direct sum of the simple algebras
 $\var{al}_i$. When $\var{flag}=1$, each component is instead a \typ{VEC}
 $[\var{al}_i,\var{proj}_i,\var{lift}_i]$ where $\var{proj}_i$
 and~$\var{lift}_i$ are matrices respectively representing the projection map
 on the $i$-th factor and a section of it. The factors are sorted by
 increasing dimension, then increasing dimension of the center. This ensures
 that the ordering of the isomorphism classes of the factors is deterministic
 over finite fields, but not necessarily over~$\Q$.
 
 \misctitle{Warning} The images of the $\var{lift}_i$ are not guaranteed to form a direct sum.

Function: algsplittingdata
Class: basic
Section: algebras
C-Name: algsplittingdata
Prototype: mG
Help: algsplittingdata(al): data stored in the central simple algebra al to
 compute a splitting of al over an extension.
Doc: Given a central simple algebra \var{al} output by \tet{alginit} defined
 by a multiplication table over its center~$K$ (a number field), returns data
 stored to compute a splitting of \var{al} over an extension. This data is a
 \typ{VEC} \kbd{[t,Lbas,Lbasinv]} with $3$ components:
 
  \item an element $t$ of \var{al} such that $L=K(t)$ is a maximal subfield
 of \var{al};
 
  \item a matrix \kbd{Lbas} expressing a $L$-basis of \var{al} (given an
 $L$-vector space structure by multiplication on the right) on the integral
 basis of \var{al};
 
  \item a matrix \kbd{Lbasinv} expressing the integral basis of \var{al} on
 the previous $L$-basis.
 
 \bprog
 ? nf = nfinit(y^3-5); a = y; b = y^2;
 ? {m_i = [0,a,0,0;
           1,0,0,0;
           0,0,0,a;
           0,0,1,0];}
 ? {m_j = [0, 0,b, 0;
           0, 0,0,-b;
           1, 0,0, 0;
           0,-1,0, 0];}
 ? {m_k = [0, 0,0,-a*b;
           0, 0,b,   0;
           0,-a,0,   0;
           1, 0,0,   0];}
 ? mt = [matid(4), m_i, m_j, m_k];
 ? A = alginit(nf,mt,'x);
 ? [t,Lb,Lbi] = algsplittingdata(A);
 ? t
 %8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;
 ? matsize(Lb)
 %9 = [12, 2]
 ? matsize(Lbi)
 %10 = [2, 12]
 @eprog

Function: algsplittingfield
Class: basic
Section: algebras
C-Name: algsplittingfield
Prototype: mG
Help: algsplittingfield(al): the stored splitting field of the central simple
 algebra al.
Doc: Given a central simple algebra \var{al} output by \tet{alginit}, returns
 an \kbd{rnf} structure: the splitting field of \var{al} that is stored in
 \var{al}, as a relative extension of the center.
 \bprog
 nf = nfinit(y^3-5);
 a = y; b = y^2;
 {m_i = [0,a,0,0;
        1,0,0,0;
        0,0,0,a;
        0,0,1,0];}
 {m_j = [0, 0,b, 0;
        0, 0,0,-b;
        1, 0,0, 0;
        0,-1,0, 0];}
 {m_k = [0, 0,0,-a*b;
        0, 0,b,   0;
        0,-a,0,   0;
        1, 0,0,   0];}
 mt = [matid(4), m_i, m_j, m_k];
 A = alginit(nf,mt,'x);
 algsplittingfield(A).pol
 %8 = x^2 - y
 @eprog

Function: algsplittingmatrix
Class: basic
Section: algebras
C-Name: algsplittingmatrix
Prototype: GG
Help: algsplittingmatrix(al,x): image of x under a splitting of al.
Doc: A central simple algebra \var{al} output by \tet{alginit} contains data
 describing an isomorphism~$\phi : A\otimes_K L \to M_d(L)$, where $d$ is the
 degree of the algebra and $L$ is an extension of $L$ with~$[L:K]=d$. Returns
 the matrix $\phi(x)$.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algsplittingmatrix(A,[0,0,0,2]~)
 %2 =
 [Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]
 
 [Mod(x + 1, x^2 + 1)                   Mod(-x + 1, x^2 + 1)]
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: algsqr
Class: basic
Section: algebras
C-Name: algsqr
Prototype: GG
Help: algsqr(al,x): element x^2 in al.
Doc: Given an element $x$ in \var{al}, computes its square $x^2$ in the
 algebra \var{al}.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algsqr(A,[1,0,2,0]~)
 %2 = [-3, 0, 4, 0]~
 @eprog
 
 Also accepts a square matrix with coefficients in \var{al}.

Function: algsub
Class: basic
Section: algebras
C-Name: algsub
Prototype: GGG
Help: algsub(al,x,y): element x-y in al.
Doc: Given two elements $x$ and $y$ in \var{al}, computes their difference
 $x-y$ in the algebra \var{al}.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
 %2 = [0, 1, -1, 0]~
 @eprog
 
 Also accepts matrices with coefficients in \var{al}.

Function: algsubalg
Class: basic
Section: algebras
C-Name: algsubalg
Prototype: GG
Help: algsubalg(al,B): subalgebra of al with basis B.
Doc: \var{al} being a table algebra output by \tet{algtableinit} and \var{B}
 being a basis of a subalgebra of \var{al} represented by a matrix, returns an
 algebra isomorphic to \var{B}.
 \bprog
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,2);
 ? B = algsubalg(A,[1,0; 0,0; 0,1]);
 ? algdim(A)
 %4 = 3
 ? algdim(B)
 %5 = 2
 @eprog

Function: algtableinit
Class: basic
Section: algebras
C-Name: algtableinit
Prototype: GDG
Help: algtableinit(mt, {p=0}): initialize the associative algebra
 over Q (resp. Fp) defined by the multiplication table mt.
Doc: initialize the associative algebra over $K = \Q$ (p omitted) or $\F_p$
 defined by the multiplication table \var{mt}.
 As a $K$-vector space, the algebra is generated by a basis
 $(e_1 = 1, e_2, \dots, e_n)$; the table is given as a \typ{VEC} of $n$ matrices in
 $M_n(K)$, giving the left multiplication by the basis elements $e_i$, in the
 given basis.
 Assumes that $e_1=1$, that $K e_1\oplus \dots\oplus K e_n]$ describes an
 associative algebra over $K$, and in the case $K=\Q$ that the multiplication
 table is integral. If the algebra is already known to be central
 and simple, then the case $K = \F_p$ is useless, and one should use
 \tet{alginit} directly.
 
 The point of this function is to input a finite dimensional $K$-algebra, so
 as to later compute its radical, then to split the quotient algebra as a
 product of simple algebras over $K$.
 
 The pari object representing such an algebra $A$ is a \typ{VEC} with the
 following data:
 
  \item The characteristic of $A$, accessed with \kbd{algchar}.
 
  \item The multiplication table of $A$, accessed with \kbd{algmultable}.
 
  \item The traces of the elements of the basis.
 
 A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
 generated by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
 such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$:
 \bprog
 ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
 ? A = algtableinit(mt);
 ? algradical(A) \\ = (a)
 %6 =
 [0]
 
 [1]
 
 [0]
 ? algcenter(A) \\ = (I_2)
 %7 =
 [1]
 
 [0]
 
 [0]
 @eprog

Function: algtensor
Class: basic
Section: algebras
C-Name: algtensor
Prototype: GGD1,L,
Help: algtensor(al1,al2,{maxord=1}): tensor product of al1 and al2.
Doc: Given two algebras \var{al1} and \var{al2}, computes their tensor
 product. For table algebras output by \tet{algtableinit}, the flag
 \var{maxord} is ignored. For central simple algebras output by \tet{alginit},
 computes a maximal order by default. Prevent this computation by setting
 $\var{maxord}=0$.
 
 Currently only implemented for cyclic algebras of coprime degree over the same
 center~$K$, and the tensor product is over~$K$.

Function: algtrace
Class: basic
Section: algebras
C-Name: algtrace
Prototype: GG
Help: algtrace(al,x): (reduced) trace of x.
Doc: Given an element \var{x} in \var{al}, computes its trace. If \var{al} is
 a table algebra output by \tet{algtableinit}, returns the absolute trace of
 \var{x}, which is an element of $\F_p$ or~$\Q$; if \var{al} is the output of
 \tet{alginit}, returns the reduced trace of \var{x}, which is an element of
 the center of \var{al}.
 \bprog
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algtrace(A,[5,0,0,1]~)
 %2 = 11
 @eprog
 
 Also accepts a square matrix with coefficients in \var{al}.

Function: algtype
Class: basic
Section: algebras
C-Name: algtype
Prototype: lG
Help: algtype(al): type of the algebra al.
Doc: Given an algebra \var{al} output by \tet{alginit} or by \tet{algtableinit}, returns an integer indicating the type of algebra:
 
 \item $0$: not a valid algebra.
 
 \item $1$: table algebra output by \tet{algtableinit}.
 
 \item $2$: central simple algebra output by \tet{alginit} and represented by
 a multiplication table over its center.
 
 \item $3$: central simple algebra output by \tet{alginit} and represented by
 a cyclic algebra.
 \bprog
 ? algtype([])
 %1 = 0
 ? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
 ? A = algtableinit(mt,2);
 ? algtype(A)
 %4 = 1
 ? nf = nfinit(y^3-5);
 ?  a = y; b = y^2;
 ?  {m_i = [0,a,0,0;
            1,0,0,0;
            0,0,0,a;
            0,0,1,0];}
 ?  {m_j = [0, 0,b, 0;
            0, 0,0,-b;
            1, 0,0, 0;
            0,-1,0, 0];}
 ?  {m_k = [0, 0,0,-a*b;
            0, 0,b,   0;
            0,-a,0,   0;
            1, 0,0,   0];}
 ?  mt = [matid(4), m_i, m_j, m_k];
 ?  A = alginit(nf,mt,'x);
 ? algtype(A)
 %12 = 2
 ? A = alginit(nfinit(y), [-1,-1]);
 ? algtype(A)
 %14 = 3
 @eprog

Function: alias
Class: basic
Section: programming/specific
C-Name: alias0
Prototype: vrr
Help: alias(newsym,sym): defines the symbol newsym as an alias for the symbol
 sym.
Doc: defines the symbol \var{newsym} as an alias for the symbol \var{sym}:
 \bprog
 ? alias("det", "matdet");
 ? det([1,2;3,4])
 %1 = -2
 @eprog\noindent
 You are not restricted to ordinary functions, as in the above example:
 to alias (from/to) member functions, prefix them with `\kbd{\_.}';
 to alias operators, use their internal name, obtained by writing
 \kbd{\_} in lieu of the operators argument: for instance, \kbd{\_!} and
 \kbd{!\_} are the internal names of the factorial and the
 logical negation, respectively.
 \bprog
 ? alias("mod", "_.mod");
 ? alias("add", "_+_");
 ? alias("_.sin", "sin");
 ? mod(Mod(x,x^4+1))
 %2 = x^4 + 1
 ? add(4,6)
 %3 = 10
 ? Pi.sin
 %4 = 0.E-37
 @eprog
 Alias expansion is performed directly by the internal GP compiler.
 Note that since alias is performed at compilation-time, it does not
 require any run-time processing, however it only affects GP code
 compiled \emph{after} the alias command is evaluated. A slower but more
 flexible alternative is to use variables. Compare
 \bprog
 ? fun = sin;
 ? g(a,b) = intnum(t=a,b,fun(t));
 ? g(0, Pi)
 %3 = 2.0000000000000000000000000000000000000
 ? fun = cos;
 ? g(0, Pi)
 %5 = 1.8830410776607851098 E-39
 @eprog\noindent
 with
 \bprog
 ? alias(fun, sin);
 ? g(a,b) = intnum(t=a,b,fun(t));
 ? g(0,Pi)
 %2 = 2.0000000000000000000000000000000000000
 ? alias(fun, cos);  \\ Oops. Does not affect *previous* definition!
 ? g(0,Pi)
 %3 = 2.0000000000000000000000000000000000000
 ? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
 ? g(0,Pi)
 %5 = 1.8830410776607851098 E-39
 @eprog
 
 A sample alias file \kbd{misc/gpalias} is provided with
 the standard distribution.

Function: allocatemem
Class: basic
Section: programming/specific
C-Name: gp_allocatemem
Prototype: vDG
Help: allocatemem({s=0}): allocates a new stack of s bytes. doubles the
 stack if s is omitted.
Doc: this special operation changes the stack size \emph{after}
 initialization. $x$ must be a non-negative integer. If $x > 0$, a new stack
 of at least $x$ bytes is allocated. We may allocate more than $x$ bytes if
 $x$ is way too small, or for alignment reasons: the current formula is
 $\max(16*\ceil{x/16}, 500032)$ bytes.
 
 If $x=0$, the size of the new stack is twice the size of the old one.
 
 This command is much more useful if \tet{parisizemax} is non-zero, and we
 describe this case first. With \kbd{parisizemax} enabled, there are three
 sizes of interest:
 
 \item a virtual stack size, \tet{parisizemax}, which is an absolute upper
 limit for the stack size; this is set by \kbd{default(parisizemax, ...)}.
 
 \item the desired typical stack size, \tet{parisize}, that will grow as
 needed, up to \tet{parisizemax}; this is set by \kbd{default(parisize, ...)}.
 
 \item the current stack size, which is less that \kbd{parisizemax},
 typically equal to \kbd{parisize} but possibly larger and increasing
 dynamically as needed; \kbd{allocatemem} allows to change that one
 explicitly.
 
 The \kbd{allocatemem} command forces stack
 usage to increase temporarily (up to \kbd{parisizemax} of course); for
 instance if you notice using \kbd{\bs gm2} that we seem to collect garbage a
 lot, e.g.
 \bprog
 ? \gm2
   debugmem = 2
 ? default(parisize,"32M")
  ***   Warning: new stack size = 32000000 (30.518 Mbytes).
 ? bnfinit('x^2+10^30-1)
  *** bnfinit: collecting garbage in hnffinal, i = 1.
  *** bnfinit: collecting garbage in hnffinal, i = 2.
  *** bnfinit: collecting garbage in hnffinal, i = 3.
 @eprog\noindent and so on for hundred of lines. Then, provided the
 \tet{breakloop} default is set, you can interrupt the computation, type
 \kbd{allocatemem(100*10\pow6)} at the break loop prompt, then let the
 computation go on by typing \kbd{<Enter>}. Back at the \kbd{gp} prompt,
 the desired stack size of \kbd{parisize} is restored. Note that changing either
 \kbd{parisize} or \kbd{parisizemax} at the break loop prompt would interrupt
 the computation, contrary to the above.
 
 In most cases, \kbd{parisize} will increase automatically (up to
 \kbd{parisizemax}) and there is no need to perform the above maneuvers.
 But that the garbage collector is sufficiently efficient that
 a given computation can still run without increasing the stack size,
 albeit very slowly due to the frequent garbage collections.
 
 \misctitle{Deprecated: when \kbd{parisizemax} is unset}
 This is currently still the default behavior in order not to break backward
 compatibility. The rest of this section documents the
 behavior of \kbd{allocatemem} in that (deprecated) situation: it becomes a
 synonym for \kbd{default(parisize,...)}. In that case, there is no
 notion of a virtual stack, and the stack size is always equal to
 \kbd{parisize}. If more memory is needed, the PARI stack overflows, aborting
 the computation.
 
 Thus, increasing \kbd{parisize} via \kbd{allocatemem} or
 \kbd{default(parisize,...)} before a big computation is important.
 Unfortunately, either must be typed at the \kbd{gp} prompt in
 interactive usage, or left by itself at the start of batch files.
 They cannot be used meaningfully in loop-like constructs, or as part of a
 larger expression sequence, e.g
 \bprog
    allocatemem(); x = 1;   \\@com This will not set \kbd{x}!
 @eprog\noindent
 In fact, all loops are immediately exited, user functions terminated, and
 the rest of the sequence following \kbd{allocatemem()} is silently
 discarded, as well as all pending sequences of instructions. We just go on
 reading the next instruction sequence from the file we are in (or from the
 user). In particular, we have the following possibly unexpected behavior: in
 \bprog
    read("file.gp"); x = 1
 @eprog\noindent were \kbd{file.gp} contains an \kbd{allocatemem} statement,
 the \kbd{x = 1} is never executed, since all pending instructions in the
 current sequence are discarded.
 
 The reason for these unfortunate side-effects is that, with
 \kbd{parisizemax} disabled, increasing the stack size physically
 moves the stack, so temporary objects created during the current expression
 evaluation are not correct anymore. (In particular byte-compiled expressions,
 which are allocated on the stack.) To avoid accessing obsolete pointers to
 the old stack, this routine ends by a \kbd{longjmp}.

Function: apply
Class: basic
Section: programming/specific
C-Name: apply0
Prototype: GG
Help: apply(f, A): apply function f to each entry in A.
Wrapper: (G)
Description: 
  (closure,gen):gen    genapply(${1 cookie}, ${1 wrapper}, $2)
Doc: Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}. If \kbd{A}
 is a scalar, return \kbd{f(A)}. If \kbd{A} is a polynomial or power series,
 apply \kbd{f} on all coefficients. If \kbd{A} is a vector or list, return
 the elements $f(x)$ where $x$ runs through \kbd{A}. If \kbd{A} is a matrix,
 return the matrix whose entries are the $f(\kbd{A[i,j]})$.
 \bprog
 ? apply(x->x^2, [1,2,3,4])
 %1 = [1, 4, 9, 16]
 ? apply(x->x^2, [1,2;3,4])
 %2 =
 [1 4]
 
 [9 16]
 ? apply(x->x^2, 4*x^2 + 3*x+ 2)
 %3 = 16*x^2 + 9*x + 4
 @eprog\noindent Note that many functions already act componentwise on
 vectors or matrices, but they almost never act on lists; in this
 case, \kbd{apply} is a good solution:
 \bprog
 ? L = List([Mod(1,3), Mod(2,4)]);
 ? lift(L)
   ***   at top-level: lift(L)
   ***                 ^-------
   *** lift: incorrect type in lift.
 ? apply(lift, L);
 %2 = List([1, 2])
 @eprog
 \misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{LIST} or \typ{MAT},
 the alternative set-notations
 \bprog
 [g(x) | x <- v, f(x)]
 [x | x <- v, f(x)]
 [g(x) | x <- v]
 @eprog\noindent
 are available as shortcuts for
 \bprog
 apply(g, select(f, Vec(v)))
 select(f, Vec(v))
 apply(g, Vec(v))
 @eprog\noindent respectively:
 \bprog
 ? L = List([Mod(1,3), Mod(2,4)]);
 ? [ lift(x) | x<-L ]
 %2 = [1, 2]
 @eprog
 
 \synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.

Function: arg
Class: basic
Section: transcendental
C-Name: garg
Prototype: Gp
Help: arg(x): argument of x, such that -pi<arg(x)<=pi.
Doc: argument of the complex number $x$, such that $-\pi < \arg(x) \le \pi$.

Function: asin
Class: basic
Section: transcendental
C-Name: gasin
Prototype: Gp
Help: asin(x): arc sine of x.
Doc: principal branch of $\sin^{-1}(x) = -i \log(ix + \sqrt{1 - x^2})$.
 In particular, $\Re(\text{asin}(x))\in [-\pi/2,\pi/2]$ and if $x\in \R$ and
 $|x|>1$ then $\text{asin}(x)$ is complex. The branch cut is in two pieces:
 $]-\infty,-1]$, continuous with quadrant II, and $[1,+\infty[$ continuous
 with quadrant IV. The function satisfies $i \text{asin}(x) =
 \text{asinh}(ix)$.

Function: asinh
Class: basic
Section: transcendental
C-Name: gasinh
Prototype: Gp
Help: asinh(x): inverse hyperbolic sine of x.
Doc: principal branch of $\sinh^{-1}(x) = \log(x + \sqrt{1+x^2})$. In
 particular $\Im(\text{asinh}(x))\in [-\pi/2,\pi/2]$.
 The branch cut is in two pieces: $]-i \infty ,-i]$, continuous with quadrant
 III and $[+i,+i \infty[$, continuous with quadrant I.

Function: asympnum
Class: basic
Section: sums
C-Name: asympnum0
Prototype: GD0,L,DGp
Help: asympnum(expr,{k=20},{alpha = 1}): asymptotic expansion of expr assuming
 it has rational coefficients with reasonable height; k and alpha are as
 in limitnum.
Doc: Asymptotic expansion of \var{expr}, corresponding to a sequence $u(n)$,
 assuming it has the shape
 $$u(n) \approx \sum_{i \geq 0} a_i n^{-i\alpha}$$
 with rational coefficients $a_i$ with reasonable height; the algorithm
 is heuristic and performs repeated calls to limitnum, with
 \kbd{k} and \kbd{alpha} are as in \kbd{limitnum}
 \bprog
 ? f(n) = n! / (n^n*exp(-n)*sqrt(n));
 ? asympnum(f)
 %2 = []   \\ failure !
 ? l = limitnum(f)
 %3 = 2.5066282746310005024157652848110452530
 ? asympnum(n->f(n)/l) \\ normalize
 %4 = [1, 1/12, 1/288, -139/51840]
 @eprog\noindent and we indeed get a few terms of Stirling's expansion. Note
 that it helps to normalize with a limit computed to higher accuracy:
 \bprog
 ? \p100
 ? L = limitnum(f)
 ? \p38
 ? asympnum(n->f(n)/L) \\ we get more terms!
 %6 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,\
       5246819/75246796800, -534703531/902961561600]
 @eprog\noindent If \kbd{alpha} is not an integer, loss of accuracy is
 expected, so it should be precomputed to double accuracy, say:
 \bprog
 ? \p38
 ? asympnum(n->-log(1-1/n^Pi),,Pi)
 %1 = [0, 1, 1/2, 1/3]
 ? asympnum(n->-log(1-1/sqrt(n)),,1/2)
 %2 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, \
   1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20, 1/21, 1/22]
 
 ? localprec(100); a = Pi;
 ? asympnum(n->-log(1-1/n^a),,a) \\ better !
 %4 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12]
 @eprog
 
 \synt{asympnum}{void *E, GEN (*u)(void *,GEN,long), long muli, GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return $u(n)$ in precision \kbd{prec}.
 Also available is
 \fun{GEN}{asympnum0}{GEN u, long muli, GEN alpha, long prec}, where $u$
 must be a vector of sufficient length as above.

Function: atan
Class: basic
Section: transcendental
C-Name: gatan
Prototype: Gp
Help: atan(x): arc tangent of x.
Doc: principal branch of $\text{tan}^{-1}(x) = \log ((1+ix)/(1-ix)) /
 2i$. In particular the real part of $\text{atan}(x)$ belongs to
 $]-\pi/2,\pi/2[$.
 The branch cut is in two pieces:
 $]-i\infty,-i[$, continuous with quadrant IV, and $]i,+i \infty[$ continuous
 with quadrant II. The function satisfies $\text{atan}(x) =
 -i\text{atanh}(ix)$ for all $x\neq \pm i$.

Function: atanh
Class: basic
Section: transcendental
C-Name: gatanh
Prototype: Gp
Help: atanh(x): inverse hyperbolic tangent of x.
Doc: principal branch of $\text{tanh}^{-1}(x) = \log ((1+x)/(1-x)) / 2$. In
 particular the imaginary part of $\text{atanh}(x)$ belongs to
 $[-\pi/2,\pi/2]$; if $x\in \R$ and $|x|>1$ then $\text{atanh}(x)$ is complex.

Function: bernfrac
Class: basic
Section: transcendental
C-Name: bernfrac
Prototype: L
Help: bernfrac(x): Bernoulli number B_x, as a rational number.
Doc: Bernoulli number\sidx{Bernoulli numbers} $B_x$,
 where $B_0=1$, $B_1=-1/2$, $B_2=1/6$,\dots, expressed as a rational number.
 The argument $x$ should be of type integer.

Function: bernpol
Class: basic
Section: transcendental
C-Name: bernpol
Prototype: LDn
Help: bernpol(n, {v = 'x}): Bernoulli polynomial B_n, in variable v.
Doc: \idx{Bernoulli polynomial} $B_n$ in variable $v$.
 \bprog
 ? bernpol(1)
 %1 = x - 1/2
 ? bernpol(3)
 %2 = x^3 - 3/2*x^2 + 1/2*x
 @eprog

Function: bernreal
Class: basic
Section: transcendental
C-Name: bernreal
Prototype: Lp
Help: bernreal(x): Bernoulli number B_x, as a real number with the current
 precision.
Doc: Bernoulli number\sidx{Bernoulli numbers}
 $B_x$, as \kbd{bernfrac}, but $B_x$ is returned as a real number
 (with the current precision).

Function: bernvec
Class: basic
Section: transcendental
C-Name: bernvec
Prototype: L
Help: bernvec(x): this routine is obsolete, use bernfrac repeatedly.
Doc: This routine is obsolete, kept for backward compatibility only.
Obsolete: 2007-03-30

Function: besselh1
Class: basic
Section: transcendental
C-Name: hbessel1
Prototype: GGp
Help: besselh1(nu,x): H^1-bessel function of index nu and argument x.
Doc: $H^1$-Bessel function of index \var{nu} and argument $x$.

Function: besselh2
Class: basic
Section: transcendental
C-Name: hbessel2
Prototype: GGp
Help: besselh2(nu,x): H^2-bessel function of index nu and argument x.
Doc: $H^2$-Bessel function of index \var{nu} and argument $x$.

Function: besseli
Class: basic
Section: transcendental
C-Name: ibessel
Prototype: GGp
Help: besseli(nu,x): I-bessel function of index nu and argument x.
Doc: $I$-Bessel function of index \var{nu} and
 argument $x$. If $x$ converts to a power series, the initial factor
 $(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
 when $\nu$ is not integral).

Function: besselj
Class: basic
Section: transcendental
C-Name: jbessel
Prototype: GGp
Help: besselj(nu,x): J-bessel function of index nu and argument x.
Doc: $J$-Bessel function of index \var{nu} and
 argument $x$. If $x$ converts to a power series, the initial factor
 $(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
 when $\nu$ is not integral).

Function: besseljh
Class: basic
Section: transcendental
C-Name: jbesselh
Prototype: GGp
Help: besseljh(n,x): J-bessel function of index n+1/2 and argument x, where
 n is a non-negative integer.
Doc: $J$-Bessel function of half integral index.
 More precisely, $\kbd{besseljh}(n,x)$ computes $J_{n+1/2}(x)$ where $n$
 must be of type integer, and $x$ is any element of $\C$. In the
 present version \vers, this function is not very accurate when $x$ is small.

Function: besselk
Class: basic
Section: transcendental
C-Name: kbessel
Prototype: GGp
Help: besselk(nu,x): K-bessel function of index nu and argument x.
Doc: $K$-Bessel function of index \var{nu} and argument $x$.

Function: besseln
Class: basic
Section: transcendental
C-Name: nbessel
Prototype: GGp
Help: besseln(nu,x): N-bessel function of index nu and argument x.
Doc: $N$-Bessel function of index \var{nu} and argument $x$.

Function: bestappr
Class: basic
Section: number_theoretical
C-Name: bestappr
Prototype: GDG
Help: bestappr(x, {B}): returns a rational approximation to x, whose
 denominator is limited by B, if present. This function applies to reals,
 intmods, p-adics, and rationals of course. Otherwise it applies recursively
 to all components.
Doc: using variants of the extended Euclidean algorithm, returns a rational
 approximation $a/b$ to $x$, whose denominator is limited
 by $B$, if present. If $B$ is omitted, return the best approximation
 affordable given the input accuracy; if you are looking for true rational
 numbers, presumably approximated to sufficient accuracy, you should first
 try that option. Otherwise, $B$ must be a positive real scalar (impose
 $0 < b \leq B$).
 
 \item If $x$ is a \typ{REAL} or a \typ{FRAC}, this function uses continued
 fractions.
 \bprog
 ? bestappr(Pi, 100)
 %1 = 22/7
 ? bestappr(0.1428571428571428571428571429)
 %2 = 1/7
 ? bestappr([Pi, sqrt(2) + 'x], 10^3)
 %3 = [355/113, x + 1393/985]
 @eprog
 By definition, $a/b$ is the best rational approximation to $x$ if
 $|b x - a| < |v x - u|$ for all integers $(u,v)$ with $0 < v \leq B$.
 (Which implies that $n/d$ is a convergent of the continued fraction of $x$.)
 
 \item If $x$ is a \typ{INTMOD} modulo $N$ or a \typ{PADIC} of precision $N =
 p^k$, this function performs rational modular reconstruction modulo $N$. The
 routine then returns the unique rational number $a/b$ in coprime integers
 $|a| < N/2B$ and $b\leq B$ which is congruent to $x$ modulo $N$. Omitting
 $B$ amounts to choosing it of the order of $\sqrt{N/2}$. If rational
 reconstruction is not possible (no suitable $a/b$ exists), returns $[]$.
 \bprog
 ? bestappr(Mod(18526731858, 11^10))
 %1 = 1/7
 ? bestappr(Mod(18526731858, 11^20))
 %2 = []
 ? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))
 %2 = -1/3
 @eprog\noindent In most concrete uses, $B$ is a prime power and we performed
 Hensel lifting to obtain $x$.
 
 The function applies recursively to components of complex objects
 (polynomials, vectors, \dots). If rational reconstruction fails for even a
 single entry, return $[]$.

Function: bestapprPade
Class: basic
Section: number_theoretical
C-Name: bestapprPade
Prototype: GD-1,L,
Help: bestapprPade(x, {B}): returns a rational function approximation to x.
 This function applies to series, polmods, and rational functions of course.
 Otherwise it applies recursively to all components.
Doc: using variants of the extended Euclidean algorithm, returns a rational
 function approximation $a/b$ to $x$, whose denominator is limited
 by $B$, if present. If $B$ is omitted, return the best approximation
 affordable given the input accuracy; if you are looking for true rational
 functions, presumably approximated to sufficient accuracy, you should first
 try that option. Otherwise, $B$ must be a non-negative real
 (impose $0 \leq \text{degree}(b) \leq B$).
 
 \item If $x$ is a \typ{POLMOD} modulo $N$ this function performs rational
 modular reconstruction modulo $N$. The routine then returns the unique
 rational function $a/b$ in coprime polynomials, with $\text{degree}(b)\leq B$
 and $\text{degree}(a)$ minimal, which is congruent to $x$ modulo $N$.
 Omitting $B$ amounts to choosing it equal to the floor of
 $\text{degree}(N) / 2$. If rational reconstruction is not possible (no
 suitable $a/b$ exists), returns $[]$.
 \bprog
 ? T = Mod(x^3 + x^2 + x + 3, x^4 - 2);
 ? bestapprPade(T)
 %2 = (2*x - 1)/(x - 1)
 ? U = Mod(1 + x + x^2 + x^3 + x^5, x^9);
 ? bestapprPade(U)  \\ internally chooses B = 4
 %3 = []
 ? bestapprPade(U, 5) \\ with B = 5, a solution exists
 %4 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)
 @eprog
 
 \item If $x$ is a \typ{RFRAC} or \typ{SER}, this function implicitly
 converts the input to \typ{POLMOD} modulo $N = t^k$
 fractions.
 \bprog
 ? T = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x^7);
 ? bestapprPade(T)
 %1 = 1/(-x + 1)
 @eprog\noindent
 The function applies recursively to components of complex objects
 (polynomials, vectors, \dots). If rational reconstruction fails for even a
 single entry, return $[]$.

Function: bezout
Class: basic
Section: number_theoretical
C-Name: gcdext0
Prototype: GG
Help: bezout(x,y): deprecated alias for gcdext.
Doc: deprecated alias for \kbd{gcdext}
Obsolete: 2013-04-03

Function: bezoutres
Class: basic
Section: polynomials
C-Name: polresultantext0
Prototype: GGDn
Help: bezoutres(A,B,{v}): deprecated alias for polresultantext.
Doc: deprecated alias for \kbd{polresultantext}
Obsolete: 2015-01-13

Function: bigomega
Class: basic
Section: number_theoretical
C-Name: bigomega
Prototype: lG
Help: bigomega(x): number of prime divisors of x, counted with multiplicity.
Doc: number of prime divisors of the integer $|x|$ counted with
 multiplicity:
 \bprog
 ? factor(392)
 %1 =
 [2 3]
 
 [7 2]
 
 ? bigomega(392)
 %2 = 5;  \\ = 3+2
 ? omega(392)
 %3 = 2;  \\ without multiplicity
 @eprog

Function: binary
Class: basic
Section: conversions
C-Name: binaire
Prototype: G
Help: binary(x): gives the vector formed by the binary digits of x (x
 integer).
Doc: 
 outputs the vector of the binary digits of $|x|$. Here $x$ can be an
 integer, a real number (in which case the result has two components, one for
 the integer part, one for the fractional part) or a vector/matrix.
 \bprog
 ? binary(10)
 %1 = [1, 0, 1, 0]
 
 ? binary(3.14)
 %2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]
 
 ? binary([1,2])
 %3 = [[1], [1, 0]]
 @eprog\noindent By convention, $0$ has no digits:
 \bprog
 ? binary(0)
 %4 = []
 @eprog

Function: binomial
Class: basic
Section: number_theoretical
C-Name: binomial
Prototype: GL
Help: binomial(x,y): binomial coefficient x*(x-1)...*(x-y+1)/y! defined for
 y in Z and any x.
Doc: \idx{binomial coefficient} $\binom{x}{y}$.
 Here $y$ must be an integer, but $x$ can be any PARI object.
Variant: The function
 \fun{GEN}{binomialuu}{ulong n, ulong k} is also available, and so is
 \fun{GEN}{vecbinome}{long n}, which returns a vector $v$
 with $n+1$ components such that $v[k+1] = \kbd{binomial}(n,k)$ for $k$ from
 $0$ up to $n$.

Function: bitand
Class: basic
Section: conversions
C-Name: gbitand
Prototype: GG
Help: bitand(x,y): bitwise "and" of two integers x and y. Negative numbers
 behave as if modulo big power of 2.
Description: 
 (small, small):small:parens        $(1)&$(2)
 (gen, gen):int        gbitand($1, $2)
Doc: 
 bitwise \tet{and}
 \sidx{bitwise and}of two integers $x$ and $y$, that is the integer
 $$\sum_i (x_i~\kbd{and}~y_i) 2^i$$
 
 Negative numbers behave $2$-adically, i.e.~the result is the $2$-adic limit
 of \kbd{bitand}$(x_n,y_n)$, where $x_n$ and $y_n$ are non-negative integers
 tending to $x$ and $y$ respectively. (The result is an ordinary integer,
 possibly negative.)
 
 \bprog
 ? bitand(5, 3)
 %1 = 1
 ? bitand(-5, 3)
 %2 = 3
 ? bitand(-5, -3)
 %3 = -7
 @eprog
Variant: Also available is
 \fun{GEN}{ibitand}{GEN x, GEN y}, which returns the bitwise \emph{and}
 of $|x|$ and $|y|$, two integers.

Function: bitneg
Class: basic
Section: conversions
C-Name: gbitneg
Prototype: GD-1,L,
Help: bitneg(x,{n=-1}): bitwise negation of an integers x truncated to n
 bits. n=-1 means represent infinite sequences of bit 1 as negative numbers.
 Negative numbers behave as if modulo big power of 2.
Doc: 
 \idx{bitwise negation} of an integer $x$,
 truncated to $n$ bits, $n\geq 0$, that is the integer
 $$\sum_{i=0}^{n-1} \kbd{not}(x_i) 2^i.$$
 The special case $n=-1$ means no truncation: an infinite sequence of
 leading $1$ is then represented as a negative number.
 
 See \secref{se:bitand} for the behavior for negative arguments.

Function: bitnegimply
Class: basic
Section: conversions
C-Name: gbitnegimply
Prototype: GG
Help: bitnegimply(x,y): bitwise "negated imply" of two integers x and y,
 in other words, x BITAND BITNEG(y). Negative numbers behave as if modulo big
 power of 2.
Description: 
 (small, small):small:parens        $(1)&~$(2)
 (gen, gen):int        gbitnegimply($1, $2)
Doc: 
 bitwise negated imply of two integers $x$ and
 $y$ (or \kbd{not} $(x \Rightarrow y)$), that is the integer $$\sum
 (x_i~\kbd{and not}(y_i)) 2^i$$
 
 See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
 \fun{GEN}{ibitnegimply}{GEN x, GEN y}, which returns the bitwise negated
 imply of $|x|$ and $|y|$, two integers.

Function: bitor
Class: basic
Section: conversions
C-Name: gbitor
Prototype: GG
Help: bitor(x,y): bitwise "or" of two integers x and y. Negative numbers
 behave as if modulo big power of 2.
Description: 
 (small, small):small:parens        $(1)|$(2)
 (gen, gen):int        gbitor($1, $2)
Doc: 
 \sidx{bitwise inclusive or}bitwise (inclusive)
 \tet{or} of two integers $x$ and $y$, that is the integer $$\sum
 (x_i~\kbd{or}~y_i) 2^i$$
 
 See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
 \fun{GEN}{ibitor}{GEN x, GEN y}, which returns the bitwise \emph{ir}
 of $|x|$ and $|y|$, two integers.

Function: bitprecision
Class: basic
Section: conversions
C-Name: bitprecision0
Prototype: GD0,L,
Help: bitprecision(x,{n}): if n is present and positive, return x at precision
 n bits. If n is omitted, return real precision of object x in bits.
Doc: the function behaves differently according to whether $n$ is
 present and positive or not. If $n$ is missing, the function returns the
 (floating point) precision in bits of the PARI object $x$. If $x$ is an
 exact object, the function returns \kbd{+oo}.
 \bprog
 ? bitprecision(exp(1e-100))
 %1 = 512                 \\ 512 bits
 ? bitprecision( [ exp(1e-100), 0.5 ] )
 %2 = 128                 \\ minimal accuracy among components
 ? bitprecision(2 + x)
 %3 = +oo                  \\ exact object
 @eprog
 
 If $n$ is present and positive, the function creates a new object equal to $x$
 with the new bit-precision roughly $n$. In fact, the smallest multiple of 64
 (resp.~32 on a 32-bit machine) larger than or equal to $n$.
 
 For $x$ a vector or a matrix, the operation is
 done componentwise; for series and polynomials, the operation is done
 coefficientwise. For real $x$, $n$ is the number of desired significant
 \emph{bits}. If $n$ is smaller than the precision of $x$, $x$ is truncated,
 otherwise $x$ is extended with zeros. For exact or non-floating point types,
 no change.
 \bprog
 ? bitprecision(Pi, 10)    \\ actually 64 bits ~ 19 decimal digits
 %1 = 3.141592653589793239
 ? bitprecision(1, 10)
 %2 = 1
 ? bitprecision(1 + O(x), 10)
 %3 = 1 + O(x)
 ? bitprecision(2 + O(3^5), 10)
 %4 = 2 + O(3^5)
 @eprog\noindent

Function: bittest
Class: basic
Section: conversions
C-Name: gbittest
Prototype: GL
Help: bittest(x,n): gives bit number n (coefficient of 2^n) of the integer x.
 Negative numbers behave as if modulo big power of 2.
Description: 
 (small, small):bool:parens     ($(1)>>$(2))&1
 (int, small):bool              bittest($1, $2)
 (gen, small):gen               gbittest($1, $2)
Doc: 
 outputs the $n^{\text{th}}$ bit of $x$ starting
 from the right (i.e.~the coefficient of $2^n$ in the binary expansion of $x$).
 The result is 0 or 1.
 \bprog
 ? bittest(7, 0)
 %1 = 1 \\ the bit 0 is 1
 ? bittest(7, 2)
 %2 = 1 \\ the bit 2 is 1
 ? bittest(7, 3)
 %3 = 0 \\ the bit 3 is 0
 @eprog\noindent
 See \secref{se:bitand} for the behavior at negative arguments.
Variant: For a \typ{INT} $x$, the variant \fun{long}{bittest}{GEN x, long n} is
 generally easier to use, and if furthermore $n\ge 0$ the low-level function
 \fun{ulong}{int_bit}{GEN x, long n} returns \kbd{bittest(abs(x),n)}.

Function: bitxor
Class: basic
Section: conversions
C-Name: gbitxor
Prototype: GG
Help: bitxor(x,y): bitwise "exclusive or" of two integers x and y.
 Negative numbers behave as if modulo big power of 2.
Description: 
 (small, small):small:parens        $(1)^$(2)
 (gen, gen):int        gbitxor($1, $2)
Doc: 
 bitwise (exclusive) \tet{or}
 \sidx{bitwise exclusive or}of two integers $x$ and $y$, that is the integer
 $$\sum (x_i~\kbd{xor}~y_i) 2^i$$
 
 See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
 \fun{GEN}{ibitxor}{GEN x, GEN y}, which returns the bitwise \emph{xor}
 of $|x|$ and $|y|$, two integers.

Function: bnfcertify
Class: basic
Section: number_fields
C-Name: bnfcertify0
Prototype: lGD0,L,
Help: bnfcertify(bnf,{flag = 0}): certify the correctness (i.e. remove the GRH) of the bnf data output by bnfinit. If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler in general).
Doc: $\var{bnf}$ being as output by
 \kbd{bnfinit}, checks whether the result is correct, i.e.~whether it is
 possible to remove the assumption of the Generalized Riemann
 Hypothesis\sidx{GRH}. It is correct if and only if the answer is 1. If it is
 incorrect, the program may output some error message, or loop indefinitely.
 You can check its progress by increasing the debug level. The \var{bnf}
 structure must contain the fundamental units:
 \bprog
 ? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
   ***   at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
   ***                                        ^-------------
   *** bnfcertify: missing units in bnf.
 ? K = bnfinit(x^3+2^2^3+1, 1); \\ include units
 ? bnfcertify(K)
 %3 = 1
 @eprog
 
 If flag is present, only certify that the class group is a quotient of the
 one computed in bnf (much simpler in general); likewise, the computed units
 may form a subgroup of the full unit group. In this variant, the units are
 no longer needed:
 \bprog
 ? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)
 %4 = 1
 @eprog
Variant: Also available is  \fun{GEN}{bnfcertify}{GEN bnf} ($\fl=0$).

Function: bnfcompress
Class: basic
Section: number_fields
C-Name: bnfcompress
Prototype: G
Help: bnfcompress(bnf): converts bnf to a much smaller sbnf, containing the
 same information. Use bnfinit(sbnf) to recover a true bnf.
Doc: computes a compressed version of \var{bnf} (from \tet{bnfinit}), a
 ``small Buchmann's number field'' (or \var{sbnf} for short) which contains
 enough information to recover a full $\var{bnf}$ vector very rapidly, but
 which is much smaller and hence easy to store and print. Calling
 \kbd{bnfinit} on the result recovers a true \kbd{bnf}, in general different
 from the original. Note that an \tev{snbf} is useless for almost all
 purposes besides storage, and must be converted back to \tev{bnf} form
 before use; for instance, no \kbd{nf*}, \kbd{bnf*} or member function
 accepts them.
 
 An \var{sbnf} is a 12 component vector $v$, as follows. Let \kbd{bnf} be
 the result of a full \kbd{bnfinit}, complete with units. Then $v[1]$ is
 \kbd{bnf.pol}, $v[2]$ is the number of real embeddings \kbd{bnf.sign[1]},
 $v[3]$ is \kbd{bnf.disc}, $v[4]$ is \kbd{bnf.zk}, $v[5]$ is the list of roots
 \kbd{bnf.roots}, $v[7]$ is the matrix $\kbd{W} = \kbd{bnf[1]}$,
 $v[8]$ is the matrix $\kbd{matalpha}=\kbd{bnf[2]}$,
 $v[9]$ is the prime ideal factor base \kbd{bnf[5]} coded in a compact way,
 and ordered according to the permutation \kbd{bnf[6]}, $v[10]$ is the
 2-component vector giving the number of roots of unity and a generator,
 expressed on the integral basis, $v[11]$ is the list of fundamental units,
 expressed on the integral basis, $v[12]$ is a vector containing the algebraic
 numbers alpha corresponding to the columns of the matrix \kbd{matalpha},
 expressed on the integral basis.
 
 All the components are exact (integral or rational), except for the roots in
 $v[5]$.

Function: bnfdecodemodule
Class: basic
Section: number_fields
C-Name: decodemodule
Prototype: GG
Help: bnfdecodemodule(nf,m): given a coded module m as in bnrdisclist,
 gives the true module.
Doc: if $m$ is a module as output in the
 first component of an extension given by \kbd{bnrdisclist}, outputs the
 true module.
 \bprog
 ? K = bnfinit(x^2+23); L = bnrdisclist(K, 10); s = L[1][2]
 %1 = [[Mat([8, 1]), [[0, 0, 0]]], [Mat([9, 1]), [[0, 0, 0]]]]
 ? bnfdecodemodule(K, s[1][1])
 %2 =
 [2 0]
 
 [0 1]
 @eprog

Function: bnfinit
Class: basic
Section: number_fields
C-Name: bnfinit0
Prototype: GD0,L,DGp
Help: bnfinit(P,{flag=0},{tech=[]}): compute the necessary data for future
 use in ideal and unit group computations, including fundamental units if
 they are not too large. flag and tech are both optional. flag can be any of
 0: default, 1: insist on having fundamental units.
 See manual for details about tech.
Description: 
 (gen):bnf:prec           Buchall($1, 0, $prec)
 (gen, 0):bnf:prec        Buchall($1, 0, $prec)
 (gen, 1):bnf:prec        Buchall($1, nf_FORCE, $prec)
 (gen, ?small, ?gen):bnf:prec        bnfinit0($1, $2, $3, $prec)
Doc: initializes a
 \kbd{bnf} structure. Used in programs such as \kbd{bnfisprincipal},
 \kbd{bnfisunit} or \kbd{bnfnarrow}. By default, the results are conditional
 on the GRH, see \ref{se:GRHbnf}. The result is a
 10-component vector \var{bnf}.
 
 This implements \idx{Buchmann}'s sub-exponential algorithm for computing the
 class group, the regulator and a system of \idx{fundamental units} of the
 general algebraic number field $K$ defined by the irreducible polynomial $P$
 with integer coefficients.
 
 If the precision becomes insufficient, \kbd{gp} does not strive to compute
 the units by default ($\fl=0$).
 
 When $\fl=1$, we insist on finding the fundamental units exactly. Be
 warned that this can take a very long time when the coefficients of the
 fundamental units on the integral basis are very large. If the fundamental
 units are simply too large to be represented in this form, an error message
 is issued. They could be obtained using the so-called compact representation
 of algebraic numbers as a formal product of algebraic integers. The latter is
 implemented internally but not publicly accessible yet.
 
 $\var{tech}$ is a technical vector (empty by default, see \ref{se:GRHbnf}).
 Careful use of this parameter may speed up your computations,
 but it is mostly obsolete and you should leave it alone.
 
 \smallskip
 
 The components of a \var{bnf} or \var{sbnf} are technical and never used by
 the casual user. In fact: \emph{never access a component directly, always use
 a proper member function.} However, for the sake of completeness and internal
 documentation, their description is as follows. We use the notations
 explained in the book by H. Cohen, \emph{A Course in Computational Algebraic
 Number Theory}, Graduate Texts in Maths \key{138}, Springer-Verlag, 1993,
 Section 6.5, and subsection 6.5.5 in particular.
 
 $\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
 form giving relations for the class group on prime ideal generators
 $(\goth{p}_i)_{1\le i\le r}$.
 
 $\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
 expressions of the prime ideal factorbase in terms of the $\goth{p}_i$.
 It is an $r\times c$ matrix.
 
 $\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
 fundamental units which has been found. It is an $(r_1+r_2)\times(r_1+r_2-1)$
 matrix.
 
 $\var{bnf}[4]$ contains the matrix $M''_C$ of Archimedean components of the
 relations of the matrix $(W|B)$.
 
 $\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
 ideals used in finding the relations.
 
 $\var{bnf}[6]$ used to contain a permutation of the prime factor base, but
 has been obsoleted. It contains a dummy $0$.
 
 $\var{bnf}[7]$ or \kbd{\var{bnf}.nf} is equal to the number field data
 $\var{nf}$ as would be given by \kbd{nfinit}.
 
 $\var{bnf}[8]$ is a vector containing the classgroup \kbd{\var{bnf}.clgp}
 as a finite abelian group, the regulator \kbd{\var{bnf}.reg}, a $1$ (used to
 contain an obsolete ``check number''), the number of roots of unity and a
 generator \kbd{\var{bnf}.tu}, the fundamental units \kbd{\var{bnf}.fu}.
 
 $\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only
 and obtained as follows. Let $D = U W V$ obtained by applying the
 \idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
 let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the
 factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,
 with Archimedean component $g_a$; let also $GD_a$ be the Archimedean
 components of the generators of the (principal) ideals defined by the
 \kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.
 
 $\var{bnf}[10]$ is by default unused and set equal to 0. This field is used
 to store further information about the field as it becomes available, which
 is rarely needed, hence would be too expensive to compute during the initial
 \kbd{bnfinit} call. For instance, the generators of the principal ideals
 \kbd{bnf.gen[i]\pow bnf.cyc[i]} (during a call to \tet{bnrisprincipal}), or
 those corresponding to the relations in $W$ and $B$ (when the \kbd{bnf}
 internal precision needs to be increased).
Variant: 
 Also available is \fun{GEN}{Buchall}{GEN P, long flag, long prec},
 corresponding to \kbd{tech = NULL}, where
 \kbd{flag} is either $0$ (default) or \tet{nf_FORCE} (insist on finding
 fundamental units). The function
 \fun{GEN}{Buchall_param}{GEN P, double c1, double c2, long nrpid, long flag, long prec} gives direct access to the technical parameters.

Function: bnfisintnorm
Class: basic
Section: number_fields
C-Name: bnfisintnorm
Prototype: GG
Help: bnfisintnorm(bnf,x): compute a complete system of solutions (modulo
 units of positive norm) of the absolute norm equation N(a)=x, where a
 belongs to the maximal order of big number field bnf (if bnf is not
 certified, this depends on GRH).
Doc: computes a complete system of
 solutions (modulo units of positive norm) of the absolute norm equation
 $\Norm(a)=x$,
 where $a$ is an integer in $\var{bnf}$. If $\var{bnf}$ has not been certified,
 the correctness of the result depends on the validity of \idx{GRH}.
 
 See also \tet{bnfisnorm}.
Variant: The function \fun{GEN}{bnfisintnormabs}{GEN bnf, GEN a}
 returns a complete system of solutions modulo units of the absolute norm
 equation $|\Norm(x)| = |a|$. As fast as \kbd{bnfisintnorm}, but solves
 the two equations $\Norm(x) = \pm a$ simultaneously.

Function: bnfisnorm
Class: basic
Section: number_fields
C-Name: bnfisnorm
Prototype: GGD1,L,
Help: bnfisnorm(bnf,x,{flag=1}): tries to tell whether x (in Q) is the norm
 of some fractional y (in bnf). Returns a vector [a,b] where x=Norm(a)*b.
 Looks for a solution which is a S-unit, with S a certain list of primes (in
 bnf) containing (among others) all primes dividing x. If bnf is known to be
 Galois, set flag=0 (in this case, x is a norm iff b=1). If flag is non zero
 the program adds to S all the primes: dividing flag if flag<0, or less than
 flag if flag>0. The answer is guaranteed (i.e x norm iff b=1) under GRH, if
 S contains all primes less than 12.log(disc(Bnf))^2, where Bnf is the Galois
 closure of bnf.
Doc: tries to tell whether the
 rational number $x$ is the norm of some element y in $\var{bnf}$. Returns a
 vector $[a,b]$ where $x=Norm(a)*b$. Looks for a solution which is an $S$-unit,
 with $S$ a certain set of prime ideals containing (among others) all primes
 dividing $x$. If $\var{bnf}$ is known to be \idx{Galois}, set $\fl=0$ (in
 this case, $x$ is a norm iff $b=1$). If $\fl$ is non zero the program adds to
 $S$ the following prime ideals, depending on the sign of $\fl$. If $\fl>0$,
 the ideals of norm less than $\fl$. And if $\fl<0$ the ideals dividing $\fl$.
 
 Assuming \idx{GRH}, the answer is guaranteed (i.e.~$x$ is a norm iff $b=1$),
 if $S$ contains all primes less than $12\log(\disc(\var{Bnf}))^2$, where
 $\var{Bnf}$ is the Galois closure of $\var{bnf}$.
 
 See also \tet{bnfisintnorm}.

Function: bnfisprincipal
Class: basic
Section: number_fields
C-Name: bnfisprincipal0
Prototype: GGD1,L,
Help: bnfisprincipal(bnf,x,{flag=1}): bnf being output by bnfinit (with
 flag<=2), gives [v,alpha], where v is the vector of exponents on
 the class group generators and alpha is the generator of the resulting
 principal ideal. In particular x is principal if and only if v is the zero
 vector. flag is optional, whose binary digits mean 1: output [v,alpha] (only v
 if unset); 2: increase precision until alpha can be computed (do not insist
 if unset).
Doc: $\var{bnf}$ being the \sidx{principal ideal}
 number field data output by \kbd{bnfinit}, and $x$ being an ideal, this
 function tests whether the ideal is principal or not. The result is more
 complete than a simple true/false answer and solves general discrete
 logarithm problem. Assume the class group is $\oplus (\Z/d_i\Z)g_i$
 (where the generators $g_i$ and their orders $d_i$ are respectively given by
 \kbd{bnf.gen} and \kbd{bnf.cyc}). The routine returns a row vector $[e,t]$,
 where $e$ is a vector of exponents $0 \leq e_i < d_i$, and $t$ is a number
 field element such that
 $$ x = (t) \prod_i  g_i^{e_i}.$$
 For \emph{given} $g_i$ (i.e. for a given \kbd{bnf}), the $e_i$ are unique,
 and $t$ is unique modulo units.
 
 In particular, $x$ is principal if and only if $e$ is the zero vector. Note
 that the empty vector, which is returned when the class number is $1$, is
 considered to be a zero vector (of dimension $0$).
 \bprog
 ? K = bnfinit(y^2+23);
 ? K.cyc
 %2 = [3]
 ? K.gen
 %3 = [[2, 0; 0, 1]]          \\ a prime ideal above 2
 ? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
 ? v = bnfisprincipal(K, P)
 %5 = [[2]~, [3/4, 1/4]~]
 ? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
 %6 =
 [3 0]
 
 [0 1]
 ? % == idealhnf(K, P)
 %7 = 1
 @eprog
 
 \noindent The binary digits of \fl mean:
 
 \item $1$: If set, outputs $[e,t]$ as explained above, otherwise returns
 only $e$, which is much easier to compute. The following idiom only tests
 whether an ideal is principal:
 \bprog
   is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
 @eprog
 
 \item $2$: It may not be possible to recover $t$, given the initial accuracy
 to which the \kbd{bnf} structure was computed. In that case, a warning is
 printed and $t$ is set equal to the empty vector \kbd{[]\til}. If this bit is
 set, increase the precision and recompute needed quantities until $t$ can be
 computed. Warning: setting this may induce \emph{lengthy} computations.
Variant: Instead of the above hardcoded numerical flags, one should
 rather use an or-ed combination of the symbolic flags \tet{nf_GEN} (include
 generators, possibly a place holder if too difficult) and \tet{nf_FORCE}
 (insist on finding the generators).

Function: bnfissunit
Class: basic
Section: number_fields
C-Name: bnfissunit
Prototype: GGG
Help: bnfissunit(bnf,sfu,x): bnf being output by bnfinit (with flag<=2), sfu
 by bnfsunit, gives the column vector of exponents of x on the fundamental
 S-units and the roots of unity if x is a unit, the empty vector otherwise.
Doc: $\var{bnf}$ being output by
 \kbd{bnfinit}, \var{sfu} by \kbd{bnfsunit}, gives the column vector of
 exponents of $x$ on the fundamental $S$-units and the roots of unity.
 If $x$ is not a unit, outputs an empty vector.

Function: bnfisunit
Class: basic
Section: number_fields
C-Name: bnfisunit
Prototype: GG
Help: bnfisunit(bnf,x): bnf being output by bnfinit, gives
 the column vector of exponents of x on the fundamental units and the roots
 of unity if x is a unit, the empty vector otherwise.
Doc: \var{bnf} being the number field data
 output by \kbd{bnfinit} and $x$ being an algebraic number (type integer,
 rational or polmod), this outputs the decomposition of $x$ on the fundamental
 units and the roots of unity if $x$ is a unit, the empty vector otherwise.
 More precisely, if $u_1$,\dots,$u_r$ are the fundamental units, and $\zeta$
 is the generator of the group of roots of unity (\kbd{bnf.tu}), the output is
 a vector $[x_1,\dots,x_r,x_{r+1}]$ such that $x=u_1^{x_1}\cdots
 u_r^{x_r}\cdot\zeta^{x_{r+1}}$. The $x_i$ are integers for $i\le r$ and is an
 integer modulo the order of $\zeta$ for $i=r+1$.
 
 Note that \var{bnf} need not contain the fundamental unit explicitly:
 \bprog
 ? setrand(1); bnf = bnfinit(x^2-x-100000);
 ? bnf.fu
   ***   at top-level: bnf.fu
   ***                     ^--
   *** _.fu: missing units in .fu.
 ? u = [119836165644250789990462835950022871665178127611316131167, \
        379554884019013781006303254896369154068336082609238336]~;
 ? bnfisunit(bnf, u)
 %3 = [-1, Mod(0, 2)]~
 @eprog\noindent The given $u$ is the inverse of the fundamental unit
 implicitly stored in \var{bnf}. In this case, the fundamental unit was not
 computed and stored in algebraic form since the default accuracy was too
 low. (Re-run the command at \bs g1 or higher to see such diagnostics.)

Function: bnflog
Class: basic
Section: number_fields
C-Name: bnflog
Prototype: GG
Help: bnflog(bnf, l): let bnf be attached to a number field F and let l be
 a prime number. Return the logarithmic l-class group Cl~_F.
Doc: let \var{bnf} be attached to a number field $F$ and let $l$ be
 a prime number (hereafter denoted $\ell$ for typographical reasons). Return
 the logarithmic $\ell$-class group $\widetilde{Cl}_F$
 of $F$. This is an abelian group, conjecturally finite (known to be finite
 if $F/\Q$ is abelian). The function returns if and only if
 the group is indeed finite (otherwise it would run into an infinite loop).
 Let $S = \{ \goth{p}_1,\dots, \goth{p}_k\}$ be the set of $\ell$-adic places
 (maximal ideals containing $\ell$).
 The function returns $[D, G(\ell), G']$, where
 
 \item $D$ is the vector of elementary divisors for $\widetilde{Cl}_F$;
 
 \item $G(\ell)$ is the vector of elementary divisors for
 the (conjecturally finite) abelian group
 $$\widetilde{\Cl}(\ell) =
 \{ \goth{a} = \sum_{i \leq k} a_i \goth{p}_i :~\deg_F \goth{a} = 0\},$$
 where the $\goth{p}_i$ are the $\ell$-adic places of $F$; this is a
 subgroup of $\widetilde{\Cl}$.
 
 \item $G'$ is the vector of elementary divisors for the $\ell$-Sylow $Cl'$
 of the $S$-class group of $F$; the group $\widetilde{\Cl}$ maps to $Cl'$
 with a simple co-kernel.

Function: bnflogdegree
Class: basic
Section: number_fields
C-Name: bnflogdegree
Prototype: GGG
Help: bnflogdegree(nf, A, l): let A be an ideal, return exp(deg_F A)
 the exponential of the l-adic logarithmic degree.
Doc: Let \var{nf} be the number field data output by \kbd{nfinit},
 attached to the field $F$, and let $l$ be a prime number (hereafter
 denoted $\ell$). The
 $\ell$-adified group of id\`{e}les of $F$ quotiented by
 the group of logarithmic units is identified to the $\ell$-group
 of logarithmic divisors $\oplus \Z_\ell [\goth{p}]$, generated by the
 maximal ideals of $F$.
 
 The \emph{degree} map $\deg_F$ is additive with values in $\Z_\ell$,
 defined by $\deg_F \goth{p} = \tilde{f}_{\goth{p}} \deg_\ell p$,
 where the integer $\tilde{f}$ is as in \tet{bnflogef} and $\deg_\ell p$
 is $\log_\ell p$ for $p\neq \ell$, $\log_\ell (1 + \ell)$ for
 $p = \ell\neq 2$ and $\log_\ell (1 + 2^2)$ for $p = \ell = 2$.
 
 Let $A = \prod \goth{p}^{n_{\goth{p}}}$ be an ideal and let $\tilde{A} =
 \sum n_\goth{p} [\goth{p}]$ be the attached logarithmic divisor. Return the
 exponential of the $\ell$-adic logarithmic degree $\deg_F A$, which is a
 natural number.

Function: bnflogef
Class: basic
Section: number_fields
C-Name: bnflogef
Prototype: GG
Help: bnflogef(nf,pr): return [e~, f~] the logarithmic ramification and
 residue degrees for the maximal ideal pr.
Doc: let $F$ be a number field represented by the \var{nf} structure,
 and let \var{pr} be a \kbd{prid} structure attached to the
 maximal ideal $\goth{p} / p$. Return
 $[\tilde{e}(F_\goth{p} / \Q_p), \tilde{f}(F_\goth{p} / \Q_p)]$
 the logarithmic ramification and residue degrees. Let $\Q_p^c/\Q_p$ be the
 cyclotomic $\Z_p$-extension, then
 $\tilde{e} = [F_\goth{p} \colon F_\goth{p} \cap \Q_p^c]$
 $\tilde{f} = [F_\goth{p} \cap \Q_p^c \colon \Q_p]$. Note that
 $\tilde{e}\tilde{f} = e(\goth{p}/p) f(\goth{p}/p)$, where $e,f$ denote the
 usual ramification and residue degrees.
 \bprog
 ? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
 ? bnflogef(F, idealprimedec(F,2)[1])
 %2 = [6, 1]
 ? bnflogef(F, idealprimedec(F,5)[1])
 %3 = [1, 2]
 @eprog

Function: bnfnarrow
Class: basic
Section: number_fields
C-Name: buchnarrow
Prototype: G
Help: bnfnarrow(bnf): given a big number field as output by bnfinit, gives
 as a 3-component vector the structure of the narrow class group.
Doc: \var{bnf} being as output by
 \kbd{bnfinit}, computes the narrow class group of \var{bnf}. The output is
 a 3-component row vector $v$ analogous to the corresponding class group
 component \kbd{\var{bnf}.clgp}: the first component
 is the narrow class number \kbd{$v$.no}, the second component is a vector
 containing the SNF\sidx{Smith normal form} cyclic components \kbd{$v$.cyc} of
 the narrow class group, and the third is a vector giving the generators of
 the corresponding \kbd{$v$.gen} cyclic groups. Note that this function is a
 special case of \kbd{bnrinit}; the \var{bnf} need not contain fundamental
 units.

Function: bnfsignunit
Class: basic
Section: number_fields
C-Name: signunits
Prototype: G
Help: bnfsignunit(bnf): matrix of signs of the real embeddings of the system
 of fundamental units found by bnfinit.
Doc: $\var{bnf}$ being as output by
 \kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix having $\pm1$
 components, giving the signs of the real embeddings of the fundamental units.
 The following functions compute generators for the totally positive units:
 
 \bprog
 /* exponents of totally positive units generators on bnf.tufu */
 tpuexpo(bnf)=
 { my(K, S = bnfsignunit(bnf), [m,n] = matsize(S));
   \\ m = bnf.r1, n = r1+r2-1
   S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
   S = concat(vectorv(m,i,1), S);   \\ add sign(-1)
   K = matker(S * Mod(1,2));
   if (K, mathnfmodid(lift(K), 2), 2*matid(n+1))
 }
 
 /* totally positive fundamental units */
 tpu(bnf)=
 { my(ex = tpuexpo(bnf)[,2..-1]); \\ remove ex[,1], corresponds to 1 or -1
   vector(#ex, i, nffactorback(bnf, bnf.tufu, ex[,i]));
 }
 @eprog

Function: bnfsunit
Class: basic
Section: number_fields
C-Name: bnfsunit
Prototype: GGp
Help: bnfsunit(bnf,S): compute the fundamental S-units of the number field
 bnf output by bnfinit, S being a list of prime ideals. res[1] contains the
 S-units, res[5] the S-classgroup. See manual for details.
Doc: computes the fundamental $S$-units of the
 number field $\var{bnf}$ (output by \kbd{bnfinit}), where $S$ is a list of
 prime ideals (output by \kbd{idealprimedec}). The output is a vector $v$ with
 6 components.
 
 $v[1]$ gives a minimal system of (integral) generators of the $S$-unit group
 modulo the unit group.
 
 $v[2]$ contains technical data needed by \kbd{bnfissunit}.
 
 $v[3]$ is an empty vector (used to give the logarithmic embeddings of the
 generators in $v[1]$ in version 2.0.16).
 
 $v[4]$ is the $S$-regulator (this is the product of the regulator, the
 determinant of $v[2]$ and the natural logarithms of the norms of the ideals
 in $S$).
 
 $v[5]$ gives the $S$-class group structure, in the usual format
 (a row vector whose three components give in order the $S$-class number,
 the cyclic components and the generators).
 
 $v[6]$ is a copy of $S$.

Function: bnrL1
Class: basic
Section: number_fields
C-Name: bnrL1
Prototype: GDGD0,L,p
Help: bnrL1(bnr, {H}, {flag=0}): bnr being output by bnrinit(,,1) and
 H being a square matrix defining a congruence subgroup of bnr (the
 trivial subgroup if omitted), for each character of bnr trivial on this
 subgroup, compute L(1, chi) (or equivalently the first non-zero term c(chi)
 of the expansion at s = 0). The binary digits of flag mean 1: if 0 then
 compute the term c(chi) and return [r(chi), c(chi)] where r(chi) is the
 order of L(s, chi) at s = 0, or if 1 then compute the value at s = 1 (and in
 this case, only for non-trivial characters), 2: if 0 then compute the value
 of the primitive L-function attached to chi, if 1 then compute the value
 of the L-function L_S(s, chi) where S is the set of places dividing the
 modulus of bnr (and the infinite places), 3: return also the characters.
Doc: let \var{bnr} be the number field data output by \kbd{bnrinit(,,1)} and
 \var{H} be a square matrix defining a congruence subgroup of the
 ray class group corresponding to \var{bnr} (the trivial congruence subgroup
 if omitted). This function returns, for each \idx{character} $\chi$ of the ray
 class group which is trivial on $H$, the value at $s = 1$ (or $s = 0$) of the
 abelian $L$-function attached to $\chi$. For the value at $s = 0$, the
 function returns in fact for each $\chi$ a vector $[r_\chi, c_\chi]$ where
 $$L(s, \chi) = c \cdot s^r + O(s^{r + 1})$$
 \noindent near $0$.
 
 The argument \fl\ is optional, its binary digits
 mean 1: compute at $s = 0$ if unset or $s = 1$ if set, 2: compute the
 primitive $L$-function attached to $\chi$ if unset or the $L$-function
 with Euler factors at prime ideals dividing the modulus of \var{bnr} removed
 if set (that is $L_S(s, \chi)$, where $S$ is the
 set of infinite places of the number field together with the finite prime
 ideals dividing the modulus of \var{bnr}), 3: return also the character if
 set.
 \bprog
 K = bnfinit(x^2-229);
 bnr = bnrinit(K,1,1);
 bnrL1(bnr)
 @eprog\noindent
 returns the order and the first non-zero term of $L(s, \chi)$ at $s = 0$
 where $\chi$ runs through the characters of the class group of
 $K = \Q(\sqrt{229})$. Then
 \bprog
 bnr2 = bnrinit(K,2,1);
 bnrL1(bnr2,,2)
 @eprog\noindent
 returns the order and the first non-zero terms of $L_S(s, \chi)$ at $s = 0$
 where $\chi$ runs through the characters of the class group of $K$ and $S$ is
 the set of infinite places of $K$ together with the finite prime $2$. Note
 that the ray class group modulo $2$ is in fact the class group, so
 \kbd{bnrL1(bnr2,0)} returns the same answer as \kbd{bnrL1(bnr,0)}.
 
 This function will fail with the message
 \bprog
  *** bnrL1: overflow in zeta_get_N0 [need too many primes].
 @eprog\noindent if the approximate functional equation requires us to sum
 too many terms (if the discriminant of $K$ is too large).

Function: bnrchar
Class: basic
Section: number_fields
C-Name: bnrchar
Prototype: GGDG
Help: bnrchar(bnr,g,{v}): returns all characters chi on bnr.clgp such that
 chi(g[i]) = e(v[i]); if v is omitted, returns all characters that are
 trivial on the g[i].
Doc: returns all characters $\chi$ on \kbd{bnr.clgp} such that
 $\chi(g_i) = e(v_i)$, where $e(x) = \exp(2i\pi x)$. If $v$ is omitted,
 returns all characters that are trivial on the $g_i$. Else the vectors $g$
 and $v$ must have the same length, the $g_i$ must be ideals in any form, and
 each $v_i$ is a rational number whose denominator must divide the order of
 $g_i$ in the ray class group. For convenience, the vector of the $g_i$
 can be replaced by a matrix whose columns give their discrete logarithm,
 as given by \kbd{bnrisprincipal}; this allows to specify abstractly a
 subgroup of the ray class group.
 
 \bprog
 ? bnr = bnrinit(bnfinit(x), [160,[1]], 1); /* (Z/160Z)^* */
 ? bnr.cyc
 %2 = [8, 4, 2]
 ? g = bnr.gen;
 ? bnrchar(bnr, g, [1/2,0,0])
 %4 = [[4, 0, 0]]  \\ a unique character
 ? bnrchar(bnr, [g[1],g[3]]) \\ all characters trivial on g[1] and g[3]
 %5 = [[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]
 ? bnrchar(bnr, [1,0,0;0,1,0;0,0,2])
 %6 = [[0, 0, 1], [0, 0, 0]]  \\ characters trivial on given subgroup
 @eprog

Function: bnrclassno
Class: basic
Section: number_fields
C-Name: bnrclassno0
Prototype: GDGDG
Help: bnrclassno(A,{B},{C}): relative degree of the class field defined by
 A,B,C. [A,{B},{C}] is of type [bnr], [bnr,subgroup], [bnf,modulus],
 or [bnf,modulus,subgroup].
 Faster than bnrinit if only the ray class number is wanted.
Doc: 
  let $A$, $B$, $C$ define a class field $L$ over a ground field $K$
 (of type \kbd{[\var{bnr}]},
 \kbd{[\var{bnr}, \var{subgroup}]},
 or \kbd{[\var{bnf}, \var{modulus}]},
 or \kbd{[\var{bnf}, \var{modulus},\var{subgroup}]},
 \secref{se:CFT}); this function returns the relative degree $[L:K]$.
 
 In particular if $A$ is a \var{bnf} (with units), and $B$ a modulus,
 this function returns the corresponding ray class number modulo $B$.
 One can input the attached \var{bid} (with generators if the subgroup
 $C$ is non trivial) for $B$ instead of the module itself, saving some time.
 
 This function is faster than \kbd{bnrinit} and should be used if only the
 ray class number is desired. See \tet{bnrclassnolist} if you need ray class
 numbers for all moduli less than some bound.
Variant: Also available is
 \fun{GEN}{bnrclassno}{GEN bnf,GEN f} to compute the ray class number
 modulo~$f$.

Function: bnrclassnolist
Class: basic
Section: number_fields
C-Name: bnrclassnolist
Prototype: GG
Help: bnrclassnolist(bnf,list): if list is as output by ideallist or
 similar, gives list of corresponding ray class numbers.
Doc: $\var{bnf}$ being as
 output by \kbd{bnfinit}, and \var{list} being a list of moduli (with units) as
 output by \kbd{ideallist} or \kbd{ideallistarch}, outputs the list of the
 class numbers of the corresponding ray class groups. To compute a single
 class number, \tet{bnrclassno} is more efficient.
 
 \bprog
 ? bnf = bnfinit(x^2 - 2);
 ? L = ideallist(bnf, 100, 2);
 ? H = bnrclassnolist(bnf, L);
 ? H[98]
 %4 = [1, 3, 1]
 ? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
 %5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
 @eprog
 The weird \kbd{l[i].mod[1]}, is the first component of \kbd{l[i].mod}, i.e.
 the finite part of the conductor. (This is cosmetic: since by construction
 the Archimedean part is trivial, I do not want to see it). This tells us that
 the ray class groups modulo the ideals of norm 98 (printed as \kbd{\%5}) have
 respectively order $1$, $3$ and $1$. Indeed, we may check directly:
 \bprog
 ? bnrclassno(bnf, ids[2])
 %6 = 3
 @eprog

Function: bnrconductor
Class: basic
Section: number_fields
C-Name: bnrconductor0
Prototype: GDGDGD0,L,
Help: bnrconductor(A,{B},{C},{flag=0}): conductor f of the subfield of
 the ray class field given by A,B,C. flag is optional and
 can be 0: default, 1: returns [f, Cl_f, H], H subgroup of the ray class
 group modulo f defining the extension, 2: returns [f, bnr(f), H].
Doc: conductor $f$ of the subfield of a ray class field as defined by $[A,B,C]$
 (of type \kbd{[\var{bnr}]},
 \kbd{[\var{bnr}, \var{subgroup}]},
 \kbd{[\var{bnf}, \var{modulus}]} or
 \kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
 \secref{se:CFT})
 
 If $\fl = 0$, returns $f$.
 
 If $\fl = 1$, returns $[f, Cl_f, H]$, where $Cl_f$ is the ray class group
 modulo $f$, as a finite abelian group; finally $H$ is the subgroup of $Cl_f$
 defining the extension.
 
 If $\fl = 2$, returns $[f, \var{bnr}(f), H]$, as above except $Cl_f$ is
 replaced by a \kbd{bnr} structure, as output by $\tet{bnrinit}(,f,1)$.
 
 In place of a subgroup $H$, this function also accepts a character
 \kbd{chi}  $=(a_j)$, expressed as usual in terms of the generators
 \kbd{bnr.gen}: $\chi(g_j) = \exp(2i\pi a_j / d_j)$, where $g_j$ has
 order $d_j = \kbd{bnr.cyc[j]}$. In which case, the function returns
 respectively
 
 If $\fl = 0$, the conductor $f$ of $\text{Ker} \chi$.
 
 If $\fl = 1$, $[f, Cl_f, \chi_f]$, where $\chi_f$ is $\chi$ expressed
 on the minimal ray class group, whose modulus is the conductor.
 
 If $\fl = 2$, $[f, \var{bnr}(f), \chi_f]$.
Variant: 
 Also available is \fun{GEN}{bnrconductor}{GEN bnr, GEN H, long flag}

Function: bnrconductorofchar
Class: basic
Section: number_fields
C-Name: bnrconductorofchar
Prototype: GG
Help: bnrconductorofchar(bnr,chi): this function is obsolete, use bnrconductor.
Doc: This function is obsolete, use \tev{bnrconductor}.
Obsolete: 2015-11-11

Function: bnrdisc
Class: basic
Section: number_fields
C-Name: bnrdisc0
Prototype: GDGDGD0,L,
Help: bnrdisc(A,{B},{C},{flag=0}): absolute or relative [N,R1,discf] of
 the field defined by A,B,C. [A,{B},{C}] is of type [bnr],
 [bnr,subgroup], [bnf, modulus] or [bnf,modulus,subgroup], where bnf is as
 output by bnfinit, bnr by bnrinit, and
 subgroup is the HNF matrix of a subgroup of the corresponding ray class
 group (if omitted, the trivial subgroup). flag is optional whose binary
 digits mean 1: give relative data; 2: return 0 if modulus is not the
 conductor.
Doc: $A$, $B$, $C$ defining a class field $L$ over a ground field $K$
 (of type \kbd{[\var{bnr}]},
 \kbd{[\var{bnr}, \var{subgroup}]},
 \kbd{[\var{bnr}, \var{character}]},
 \kbd{[\var{bnf}, \var{modulus}]} or
 \kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
 \secref{se:CFT}), outputs data $[N,r_1,D]$ giving the discriminant and
 signature of $L$, depending on the binary digits of \fl:
 
 \item 1: if this bit is unset, output absolute data related to $L/\Q$:
 $N$ is the absolute degree $[L:\Q]$, $r_1$ the number of real places of $L$,
 and $D$ the discriminant of $L/\Q$. Otherwise, output relative data for $L/K$:
 $N$ is the relative degree $[L:K]$, $r_1$ is the number of real places of $K$
 unramified in $L$ (so that the number of real places of $L$ is equal to $r_1$
 times $N$), and $D$ is the relative discriminant ideal of $L/K$.
 
 \item 2: if this bit is set and if the modulus is not the conductor of $L$,
 only return 0.

Function: bnrdisclist
Class: basic
Section: number_fields
C-Name: bnrdisclist0
Prototype: GGDG
Help: bnrdisclist(bnf,bound,{arch}): gives list of discriminants of
 ray class fields of all conductors up to norm bound, in a long vector
 The ramified Archimedean places are given by arch; all possible values are
 taken if arch is omitted. Supports the alternative syntax
 bnrdisclist(bnf,list), where list is as output by ideallist or ideallistarch
 (with units).
Doc: $\var{bnf}$ being as output by \kbd{bnfinit} (with units), computes a
 list of discriminants of Abelian extensions of the number field by increasing
 modulus norm up to bound \var{bound}. The ramified Archimedean places are
 given by \var{arch}; all possible values are taken if \var{arch} is omitted.
 
 The alternative syntax $\kbd{bnrdisclist}(\var{bnf},\var{list})$ is
 supported, where \var{list} is as output by \kbd{ideallist} or
 \kbd{ideallistarch} (with units), in which case \var{arch} is disregarded.
 
 The output $v$ is a vector of vectors, where $v[i][j]$ is understood to be in
 fact $V[2^{15}(i-1)+j]$ of a unique big vector $V$. (This awkward scheme
 allows for larger vectors than could be otherwise represented.)
 
 $V[k]$ is itself a vector $W$, whose length is the number of ideals of norm
 $k$. We consider first the case where \var{arch} was specified. Each
 component of $W$ corresponds to an ideal $m$ of norm $k$, and
 gives invariants attached to the ray class field $L$ of $\var{bnf}$ of
 conductor $[m, \var{arch}]$. Namely, each contains a vector $[m,d,r,D]$ with
 the following meaning: $m$ is the prime ideal factorization of the modulus,
 $d = [L:\Q]$ is the absolute degree of $L$, $r$ is the number of real places
 of $L$, and $D$ is the factorization of its absolute discriminant. We set $d
 = r = D = 0$ if $m$ is not the finite part of a conductor.
 
 If \var{arch} was omitted, all $t = 2^{r_1}$ possible values are taken and a
 component of $W$ has the form $[m, [[d_1,r_1,D_1], \dots, [d_t,r_t,D_t]]]$,
 where $m$ is the finite part of the conductor as above, and
 $[d_i,r_i,D_i]$ are the invariants of the ray class field of conductor
 $[m,v_i]$, where $v_i$ is the $i$-th Archimedean component, ordered by
 inverse lexicographic order; so $v_1 = [0,\dots,0]$, $v_2 = [1,0\dots,0]$,
 etc. Again, we set $d_i = r_i = D_i = 0$ if $[m,v_i]$ is not a conductor.
 
 Finally, each prime ideal $pr = [p,\alpha,e,f,\beta]$ in the prime
 factorization $m$ is coded as the integer $p\cdot n^2+(f-1)\cdot n+(j-1)$,
 where $n$ is the degree of the base field and $j$ is such that
 
 \kbd{pr = idealprimedec(\var{nf},p)[j]}.
 
 \noindent $m$ can be decoded using \tet{bnfdecodemodule}.
 
 Note that to compute such data for a single field, either \tet{bnrclassno}
 or \tet{bnrdisc} is more efficient.

Function: bnrgaloisapply
Class: basic
Section: number_fields
C-Name: bnrgaloisapply
Prototype: GGG
Help: bnrgaloisapply(bnr, mat, H): apply the automorphism given by its matrix
 mat to the congruence subgroup H given as a HNF matrix. The matrix mat can be
 computed with bnrgaloismatrix.
Doc: apply the automorphism given by its matrix \var{mat} to the congruence
 subgroup $H$ given as a HNF matrix.
 The matrix \var{mat} can be computed with \tet{bnrgaloismatrix}.

Function: bnrgaloismatrix
Class: basic
Section: number_fields
C-Name: bnrgaloismatrix
Prototype: GG
Help: bnrgaloismatrix(bnr,aut): return the matrix of the action of the
 automorphism aut of the base field bnf.nf on the generators of the ray class
 field bnr.gen. aut can be given as a polynomial, or a vector of automorphisms
 or a galois group as output by galoisinit, in which case a vector of matrices
 is returned (in the later case, only for the generators aut.gen).
Doc: return the matrix of the action of the automorphism \var{aut} of the base
 field \kbd{bnf.nf} on the generators of the ray class field \kbd{bnr.gen}.
 \var{aut} can be given as a polynomial, an algebraic number, or a vector of
 automorphisms or a Galois group as output by \kbd{galoisinit}, in which case a
 vector of matrices is returned (in the later case, only for the generators
 \kbd{aut.gen}).
 
 See \kbd{bnrisgalois} for an example.
Variant: When $aut$ is a polynomial or an algebraic number,
 \fun{GEN}{bnrautmatrix}{GEN bnr, GEN aut} is available.

Function: bnrinit
Class: basic
Section: number_fields
C-Name: bnrinit0
Prototype: GGD0,L,
Help: bnrinit(bnf,f,{flag=0}): given a bnf as output by
 bnfinit and a modulus f, initializes data
 linked to the ray class group structure corresponding to this module. flag
 is optional, and can be 0: default, 1: compute also the generators.
Description: 
 (gen,gen,?small):bnr       bnrinit0($1, $2, $3)
Doc: $\var{bnf}$ is as
 output by \kbd{bnfinit} (including fundamental units), $f$ is a modulus,
 initializes data linked to the ray class group structure corresponding to
 this module, a so-called \kbd{bnr} structure. One can input the attached
 \var{bid} with generators for $f$ instead of the module itself, saving some
 time. (As in \tet{idealstar}, the finite part of the conductor may be given
 by a factorization into prime ideals, as produced by \tet{idealfactor}.)
 
 The following member functions are available
 on the result: \kbd{.bnf} is the underlying \var{bnf},
 \kbd{.mod} the modulus, \kbd{.bid} the \kbd{bid} structure attached to the
 modulus; finally, \kbd{.clgp}, \kbd{.no}, \kbd{.cyc}, \kbd{.gen} refer to the
 ray class group (as a finite abelian group), its cardinality, its elementary
 divisors, its generators (only computed if $\fl = 1$).
 
 The last group of functions are different from the members of the underlying
 \var{bnf}, which refer to the class group; use \kbd{\var{bnr}.bnf.\var{xxx}}
 to access these, e.g.~\kbd{\var{bnr}.bnf.cyc} to get the cyclic decomposition
 of the class group.
 
 They are also different from the members of the underlying \var{bid}, which
 refer to $(\Z_K/f)^*$; use \kbd{\var{bnr}.bid.\var{xxx}} to access these,
 e.g.~\kbd{\var{bnr}.bid.no} to get $\phi(f)$.
 
 If $\fl=0$ (default), the generators of the ray class group are not computed,
 which saves time. Hence \kbd{\var{bnr}.gen} would produce an error.
 
 If $\fl=1$, as the default, except that generators are computed.
Variant: Instead the above  hardcoded  numerical flags,  one should rather use
 \fun{GEN}{Buchray}{GEN bnf, GEN module, long flag}
 where flag is an or-ed combination of \kbd{nf\_GEN} (include generators)
 and \kbd{nf\_INIT} (if omitted, return just the cardinality of the ray class
 group and its structure), possibly 0.

Function: bnrisconductor
Class: basic
Section: number_fields
C-Name: bnrisconductor0
Prototype: lGDGDG
Help: bnrisconductor(A,{B},{C}): returns 1 if the modulus is the
 conductor of the subfield of the ray class field given by A,B,C (see
 bnrdisc), and 0 otherwise. Slightly faster than bnrconductor if this is the
 only desired result.
Doc: fast variant of \kbd{bnrconductor}$(A,B,C)$; $A$, $B$, $C$ represent
 an extension of the base field, given by class field theory
 (see~\secref{se:CFT}). Outputs 1 if this modulus is the conductor, and 0
 otherwise. This is slightly faster than \kbd{bnrconductor} when the
 character or subgroup is not primitive.

Function: bnrisgalois
Class: basic
Section: number_fields
C-Name: bnrisgalois
Prototype: lGGG
Help: bnrisgalois(bnr, gal, H): check whether the class field attached to
 the subgroup H is Galois over the subfield of bnr.nf fixed by the Galois
 group gal, which can be given as output by galoisinit, or as a matrix or a
 vector of matrices as output by bnrgaloismatrix. The ray class field
 attached to bnr need to be Galois, which is not checked.
Doc: check whether the class field attached to the subgroup $H$ is Galois
 over the subfield of \kbd{bnr.nf} fixed by the group \var{gal}, which can be
 given as output by \tet{galoisinit}, or as a matrix or a vector of matrices as
 output by \kbd{bnrgaloismatrix}, the second option being preferable, since it
 saves the recomputation of the matrices.  Note: The function assumes that the
 ray class field attached to bnr is Galois, which is not checked.
 
 In the following example, we lists the congruence subgroups of subextension of
 degree at most $3$ of the ray class field of conductor $9$ which are Galois
 over the rationals.
 
 \bprog
 K=bnfinit(a^4-3*a^2+253009);
 G=galoisinit(K);
 B=bnrinit(K,9,1);
 L1=[H|H<-subgrouplist(B,3), bnrisgalois(B,G,H)]
 ##
 M=bnrgaloismatrix(B,G)
 L2=[H|H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
 ##
 @eprog
 The second computation is much faster since \kbd{bnrgaloismatrix(B,G)} is
 computed only once.

Function: bnrisprincipal
Class: basic
Section: number_fields
C-Name: bnrisprincipal
Prototype: GGD1,L,
Help: bnrisprincipal(bnr,x,{flag=1}): bnr being output by bnrinit, gives
 [v,alpha], where v is the vector of exponents on the class group
 generators and alpha is the generator of the resulting principal ideal. In
 particular x is principal if and only if v is the zero vector. If (optional)
 flag is set to 0, output only v.
Doc: \var{bnr} being the
 number field data which is output by \kbd{bnrinit}$(,,1)$ and $x$ being an
 ideal in any form, outputs the components of $x$ on the ray class group
 generators in a way similar to \kbd{bnfisprincipal}. That is a 2-component
 vector $v$ where $v[1]$ is the vector of components of $x$ on the ray class
 group generators, $v[2]$ gives on the integral basis an element $\alpha$ such
 that $x=\alpha\prod_ig_i^{x_i}$.
 
 If $\fl=0$, outputs only $v_1$. In that case, \var{bnr} need not contain the
 ray class group generators, i.e.~it may be created with \kbd{bnrinit}$(,,0)$
 If $x$ is not coprime to the modulus of \var{bnr} the result is undefined.
Variant: Instead of hardcoded  numerical flags,  one should rather
 use
 \fun{GEN}{isprincipalray}{GEN bnr, GEN x} for $\kbd{flag} = 0$, and if you
 want generators:
 \bprog
   bnrisprincipal(bnr, x, nf_GEN)
 @eprog

Function: bnrrootnumber
Class: basic
Section: number_fields
C-Name: bnrrootnumber
Prototype: GGD0,L,p
Help: bnrrootnumber(bnr,chi,{flag=0}): returns the so-called Artin Root
 Number, i.e. the constant W appearing in the functional equation of the
 Hecke L-function attached to chi. Set flag = 1 if the character is known
 to be primitive.
Doc: if $\chi=\var{chi}$ is a
 \idx{character} over \var{bnr}, not necessarily primitive, let
 $L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the attached
 \idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the
 complex number $W(\chi)$ of modulus 1 such that
 %
 $$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$
 %
 \noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_\chi(s) L(s,\chi)$ is
 the enlarged L-function attached to $L$.
 
 The generators of the ray class group are needed, and you can set $\fl=1$ if
 the character is known to be primitive. Example:
 
 \bprog
 bnf = bnfinit(x^2 - x - 57);
 bnr = bnrinit(bnf, [7,[1,1]], 1);
 bnrrootnumber(bnr, [2,1])
 @eprog\noindent
 returns the root number of the character $\chi$ of
 $\Cl_{7\infty_1\infty_2}(\Q(\sqrt{229}))$ defined by $\chi(g_1^ag_2^b)
 = \zeta_1^{2a}\zeta_2^b$. Here $g_1, g_2$ are the generators of the
 ray-class group given by \kbd{bnr.gen} and $\zeta_1 = e^{2i\pi/N_1},
 \zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and
 $g_2$ respectively ($N_1=6$ and $N_2=3$ as \kbd{bnr.cyc} readily tells us).

Function: bnrstark
Class: basic
Section: number_fields
C-Name: bnrstark
Prototype: GDGp
Help: bnrstark(bnr,{subgroup}): bnr being as output by
 bnrinit(,,1), finds a relative equation for the class field corresponding to
 the module in bnr and the given congruence subgroup (the trivial subgroup if
 omitted) using Stark's units. The ground field and the class field must be
 totally real.
Doc: \var{bnr} being as output by \kbd{bnrinit(,,1)}, finds a relative equation
 for the class field corresponding to the modulus in \var{bnr} and the given
 congruence subgroup (as usual, omit $\var{subgroup}$ if you want the whole ray
 class group).
 
 The main variable of \var{bnr} must not be $x$, and the ground field and the
 class field must be totally real. When the base field is $\Q$, the vastly
 simpler \tet{galoissubcyclo} is used instead. Here is an example:
 \bprog
 bnf = bnfinit(y^2 - 3);
 bnr = bnrinit(bnf, 5, 1);
 bnrstark(bnr)
 @eprog\noindent
 returns the ray class field of $\Q(\sqrt{3})$ modulo $5$. Usually, one wants
 to apply to the result one of
 \bprog
 rnfpolredabs(bnf, pol, 16)     \\@com compute a reduced relative polynomial
 rnfpolredabs(bnf, pol, 16 + 2) \\@com compute a reduced absolute polynomial
 @eprog
 
 The routine uses \idx{Stark units} and needs to find a suitable auxiliary
 conductor, which may not exist when the class field is not cyclic over the
 base. In this case \kbd{bnrstark} is allowed to return a vector of
 polynomials defining \emph{independent} relative extensions, whose compositum
 is the requested class field. It was decided that it was more useful
 to keep the extra information thus made available, hence the user has to take
 the compositum herself.
 
 Even if it exists, the auxiliary conductor may be so large that later
 computations become unfeasible. (And of course, Stark's conjecture may simply
 be wrong.) In case of difficulties, try \tet{rnfkummer}:
 \bprog
 ? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2, 1);
 ? bnrstark(bnr)
   ***   at top-level: bnrstark(bnr)
   ***                 ^-------------
   *** bnrstark: need 3919350809720744 coefficients in initzeta.
   *** Computation impossible.
 ? lift( rnfkummer(bnr) )
 time = 24 ms.
 %2 = x^2 + (1/3*y^6 - 11/3*y^4 + 8*y^2 - 5)
 @eprog

Function: break
Class: basic
Section: programming/control
C-Name: break0
Prototype: D1,L,
Help: break({n=1}): interrupt execution of current instruction sequence, and
 exit from the n innermost enclosing loops.
Doc: interrupts execution of current \var{seq}, and
 immediately exits from the $n$ innermost enclosing loops, within the
 current function call (or the top level loop); the integer $n$ must be
 positive. If $n$ is greater than the number of enclosing loops, all
 enclosing loops are exited.

Function: breakpoint
Class: gp
Section: programming/control
C-Name: pari_breakpoint
Prototype: v
Help: breakpoint(): interrupt the program and enter the breakloop. The program
 continues when the breakloop is exited.
Doc: Interrupt the program and enter the breakloop. The program continues when
 the breakloop is exited.
 \bprog
 ? f(N,x)=my(z=x^2+1);breakpoint();gcd(N,z^2+1-z);
 ? f(221,3)
   ***   at top-level: f(221,3)
   ***                 ^--------
   ***   in function f: my(z=x^2+1);breakpoint();gcd(N,z
   ***                              ^--------------------
   ***   Break loop: type <Return> to continue; 'break' to go back to GP
 break> z
 10
 break>
 %2 = 13
 @eprog

Function: call
Class: basic
Section: programming/specific
C-Name: call0
Prototype: GG
Help: call(f, A): A being a vector, evaluates f(A[1],...,A[#A]).
Doc: $A=[a_1,\dots, a_n]$ being a vector and $f$ being a function, returns the
 evaluation of $f(a_1,\dots,a_n)$.
 $f$ can also be the name of a built-in GP function.
 If $\# A =1$, \tet{call}($f,A$) = \tet{apply}($f,A$)[1].
 If $f$ is variadic, the variadic arguments must grouped in a vector in
 the last component of $A$.
 
 This function is useful
 
 \item when writing a variadic function, to call another one:
 \bprog
 fprintf(file,format,args[..]) = write(file,call(Strprintf,[format,args]))
 @eprog
 
 \item when dealing with function arguments with unspecified arity
 
 The function below implements a global memoization interface:
 \bprog
 memo=Map();
 memoize(f,A[..])=
 {
   my(res);
   if(!mapisdefined(memo, [f,A], &res),
     res = call(f,A);
     mapput(memo,[f,A],res));
  res;
 }
 @eprog
 for example:
 \bprog
 ? memoize(factor,2^128+1)
 %3 = [59649589127497217,1;5704689200685129054721,1]
 ? ##
   ***   last result computed in 76 ms.
 ? memoize(factor,2^128+1)
 %4 = [59649589127497217,1;5704689200685129054721,1]
 ? ##
   ***   last result computed in 0 ms.
 ? memoize(ffinit,3,3)
 %5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)
 ? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
 ? fibo(100)
 %7 = 354224848179261915075
 @eprog
 
 \item to call operators through their internal names without using
 \kbd{alias}
 \bprog
 matnbelts(M) = call("_*_",matsize(M))
 @eprog

Function: ceil
Class: basic
Section: conversions
C-Name: gceil
Prototype: G
Help: ceil(x): ceiling of x = smallest integer >= x.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             ceilr($1)
 (mp):int               mpceil($1)
 (gen):gen              gceil($1)
Doc: 
 ceiling of $x$. When $x$ is in $\R$, the result is the
 smallest integer greater than or equal to $x$. Applied to a rational
 function, $\kbd{ceil}(x)$ returns the Euclidean quotient of the numerator by
 the denominator.

Function: centerlift
Class: basic
Section: conversions
C-Name: centerlift0
Prototype: GDn
Help: centerlift(x,{v}): centered lift of x. Same as lift except for
 intmod and padic components.
Description: 
 (pol):pol        centerlift($1)
 (vec):vec        centerlift($1)
 (gen):gen        centerlift($1)
 (pol, var):pol        centerlift0($1, $2)
 (vec, var):vec        centerlift0($1, $2)
 (gen, var):gen        centerlift0($1, $2)
Doc: Same as \tet{lift}, except that \typ{INTMOD} and \typ{PADIC} components
 are lifted using centered residues:
 
 \item for a \typ{INTMOD} $x\in \Z/n\Z$, the lift $y$ is such that
 $-n/2<y\le n/2$.
 
 \item  a \typ{PADIC} $x$ is lifted in the same way as above (modulo
 $p^\kbd{padicprec(x)}$) if its valuation $v$ is non-negative; if not, returns
 the fraction $p^v$ \kbd{centerlift}$(x p^{-v})$; in particular, rational
 reconstruction is not attempted. Use \tet{bestappr} for this.
 
 For backward compatibility, \kbd{centerlift(x,'v)} is allowed as an alias
 for \kbd{lift(x,'v)}.
 
 \synt{centerlift}{GEN x}.

Function: characteristic
Class: basic
Section: conversions
C-Name: characteristic
Prototype: mG
Help: characteristic(x): characteristic of the base ring over which x is
 defined.
Doc: 
 returns the characteristic of the base ring over which $x$ is defined (as
 defined by \typ{INTMOD} and \typ{FFELT} components). The function raises an
 exception if incompatible primes arise from \typ{FFELT} and \typ{PADIC}
 components.
 \bprog
 ? characteristic(Mod(1,24)*x + Mod(1,18)*y)
 %1 = 6
 @eprog

Function: charconj
Class: basic
Section: number_theoretical
C-Name: charconj0
Prototype: GG
Help: charconj(cyc,chi): given a finite abelian group (by its elementary
 divisors cyc) and a character chi, return the conjugate character.
Doc: let \var{cyc} represent a finite abelian group by its elementary
 divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
 \mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
 allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
 on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
 $\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
 the generator (of order $d_j$) of the $j$-th cyclic component.
 
 This function returns the conjugate character.
 \bprog
 ? cyc = [15,5]; chi = [1,1];
 ? charconj(cyc, chi)
 %2 = [14, 4]
 ? bnf = bnfinit(x^2+23);
 ? bnf.cyc
 %4 = [3]
 ? charconj(bnf, [1])
 %5 = [2]
 @eprog\noindent For Dirichlet characters (when \kbd{cyc} is
 \kbd{idealstar(,q)}), characters in Conrey representation are available,
 see \secref{se:dirichletchar} or \kbd{??character}:
 \bprog
 ? G = idealstar(,8);  \\ (Z/8Z)^*
 ? charorder(G, 3)  \\ Conrey label
 %2 = 2
 ? chi = znconreylog(G, 3);
 ? charorder(G, chi)  \\ Conrey logarithm
 %4 = 2
 @eprog
Variant: Also available is
 \fun{GEN}{charconj}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
 be a vector of elementary divisors and \kbd{chi} a compatible character
 (no checks).

Function: chardiv
Class: basic
Section: number_theoretical
C-Name: chardiv0
Prototype: GGG
Help: chardiv(cyc, a,b): given a finite abelian group (by its elementary
 divisors cyc) and two characters a and b, return the character a/b.
Doc: let \var{cyc} represent a finite abelian group by its elementary
 divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
 \mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
 allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
 on this group is given by a row vector $a = [a_1,\ldots,a_n]$ such that
 $\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
 the generator (of order $d_j$) of the $j$-th cyclic component.
 
 Given two characters $a$ and $b$, return the character
 $a / b = a \overline{b}$.
 \bprog
 ? cyc = [15,5]; a = [1,1]; b =  [2,4];
 ? chardiv(cyc, a,b)
 %2 = [14, 2]
 ? bnf = bnfinit(x^2+23);
 ? bnf.cyc
 %4 = [3]
 ? chardiv(bnf, [1], [2])
 %5 = [2]
 @eprog\noindent For Dirichlet characters on  $(\Z/N\Z)^*$, additional
 representations are available (Conrey labels, Conrey logarithm),
 see \secref{se:dirichletchar} or \kbd{??character}.
 If the two characters are in the same format, the
 result is given in the same format, otherwise a Conrey logarithm is used.
 \bprog
 ? G = idealstar(,100);
 ? G.cyc
 %2 = [20, 2]
 ? a = [10, 1]; \\ usual representation for characters
 ? b = 7; \\ Conrey label;
 ? c = znconreylog(G, 11); \\ Conrey log
 ? chardiv(G, b,b)
 %6 = 1   \\ Conrey label
 ? chardiv(G, a,b)
 %7 = [0, 5]~  \\ Conrey log
 ? chardiv(G, a,c)
 %7 = [0, 14]~   \\ Conrey log
 @eprog
Variant: Also available is
 \fun{GEN}{chardiv}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
 be a vector of elementary divisors and $a, b$ are compatible characters
 (no checks).

Function: chareval
Class: basic
Section: number_theoretical
C-Name: chareval
Prototype: GGGDG
Help: chareval(G, chi, x, {z})): given an abelian group structure affording
 a discrete logarithm method, e.g. G = idealstar(,N) or a bnr structure,
 let x be an element of G and let chi be a character of G. This function
 returns the value of chi at x, where the encoding depends on the optional
 argument z; if z is omitted, we fix a canonical o-th root of 1, zeta_o,
 where o is the character order and return the rational number c/o where
 chi(x) = (zeta_o)^c.
Doc: 
 Let $G$ be an abelian group structure affording a discrete logarithm
 method, e.g $G = \kbd{idealstar}(,N)$ for $(\Z/N\Z)^*$ or a \kbd{bnr}
 structure, let $x$ be an element of $G$ and let \var{chi} be a character of
 $G$ (see the note below for details). This function returns the value of
 \var{chi} at $x$.
 
 \misctitle{Note on characters}
 Let $K$ be some field. If $G$ is an abelian group,
 let $\chi: G \to K^*$ be a character of finite order and let $o$ be a
 multiple of the character order such that $\chi(n) = \zeta^{c(n)}$ for some
 fixed $\zeta\in K^*$ of multiplicative order $o$ and a unique morphism $c: G
 \to (\Z/o\Z,+)$. Our usual convention is to write
 $$G = (\Z/o_1\Z) g_1 \oplus \cdots \oplus (\Z/o_d\Z) g_d$$
 for some generators $(g_i)$ of respective order $d_i$, where the group has
 exponent $o := \text{lcm}_i o_i$. Since $\zeta^o = 1$, the vector $(c_i)$ in
 $\prod (\Z/o_i\Z)$ defines a character $\chi$ on $G$ via $\chi(g_i) =
 \zeta^{c_i (o/o_i)}$ for all $i$. Classical Dirichlet characters have values
 in $K = \C$ and we can take $\zeta = \exp(2i\pi/o)$.
 
 \misctitle{Note on Dirichlet characters}
 In the special case where \var{bid} is attached to $G = (\Z/q\Z)^*$
 (as per \kbd{bid = idealstar(,q)}), the Dirichlet
 character \var{chi} can be written in one of the usual 3 formats: a \typ{VEC}
 in terms of \kbd{bid.gen} as above, a \typ{COL} in terms of the Conrey
 generators, or a \typ{INT} (Conrey label);
 see \secref{se:dirichletchar} or \kbd{??character}.
 
 The character value is encoded as follows, depending on the optional
 argument $z$:
 
 \item If $z$ is omitted: return the rational number $c(x)/o$ for $x$ coprime
 to $q$, where we normalize $0\leq c(x) < o$. If $x$ can not be mapped to the
 group (e.g. $x$ is not coprime to the conductor of a Dirichlet or Hecke
 character) we return the sentinel value $-1$.
 
 \item If $z$ is an integer $o$, then we assume that $o$ is a multiple of the
 character order and we return the integer $c(x)$ when $x$ belongs
 to the group, and the sentinel value $-1$ otherwise.
 
 \item $z$ can be of the form $[\var{zeta}, o]$, where \var{zeta}
 is an $o$-th root of $1$ and $o$ is a multiple of the character order.
 We return $\zeta^{c(x)}$ if $x$ belongs to the group, and the sentinel
 value $0$ otherwise. (Note that this coincides  with the usual extension
 of Dirichlet characters to $\Z$, or of Hecke characters to general ideals.)
 
 \item Finally, $z$ can be of the form $[\var{vzeta}, o]$, where
 \var{vzeta} is a vector of powers $\zeta^0, \dots, \zeta^{o-1}$
 of some $o$-th root of $1$ and $o$ is a multiple of the character order.
 As above, we return $\zeta^{c(x)}$ after a table lookup. Or the sentinel
 value $0$.

Function: charker
Class: basic
Section: number_theoretical
C-Name: charker0
Prototype: GG
Help: charker(cyc,chi): given a finite abelian group (by its elementary
 divisors cyc) and a character chi, return its kernel.
Doc: let \var{cyc} represent a finite abelian group by its elementary
 divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
 \mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
 allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
 on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
 $\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
 the generator (of order $d_j$) of the $j$-th cyclic component.
 
 This function returns the kernel of $\chi$, as a matrix $K$ in HNF which is a
 left-divisor of \kbd{matdiagonal(d)}. Its columns express in terms of
 the $g_j$ the generators of the subgroup. The determinant of $K$ is the
 kernel index.
 \bprog
 ? cyc = [15,5]; chi = [1,1];
 ? charker(cyc, chi)
 %2 =
 [15 12]
 
 [ 0  1]
 
 ? bnf = bnfinit(x^2+23);
 ? bnf.cyc
 %4 = [3]
 ? charker(bnf, [1])
 %5 =
 [3]
 @eprog\noindent Note that for Dirichlet characters (when \kbd{cyc} is
 \kbd{idealstar(,q)}), characters in Conrey representation are available,
 see \secref{se:dirichletchar} or \kbd{??character}.
 \bprog
 ? G = idealstar(,8);  \\ (Z/8Z)^*
 ? charker(G, 1) \\ Conrey label for trivial character
 %2 =
 [1 0]
 
 [0 1]
 @eprog
Variant: Also available is
 \fun{GEN}{charker}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
 be a vector of elementary divisors and \kbd{chi} a compatible character
 (no checks).

Function: charmul
Class: basic
Section: number_theoretical
C-Name: charmul0
Prototype: GGG
Help: charmul(cyc, a,b): given a finite abelian group (by its elementary
 divisors cyc) and two characters a and b, return the product character
 ab.
Doc: let \var{cyc} represent a finite abelian group by its elementary
 divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
 \mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
 allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
 on this group is given by a row vector $a = [a_1,\ldots,a_n]$ such that
 $\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
 the generator (of order $d_j$) of the $j$-th cyclic component.
 
 Given two characters $a$ and $b$, return the product character $ab$.
 \bprog
 ? cyc = [15,5]; a = [1,1]; b =  [2,4];
 ? charmul(cyc, a,b)
 %2 = [3, 0]
 ? bnf = bnfinit(x^2+23);
 ? bnf.cyc
 %4 = [3]
 ? charmul(bnf, [1], [2])
 %5 = [0]
 @eprog\noindent For Dirichlet characters on  $(\Z/N\Z)^*$, additional
 representations are available (Conrey labels, Conrey logarithm), see
 \secref{se:dirichletchar} or \kbd{??character}. If the two characters are in
 the same format, their
 product is given in the same format, otherwise a Conrey logarithm is used.
 \bprog
 ? G = idealstar(,100);
 ? G.cyc
 %2 = [20, 2]
 ? a = [10, 1]; \\ usual representation for characters
 ? b = 7; \\ Conrey label;
 ? c = znconreylog(G, 11); \\ Conrey log
 ? charmul(G, b,b)
 %6 = 49   \\ Conrey label
 ? charmul(G, a,b)
 %7 = [0, 15]~  \\ Conrey log
 ? charmul(G, a,c)
 %7 = [0, 6]~   \\ Conrey log
 @eprog
Variant: Also available is
 \fun{GEN}{charmul}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
 be a vector of elementary divisors and $a, b$ are compatible characters
 (no checks).

Function: charorder
Class: basic
Section: number_theoretical
C-Name: charorder0
Prototype: GG
Help: charorder(cyc,chi): given a finite abelian group (by its elementary
 divisors cyc) and a character chi, return the order of chi.
Doc: let \var{cyc} represent a finite abelian group by its elementary
 divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
 \mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
 allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
 on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
 $\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
 the generator (of order $d_j$) of the $j$-th cyclic component.
 
 This function returns the order of the character \kbd{chi}.
 \bprog
 ? cyc = [15,5]; chi = [1,1];
 ? charorder(cyc, chi)
 %2 = 15
 ? bnf = bnfinit(x^2+23);
 ? bnf.cyc
 %4 = [3]
 ? charorder(bnf, [1])
 %5 = 3
 @eprog\noindent For Dirichlet characters (when \kbd{cyc} is
 \kbd{idealstar(,q)}), characters in Conrey representation are available,
 see \secref{se:dirichletchar} or \kbd{??character}:
 \bprog
 ? G = idealstar(,100); \\ (Z/100Z)^*
 ? charorder(G, 7)   \\ Conrey label
 %2 = 4
 @eprog
Variant: Also available is
 \fun{GEN}{charorder}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
 be a vector of elementary divisors and \kbd{chi} a compatible character
 (no checks).

Function: charpoly
Class: basic
Section: linear_algebra
C-Name: charpoly0
Prototype: GDnD5,L,
Help: charpoly(A,{v='x},{flag=5}): det(v*Id-A)=characteristic polynomial of
 the matrix or polmod A. flag is optional and ignored unless A is a matrix;
 it may be set to 0 (Le Verrier), 1 (Lagrange interpolation),
 2 (Hessenberg form), 3 (Berkowitz), 4 (modular) if A is integral,
 or 5 (default, choose best method).
 Algorithms 0 (Le Verrier) and 1 (Lagrange) assume that n! is invertible,
 where n is the dimension of the matrix.
Doc: 
 \idx{characteristic polynomial}
 of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
 is a square matrix.
 \bprog
 ? charpoly([1,2;3,4]);
 %1 = x^2 - 5*x - 2
 ? charpoly([1,2;3,4],, 't)
 %2 = t^2 - 5*t - 2
 @eprog\noindent
 If $A$ is not a square matrix, the function returns the characteristic
 polynomial of the map ``multiplication by $A$'' if $A$ is a scalar:
 \bprog
 ? charpoly(Mod(x+2, x^3-2))
 %1 = x^3 - 6*x^2 + 12*x - 10
 ? charpoly(I)
 %2 = x^2 + 1
 ? charpoly(quadgen(5))
 %3 = x^2 - x - 1
 ? charpoly(ffgen(ffinit(2,4)))
 %4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
 @eprog
 
 The value of $\fl$ is only significant for matrices, and we advise to stick
 to the default value. Let $n$ be the dimension of $A$.
 
 If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
 i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
 invertible; uses $O(n^4)$ scalar operations.
 
 If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
 Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.
 
 If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
 Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion
 unless the base field is finite or $\R$.
 
 If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
 ring (commutative, with unit). Uses $O(n^4)$ scalar operations.
 
 If $\fl=4$, $x$ must be integral. Uses a modular algorithm: Hessenberg form
 for various small primes, then Chinese remainders.
 
 If $\fl=5$ (default), uses the ``best'' method given $x$.
 This means we use Berkowitz unless the base ring is $\Z$ (use $\fl=4$)
 or a field where coefficient explosion does not occur,
 e.g.~a finite field or the reals (use $\fl=2$).
Variant: Also available are
 \fun{GEN}{charpoly}{GEN x, long v} ($\fl=5$),
 \fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
 \fun{GEN}{carhess}{GEN A, long v} ($\fl=2$),
 \fun{GEN}{carberkowitz}{GEN A, long v} ($\fl=3$) and
 \fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
 last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
 the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
 once.

Function: chinese
Class: basic
Section: number_theoretical
C-Name: chinese
Prototype: GDG
Help: chinese(x,{y}): x,y being both intmods (or polmods) computes z in the
 same residue classes as x and y.
Description: 
 (gen):gen      chinese1($1)
 (gen, gen):gen chinese($1, $2)
Doc: if $x$ and $y$ are both intmods or both polmods, creates (with the same
 type) a $z$ in the same residue class as $x$ and in the same residue class as
 $y$, if it is possible.
 \bprog
 ? chinese(Mod(1,2), Mod(2,3))
 %1 = Mod(5, 6)
 ? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))
 %2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)
 @eprog\noindent
 This function also allows vector and matrix arguments, in which case the
 operation is recursively applied to each component of the vector or matrix.
 \bprog
 ? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
 %3 = [Mod(1, 10), Mod(16, 21)]
 @eprog\noindent
 For polynomial arguments in the same variable, the function is applied to each
 coefficient; if the polynomials have different degrees, the high degree terms
 are copied verbatim in the result, as if the missing high degree terms in the
 polynomial of lowest degree had been \kbd{Mod(0,1)}. Since the latter
 behavior is usually \emph{not} the desired one, we propose to convert the
 polynomials to vectors of the same length first:
 \bprog
  ? P = x+1; Q = x^2+2*x+1;
  ? chinese(P*Mod(1,2), Q*Mod(1,3))
  %4 = Mod(1, 3)*x^2 + Mod(5, 6)*x + Mod(3, 6)
  ? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
  %5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]
  ? Pol(%)
  %6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)
 @eprog
 
 If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
 to the components of $x$, yielding a residue belonging to the same class as all
 components of $x$.
 
 Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
 vector arguments to contain other data, so long as they are identical in both
 vectors.
Variant: \fun{GEN}{chinese1}{GEN x} is also available.

Function: clone
Class: gp2c
Description: 
 (small):small:parens             $1
 (int):int                        gclone($1)
 (real):real                      gclone($1)
 (mp):mp                          gclone($1)
 (vecsmall):vecsmall              gclone($1)
 (vec):vec                        gclone($1)
 (pol):pol                        gclone($1)
 (list):list                      gclone($1)
 (closure):closure                gclone($1)
 (genstr):genstr                  gclone($1)
 (gen):gen                        gclone($1)

Function: cmp
Class: basic
Section: operators
C-Name: cmp_universal
Prototype: iGG
Help: cmp(x,y): compare two arbitrary objects x and y (1 if x>y, 0 if x=y, -1
 if x<y). The function is used to implement sets, and has no useful
 mathematical meaning.
Doc: gives the result of a comparison between arbitrary objects $x$ and $y$
 (as $-1$, $0$ or $1$). The underlying order relation is transitive,
 the function returns $0$ if and only if $x~\kbd{===}~y$, and its
 restriction to integers coincides with the customary one. Besides that,
 it has no useful mathematical meaning.
 
 In case all components are equal up to the smallest length of the operands,
 the more complex is considered to be larger. More precisely, the longest is
 the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
 For example:
 \bprog
 ? cmp(1, 2)
 %1 = -1
 ? cmp(2, 1)
 %2 = 1
 ? cmp(1, 1.0)   \\ note that 1 == 1.0, but (1===1.0) is false.
 %3 = -1
 ? cmp(x + Pi, [])
 %4 = -1
 @eprog\noindent This function is mostly useful to handle sorted lists or
 vectors of arbitrary objects. For instance, if $v$ is a vector, the
 construction \kbd{vecsort(v, cmp)} is equivalent to \kbd{Set(v)}.

Function: component
Class: basic
Section: conversions
C-Name: compo
Prototype: GL
Help: component(x,n): the n'th component of the internal representation of
 x. For vectors or matrices, it is simpler to use x[]. For list objects such
 as nf, bnf, bnr or ell, it is much easier to use member functions starting
 with ".".
Description: 
 (error,small):gen     err_get_compo($1, $2)
 (gen,small):gen       compo($1,$2)
Doc: extracts the $n^{\text{th}}$-component of $x$. This is to be understood
 as follows: every PARI type has one or two initial \idx{code words}. The
 components are counted, starting at 1, after these code words. In particular
 if $x$ is a vector, this is indeed the $n^{\text{th}}$-component of $x$, if
 $x$ is a matrix, the $n^{\text{th}}$ column, if $x$ is a polynomial, the
 $n^{\text{th}}$ coefficient (i.e.~of degree $n-1$), and for power series,
 the $n^{\text{th}}$ significant coefficient.
 
 For polynomials and power series, one should rather use \tet{polcoeff}, and
 for vectors and matrices, the \kbd{[$\,$]} operator. Namely, if $x$ is a
 vector, then \tet{x[n]} represents the $n^{\text{th}}$ component of $x$. If
 $x$ is a matrix, \tet{x[m,n]} represents the coefficient of row \kbd{m} and
 column \kbd{n} of the matrix, \tet{x[m,]} represents the $m^{\text{th}}$
 \emph{row} of $x$, and \tet{x[,n]} represents the $n^{\text{th}}$
 \emph{column} of $x$.
 
 Using of this function requires detailed knowledge of the structure of the
 different PARI types, and thus it should almost never be used directly.
 Some useful exceptions:
 \bprog
     ? x = 3 + O(3^5);
     ? component(x, 2)
     %2 = 81   \\ p^(p-adic accuracy)
     ? component(x, 1)
     %3 = 3    \\ p
     ? q = Qfb(1,2,3);
     ? component(q, 1)
     %5 = 1
 @eprog

Function: concat
Class: basic
Section: linear_algebra
C-Name: gconcat
Prototype: GDG
Help: concat(x,{y}): concatenation of x and y, which can be scalars, vectors
 or matrices, or lists (in this last case, both x and y have to be lists). If
 y is omitted, x has to be a list or row vector and its elements are
 concatenated.
Description: 
 (mp,mp):vec           gconcat($1, $2)
 (vec,mp):vec          gconcat($1, $2)
 (mp,vec):vec          gconcat($1, $2)
 (vec,vec):vec         gconcat($1, $2)
 (list,list):list      gconcat($1, $2)
 (genstr,gen):genstr   gconcat($1, $2)
 (gen,genstr):genstr   gconcat($1, $2)
 (gen):gen             gconcat1($1)
 (gen,):gen            gconcat1($1)
 (gen,gen):gen         gconcat($1, $2)
Doc: concatenation of $x$ and $y$. If $x$ or $y$ is
 not a vector or matrix, it is considered as a one-dimensional vector. All
 types are allowed for $x$ and $y$, but the sizes must be compatible. Note
 that matrices are concatenated horizontally, i.e.~the number of rows stays
 the same. Using transpositions, one can concatenate them vertically,
 but it is often simpler to use \tet{matconcat}.
 \bprog
 ? x = matid(2); y = 2*matid(2);
 ? concat(x,y)
 %2 =
 [1 0 2 0]
 
 [0 1 0 2]
 ? concat(x~,y~)~
 %3 =
 [1 0]
 
 [0 1]
 
 [2 0]
 
 [0 2]
 ? matconcat([x;y])
 %4 =
 [1 0]
 
 [0 1]
 
 [2 0]
 
 [0 2]
 @eprog\noindent
 To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
 matrix), use \tet{Mat} instead, or \tet{matconcat}:
 \bprog
 ? x = [1,2];
 ? y = [3,4];
 ? concat(x,y)
 %3 = [1, 2, 3, 4]
 
 ? Mat([x,y]~)
 %4 =
 [1 2]
 
 [3 4]
 ? matconcat([x;y])
 %5 =
 [1 2]
 
 [3 4]
 @eprog
 Concatenating a row vector to a matrix having the same number of columns will
 add the row to the matrix (top row if the vector is $x$, i.e.~comes first, and
 bottom row otherwise).
 
 The empty matrix \kbd{[;]} is considered to have a number of rows compatible
 with any operation, in particular concatenation. (Note that this is
 \emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)
 
 If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
 elements are concatenated, from left to right, using the above rules.
 \bprog
 ? concat([1,2], [3,4])
 %1 = [1, 2, 3, 4]
 ? a = [[1,2]~, [3,4]~]; concat(a)
 %2 =
 [1 3]
 
 [2 4]
 
 ? concat([1,2; 3,4], [5,6]~)
 %3 =
 [1 2 5]
 
 [3 4 6]
 ? concat([%, [7,8]~, [1,2,3,4]])
 %5 =
 [1 2 5 7]
 
 [3 4 6 8]
 
 [1 2 3 4]
 @eprog
Variant: \fun{GEN}{gconcat1}{GEN x} is a shortcut for \kbd{gconcat(x,NULL)}.

Function: conj
Class: basic
Section: conversions
C-Name: gconj
Prototype: G
Help: conj(x): the algebraic conjugate of x.
Doc: 
 conjugate of $x$. The meaning of this
 is clear, except that for real quadratic numbers, it means conjugation in the
 real quadratic field. This function has no effect on integers, reals,
 intmods, fractions or $p$-adics. The only forbidden type is polmod
 (see \kbd{conjvec} for this).

Function: conjvec
Class: basic
Section: conversions
C-Name: conjvec
Prototype: Gp
Help: conjvec(z): conjugate vector of the algebraic number z.
Doc: 
 conjugate vector representation of $z$. If $z$ is a
 polmod, equal to \kbd{Mod}$(a,T)$, this gives a vector of length
 $\text{degree}(T)$ containing:
 
 \item the complex embeddings of $z$ if $T$ has rational coefficients,
 i.e.~the $a(r[i])$ where $r = \kbd{polroots}(T)$;
 
 \item the conjugates of $z$ if $T$ has some intmod coefficients;
 
 \noindent if $z$ is a finite field element, the result is the vector of
 conjugates $[z,z^p,z^{p^2},\ldots,z^{p^{n-1}}]$ where $n=\text{degree}(T)$.
 
 \noindent If $z$ is an integer or a rational number, the result is~$z$. If
 $z$ is a (row or column) vector, the result is a matrix whose columns are
 the conjugate vectors of the individual elements of $z$.

Function: content
Class: basic
Section: number_theoretical
C-Name: content
Prototype: G
Help: content(x): gcd of all the components of x, when this makes sense.
Doc: computes the gcd of all the coefficients of $x$,
 when this gcd makes sense. This is the natural definition
 if $x$ is a polynomial (and by extension a power series) or a
 vector/matrix. This is in general a weaker notion than the \emph{ideal}
 generated by the coefficients:
 \bprog
 ? content(2*x+y)
 %1 = 1            \\ = gcd(2,y) over Q[y]
 @eprog
 
 If $x$ is a scalar, this simply returns the absolute value of $x$ if $x$ is
 rational (\typ{INT} or \typ{FRAC}), and either $1$ (inexact input) or $x$
 (exact input) otherwise; the result should be identical to \kbd{gcd(x, 0)}.
 
 The content of a rational function is the ratio of the contents of the
 numerator and the denominator. In recursive structures, if a
 matrix or vector \emph{coefficient} $x$ appears, the gcd is taken
 not with $x$, but with its content:
 \bprog
 ? content([ [2], 4*matid(3) ])
 %1 = 2
 @eprog\noindent The content of a \typ{VECSMALL} is computed assuming the
 entries are signed integers.

Function: contfrac
Class: basic
Section: number_theoretical
C-Name: contfrac0
Prototype: GDGD0,L,
Help: contfrac(x,{b},{nmax}): continued fraction expansion of x (x
 rational,real or rational function). b and nmax are both optional, where b
 is the vector of numerators of the continued fraction, and nmax is a bound
 for the number of terms in the continued fraction expansion.
Doc: returns the row vector whose components are the partial quotients of the
 \idx{continued fraction} expansion of $x$. In other words, a result
 $[a_0,\dots,a_n]$ means that $x \approx a_0+1/(a_1+\dots+1/a_n)$. The
 output is normalized so that $a_n \neq 1$ (unless we also have $n = 0$).
 
 The number of partial quotients $n+1$ is limited by \kbd{nmax}. If
 \kbd{nmax} is omitted, the expansion stops at the last significant partial
 quotient.
 \bprog
 ? \p19
   realprecision = 19 significant digits
 ? contfrac(Pi)
 %1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
 ? contfrac(Pi,, 3)  \\ n = 2
 %2 = [3, 7, 15]
 @eprog\noindent
 $x$ can also be a rational function or a power series.
 
 If a vector $b$ is supplied, the numerators are equal to the coefficients
 of $b$, instead of all equal to $1$ as above; more precisely, $x \approx
 (1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$; for a numerical continued fraction
 ($x$ real), the $a_i$ are integers, as large as possible; if $x$ is a
 rational function, they are polynomials with $\deg a_i = \deg b_i + 1$.
 The length of the result is then equal to the length of $b$, unless the next
 partial quotient cannot be reliably computed, in which case the expansion
 stops. This happens when a partial remainder is equal to zero (or too small
 compared to the available significant digits for $x$ a \typ{REAL}).
 
 A direct implementation of the numerical continued fraction
 \kbd{contfrac(x,b)} described above would be
 \bprog
 \\ "greedy" generalized continued fraction
 cf(x, b) =
 { my( a= vector(#b), t );
 
   x *= b[1];
   for (i = 1, #b,
     a[i] = floor(x);
     t = x - a[i]; if (!t || i == #b, break);
     x = b[i+1] / t;
   ); a;
 }
 @eprog\noindent There is some degree of freedom when choosing the $a_i$; the
 program above can easily be modified to derive variants of the standard
 algorithm. In the same vein, although no builtin
 function implements the related \idx{Engel expansion} (a special kind of
 \idx{Egyptian fraction} decomposition: $x = 1/a_1 + 1/(a_1a_2) + \dots$ ),
 it can be obtained as follows:
 \bprog
 \\ n terms of the Engel expansion of x
 engel(x, n = 10) =
 { my( u = x, a = vector(n) );
   for (k = 1, n,
     a[k] = ceil(1/u);
     u = u*a[k] - 1;
     if (!u, break);
   ); a
 }
 @eprog
 
 \misctitle{Obsolete hack} (don't use this): if $b$ is an integer, \var{nmax}
 is ignored and the command is understood as \kbd{contfrac($x,, b$)}.
Variant: Also available are \fun{GEN}{gboundcf}{GEN x, long nmax},
 \fun{GEN}{gcf}{GEN x} and \fun{GEN}{gcf2}{GEN b, GEN x}.

Function: contfraceval
Class: basic
Section: sums
C-Name: contfraceval
Prototype: GGD-1,L,
Help: contfraceval(CF,t,{lim=-1}): given a continued fraction CF from
 contfracinit, evaluate the first lim terms of the continued fraction at t
 (all terms if lim is negative or omitted).
Doc: Given a continued fraction \kbd{CF} output by \kbd{contfracinit}, evaluate
 the first \kbd{lim} terms of the continued fraction at \kbd{t} (all
 terms if \kbd{lim} is negative or omitted; if positive, \kbd{lim} must be
 less than or equal to the length of \kbd{CF}.

Function: contfracinit
Class: basic
Section: sums
C-Name: contfracinit
Prototype: GD-1,L,
Help: contfracinit(M,{lim = -1}): given M representing the power
 series S = sum_{n>=0} M[n+1]z^n, transform it into a continued fraction
 suitable for evaluation.
Doc: Given $M$ representing the power series $S=\sum_{n\ge0} M[n+1]z^n$,
 transform it into a continued fraction; restrict to $n\leq \kbd{lim}$
 if latter is non-negative. $M$ can be a vector, a power
 series, a polynomial, or a rational function.
 The result is a 2-component vector $[A,B]$ such that
 $S = M[1] / (1+A[1]z+B[1]z^2/(1+A[2]z+B[2]z^2/(1+...1/(1+A[lim/2]z))))$.
 Does not work if any coefficient of $M$ vanishes, nor for series for
 which certain partial denominators vanish.

Function: contfracpnqn
Class: basic
Section: number_theoretical
C-Name: contfracpnqn
Prototype: GD-1,L,
Help: contfracpnqn(x, {n=-1}): [p_n,p_{n-1}; q_n,q_{n-1}] corresponding to the
 continued fraction x. If n >= 0 is present, returns all convergents from
 p_0/q_0 up to p_n/q_n.
Doc: when $x$ is a vector or a one-row matrix, $x$
 is considered as the list of partial quotients $[a_0,a_1,\dots,a_n]$ of a
 rational number, and the result is the 2 by 2 matrix
 $[p_n,p_{n-1};q_n,q_{n-1}]$ in the standard notation of continued fractions,
 so $p_n/q_n=a_0+1/(a_1+\dots+1/a_n)$. If $x$ is a matrix with two rows
 $[b_0,b_1,\dots,b_n]$ and $[a_0,a_1,\dots,a_n]$, this is then considered as a
 generalized continued fraction and we have similarly
 $p_n/q_n=(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$. Note that in this case one
 usually has $b_0=1$.
 
 If $n \geq 0$ is present, returns all convergents from $p_0/q_0$ up to
 $p_n/q_n$. (All convergents if $x$ is too small to compute the $n+1$
 requested convergents.)
 \bprog
 ? a=contfrac(Pi,20)
 %1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2]
 ? contfracpnqn(a,3)
 %2 =
 [3 22 333 355]
 
 [1  7 106 113]
 
 ? contfracpnqn(a,7)
 %3 =
 [3 22 333 355 103993 104348 208341 312689]
 
 [1  7 106 113  33102  33215  66317  99532]
 @eprog
Variant: also available is \fun{GEN}{pnqn}{GEN x} for $n = -1$.

Function: copy
Class: gp2c
Description: 
 (small):small:parens             $1
 (int):int                        icopy($1)
 (real):real                      gcopy($1)
 (mp):mp                          gcopy($1)
 (vecsmall):vecsmall              gcopy($1)
 (vec):vec                        gcopy($1)
 (pol):pol                        gcopy($1)
 (gen):gen                        gcopy($1)

Function: core
Class: basic
Section: number_theoretical
C-Name: core0
Prototype: GD0,L,
Help: core(n,{flag=0}): unique squarefree integer d
 dividing n such that n/d is a square. If (optional) flag is non-null, output
 the two-component row vector [d,f], where d is the unique squarefree integer
 dividing n such that n/d=f^2 is a square.
Doc: if $n$ is an integer written as
 $n=df^2$ with $d$ squarefree, returns $d$. If $\fl$ is non-zero,
 returns the two-element row vector $[d,f]$. By convention, we write $0 = 0
 \times 1^2$, so \kbd{core(0, 1)} returns $[0,1]$.
Variant: Also available are \fun{GEN}{core}{GEN n} ($\fl = 0$) and
 \fun{GEN}{core2}{GEN n} ($\fl = 1$)

Function: coredisc
Class: basic
Section: number_theoretical
C-Name: coredisc0
Prototype: GD0,L,
Help: coredisc(n,{flag=0}): discriminant of the quadratic field Q(sqrt(n)).
 If (optional) flag is non-null, output a two-component row vector [d,f],
 where d is the discriminant of the quadratic field Q(sqrt(n)) and n=df^2. f
 may be a half integer.
Doc: a \emph{fundamental discriminant} is an integer of the form $t\equiv 1
 \mod 4$ or $4t \equiv 8,12 \mod 16$, with $t$ squarefree (i.e.~$1$ or the
 discriminant of a quadratic number field). Given a non-zero integer
 $n$, this routine returns the (unique) fundamental discriminant $d$
 such that $n=df^2$, $f$ a positive rational number. If $\fl$ is non-zero,
 returns the two-element row vector $[d,f]$. If $n$ is congruent to
 0 or 1 modulo 4, $f$ is an integer, and a half-integer otherwise.
 
 By convention, \kbd{coredisc(0, 1))} returns $[0,1]$.
 
 Note that \tet{quaddisc}$(n)$ returns the same value as \kbd{coredisc}$(n)$,
 and also works with rational inputs $n\in\Q^*$.
Variant: Also available are \fun{GEN}{coredisc}{GEN n} ($\fl = 0$) and
 \fun{GEN}{coredisc2}{GEN n} ($\fl = 1$)

Function: cos
Class: basic
Section: transcendental
C-Name: gcos
Prototype: Gp
Help: cos(x): cosine of x.
Doc: cosine of $x$.

Function: cosh
Class: basic
Section: transcendental
C-Name: gcosh
Prototype: Gp
Help: cosh(x): hyperbolic cosine of x.
Doc: hyperbolic cosine of $x$.

Function: cotan
Class: basic
Section: transcendental
C-Name: gcotan
Prototype: Gp
Help: cotan(x): cotangent of x.
Doc: cotangent of $x$.

Function: cotanh
Class: basic
Section: transcendental
C-Name: gcotanh
Prototype: Gp
Help: cotanh(x): hyperbolic cotangent of x.
Doc: hyperbolic cotangent of $x$.

Function: dbg_down
Class: gp
Section: programming/control
C-Name: dbg_down
Prototype: vD1,L,
Help: dbg_down({n=1}): (break loop) go down n frames. Cancel a previous dbg_up.
Doc: (In the break loop) go down n frames. This allows to cancel a previous call to
 \kbd{dbg\_up}.

Function: dbg_err
Class: gp
Section: programming/control
C-Name: dbg_err
Prototype: 
Help: dbg_err(): (break loop) return the error data of the current error, if any.
Doc: In the break loop, return the error data of the current error, if any.
 See \tet{iferr} for details about error data.  Compare:
 \bprog
 ? iferr(1/(Mod(2,12019)^(6!)-1),E,Vec(E))
 %1 = ["e_INV", "Fp_inv", Mod(119, 12019)]
 ? 1/(Mod(2,12019)^(6!)-1)
   ***   at top-level: 1/(Mod(2,12019)^(6!)-
   ***                  ^--------------------
   *** _/_: impossible inverse in Fp_inv: Mod(119, 12019).
   ***   Break loop: type 'break' to go back to GP prompt
 break> Vec(dbg_err())
 ["e_INV", "Fp_inv", Mod(119, 12019)]
 @eprog

Function: dbg_up
Class: gp
Section: programming/control
C-Name: dbg_up
Prototype: vD1,L,
Help: dbg_up({n=1}): (break loop) go up n frames. Allow to inspect data of the parent function.
Doc: (In the break loop) go up n frames. This allows to inspect data of the
 parent function. To cancel a \tet{dbg_up} call, use \tet{dbg_down}

Function: dbg_x
Class: basic
Section: programming/control
C-Name: dbgGEN
Prototype: vGD-1,L,
Help: dbg_x(A,{n}): print inner structure of A, complete if n is omitted, up to
 level n otherwise. Intended for debugging.
Doc: Print the inner structure of \kbd{A}, complete if \kbd{n} is omitted, up
 to level \kbd{n} otherwise. This is useful for debugging. This is similar to
 \b{x} but does not require \kbd{A} to be an history entry. In particular,
 it can be used in the break loop.

Function: default
Class: basic
Section: programming/specific
C-Name: default0
Prototype: DrDs
Help: default({key},{val}): returns the current value of the
 default key. If val is present, set opt to val first. If no argument is
 given, print a list of all defaults as well as their values.
Description: 
 ("realprecision"):small:prec              getrealprecision()
 ("realprecision",small):small:prec        setrealprecision($2, &$prec)
 ("seriesprecision"):small                 precdl
 ("seriesprecision",small):small:parens    precdl = $2
 ("debug"):small                           DEBUGLEVEL
 ("debug",small):small:parens              DEBUGLEVEL = $2
 ("debugmem"):small                        DEBUGMEM
 ("debugmem",small):small:parens           DEBUGMEM = $2
 ("debugfiles"):small                      DEBUGFILES
 ("debugfiles",small):small:parens         DEBUGFILES = $2
 ("factor_add_primes"):small               factor_add_primes
 ("factor_add_primes",small):small         factor_add_primes = $2
 ("factor_proven"):small                   factor_proven
 ("factor_proven",small):small             factor_proven = $2
 ("new_galois_format"):small               new_galois_format
 ("new_galois_format",small):small         new_galois_format = $2
Doc: returns the default corresponding to keyword \var{key}. If \var{val} is
 present, sets the default to \var{val} first (which is subject to string
 expansion first). Typing \kbd{default()} (or \b{d}) yields the complete
 default list as well as their current values. See \secref{se:defaults} for an
 introduction to GP defaults, \secref{se:gp_defaults} for a
 list of available defaults, and \secref{se:meta} for some shortcut
 alternatives. Note that the shortcuts are meant for interactive use and
 usually display more information than \kbd{default}.

Function: denominator
Class: basic
Section: conversions
C-Name: denom
Prototype: G
Help: denominator(x): denominator of x (or lowest common denominator in case
 of an array).
Doc: 
 denominator of $x$. The meaning of this
 is clear when $x$ is a rational number or function. If $x$ is an integer
 or a polynomial, it is treated as a rational number or function,
 respectively, and the result is equal to $1$. For polynomials, you
 probably want to use
 \bprog
 denominator( content(x) )
 @eprog\noindent
 instead. As for modular objects, \typ{INTMOD} and \typ{PADIC} have
 denominator $1$, and the denominator of a \typ{POLMOD} is the denominator
 of its (minimal degree) polynomial representative.
 
 If $x$ is a recursive structure, for instance a vector or matrix, the lcm
 of the denominators of its components (a common denominator) is computed.
 This also applies for \typ{COMPLEX}s and \typ{QUAD}s.
 
 \misctitle{Warning} Multivariate objects are created according to variable
 priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
 $y/x$ is a rational function). See \secref{se:priority}.

Function: deriv
Class: basic
Section: polynomials
C-Name: deriv
Prototype: GDn
Help: deriv(x,{v}): derivative of x with respect to v, or to the main
 variable of x if v is omitted.
Doc: 
 derivative of $x$ with respect to the main
 variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative
 of a scalar type is zero, and the derivative of a vector or matrix is done
 componentwise. One can use $x'$ as a shortcut if the derivative is with
 respect to the main variable of $x$.
 
 By definition, the main variable of a \typ{POLMOD} is the main variable among
 the coefficients from its two polynomial components (representative and
 modulus); in other words, assuming a polmod represents an element of
 $R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
 taken with respect to the main variable used in the base ring $R$.

Function: derivnum
Class: basic
Section: sums
C-Name: derivnum0
Prototype: V=GEp
Help: derivnum(X=a,expr): numerical derivation of expr with respect to
 X at X = a.
Wrapper: (,Gp)
Description: 
  (gen,gen):gen:prec derivnum(${2 cookie}, ${2 wrapper}, $1, $prec)
Doc: numerical derivation of \var{expr} with respect to $X$ at $X=a$.
 
 \bprog
 ? derivnum(x=0,sin(exp(x))) - cos(1)
 %1 = -1.262177448 E-29
 @eprog
 A clumsier approach, which would not work in library mode, is
 \bprog
 ? f(x) = sin(exp(x))
 ? f'(0) - cos(1)
 %1 = -1.262177448 E-29
 @eprog
 When $a$ is a power series, compute \kbd{derivnum(t=a,f)} as $f'(a) =
 (f(a))'/a'$.
 
 \synt{derivnum}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}. Also
 available is \fun{GEN}{derivfun}{void *E, GEN (*eval)(void *, GEN), GEN a, long prec}, which also allows power series for $a$.

Function: diffop
Class: basic
Section: polynomials
C-Name: diffop0
Prototype: GGGD1,L,
Help: diffop(x,v,d,{n=1}): apply the differential operator D to x, where D is defined
 by D(v[i])=d[i], where v is a vector of variable names. D is 0 for variables
 outside of v unless they appear as modulus of a POLMOD. If the optional parameter n
 is given, return D^n(x) instead.
Description: 
 (gen,gen,gen,?1):gen    diffop($1, $2, $3)
 (gen,gen,gen,small):gen diffop0($1, $2, $3, $4)
Doc: 
 Let $v$ be a vector of variables, and $d$ a vector of the same length,
 return the image of $x$ by the $n$-power ($1$ if n is not given) of the differential
 operator $D$ that assumes the value \kbd{d[i]} on the variable \kbd{v[i]}.
 The value of $D$ on a scalar type is zero, and $D$ applies componentwise to a vector
 or matrix. When applied to a \typ{POLMOD}, if no value is provided for the variable
 of the modulus, such value is derived using the implicit function theorem.
 
 Some examples:
 This function can be used to differentiate formal expressions:
 If $E=\exp(X^2)$ then we have $E'=2*X*E$. We can derivate $X*exp(X^2)$ as follow:
 \bprog
 ? diffop(E*X,[X,E],[1,2*X*E])
 %1 = (2*X^2 + 1)*E
 @eprog
 Let \kbd{Sin} and \kbd{Cos} be two function such that $\kbd{Sin}^2+\kbd{Cos}^2=1$
 and $\kbd{Cos}'=-\kbd{Sin}$. We can differentiate $\kbd{Sin}/\kbd{Cos}$ as follow,
 PARI inferring the value of $\kbd{Sin}'$ from the equation:
 \bprog
 ? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
 %1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))
 
 @eprog
 Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:
 \bprog
 Bell(k,n=-1)=
 {
   my(var(i)=eval(Str("X",i)));
   my(x,v,dv);
   v=vector(k,i,if(i==1,'E,var(i-1)));
   dv=vector(k,i,if(i==1,'X*var(1)*'E,var(i)));
   x=diffop('E,v,dv,k)/'E;
   if(n<0,subst(x,'X,1),polcoeff(x,n,'X))
 }
 @eprog
Variant: 
 For $n=1$, the function \fun{GEN}{diffop}{GEN x, GEN v, GEN d} is also available.

Function: digits
Class: basic
Section: conversions
C-Name: digits
Prototype: GDG
Help: digits(x,{b=10}): gives the vector formed by the digits of x in base b (x and b
 integers).
Doc: 
 outputs the vector of the digits of $|x|$ in base $b$, where $x$ and $b$ are
 integers ($b = 10$ by default). See \kbd{fromdigits} for the reverse
 operation.
 
 \bprog
 ? digits(123)
 %1 = [1, 2, 3, 0]
 
 ? digits(10, 2) \\ base 2
 %2 = [1, 0, 1, 0]
 @eprog\noindent By convention, $0$ has no digits:
 \bprog
 ? digits(0)
 %3 = []
 @eprog

Function: dilog
Class: basic
Section: transcendental
C-Name: dilog
Prototype: Gp
Help: dilog(x): dilogarithm of x.
Doc: principal branch of the dilogarithm of $x$,
 i.e.~analytic continuation of the power series $\log_2(x)=\sum_{n\ge1}x^n/n^2$.

Function: dirdiv
Class: basic
Section: number_theoretical
C-Name: dirdiv
Prototype: GG
Help: dirdiv(x,y): division of the Dirichlet series x by the Dirichlet
 series y.
Doc: $x$ and $y$ being vectors of perhaps different
 lengths but with $y[1]\neq 0$ considered as \idx{Dirichlet series}, computes
 the quotient of $x$ by $y$, again as a vector.

Function: direuler
Class: basic
Section: number_theoretical
C-Name: direuler0
Prototype: V=GGEDG
Help: direuler(p=a,b,expr,{c}): Dirichlet Euler product of expression expr
 from p=a to p=b, limited to b terms. Expr should be a polynomial or rational
 function in p and X, and X is understood to mean p^(-s). If c is present,
 output only the first c terms.
Wrapper: (,,G)
Description: 
  (gen,gen,closure,?gen):gen direuler(${3 cookie}, ${3 wrapper}, $1, $2, $4)
Doc: computes the \idx{Dirichlet series} attached to the
 \idx{Euler product} of expression \var{expr} as $p$ ranges through the primes
 from $a$
 to $b$. \var{expr} must be a polynomial or rational function in another
 variable than $p$ (say $X$) and $\var{expr}(X)$ is understood as the local
 factor $\var{expr}(p^{-s})$.
 
 The series is output as a vector of coefficients. If $c$ is omitted, output
 the first $b$ coefficients of the series; otherwise, output the first $c$
 coefficients. The following command computes the \teb{sigma} function,
 attached to $\zeta(s)\zeta(s-1)$:
 \bprog
 ? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
 %1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]
 
 ? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 5) \\ fewer terms
 %2 = [1, 3, 4, 7, 6]
 @eprog\noindent Setting $c < b$ is useless (the same effect would be
 achieved by setting $b = c)$. If $c > b$, the computed coefficients are
 ``missing'' Euler factors:
 \bprog
 ? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 15) \\ more terms, no longer = sigma !
 %3 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 0, 28, 0, 24, 24]
 @eprog
 
 \synt{direuler}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b}

Function: dirmul
Class: basic
Section: number_theoretical
C-Name: dirmul
Prototype: GG
Help: dirmul(x,y): multiplication of the Dirichlet series x by the Dirichlet
 series y.
Doc: $x$ and $y$ being vectors of perhaps different lengths representing
 the \idx{Dirichlet series} $\sum_n x_n n^{-s}$ and $\sum_n y_n n^{-s}$,
 computes the product of $x$ by $y$, again as a vector.
 \bprog
 ? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
 %1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 @eprog\noindent
 The product
 length is the minimum of $\kbd{\#}x\kbd{*}v(y)$ and $\kbd{\#}y\kbd{*}v(x)$,
 where $v(x)$ is the index of the first non-zero coefficient.
 \bprog
 ? dirmul([0,1], [0,1]);
 %2 = [0, 0, 0, 1]
 @eprog

Function: dirzetak
Class: basic
Section: number_fields
C-Name: dirzetak
Prototype: GG
Help: dirzetak(nf,b): Dirichlet series of the Dedekind zeta function of the
 number field nf up to the bound b-1.
Doc: gives as a vector the first $b$
 coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
 considered as a \idx{Dirichlet series}.

Function: divisors
Class: basic
Section: number_theoretical
C-Name: divisors
Prototype: G
Help: divisors(x): gives a vector formed by the divisors of x in increasing
 order.
Description: 
 (gen):vec        divisors($1)
Doc: creates a row vector whose components are the
 divisors of $x$. The factorization of $x$ (as output by \tet{factor}) can
 be used instead.
 
 By definition, these divisors are the products of the irreducible
 factors of $n$, as produced by \kbd{factor(n)}, raised to appropriate
 powers (no negative exponent may occur in the factorization). If $n$ is
 an integer, they are the positive divisors, in increasing order.

Function: divrem
Class: basic
Section: operators
C-Name: divrem
Prototype: GGDn
Help: divrem(x,y,{v}): euclidean division of x by y giving as a
 2-dimensional column vector the quotient and the remainder, with respect to
 v (to main variable if v is omitted).
Doc: creates a column vector with two components, the first being the Euclidean
 quotient (\kbd{$x$ \bs\ $y$}), the second the Euclidean remainder
 (\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by $y$. This avoids the
 need to do two divisions if one needs both the quotient and the remainder.
 If $v$ is present, and $x$, $y$ are multivariate
 polynomials, divide with respect to the variable $v$.
 
 Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
 \kbd{$x$ \% $y$}; no GP operator corresponds to it:
 \bprog
 ? divrem(1/2, 3)[2]
 %1 = 1/2
 ? (1/2) % 3
 %2 = 2
 ? divrem(Mod(2,9), 3)[2]
  ***   at top-level: divrem(Mod(2,9),3)[2
  ***                 ^--------------------
  ***   forbidden division t_INTMOD \ t_INT.
 ? Mod(2,9) % 6
 %3 = Mod(2,3)
 @eprog
Variant: Also available is \fun{GEN}{gdiventres}{GEN x, GEN y} when $v$ is
 not needed.

Function: eint1
Class: basic
Section: transcendental
C-Name: veceint1
Prototype: GDGp
Help: eint1(x,{n}): exponential integral E1(x). If n is present and x > 0,
 computes the vector of the first n values of the exponential integral E1(n x).
Doc: exponential integral $\int_x^\infty \dfrac{e^{-t}}{t}\,dt =
 \kbd{incgam}(0, x)$, where the latter expression extends the function
 definition from real $x > 0$ to all complex $x \neq 0$.
 
 If $n$ is present, we must have $x > 0$; the function returns the
 $n$-dimensional vector $[\kbd{eint1}(x),\dots,\kbd{eint1}(nx)]$. Contrary to
 other transcendental functions, and to the default case ($n$ omitted), the
 values are correct up to a bounded \emph{absolute}, rather than relative,
 error $10^{-n}$, where $n$ is \kbd{precision}$(x)$ if $x$ is a \typ{REAL}
 and defaults to \kbd{realprecision} otherwise. (In the most important
 application, to the computation of $L$-functions via approximate functional
 equations, those values appear as weights in long sums and small individual
 relative errors are less useful than controlling the absolute error.) This is
 faster than repeatedly calling \kbd{eint1($i$ * x)}, but less precise.
Variant: Also available is \fun{GEN}{eint1}{GEN x, long prec}.

Function: ellL1
Class: basic
Section: elliptic_curves
C-Name: ellL1_bitprec
Prototype: GD0,L,b
Help: ellL1(e, {r = 0}): returns the value at s=1 of the derivative of order r of the L-function of the elliptic curve e.
Doc: returns the value at $s=1$ of the derivative of order $r$ of the
 $L$-function of the elliptic curve $e$.
 \bprog
 ? e = ellinit("11a1"); \\ order of vanishing is 0
 ? ellL1(e)
 %2 = 0.2538418608559106843377589233
 ? e = ellinit("389a1");  \\ order of vanishing is 2
 ? ellL1(e)
 %4 = -5.384067311837218089235032414 E-29
 ? ellL1(e, 1)
 %5 = 0
 ? ellL1(e, 2)
 %6 = 1.518633000576853540460385214
 @eprog\noindent
 The main use of this function, after computing at \emph{low} accuracy the
 order of vanishing using \tet{ellanalyticrank}, is to compute the
 leading term at \emph{high} accuracy to check (or use) the Birch and
 Swinnerton-Dyer conjecture:
 \bprog
 ? \p18
   realprecision = 18 significant digits
 ? e = ellinit("5077a1"); ellanalyticrank(e)
 time = 8 ms.
 %1 = [3, 10.3910994007158041]
 ? \p200
   realprecision = 202 significant digits (200 digits displayed)
 ? ellL1(e, 3)
 time = 104 ms.
 %3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$
 @eprog

Function: elladd
Class: basic
Section: elliptic_curves
C-Name: elladd
Prototype: GGG
Help: elladd(E,z1,z2): sum of the points z1 and z2 on elliptic curve E.
Doc: 
 sum of the points $z1$ and $z2$ on the
 elliptic curve corresponding to $E$.

Function: ellak
Class: basic
Section: elliptic_curves
C-Name: akell
Prototype: GG
Help: ellak(E,n): computes the n-th Fourier coefficient of the L-function of
 the elliptic curve E (assumed E is an integral model).
Doc: 
 computes the coefficient $a_n$ of the $L$-function of the elliptic curve
 $E/\Q$, i.e.~coefficients of a newform of weight 2 by the modularity theorem
 (\idx{Taniyama-Shimura-Weil conjecture}). $E$ must be an \kbd{ell} structure
 over $\Q$ as output by \kbd{ellinit}. $E$ must be given by an integral model,
 not necessarily minimal, although a minimal model will make the function
 faster.
 \bprog
 ? E = ellinit([0,1]);
 ? ellak(E, 10)
 %2 = 0
 ? e = ellinit([5^4,5^6]); \\ not minimal at 5
 ? ellak(e, 5) \\ wasteful but works
 %3 = -3
 ? E = ellminimalmodel(e); \\ now minimal
 ? ellak(E, 5)
 %5 = -3
 @eprog\noindent If the model is not minimal at a number of bad primes, then
 the function will be slower on those $n$ divisible by the bad primes.
 The speed should be comparable for other $n$:
 \bprog
 ? for(i=1,10^6, ellak(E,5))
 time = 820 ms.
 ? for(i=1,10^6, ellak(e,5)) \\ 5 is bad, markedly slower
 time = 1,249 ms.
 
 ? for(i=1,10^5,ellak(E,5*i))
 time = 977 ms.
 ? for(i=1,10^5,ellak(e,5*i)) \\ still slower but not so much on average
 time = 1,008 ms.
 @eprog

Function: ellan
Class: basic
Section: elliptic_curves
C-Name: ellan
Prototype: GL
Help: ellan(E,n): computes the first n Fourier coefficients of the
 L-function of the elliptic curve E defined over a number field
 (n<2^24 on a 32-bit machine).
Doc: computes the vector of the first $n$ Fourier coefficients $a_k$
 corresponding to the elliptic curve $E$ defined over a number field.
 If $E$ is defined over $\Q$, the curve may be given by an
 arbitrary model, not necessarily minimal,
 although a minimal model will make the function faster. Over a more general
 number field, the model must be locally minimal at all primes above $2$
 and $3$.
Variant: Also available is \fun{GEN}{ellanQ_zv}{GEN e, long n}, which
 returns a \typ{VECSMALL} instead of a \typ{VEC}, saving on memory.

Function: ellanalyticrank
Class: basic
Section: elliptic_curves
C-Name: ellanalyticrank_bitprec
Prototype: GDGb
Help: ellanalyticrank(e, {eps}): returns the order of vanishing at s=1
 of the L-function of the elliptic curve e and the value of the first
 non-zero derivative. To determine this order, it is assumed that any
 value less than eps is zero. If no value of eps is given, a value of
 half the current precision is used.
Doc: returns the order of vanishing at $s=1$ of the $L$-function of the
 elliptic curve $e$ and the value of the first non-zero derivative. To
 determine this order, it is assumed that any value less than \kbd{eps} is
 zero. If no value of \kbd{eps} is given, a value of half the current
 precision is used.
 \bprog
 ? e = ellinit("11a1"); \\ rank 0
 ? ellanalyticrank(e)
 %2 = [0, 0.2538418608559106843377589233]
 ? e = ellinit("37a1"); \\ rank 1
 ? ellanalyticrank(e)
 %4 = [1, 0.3059997738340523018204836835]
 ? e = ellinit("389a1"); \\ rank 2
 ? ellanalyticrank(e)
 %6 = [2, 1.518633000576853540460385214]
 ? e = ellinit("5077a1"); \\ rank 3
 ? ellanalyticrank(e)
 %8 = [3, 10.39109940071580413875185035]
 @eprog

Function: ellap
Class: basic
Section: elliptic_curves
C-Name: ellap
Prototype: GDG
Help: ellap(E,{p}): computes the trace of Frobenius a_p for the elliptic
 curve E, defined over Q or a finite field.
Doc: 
 Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
 a number field or a finite field $\F_q$. The argument $p$ is best left
 omitted if the curve is defined over a finite field, and must be a prime
 number or a maximal ideal otherwise. This function computes the trace of
 Frobenius $t$ for the elliptic curve $E$, defined by the equation $\#E(\F_q)
 = q+1 - t$ (for primes of good reduction).
 
 When the characteristic of the finite field is large, the availability of
 the \kbd{seadata} package will speed the computation.
 
 If the curve is defined over $\Q$, $p$ must be explicitly given and the
 function computes the trace of the reduction over $\F_p$.
 The trace of Frobenius is also the $a_p$ coefficient in the curve $L$-series
 $L(E,s) = \sum_n a_n n^{-s}$, whence the function name. The equation must be
 integral at $p$ but need not be minimal at $p$; of course, a minimal model
 will be more efficient.
 \bprog
 ? E = ellinit([0,1]);  \\ y^2 = x^3 + 0.x + 1, defined over Q
 ? ellap(E, 7) \\ 7 necessary here
 %2 = -4       \\ #E(F_7) = 7+1-(-4) = 12
 ? ellcard(E, 7)
 %3 = 12       \\ OK
 
 ? E = ellinit([0,1], 11);  \\ defined over F_11
 ? ellap(E)       \\ no need to repeat 11
 %4 = 0
 ? ellap(E, 11)   \\ ... but it also works
 %5 = 0
 ? ellgroup(E, 13) \\ ouch, inconsistent input!
    ***   at top-level: ellap(E,13)
    ***                 ^-----------
    *** ellap: inconsistent moduli in Rg_to_Fp:
      11
      13
 
 ? Fq = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
 ? E = ellinit([a+1,a], Fq);  \\ y^2 = x^3 + (a+1)x + a, defined over F_q
 ? ellap(E)
 %8 = -3
 @eprog
 
 If the curve is defined over a more general number field than $\Q$,
 the maximal ideal $p$ must be explicitly given in \kbd{idealprimedec}
 format. If $p$ is above $2$ or $3$, the function currently assumes (without
 checking) that the given model is locally minimal at $p$. There is no
 restriction at other primes.
 \bprog
 ? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
 ? fa = idealfactor(K, E.disc)
 %2 =
 [  [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]
 
 [[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
 ? ellap(E, fa[1,1])
 %3 = -1 \\ non-split multiplicative reduction
 ? ellap(E, fa[2,1])
 %4 = 1  \\ split multiplicative reduction
 ? P17 = idealprimedec(K,17)[1];
 ? ellap(E, P17)
 %6 = 6  \\ good reduction
 ? E2 = ellchangecurve(E, [17,0,0,0]);
 ? ellap(E2, P17)
 %8 = 6  \\ same, starting from a non-miminal model
 
 ? P3 = idealprimedec(K,3)[1];
 ? E3 = ellchangecurve(E, [3,0,0,0]);
 ? ellap(E, P3)  \\ OK: E is minimal at P3
 %11 = -2
 ? ellap(E3, P3) \\ junk: E3 is not minimal at P3 | 3
 %12 = 0
 @eprog
 
 \misctitle{Algorithms used} If $E/\F_q$ has CM by a principal imaginary
 quadratic order we use a fast explicit formula (involving essentially
 Kronecker symbols and Cornacchia's algorithm), in $O(\log q)^2$.
 Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
 time $\tilde{O}(q^{1/4})$ using $\tilde{O}(q^{1/4})$ storage, hence becomes
 unreasonable when $q$ has about 30~digits. Above this range, the \tet{SEA}
 algorithm becomes available, heuristically in $\tilde{O}(\log q)^4$, and
 primes of the order of 200~digits become feasible.  In small
 characteristic we use Mestre's (p=2), Kohel's (p=3,5,7,13), Satoh-Harley
 (all in $\tilde{O}(p^{2}\*n^2)$) or Kedlaya's (in $\tilde{O}(p\*n^3)$)
 algorithms.

Function: ellbil
Class: basic
Section: elliptic_curves
C-Name: bilhell
Prototype: GGGp
Help: ellbil(E,z1,z2): deprecated alias for ellheight(E,P,Q).
Doc: deprecated alias for \kbd{ellheight(E,P,Q)}.
Obsolete: 2014-05-21

Function: ellcard
Class: basic
Section: elliptic_curves
C-Name: ellcard
Prototype: GDG
Help: ellcard(E,{p}): computes the order of the group E(Fq)
 for the elliptic curve E, defined over Q (for q=p) or a finite field.
Doc: Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
 $\Q$ or a finite field $\F_q$. The argument $p$ is best left omitted if the
 curve is defined over a finite field, and must be a prime number otherwise.
 This function computes the order of the group $E(\F_q)$ (as would be
 computed by \tet{ellgroup}).
 
 When the characteristic of the finite field is large, the availability of
 the \kbd{seadata} package will speed the computation.
 
 If the curve is defined over $\Q$, $p$ must be explicitly given and the
 function computes the cardinality of the reduction over $\F_p$; the
 equation need not be minimal at $p$, but a minimal model will be more
 efficient. The reduction is allowed to be singular, and we return the order
 of the group of non-singular points in this case.
Variant: Also available is \fun{GEN}{ellcard}{GEN E, GEN p} where $p$ is not
 \kbd{NULL}.

Function: ellchangecurve
Class: basic
Section: elliptic_curves
C-Name: ellchangecurve
Prototype: GG
Help: ellchangecurve(E,v): change data on elliptic curve according to
 v=[u,r,s,t].
Description: 
 (gen, gen):ell        ellchangecurve($1, $2)
Doc: 
 changes the data for the elliptic curve $E$
 by changing the coordinates using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$
 and $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$.
 $E$ must be an \kbd{ell} structure as output by \kbd{ellinit}. The special
 case $v = 1$ is also used instead of $[1,0,0,0]$ to denote the
 trivial coordinate change.

Function: ellchangepoint
Class: basic
Section: elliptic_curves
C-Name: ellchangepoint
Prototype: GG
Help: ellchangepoint(x,v): change data on point or vector of points x on an
 elliptic curve according to v=[u,r,s,t].
Doc: 
 changes the coordinates of the point or
 vector of points $x$ using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$ and
 $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$ (see also
 \kbd{ellchangecurve}).
 \bprog
 ? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
 ? E = ellchangecurve(E0, v);
 ? P = ellchangepoint(P0,v)
 %3 = [-2, 3]
 ? ellisoncurve(E, P)
 %4 = 1
 ? ellchangepointinv(P,v)
 %5 = [0, 1]
 @eprog
Variant: The reciprocal function \fun{GEN}{ellchangepointinv}{GEN x, GEN ch}
 inverts the coordinate change.

Function: ellchangepointinv
Class: basic
Section: elliptic_curves
C-Name: ellchangepointinv
Prototype: GG
Help: ellchangepointinv(x,v): change data on point or vector of points x on an
 elliptic curve according to v=[u,r,s,t], inverse of ellchangepoint.
Doc: 
 changes the coordinates of the point or vector of points $x$ using
 the inverse of the isomorphism attached to \kbd{v=[u,r,s,t]},
 i.e.~if $x'$ and $y'$ are the old coordinates, then $x=u^2x'+r$,
 $y=u^3y'+su^2x'+t$ (inverse of \kbd{ellchangepoint}).
 \bprog
 ? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
 ? E = ellchangecurve(E0, v);
 ? P = ellchangepoint(P0,v)
 %3 = [-2, 3]
 ? ellisoncurve(E, P)
 %4 = 1
 ? ellchangepointinv(P,v)
 %5 = [0, 1]  \\ we get back P0
 @eprog

Function: ellconvertname
Class: basic
Section: elliptic_curves
C-Name: ellconvertname
Prototype: G
Help: ellconvertname(name): convert an elliptic curve name (as found in
 the elldata database) from a string to a triplet [conductor, isogeny class,
 index]. It will also convert a triplet back to a curve name.
Doc: 
 converts an elliptic curve name, as found in the \tet{elldata} database,
 from a string to a triplet $[\var{conductor}, \var{isogeny class},
 \var{index}]$. It will also convert a triplet back to a curve name.
 Examples:
 \bprog
 ? ellconvertname("123b1")
 %1 = [123, 1, 1]
 ? ellconvertname(%)
 %2 = "123b1"
 @eprog

Function: elldivpol
Class: basic
Section: elliptic_curves
C-Name: elldivpol
Prototype: GLDn
Help: elldivpol(E,n,{v='x}): n-division polynomial f_n for the curve E in the
 variable v.
Doc: $n$-division polynomial $f_n$ for the curve $E$ in the
 variable $v$. In standard notation, for any affine point $P = (X,Y)$ on the
 curve, we have
 $$[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)$$
 for some polynomials $\phi_n,\omega_n,\psi_n$ in
 $\Z[a_1,a_2,a_3,a_4,a_6][X,Y]$. We have $f_n(X) = \psi_n(X)$ for $n$ odd, and
 $f_n(X) = \psi_n(X,Y) (2Y + a_1X+a_3)$ for $n$ even. We have
 $$ f_1  = 1,\quad f_2 = 4X^3 + b_2X^2 + 2b_4 X + b_6, \quad f_3 = 3 X^4 + b_2 X^3 + 3b_4 X^2 + 3 b_6 X + b8, $$
 $$ f_4 = f_2(2X^6 + b_2 X^5 + 5b_4 X^4 + 10 b_6 X^3 + 10 b_8 X^2 +
 (b_2b_8-b_4b_6)X + (b_8b_4 - b_6^2)), \dots $$
 For $n \geq 2$, the roots of $f_n$ are the $X$-coordinates of points in $E[n]$.

Function: elleisnum
Class: basic
Section: elliptic_curves
C-Name: elleisnum
Prototype: GLD0,L,p
Help: elleisnum(w,k,{flag=0}): k being an even positive integer, computes the
 numerical value of the Eisenstein series of weight k at the lattice
 w, as given by ellperiods. When flag is non-zero and k=4 or 6, this gives the
 elliptic invariants g2 or g3 with the correct normalization.
Doc: $k$ being an even positive integer, computes the numerical value of the
 Eisenstein series of weight $k$ at the lattice $w$, as given by
 \tet{ellperiods}, namely
 $$
 (2i \pi/\omega_2)^k
 \Big(1 + 2/\zeta(1-k) \sum_{n\geq 1} n^{k-1}q^n / (1-q^n)\Big),
 $$
 where $q = \exp(2i\pi \tau)$ and $\tau:=\omega_1/\omega_2$ belongs to the
 complex upper half-plane. It is also possible to directly input $w =
 [\omega_1,\omega_2]$, or an elliptic curve $E$ as given by \kbd{ellinit}.
 \bprog
 ? w = ellperiods([1,I]);
 ? elleisnum(w, 4)
 %2 = 2268.8726415508062275167367584190557607
 ? elleisnum(w, 6)
 %3 = -3.977978632282564763 E-33
 ? E = ellinit([1, 0]);
 ? elleisnum(E, 4, 1)
 %5 = -47.999999999999999999999999999999999998
 @eprog
 
 When \fl\ is non-zero and $k=4$ or 6, returns the elliptic invariants $g_2$
 or $g_3$, such that
 $$y^2 = 4x^3 - g_2 x - g_3$$
 is a Weierstrass equation for $E$.

Function: elleta
Class: basic
Section: elliptic_curves
C-Name: elleta
Prototype: Gp
Help: elleta(w): w=[w1,w2], returns the vector [eta1,eta2] of quasi-periods
 attached to [w1,w2].
Doc: returns the quasi-periods $[\eta_1,\eta_2]$
 attached to the lattice basis $\var{w} = [\omega_1, \omega_2]$.
 Alternatively, \var{w} can be an elliptic curve $E$ as output by
 \kbd{ellinit}, in which case, the quasi periods attached to the period
 lattice basis \kbd{$E$.omega} (namely, \kbd{$E$.eta}) are returned.
 \bprog
 ? elleta([1, I])
 %1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
 @eprog

Function: ellformaldifferential
Class: basic
Section: elliptic_curves
C-Name: ellformaldifferential
Prototype: GDPDn
Help: ellformaldifferential(E, {n=seriesprecision}, {t = 'x}) : E elliptic curve,
 n integer. Returns n terms of the power series [f, g] such that
 omega = dx/(2y+a_1x+a_3) = f(t) dt and eta = x(t) * omega = g(t) dt in the
 local parameter t=-x/y.
Doc: Let $\omega := dx / (2y+a_1x+a_3)$ be the invariant differential form
 attached to the model $E$ of some elliptic curve (\kbd{ellinit} form),
 and $\eta := x(t)\omega$. Return $n$ terms (\tet{seriesprecision} by default)
 of $f(t),g(t)$ two power series in the formal parameter $t=-x/y$ such that
 $\omega = f(t) dt$, $\eta = g(t) dt$:
  $$f(t) = 1+a_1 t + (a_1^2 + a_2) t^2 + \dots,\quad
    g(t) = t^{-2} +\dots $$
  \bprog
  ? E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);
  ? f
  %2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)
  ? g
  %3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)
 @eprog

Function: ellformalexp
Class: basic
Section: elliptic_curves
C-Name: ellformalexp
Prototype: GDPDn
Help: ellformalexp(E, {n = seriesprecision}, {z = 'x}) : E elliptic curve,
 returns n terms of the formal elliptic exponential on E as a series in z.
Doc: The elliptic formal exponential \kbd{Exp} attached to $E$ is the
 isomorphism from the formal additive law to the formal group of $E$. It is
 normalized so as to be the inverse of the elliptic logarithm (see
 \tet{ellformallog}): $\kbd{Exp} \circ L = \Id$. Return $n$ terms of this
 power series:
 \bprog
 ? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
 %1 = z + 2/5*z^5 - 3/28*z^7 + 2/15*z^9 + O(z^11)
 ? L = ellformallog(E,10,'t);
 ? subst(Exp,z,L)
 %3 = t + O(t^11)
 @eprog

Function: ellformallog
Class: basic
Section: elliptic_curves
C-Name: ellformallog
Prototype: GDPDn
Help: ellformallog(E, {n = seriesprecision}, {v = 'x}): E elliptic curve,
 returns n terms of the elliptic logarithm as a series of t =-x/y.
Doc: The formal elliptic logarithm is a series $L$ in $t K[[t]]$
 such that $d L = \omega = dx / (2y + a_1x + a_3)$, the canonical invariant
 differential attached to the model $E$. It gives an isomorphism
 from the formal group of $E$ to the additive formal group.
 \bprog
 ? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
 %1 = t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 + O(t^10)
 ? [f,g] = ellformaldifferential(E,8,'t);
 ? L' - f
 %3 = O(t^8)
 @eprog

Function: ellformalpoint
Class: basic
Section: elliptic_curves
C-Name: ellformalpoint
Prototype: GDPDn
Help: ellformalpoint(E, {n = seriesprecision}, {v = 'x}): E elliptic curve,
 n integer; return the coordinates [x(t), y(t)] on the elliptic curve as a
 formal expansion in the formal parameter t = -x/y.
Doc: If $E$ is an elliptic curve, return the coordinates $x(t), y(t)$ in the
 formal group of the elliptic curve $E$ in the formal parameter $t = -x/y$
 at $\infty$:
 $$ x = t^{-2} -a_1 t^{-1} - a_2 - a_3 t + \dots $$
 $$ y = - t^{-3} -a_1 t^{-2} - a_2t^{-1} -a_3 + \dots $$
 Return $n$ terms (\tet{seriesprecision} by default) of these two power
 series, whose coefficients are in $\Z[a_1,a_2,a_3,a_4,a_6]$.
 \bprog
 ? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
 ? x
 %2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
 ? y
 %3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
 ? E = ellinit([0,1/2]); ellformalpoint(E,7)
 %4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]
 @eprog

Function: ellformalw
Class: basic
Section: elliptic_curves
C-Name: ellformalw
Prototype: GDPDn
Help: ellformalw(E, {n = seriesprecision}, {t = 'x}): E elliptic curve,
 n integer; returns n terms of the formal expansion of w = -1/y in the formal
 parameter t = -x/y.
Doc: Return the formal power series $w$ attached to the elliptic curve $E$,
 in the variable $t$:
 $$ w(t) = t^3 + a_1 t^4 + (a_2 + a_1^2) t^5 + \cdots + O(t^{n+3}),$$
 which is the formal expansion of $-1/y$ in the formal parameter $t := -x/y$
 at $\infty$ (take $n = \tet{seriesprecision}$ if $n$ is omitted). The
 coefficients of $w$ belong to $\Z[a_1,a_2,a_3,a_4,a_6]$.
 \bprog
 ? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
 %1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)
 @eprog

Function: ellfromeqn
Class: basic
Section: elliptic_curves
C-Name: ellfromeqn
Prototype: G
Help: ellfromeqn(P): given a genus 1 plane curve, defined by the affine
 equation f(x,y) = 0, return the coefficients [a1,a2,a3,a4,a6] of a
 Weierstrass equation for its Jacobian.
 This allows to recover a Weierstrass model for an elliptic curve given by a
 general plane cubic or by a binary quartic or biquadratic model.
Doc: 
 Given a genus $1$ plane curve, defined by the affine equation $f(x,y) = 0$,
 return the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of a Weierstrass equation
 for its Jacobian. This allows to recover a Weierstrass model for an elliptic
 curve given by a general plane cubic or by a binary quartic or biquadratic
 model. The function implements the $f \mapsto f^*$ formulae of Artin, Tate
 and Villegas (Advances in Math. 198 (2005), pp. 366--382).
 
 In the example below, the function is used to convert between twisted Edwards
 coordinates and Weierstrass coordinates.
 \bprog
 ? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
 %1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]
 ? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);
 ? isprime(ellcard(E) / 8)
 %3 = 1
 @eprog
 
 The elliptic curve attached to the sum of two cubes is given by
 \bprog
 ? ellfromeqn(x^3+y^3 - a)
 %1 = [0, 0, -9*a, 0, -27*a^2]
 @eprog
 
 \misctitle{Congruent number problem:}
 Let $n$ be an integer, if $a^2+b^2=c^2$ and $a\*b=2\*n$,
 then by substituting $b$ by $2\*n/a$ in the first equation,
 we get $((a^2+(2\*n/a)^2)-c^2)\*a^2 = 0$.
 We set $x=a$, $y=a\*c$.
 \bprog
 ? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
 %1 = [0, 0, 0, -16*n^2, 0]
 @eprog
 For example $23$ is congruent since the curve has a point of infinite order,
 namely:
 \bprog
 ? ellheegner( ellinit(subst(En, n, 23)) )
 %2 = [168100/289, 68053440/4913]
 @eprog

Function: ellfromj
Class: basic
Section: elliptic_curves
C-Name: ellfromj
Prototype: G
Help: ellfromj(j): returns the coefficients [a1,a2,a3,a4,a6] of a fixed
 elliptic curve with j-invariant j.
Doc: returns the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of a fixed elliptic curve
 with $j$-invariant $j$.

Function: ellgenerators
Class: basic
Section: elliptic_curves
C-Name: ellgenerators
Prototype: G
Help: ellgenerators(E): if E is an elliptic curve over the rationals,
 return the generators of the Mordell-Weil group attached to the curve.
 This relies on the curve being referenced in the elldata database.
 If E is an elliptic curve over a finite field Fq as output by ellinit(),
 return a minimal set of generators for the group E(Fq).
Doc: 
 If $E$ is an elliptic curve over the rationals, return a $\Z$-basis of the
 free part of the \idx{Mordell-Weil group} attached to $E$.  This relies on
 the \tet{elldata} database being installed and referencing the curve, and so
 is only available for curves over $\Z$ of small conductors.
 If $E$ is an elliptic curve over a finite field $\F_q$ as output by
 \tet{ellinit}, return a minimal set of generators for the group $E(\F_q)$.

Function: ellglobalred
Class: basic
Section: elliptic_curves
C-Name: ellglobalred
Prototype: G
Help: ellglobalred(E): E being an elliptic curve over a number field,
 returns [N, v, c, faN, L], where N is the conductor of E,
 c is the product of the local Tamagawa numbers c_p, faN is the
 factorization of N and L[i] is elllocalred(E, faN[i,1]); v is an obsolete
 field.
Description: 
 (gen):gen        ellglobalred($1)
Doc: let $E$ be an \kbd{ell} structure as output by \kbd{ellinit} attached
 to an elliptic curve defined over a number field. This function calculates
 the arithmetic conductor and the global \idx{Tamagawa number} $c$.
 The result $[N,v,c,F,L]$ is slightly different if $E$ is defined
 over $\Q$ (domain $D = 1$ in \kbd{ellinit}) or over a number field
 (domain $D$ is a number field structure, including \kbd{nfinit(x)}
 representing $\Q$ !):
 
 \item $N$ is the arithmetic conductor of the curve,
 
 \item $v$ is an obsolete field, left in place for backward compatibility.
 If $E$ is defined over $\Q$, $v$ gives the coordinate change for $E$ to the
 standard minimal integral model (\tet{ellminimalmodel} provides it in a
 cheaper way); if $E$ is defined over another number field, $v$ gives a
 coordinate change to an integral model (\tet{ellintegralmodel} provides it
 in a cheaper way).
 
 \item $c$ is the product of the local Tamagawa numbers $c_p$, a quantity
 which enters in the \idx{Birch and Swinnerton-Dyer conjecture},
 
 \item $F$ is the factorization of $N$,
 
 \item $L$ is a vector, whose $i$-th entry contains the local data
 at the $i$-th prime ideal divisor of $N$, i.e.
 \kbd{L[i] = elllocalred(E,F[i,1])}. If $E$ is defined over $\Q$, the local
 coordinate change has been deleted and replaced by a 0; if $E$ is defined
 over another number field the local coordinate change to a local minimal
 model is given relative to the integral model afforded by $v$ (so either
 start from an integral model so that $v$ be trivial, or apply $v$ first).

Function: ellgroup
Class: basic
Section: elliptic_curves
C-Name: ellgroup0
Prototype: GDGD0,L,
Help: ellgroup(E,{p},{flag}): computes the structure of the group E(Fp)
 If flag is 1, return also generators.
Doc: Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
 $\Q$ or a finite field $\F_q$. The argument $p$ is best left omitted if the
 curve is defined over a finite field, and must be a prime number otherwise.
 This function computes the structure of the group $E(\F_q) \sim \Z/d_1\Z
 \times \Z/d_2\Z$, with $d_2\mid d_1$.
 
 If the curve is defined over $\Q$, $p$ must be explicitly given and the
 function computes the structure of the reduction over $\F_p$; the
 equation need not be minimal at $p$, but a minimal model will be more
 efficient. The reduction is allowed to be singular, and we return the
 structure of the (cyclic) group of non-singular points in this case.
 
 If the flag is $0$ (default), return $[d_1]$ or $[d_1, d_2]$, if $d_2>1$.
 If the flag is $1$, return a triple $[h,\var{cyc},\var{gen}]$, where
 $h$ is the curve cardinality, \var{cyc} gives the group structure as a
 product of cyclic groups (as per $\fl = 0$). More precisely, if $d_2 > 1$,
 the output is $[d_1d_2, [d_1,d_2],[P,Q]]$ where $P$ is
 of order $d_1$ and $[P,Q]$ generates the curve.
 \misctitle{Caution} It is not guaranteed that $Q$ has order $d_2$, which in
 the worst case requires an expensive discrete log computation. Only that
 \kbd{ellweilpairing(E, P, Q, d1)} has order $d_2$.
 \bprog
 ? E = ellinit([0,1]);  \\ y^2 = x^3 + 0.x + 1, defined over Q
 ? ellgroup(E, 7)
 %2 = [6, 2] \\ Z/6 x Z/2, non-cyclic
 ? E = ellinit([0,1] * Mod(1,11));  \\ defined over F_11
 ? ellgroup(E)   \\ no need to repeat 11
 %4 = [12]
 ? ellgroup(E, 11)   \\ ... but it also works
 %5 = [12]
 ? ellgroup(E, 13) \\ ouch, inconsistent input!
    ***   at top-level: ellgroup(E,13)
    ***                 ^--------------
    *** ellgroup: inconsistent moduli in Rg_to_Fp:
      11
      13
 ? ellgroup(E, 7, 1)
 %6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]
 @eprog\noindent
 If $E$ is defined over $\Q$, we allow singular reduction and in this case we
 return the structure of the group of non-singular points, satisfying
 $\#E_{ns}(\F_p) = p - a_p$.
 \bprog
 ? E = ellinit([0,5]);
 ? ellgroup(E, 5, 1)
 %2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
 ? ellap(E, 5)
 %3 = 0 \\ additive reduction at 5
 ? E = ellinit([0,-1,0,35,0]);
 ? ellgroup(E, 5, 1)
 %5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
 ? ellap(E, 5)
 %6 = 1 \\ split multiplicative reduction at 5
 ? ellgroup(E, 7, 1)
 %7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
 ? ellap(E, 7)
 %8 = -1 \\ non-split multiplicative reduction at 7
 @eprog
Variant: Also available is \fun{GEN}{ellgroup}{GEN E, GEN p}, corresponding
 to \fl = 0.

Function: ellheegner
Class: basic
Section: elliptic_curves
C-Name: ellheegner
Prototype: G
Help: ellheegner(E): return a rational non-torsion point on the elliptic curve E
 assumed to be of rank 1.
Doc: Let $E$ be an elliptic curve over the rationals, assumed to be of
 (analytic) rank $1$. This returns a non-torsion rational point on the curve,
 whose canonical height is equal to the product of the elliptic regulator by the
 analytic Sha.
 
 This uses the Heegner point method, described in Cohen GTM 239; the complexity
 is proportional to the product of the square root of the conductor and the
 height of the point (thus, it is preferable to apply it to strong Weil curves).
 \bprog
 ? E = ellinit([-157^2,0]);
 ? u = ellheegner(E); print(u[1], "\n", u[2])
 69648970982596494254458225/166136231668185267540804
 538962435089604615078004307258785218335/67716816556077455999228495435742408
 ? ellheegner(ellinit([0,1]))         \\ E has rank 0 !
  ***   at top-level: ellheegner(E=ellinit
  ***                 ^--------------------
  *** ellheegner: The curve has even analytic rank.
 @eprog

Function: ellheight
Class: basic
Section: elliptic_curves
C-Name: ellheight0
Prototype: GGDGp
Help: ellheight(E,P,{Q}): canonical height of point P on elliptic curve E,
 resp. the value of the attached bilinear form at (P,Q).
Doc: global N\'eron-Tate height $h(P)$ of the point $P$ on the elliptic curve
 $E/\Q$, using the normalization in Cremona's \emph{Algorithms for modular
 elliptic curves}. $E$ must be an \kbd{ell} as output by \kbd{ellinit}; it
 needs not be given by a minimal model although the computation will be faster
 if it is.
 
 If the argument $Q$ is present, computes the value of the bilinear
 form $(h(P+Q)-h(P-Q)) / 4$.
Variant: Also available is \fun{GEN}{ellheight}{GEN E, GEN P, long prec}
 ($Q$ omitted).

Function: ellheightmatrix
Class: basic
Section: elliptic_curves
C-Name: ellheightmatrix
Prototype: GGp
Help: ellheightmatrix(E,x): gives the height matrix for vector of points x
 on elliptic curve E.
Doc: $x$ being a vector of points, this
 function outputs the Gram matrix of $x$ with respect to the N\'eron-Tate
 height, in other words, the $(i,j)$ component of the matrix is equal to
 \kbd{ellbil($E$,x[$i$],x[$j$])}. The rank of this matrix, at least in some
 approximate sense, gives the rank of the set of points, and if $x$ is a
 basis of the \idx{Mordell-Weil group} of $E$, its determinant is equal to
 the regulator of $E$. Note our height normalization follows Cremona's
 \emph{Algorithms for modular elliptic curves}: this matrix should be divided
 by 2 to be in accordance with, e.g., Silverman's normalizations.

Function: ellidentify
Class: basic
Section: elliptic_curves
C-Name: ellidentify
Prototype: G
Help: ellidentify(E): look up the elliptic curve E in the elldata database and
 return [[N, M, ...], C] where N is the name of the curve in Cremona's
 database, M the minimal model and C the coordinates change (see
 ellchangecurve).
Doc: look up the elliptic curve $E$, defined by an arbitrary model over $\Q$,
 in the \tet{elldata} database.
 Return \kbd{[[N, M, G], C]}  where $N$ is the curve name in Cremona's
 elliptic curve database, $M$ is the minimal model, $G$ is a $\Z$-basis of
 the free part of the \idx{Mordell-Weil group} $E(\Q)$ and $C$ is the
 change of coordinates change, suitable for \kbd{ellchangecurve}.

Function: ellinit
Class: basic
Section: elliptic_curves
C-Name: ellinit
Prototype: GDGp
Help: ellinit(x,{D=1}): let x be a vector [a1,a2,a3,a4,a6], or [a4,a6] if
 a1=a2=a3=0, defining the curve Y^2 + a1.XY + a3.Y = X^3 + a2.X^2 + a4.X +
 a6; x can also be a string, in which case the curve with matching name is
 retrieved from the elldata database, if available. This function initializes
 an elliptic curve over the domain D (inferred from coefficients if omitted).
Description: 
 (gen, gen, small):ell:prec  ellinit($1, $2, $prec)
Doc: 
 initialize an \tet{ell} structure, attached to the elliptic curve $E$.
 $E$ is either
 
 \item a $5$-component vector $[a_1,a_2,a_3,a_4,a_6]$ defining the elliptic
 curve with Weierstrass equation
 $$ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6, $$
 
 \item a $2$-component vector $[a_4,a_6]$ defining the elliptic
 curve with short Weierstrass equation
 $$ Y^2 = X^3 + a_4 X + a_6, $$
 
 \item a character string in Cremona's notation, e.g. \kbd{"11a1"}, in which
 case the curve is retrieved from the \tet{elldata} database if available.
 
 The optional argument $D$ describes the domain over which the curve is
 defined:
 
 \item the \typ{INT} $1$ (default): the field of rational numbers $\Q$.
 
 \item a \typ{INT} $p$, where $p$ is a prime number: the prime finite field
 $\F_p$.
 
 \item an \typ{INTMOD} \kbd{Mod(a, p)}, where $p$ is a prime number: the
 prime finite field $\F_p$.
 
 \item a \typ{FFELT}, as returned by \tet{ffgen}: the corresponding finite
 field $\F_q$.
 
 \item a \typ{PADIC}, $O(p^n)$: the field $\Q_p$, where $p$-adic quantities
 will be computed to a relative accuracy of $n$ digits. We advise to input a
 model defined over $\Q$ for such curves. In any case, if you input an
 approximate model with \typ{PADIC} coefficients, it will be replaced by a lift
 to $\Q$ (an exact model ``close'' to the one that was input) and all quantities
 will then be computed in terms of this lifted model, at the given accuracy.
 
 \item a \typ{REAL} $x$: the field $\C$ of complex numbers, where floating
 point quantities are by default computed to a relative accuracy of
 \kbd{precision}$(x)$. If no such argument is given, the value of
 \kbd{realprecision} at the time \kbd{ellinit} is called will be used.
 
 \item a number field $K$, given by a \kbd{nf} or \kbd{bnf} structure; a
 \kbd{bnf} is required for \kbd{ellminimalmodel}.
 
 \item a prime ideal $\goth{p}$, given by a \kbd{prid} structure; valid if
 $x$ is a curve defined over a number field $K$ and the equation is integral
 and minimal at $\goth{p}$.
 
 This argument $D$ is indicative: the curve coefficients are checked for
 compatibility, possibly changing $D$; for instance if $D = 1$ and
 an \typ{INTMOD} is found. If inconsistencies are detected, an error is
 raised:
 \bprog
 ? ellinit([1 + O(5), 1], O(7));
  ***   at top-level: ellinit([1+O(5),1],O
  ***                 ^--------------------
  *** ellinit: inconsistent moduli in ellinit: 7 != 5
 @eprog\noindent If the curve coefficients are too general to fit any of the
 above domain categories, only basic operations, such as point addition, will
 be supported later.
 
 If the curve (seen over the domain $D$) is singular, fail and return an
 empty vector $[]$.
 \bprog
 ? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1, over Q
 ? E = ellinit([0,1]);       \\ the same curve, short form
 ? E = ellinit("36a1");      \\ sill the same curve, Cremona's notations
 ? E = ellinit([0,1], 2)     \\ over F2: singular curve
 %4 = []
 ? E = ellinit(['a4,'a6] * Mod(1,5));  \\ over F_5[a4,a6], basic support !
 @eprog\noindent
 
 The result of \tet{ellinit} is an \tev{ell} structure. It contains at least
 the following information in its components:
 %
 $$ a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,\Delta,j.$$
 %
 All are accessible via member functions. In particular, the discriminant is
 \kbd{$E$.disc}, and the $j$-invariant is \kbd{$E$.j}.
 \bprog
 ? E = ellinit([a4, a6]);
 ? E.disc
 %2 = -64*a4^3 - 432*a6^2
 ? E.j
 %3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)
 @eprog
 Further components contain domain-specific data, which are in general dynamic:
 only computed when needed, and then cached in the structure.
 \bprog
 ? E = ellinit([2,3], 10^60+7);  \\ E over F_p, p large
 ? ellap(E)
 time = 4,440 ms.
 %2 = -1376268269510579884904540406082
 ? ellcard(E);  \\ now instantaneous !
 time = 0 ms.
 ? ellgenerators(E);
 time = 5,965 ms.
 ? ellgenerators(E); \\ second time instantaneous
 time = 0 ms.
 @eprog
 See the description of member functions related to elliptic curves at the
 beginning of this section.

Function: ellintegralmodel
Class: basic
Section: elliptic_curves
C-Name: ellintegralmodel
Prototype: GD&
Help: ellintegralmodel(E,{&v}): given an elliptic curve E defined
 over a number field, returns an integral model. If v is present,
 sets the variable v to the corresponding change of variable.
Doc: Let $E$ be an \kbd{ell} structure over a number field $K$. This function
 returns an integral model. If $v$ is present, sets $v = [u,0,0,0]$ to the
 corresponding change of variable: the return value is identical to that of
 \kbd{ellchangecurve(E, v)}.

Function: ellisdivisible
Class: basic
Section: elliptic_curves
C-Name: ellisdivisible
Prototype: lGGGD&
Help: ellisdivisible(E,P,n,{&Q})): given E/K and P in E(K),
 checks whether P = [n]R for some R in E(K) and sets Q to one such R if so;
 the integer n >= 0 may be given as ellxn(E,n).
Doc: given $E/K$ a number field and $P$ in $E(K)$
 return $1$ if $P = [n]R$ for some $R$ in $E(K)$ and set $Q$ to one such $R$;
 and return $0$ otherwise. The integer $n \geq 0$ may be given as
 \kbd{ellxn(E,n)}, if many points need to be tested.
 \bprog
 ? K = nfinit(polcyclo(11,t));
 ? E = ellinit([0,-1,1,0,0], K);
 ? P = [0,0];
 ? ellorder(E,P)
 %4 = 5
 ? ellisdivisible(E,P,5, &Q)
 %5 = 1
 ? lift(Q)
 %6 = [-t^7-t^6-t^5-t^4+1, -t^9-2*t^8-2*t^7-3*t^6-3*t^5-2*t^4-2*t^3-t^2-1]
 ? ellorder(E, Q)
 %7 = 25
 @eprog\noindent The algebraic complexity of the underlying algorithm is in
 $O(n^4)$, so it is advisable to first factor $n$, then use a chain of checks
 attached to the prime divisors of $n$: the function will do it itself unless
 $n$ is given in \kbd{ellxn} form.

Function: ellisogeny
Class: basic
Section: elliptic_curves
C-Name: ellisogeny
Prototype: GGD0,L,DnDn
Help: ellisogeny(E, G, {only_image = 0}, {x = 'x}, {y = 'y}): compute the image
 and isogeny corresponding to the quotient of E by the subgroup G.
Doc: 
 Given an elliptic curve $E$, a finite subgroup $G$ of $E$ is given either
 as a generating point $P$ (for a cyclic $G$) or as a polynomial whose roots
 vanish on the $x$-coordinates of the non-zero elements of $G$ (general case
 and more efficient if available). This function returns the
 $[a_1,a_2,a_3,a_4,a_6]$ invariants of the quotient elliptic curve $E/G$ and
 (if \var{only\_image} is zero (the default)) a vector of rational
 functions $[f, g, h]$ such that the isogeny $E \to E/G$ is given by $(x,y)
 \mapsto (f(x)/h(x)^2, g(x,y)/h(x)^3)$.
 \bprog
 ? E = ellinit([0,1]);
 ? elltors(E)
 %2 = [6, [6], [[2, 3]]]
 ? ellisogeny(E, [2,3], 1)  \\ Weierstrass model for E/<P>
 %3 = [0, 0, 0, -135, -594]
 ? ellisogeny(E,[-1,0])
 %4 = [[0,0,0,-15,22], [x^3+2*x^2+4*x+3, y*x^3+3*y*x^2-2*y, x+1]]
 @eprog

Function: ellisogenyapply
Class: basic
Section: elliptic_curves
C-Name: ellisogenyapply
Prototype: GG
Help: ellisogenyapply(f, g): given an isogeny f and g either a point P (in the
 domain of f) or an isogeny, apply f to g: return the image of P under f or
 the composite isogeny f o g.
Doc: 
 Given an isogeny of elliptic curves $f:E'\to E$ (being the result of a call
 to \tet{ellisogeny}), apply $f$ to $g$:
 
 \item if $g$ is a point $P$ in the domain of $f$, return the image $f(P)$;
 
 \item if $g:E''\to E'$ is a compatible isogeny, return the composite
 isogeny $f \circ g:  E''\to E$.
 
 \bprog
 ? one = ffgen(101, 't)^0;
 ? E = ellinit([6, 53, 85, 32, 34] * one);
 ? P = [84, 71] * one;
 ? ellorder(E, P)
 %4 = 5
 ? [F, f] = ellisogeny(E, P);  \\ f: E->F = E/<P>
 ? ellisogenyapply(f, P)
 %6 = [0]
 ? F = ellinit(F);
 ? Q = [89, 44] * one;
 ? ellorder(F, Q)
 %9 = 2
 ? [G, g] = ellisogeny(F, Q); \\  g: F->G = F/<Q>
 ? gof = ellisogenyapply(g, f); \\ gof: E -> G
 @eprog

Function: ellisomat
Class: basic
Section: elliptic_curves
C-Name: ellisomat
Prototype: GD0,L,
Help: ellisomat(E, {fl=0}): E being an elliptic curve over Q, return a list of
 representatives of the isomorphism classes of elliptic curves isogenous to E,
 with the corresponding isogenies from E and their dual, and the matrix of the
 degrees of the isogenies between the curves. If the flag fl is 1, the
 isogenies are not computed, which saves time.
Doc: 
 Given an elliptic curve $E$ defined over $\Q$, compute representatives of the
 isomorphism classes of elliptic curves $\Q$-isogenous to $E$. The function
 returns a vector $[L,M]$ where $L$ is a list of triples $[E_i, f_i, g_i]$,
 where $E_i$ is an elliptic curve in $[a_4,a_6]$ form, $f_i: E \to E_i$
 is a rational isogeny, $g_i: E_i \to E$ is the dual isogeny of $f_i$,
 and $M$ is the matrix such that $M_{i,j}$ is the degree of the isogeny between
 $E_i$ and $E_j$. Furthermore the first curve $E_1$ is isomorphic to $E$
 by $f_1$. If the flag $\var{fl}=1$, the $f_i$ and $g_i$ are not computed,
 which saves time, and $L$ is the list of the curves $E_i$.
 \bprog
 ? E = ellinit("14a1");
 ? [L,M] = ellisomat(E);
 ? LE = apply(x->x[1], L)  \\ list of curves
 %3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
      [-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]]
 ? L[2][2]  \\ isogeny f_2
 %4 = [x^3+3/4*x^2+19/2*x-311/12,
       1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
 ? L[2][3]  \\ dual isogeny g_2
 %5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
       -1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x
       +(-3601/64*y+16947/512),x-3/4]
 ? apply(E->ellidentify(ellinit(E))[1][1], LE)
 %6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
 ? M
 %7 =
 [1  3  3 2  6  6]
 
 [3  1  9 6  2 18]
 
 [3  9  1 6 18  2]
 
 [2  6  6 1  3  3]
 
 [6  2 18 3  1  9]
 
 [6 18  2 3  9  1]
 @eprog

Function: ellisoncurve
Class: basic
Section: elliptic_curves
C-Name: ellisoncurve
Prototype: GG
Help: ellisoncurve(E,z): true(1) if z is on elliptic curve E, false(0) if not.
Doc: gives 1 (i.e.~true) if the point $z$ is on the elliptic curve $E$, 0
 otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to
 take this into account, i.e.~an imprecise equality is checked, not a precise
 one. It is allowed for $z$ to be a vector of points in which case a vector
 (of the same type) is returned.
Variant: Also available is \fun{int}{oncurve}{GEN E, GEN z} which does not
 accept vectors of points.

Function: ellissupersingular
Class: basic
Section: elliptic_curves
C-Name: ellissupersingular
Prototype: iGDG
Help: ellissupersingular(E,{p}): decide whether the elliptic curve E, defined
 over a number field or a finite field, is supersingular at p or not.
Doc: 
 Return 1 if the elliptic curve $E$ defined over a number field
 or a finite field is supersingular at $p$, and $0$ otherwise.
 If the curve is defined over a number field, $p$ must be explicitly given,
 and must be a prime number, resp.~a maximal ideal, if the curve is defined
 over $\Q$, resp.~a general number field: we return $1$ if and only if $E$
 has supersingular good reduction at $p$.
 
 Alternatively, $E$ can be given by its $j$-invariant in a finite field. In
 this case $p$ must be omitted.
 \bprog
 ? g = ffprimroot(ffgen(7^5))
 %1 = x^3 + 2*x^2 + 3*x + 1
 ? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]
 %2 = [6]
 
 ? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
 ? E = ellinit([y,1], K);
 ? ellissupersingular(E, P)
 %5 = 1
 @eprog
Variant: Also available is
 \fun{int}{elljissupersingular}{GEN j} where $j$ is a $j$-invariant of a curve
 over a finite field.

Function: ellj
Class: basic
Section: elliptic_curves
C-Name: jell
Prototype: Gp
Help: ellj(x): elliptic j invariant of x.
Doc: 
 elliptic $j$-invariant. $x$ must be a complex number
 with positive imaginary part, or convertible into a power series or a
 $p$-adic number with positive valuation.

Function: elllocalred
Class: basic
Section: elliptic_curves
C-Name: elllocalred
Prototype: GG
Help: elllocalred(E,p): E being an elliptic curve, returns
 [f,kod,[u,r,s,t],c], where f is the conductor's exponent, kod is the Kodaira
 type for E at p, [u,r,s,t] is the change of variable needed to make E
 minimal at p, and c is the local Tamagawa number c_p.
Doc: 
 calculates the \idx{Kodaira} type of the local fiber of the elliptic curve
 $E$ at $p$. $E$ must be an \kbd{ell} structure as output by
 \kbd{ellinit}, over $\Q$ ($p$ a rational prime) or a number field $K$ ($p$
 a maximal ideal given by a \kbd{prid} structure), and is assumed to have all
 its coefficients $a_i$ integral.
 The result is a 4-component vector $[f,kod,v,c]$. Here $f$ is the exponent of
 $p$ in the arithmetic conductor of $E$, and $kod$ is the Kodaira type which
 is coded as follows:
 
 1 means good reduction (type I$_0$), 2, 3 and 4 mean types II, III and IV
 respectively, $4+\nu$ with $\nu>0$ means type I$_\nu$;
 finally the opposite values $-1$, $-2$, etc.~refer to the starred types
 I$_0^*$, II$^*$, etc. The third component $v$ is itself a vector $[u,r,s,t]$
 giving the coordinate changes done during the local reduction;
 $u = 1$ if and only if the given equation was already minimal at $p$.
 Finally, the last component $c$ is the local \idx{Tamagawa number} $c_p$.

Function: elllog
Class: basic
Section: elliptic_curves
C-Name: elllog
Prototype: GGGDG
Help: elllog(E,P,G,{o}): return the discrete logarithm of the point P of
 the elliptic curve E in base G. If present, o represents the order of G.
 If not present, assume that G generates the curve.
Doc: given two points $P$ and $G$ on the elliptic curve $E/\F_q$, returns the
 discrete logarithm of $P$ in base $G$, i.e. the smallest non-negative
 integer $n$ such that $P = [n]G$.
 See \tet{znlog} for the limitations of the underlying discrete log algorithms.
 If present, $o$ represents the order of $G$, see \secref{se:DLfun};
 the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$
 is  the order of $G$.
 
 If no $o$ is given, assume that $G$ generates the curve.
 The function also assumes that $P$ is a multiple of $G$.
 \bprog
 ? a = ffgen(ffinit(2,8),'a);
 ? E = ellinit([a,1,0,0,1]);  \\ over F_{2^8}
 ? x = a^3; y = ellordinate(E,x)[1];
 ? P = [x,y]; G = ellmul(E, P, 113);
 ? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
 ? ellorder(E, G, ord)
 %4 = 242
 ? e = elllog(E, P, G, ord)
 %5 = 15
 ? ellmul(E,G,e) == P
 %6 = 1
 @eprog

Function: elllseries
Class: basic
Section: elliptic_curves
C-Name: elllseries
Prototype: GGDGp
Help: elllseries(E,s,{A=1}): L-series at s of the elliptic curve E, where A
 a cut-off point close to 1.
Doc: 
 This function is deprecated, use \kbd{lfun(E,s)} instead.
 
 $E$ being an elliptic curve, given by an arbitrary model over $\Q$ as output
 by \kbd{ellinit}, this function computes the value of the $L$-series of $E$ at
 the (complex) point $s$. This function uses an $O(N^{1/2})$ algorithm, where
 $N$ is the conductor.
 
 The optional parameter $A$ fixes a cutoff point for the integral and is best
 left omitted; the result must be independent of $A$, up to
 \kbd{realprecision}, so this allows to check the function's accuracy.
Obsolete: 2016-08-08

Function: ellminimalmodel
Class: basic
Section: elliptic_curves
C-Name: ellminimalmodel
Prototype: GD&
Help: ellminimalmodel(E,{&v}): determines whether the elliptic curve E defined
 over a number field admits a global minimal model. If so return it
 and sets v to the corresponding change of variable. Else return the
 (non-principal) Weierstrass class of E.
Doc: Let $E$ be an \kbd{ell} structure over a number field $K$. This function
 determines whether $E$ admits a global minimal integral model. If so, it
 returns it and sets $v = [u,r,s,t]$ to the corresponding change of variable:
 the return value is identical to that of \kbd{ellchangecurve(E, v)}.
 
 Else return the (non-principal) Weierstrass class of $E$, i.e. the class of
 $\prod \goth{p}^{(v_{\goth{p}}{\Delta} - \delta_{\goth{p}}) / 12}$ where
 $\Delta = \kbd{E.disc}$ is the model's discriminant and
 $\goth{p} ^ \delta_{\goth{p}}$ is the local minimal discriminant.
 This function requires either that $E$ be defined
 over the rational field $\Q$ (with domain $D = 1$ in \kbd{ellinit}),
 in which case a global minimal model always exists, or over a number
 field given by a \var{bnf} structure. The Weierstrass class is given in
 \kbd{bnfisprincipal} format, i.e. in terms of the \kbd{K.gen} generators.
 
 The resulting model has integral coefficients and is everywhere minimal, the
 coefficients $a_1$ and $a_3$ are reduced modulo $2$ (in terms of the fixed
 integral basis \kbd{K.zk}) and $a_2$ is reduced modulo $3$. Over $\Q$, we
 further require that $a_1$ and $a_3$ be $0$ or $1$, that $a_2$ be $0$ or $\pm
 1$ and that $u > 0$ in the change of variable: both the model and the change
 of variable $v$ are then unique.\sidx{minimal model}
 
 \bprog
 ? e = ellinit([6,6,12,55,233]);  \\ over Q
 ? E = ellminimalmodel(e, &v);
 ? E[1..5]
 %3 = [0, 0, 0, 1, 1]
 ? v
 %4 = [2, -5, -3, 9]
 @eprog
 
 \bprog
 ? K = bnfinit(a^2-65);  \\ over a non-principal number field
 ? K.cyc
 %2 = [2]
 ? u = Mod(8+a, K.pol);
 ? E = ellinit([1,40*u+1,0,25*u^2,0], K);
 ? ellminimalmodel(E) \\ no global minimal model exists over Z_K
 %6 = [1]~
 @eprog

Function: ellminimaltwist
Class: basic
Section: elliptic_curves
C-Name: ellminimaltwist0
Prototype: GD0,L,
Help: ellminimaltwist(E, {flag=0}): E being an elliptic curve defined over Q, return
 a discriminant D such the twist of E by D is minimal among all possible quadratic
 twists, i.e.  if flag=0, its minimal model has minimal discriminant,
 or if flag=1, it has minimal conductor.
Doc: Let $E$ be an elliptic curve defined over $\Q$, return
 a discriminant $D$ such that the twist of $E$ by $D$ is minimal among all
 possible quadratic twists, i.e. if $\fl=0$, its minimal model has minimal
 discriminant, or if $\fl=1$, it has minimal conductor.
 
 In the example below, we find a curve with $j$-invariant $3$ and minimal
 conductor.
 \bprog
 ? E=ellminimalmodel(ellinit(ellfromj(3)));
 ? ellglobalred(E)[1]
 %2 = 357075
 ? D = ellminimaltwist(E,1)
 %3 = -15
 ? E2=ellminimalmodel(ellinit(elltwist(E,D)));
 ? ellglobalred(E2)[1]
 %5 = 14283
 @eprog
Variant: Also available are
 \fun{GEN}{ellminimaltwist}{E} for $\fl=0$, and
 \fun{GEN}{ellminimaltwistcond}{E} for $\fl=1$.

Function: ellmoddegree
Class: basic
Section: elliptic_curves
C-Name: ellmoddegree
Prototype: Gb
Help: ellmoddegree(e): e being an elliptic curve defined over Q output by
  ellinit, compute the modular degree of e divided by the square of the
  Manin constant. Return [D, err], where D is a rational number and
  err is the exponent of the truncation error.
Doc: $e$ being an elliptic curve defined over $\Q$ output by \kbd{ellinit},
  compute the modular degree of $e$ divided by the square of
  the Manin constant. Return $[D, err]$, where $D$ is a rational number and
  err is exponent of the truncation error.

Function: ellmodulareqn
Class: basic
Section: elliptic_curves
C-Name: ellmodulareqn
Prototype: LDnDn
Help: ellmodulareqn(N,{x},{y}): given a prime N < 500, return a vector [P, t]
 where P(x,y) is a modular equation of level N. This requires the package
 seadata. The equation is either of canonical type (t=0) or of Atkin type (t=1).
Doc: given a prime $N < 500$, return a vector $[P,t]$ where $P(x,y)$
 is a modular equation of level $N$, i.e.~a bivariate polynomial with integer
 coefficients; $t$ indicates the type of this equation: either
 \emph{canonical} ($t = 0$) or \emph{Atkin} ($t = 1$). This function requires
 the \kbd{seadata} package and its only use is to give access to the package
 contents. See \tet{polmodular} for a more general and more flexible function.
 
 Let $j$ be the $j$-invariant function. The polynomial $P$ satisfies
 the functional equation,
 $$ P(f,j) = P(f \mid W_N, j \mid W_N) = 0 $$
 for some modular function $f = f_N$ (hand-picked for each fixed $N$ to
 minimize its size, see below), where $W_N(\tau) = -1 / (N\*\tau)$ is the
 Atkin-Lehner involution. These two equations allow to compute the values of
 the classical modular polynomial $\Phi_N$, such that $\Phi_N(j(\tau),
 j(N\tau)) = 0$, while being much smaller than the latter. More precisely, we
 have $j(W_N(\tau)) = j(N\*\tau)$; the function $f$ is invariant under
 $\Gamma_0(N)$ and also satisfies
 
 \item for Atkin type: $f \mid W_N = f$;
 
 \item for canonical type: let $s = 12/\gcd(12,N-1)$, then
 $f \mid W_N = N^s / f$. In this case, $f$ has a simple definition:
 $f(\tau) = N^s \* \big(\eta(N\*\tau) / \eta(\tau) \big)^{2\*s}$,
 where $\eta$ is Dedekind's eta function.
 
 The following GP function returns values of the classical modular polynomial
 by eliminating $f_N(\tau)$ in the above functional equation,
 for $N\leq 31$ or $N\in\{41,47,59,71\}$.
 
 \bprog
 classicaleqn(N, X='X, Y='Y)=
 {
   my([P,t] = ellmodulareqn(N), Q, d);
   if (poldegree(P,'y) > 2, error("level unavailable in classicaleqn"));
   if (t == 0, \\ Canonical
     my(s = 12/gcd(12,N-1));
     Q = 'x^(N+1) * substvec(P,['x,'y],[N^s/'x,Y]);
     d = N^(s*(2*N+1)) * (-1)^(N+1);
   , \\ Atkin
     Q = subst(P,'y,Y);
     d = (X-Y)^(N+1));
   polresultant(subst(P,'y,X), Q) / d;
 }
 @eprog

Function: ellmul
Class: basic
Section: elliptic_curves
C-Name: ellmul
Prototype: GGG
Help: ellmul(E,z,n): n times the point z on elliptic curve E (n in Z).
Doc: 
 computes $[n]z$, where $z$ is a point on the elliptic curve $E$. The
 exponent $n$ is in $\Z$, or may be a complex quadratic integer if the curve $E$
 has complex multiplication by $n$ (if not, an error message is issued).
 \bprog
 ? Ei = ellinit([1,0]); z = [0,0];
 ? ellmul(Ei, z, 10)
 %2 = [0]     \\ unsurprising: z has order 2
 ? ellmul(Ei, z, I)
 %3 = [0, 0]  \\ Ei has complex multiplication by Z[i]
 ? ellmul(Ei, z, quadgen(-4))
 %4 = [0, 0]  \\ an alternative syntax for the same query
 ? Ej  = ellinit([0,1]); z = [-1,0];
 ? ellmul(Ej, z, I)
   ***   at top-level: ellmul(Ej,z,I)
   ***                 ^--------------
   *** ellmul: not a complex multiplication in ellmul.
 ? ellmul(Ej, z, 1+quadgen(-3))
 %6 = [1 - w, 0]
 @eprog
 The simple-minded algorithm for the CM case assumes that we are in
 characteristic $0$, and that the quadratic order to which $n$ belongs has
 small discriminant.

Function: ellneg
Class: basic
Section: elliptic_curves
C-Name: ellneg
Prototype: GG
Help: ellneg(E,z): opposite of the point z on elliptic curve E.
Doc: 
 Opposite of the point $z$ on elliptic curve $E$.

Function: ellnonsingularmultiple
Class: basic
Section: elliptic_curves
C-Name: ellnonsingularmultiple
Prototype: GG
Help: ellnonsingularmultiple(E,P): given E/Q and P in E(Q), returns the pair
 [R,n] where n is the least positive integer such that R = [n]P has
 everywhere good reduction. More precisely, its image in a minimal model
 is everywhere non-singular.
Doc: given an elliptic curve $E/\Q$ (more precisely, a model defined over $\Q$
 of a curve) and a rational point $P \in E(\Q)$, returns the pair $[R,n]$,
 where $n$ is the least positive integer such that $R := [n]P$ has good
 reduction at every prime. More precisely, its image in a minimal model is
 everywhere non-singular.
 \bprog
 ? e = ellinit("57a1"); P = [2,-2];
 ? ellnonsingularmultiple(e, P)
 %2 = [[1, -1], 2]
 ? e = ellinit("396b2"); P = [35, -198];
 ? [R,n] = ellnonsingularmultiple(e, P);
 ? n
 %5 = 12
 @eprog

Function: ellorder
Class: basic
Section: elliptic_curves
C-Name: ellorder
Prototype: GGDG
Help: ellorder(E,z,{o}): order of the point z on the elliptic curve E over
 a number field or a finite field, 0 if non-torsion. The parameter o,
 if present, represents a non-zero multiple of the order of z.
Doc: gives the order of the point $z$ on the elliptic
 curve $E$, defined over a finite field or a number field.
 Return (the impossible value) zero if the point has infinite order.
 \bprog
 ? E = ellinit([-157^2,0]);  \\ the "157-is-congruent" curve
 ? P = [2,2]; ellorder(E, P)
 %2 = 2
 ? P = ellheegner(E); ellorder(E, P) \\ infinite order
 %3 = 0
 ? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
 ? ellorder(E, T.gen[1])
 %5 = 25
 ? E = ellinit(ellfromj(ffgen(5^10)));
 ? ellcard(E)
 %7 = 9762580
 ? P = random(E); ellorder(E, P)
 %8 = 4881290
 ? p = 2^160+7; E = ellinit([1,2], p);
 ? N = ellcard(E)
 %9 = 1461501637330902918203686560289225285992592471152
 ? o = [N, factor(N)];
 ? for(i=1,100, ellorder(E,random(E)))
 time = 260 ms.
 @eprog
 The parameter $o$, is now mostly useless, and kept for backward
 compatibility. If present, it represents a non-zero multiple of the order
 of $z$, see \secref{se:DLfun}; the preferred format for this parameter is
 \kbd{[ord, factor(ord)]}, where \kbd{ord} is the cardinality of the curve.
 It is no longer needed since PARI is now able to compute it over large
 finite fields (was restricted to small prime fields at the time this feature
 was introduced), \emph{and} caches the result in $E$ so that it is computed
 and factored only once. Modifying the last example, we see that including
 this extra parameter provides no improvement:
 \bprog
 ? o = [N, factor(N)];
 ? for(i=1,100, ellorder(E,random(E),o))
 time = 260 ms.
 @eprog
Variant: The obsolete form \fun{GEN}{orderell}{GEN e, GEN z} should no longer be
 used.

Function: ellordinate
Class: basic
Section: elliptic_curves
C-Name: ellordinate
Prototype: GGp
Help: ellordinate(E,x): y-coordinates corresponding to x-ordinate x on
 elliptic curve E.
Doc: 
 gives a 0, 1 or 2-component vector containing
 the $y$-coordinates of the points of the curve $E$ having $x$ as
 $x$-coordinate.

Function: ellpadicL
Class: basic
Section: elliptic_curves
C-Name: ellpadicL
Prototype: GGLDGD0,L,DG
Help: ellpadicL(E, p, n, {s = 0}, {r = 0}, {D = 1}): returns the value
 on a character of Z_p^* represented by an integer s or a vector [s1,s2]
 of the derivative of order r of the p-adic L-function of
 the elliptic curve E (twisted by D, if present).
Doc: Returns the value (or $r$-th derivative) on a character $\chi^s$ of
 $\Z_p^*$ of the $p$-adic $L$-function of the elliptic curve $E/\Q$, twisted by
 $D$, given modulo $p^n$.
 
 \misctitle{Characters} The set of continuous characters of
 $\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ is identified to $\Z_p^*$ via the
 cyclotomic character $\chi$ with values in $\overline{\Q_p}^*$. Denote by
 $\tau:\Z_p^*\to\Z_p^*$ the Teichm\"uller character, with values
 in the $(p-1)$-th roots of $1$ for $p\neq 2$, and $\{-1,1\}$ for $p = 2$;
 finally, let
 $\langle\chi\rangle =\chi \tau^{-1}$, with values in $1 + 2p\Z_p$.
 In GP, the continuous character of
 $\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ given by $\langle\chi\rangle^{s_1}
 \tau^{s_2}$ is represented by the pair of integers $s=(s_1,s_2)$, with $s_1
 \in \Z_p$ and $s_2 \bmod p-1$ for $p > 2$, (resp. mod $2$ for $p = 2$); $s$
 may be also an integer, representing $(s,s)$ or $\chi^s$.
 
 \misctitle{The $p$-adic $L$ function}
 The $p$-adic $L$ function $L_p$ is defined on the set of continuous
 characters of $\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$, as $\int_{\Z_p^*}
 \chi^s d \mu$ for a certain $p$-adic distribution $\mu$ on $\Z_p^*$. The
 derivative is given by
 $$L_p^{(r)}(E, \chi^s) = \int_{\Z_p^*} \log_p^r(a) \chi^s(a) d\mu(a).$$
 More precisely:
 
 \item When $E$ has good supersingular reduction, $L_p$ takes its
 values in $\Q_p \otimes H^1_{dR}(E/\Q)$ and satisfies
 $$(1-p^{-1} F)^{-2} L_p(E, \chi^0)= (L(E,1) / \Omega) \cdot \omega$$
 where $F$ is the Frobenius, $L(E,1)$ is the value of the complex $L$
 function at $1$, $\omega$ is the N\'eron differential
 and $\Omega$ the attached period on $E(\R)$. Here, $\chi^0$ represents
 the trivial character.
 
 The function returns the components of $L_p^{(r)}(E,\chi^s)$ in
 the basis $(\omega, F(\omega))$.
 
 \item When $E$ has ordinary good reduction, this method only defines
 the projection of $L_p(E,\chi^s)$ on the $\alpha$-eigenspace,
 where $\alpha$ is the unit eigenvalue for $F$. This is what the function
 returns. We have
 $$(1- \alpha^{-1})^{-2} L_{p,\alpha}(E,\chi^0)= L(E,1) / \Omega.$$
 
 Two supersingular examples:
 \bprog
 ? cxL(e) = bestappr( ellL1(e) / e.omega[1] );
 
 ? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0
 ? L = ellpadicL(e,p,4);
 ? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
 ? (1-p^(-1)*F)^-2 * L / cxL(e)
 %5 = [1 + O(3^5), O(3^5)]~ \\ [1,0]~
 
 ? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
 ? L = ellpadicL(e,p,4);
 ? F = [0,-p; 1,ellap(e,p)];
 ? (1-p^(-1)*F)^-2*L~ / cxL(e)
 %9 = [1 + O(3^4), O(3^5)]~
 @eprog
 
 Good ordinary reduction:
 \bprog
 ? e = ellinit("17a1"); p=5; ap = ellap(e,p)
 %1 = -2 \\ ordinary
 ? L = ellpadicL(e,p,4)
 %2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
 ? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];
 ? (1-al^(-1))^(-2) * L / cxL(e)
 %4 = 1 + O(5^4)
 @eprog
 
 Twist and Teichm\"uller:
 \bprog
 ? e = ellinit("17a1"); p=5; \\ ordinary
 \\ 2nd derivative at tau^1, twist by -7
 ? ellpadicL(e, p, 4, [0,1], 2, -7)
 %2 = 2*5^2 + 5^3 + O(5^4)
 @eprog
 
 This function is a special case of \tet{mspadicL}, and it also appears
 as the first term of \tet{mspadicseries}:
 \bprog
 ? e = ellinit("17a1"); p=5;
 ? L = ellpadicL(e,p,4)
 %2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
 ? [M,phi] = msfromell(e, 1);
 ? Mp = mspadicinit(M, p, 4);
 ? mu = mspadicmoments(Mp, phi);
 ? mspadicL(mu)
 %6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6)
 ? mspadicseries(mu)
 %7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))
       + (3 + 3*5 + 5^2 + 5^3 + O(5^4))*x
       + (2 + 3*5 + 5^2 + O(5^3))*x^2
       + (3 + 4*5 + 4*5^2 + O(5^3))*x^3
       + (3 + 2*5 + O(5^2))*x^4 + O(x^5)
 @eprog\noindent These are more cumbersome than \kbd{ellpadicL} but allow to
 compute at different characters, or successive derivatives, or to
 twist by a quadratic character essentially for the cost of a single call to
 \kbd{ellpadicL} due to precomputations.

Function: ellpadicfrobenius
Class: basic
Section: elliptic_curves
C-Name: ellpadicfrobenius
Prototype: GLL
Help: ellpadicfrobenius(E,p,n): matrix of the Frobenius at p>2 in the standard
 basis of H^1_dR(E) to absolute p-adic precision p^n.
Doc: If $p>2$ is a prime and $E$ is a elliptic curve on $\Q$ with good
 reduction at $p$, return the matrix of the Frobenius endomorphism $\varphi$ on
 the crystalline module $D_p(E)= \Q_p \otimes H^1_{dR}(E/\Q)$ with respect to
 the basis of the given model $(\omega, \eta=x\*\omega)$, where
 $\omega = dx/(2\*y+a_1\*x+a_3)$ is the invariant differential.
 The characteristic polynomial of $\varphi$ is $x^2 - a_p\*x + p$.
 The matrix is computed to absolute $p$-adic precision $p^n$.
 
 \bprog
 ? E = ellinit([1,-1,1,0,0]);
 ? F = ellpadicfrobenius(E,5,3);
 ? lift(F)
 %3 =
 [120 29]
 
 [ 55  5]
 ? charpoly(F)
 %4 = x^2 + O(5^3)*x + (5 + O(5^3))
 ? ellap(E, 5)
 %5 = 0
 @eprog

Function: ellpadicheight
Class: basic
Section: elliptic_curves
C-Name: ellpadicheight0
Prototype: GGLGDG
Help: ellpadicheight(E, p,n, P,{Q}): E elliptic curve/Q, P in E(Q),
 p prime, n an integer; returns the cyclotomic p-adic heights of P.
 Resp. the value of the attached bilinear form at (P,Q).
Doc: cyclotomic $p$-adic height of the rational point $P$ on the elliptic curve
 $E$ (defined over $\Q$), given to $n$ $p$-adic digits.
 If the argument $Q$ is present, computes the value of the bilinear
 form $(h(P+Q)-h(P-Q)) / 4$.
 
 Let $D_{dR}(E) := H^1_{dR}(E) \otimes_\Q \Q_p$ be the $\Q_p$ vector space
 spanned by $\omega$
 (invariant differential $dx/(2y+a_1x+a3)$ related to the given model) and
 $\eta = x \omega$. Then the cyclotomic $p$-adic height associates to
 $P\in E(\Q)$ an element $f \omega + g\eta$ in $D_{dR}$.
 This routine returns the vector $[f, g]$ to $n$ $p$-adic digits.
 
 If $P\in E(\Q)$ is in the kernel of reduction mod $p$ and if its reduction
 at all finite places is non singular, then $g = -(\log_E P)^2$, where
 $\log_E$ is the logarithm for the formal group of $E$ at $p$.
 
 If furthermore the model is of the form $Y^2 = X^3 + a X + b$ and $P = (x,y)$,
 then
   $$ f = \log_p(\kbd{denominator}(x)) - 2 \log_p(\sigma(P))$$
 where $\sigma(P)$ is given by \kbd{ellsigma}$(E,P)$.
 
 Recall (\emph{Advanced topics in the arithmetic of elliptic
 curves}, Theorem~3.2) that the local height function over the complex numbers
 is of the form
   $$ \lambda(z) = -\log (|\kbd{E.disc}|) / 6 + \Re(z \eta(z)) - 2 \log(
   \sigma(z). $$
 (N.B. our normalization for local and global heights is twice that of
 Silverman's).
 \bprog
  ? E = ellinit([1,-1,1,0,0]); P = [0,0];
  ? ellpadicheight(E,5,4, P)
  %2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^6)]
  ? E = ellinit("11a1"); P = [5,5]; \\ torsion point
  ? ellpadicheight(E,19,6, P)
  %4 = O(19^6)
  ? E = ellinit([0,0,1,-4,2]); P = [-2,1];
  ? ellpadicheight(E,3,5, P)
  %6 = [2*3^2 + 2*3^3 + 3^4 + O(3^5), 2*3^2 + 3^4 + 2*3^5 + 3^6 + O(3^7)]
  ? ellpadicheight(E,3,5, P, elladd(E,P,P))
 @eprog
 
 One can replace the parameter $p$ prime by a vector $[p,[a,b]]$, in which
 case the routine returns the $p$-adic number $af + bg$.
 
 When $E$ has good ordinary reduction at $p$, the ``canonical''
 $p$-adic height is given by
 \bprog
 s2 = ellpadics2(E,p,n);
 ellpadicheight(E, [p,[1,-s2]], n, P)
 @eprog\noindent Since $s_2$ does not depend on $P$, it is preferable to
 compute it only once:
 \bprog
 ? E = ellinit("5077a1"); p = 5; n = 7;
 ? s2 = ellpadics2(E,p,n);
 ? M = ellpadicheightmatrix(E,[p,[1,-s2]], n, E.gen);
 ? matdet(M)   \\ p-adic regulator
 %4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 5^6 + O(5^7)
 @eprog

Function: ellpadicheightmatrix
Class: basic
Section: elliptic_curves
C-Name: ellpadicheightmatrix
Prototype: GGLG
Help: ellpadicheightmatrix(E,p,n,v): gives the height-pairing matrix for vector
 of points v on elliptic curve E.
Doc: $v$ being a vector of points, this function outputs the Gram matrix of
 $v$ with respect to the cyclotomic $p$-adic height, given to $n$ $p$-adic
 digits; in other words, the $(i,j)$ component of the matrix is equal to
 \kbd{ellpadicheight}$(E,p,n, v[i],v[j]) = [f,g]$.
 
 See \tet{ellpadicheight}; in particular one can replace the parameter $p$
 prime by a vector $[p,[a,b]]$, in which case the routine returns the matrix
 containing the $p$-adic numbers $af + bg$.

Function: ellpadiclog
Class: basic
Section: elliptic_curves
C-Name: ellpadiclog
Prototype: GGLG
Help: ellpadiclog(E,p,n,P): returns the logarithm of P (in the kernel of
 reduction) to absolute p-adic precision p^n.
Doc: Given $E$ defined over $K = \Q$ or $\Q_p$ and $P = [x,y]$ on $E(K)$ in the
 kernel of reduction mod $p$, let $t(P) = -x/y$ be the formal group
 parameter; this function returns $L(t)$, where $L$ denotes the formal
 logarithm (mapping the formal group of $E$  to the additive formal group)
 attached to the canonical invariant differential:
 $dL = dx/(2y + a_1x + a_3)$.

Function: ellpadics2
Class: basic
Section: elliptic_curves
C-Name: ellpadics2
Prototype: GGL
Help: ellpadics2(E,p,n): returns s2 to absolute p-adic precision p^n.
Doc: If $p>2$ is a prime and $E/\Q$ is a elliptic curve with ordinary good
 reduction at $p$, returns the slope of the unit eigenvector
 of \kbd{ellpadicfrobenius(E,p,n)}, i.e. the action of Frobenius $\varphi$ on
 the crystalline module $D_p(E)= \Q_p \otimes H^1_{dR}(E/\Q)$ in the basis of
 the given model $(\omega, \eta=x\*\omega)$, where $\omega$ is the invariant
 differential $dx/(2\*y+a_1\*x+a_3)$. In other words, $\eta + s_2\omega$
 is an eigenvector for the unit eigenvalue of $\varphi$.
 
 This slope is the unique $c \in 3^{-1}\Z_p$ such that the odd solution
   $\sigma(t) = t + O(t^2)$ of
 $$ - d(\dfrac{1}{\sigma} \dfrac{d \sigma}{\omega})
  = (x(t) + c) \omega$$
 is in $t\Z_p[[t]]$.
 
 It is equal to $b_2/12 - E_2/12$ where $E_2$ is the value of the Katz
 $p$-adic Eisenstein series of weight 2 on $(E,\omega)$. This is
 used to construct a canonical $p$-adic height when $E$ has good ordinary
 reduction at $p$ as follows
 \bprog
 s2 = ellpadics2(E,p,n);
 h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);
 @eprog\noindent Since $s_2$ does not depend on the point $P$, we compute it
 only once.

Function: ellperiods
Class: basic
Section: elliptic_curves
C-Name: ellperiods
Prototype: GD0,L,p
Help: ellperiods(w, {flag = 0}): w describes a complex period lattice ([w1,w2]
 or an ellinit structure). Returns normalized periods [W1,W2] generating the
 same lattice such that tau := W1/W2 satisfies Im(tau) > 0 and lies in the
 standard fundamental domain for SL2. If flag is 1, the return value is
 [[W1,W2], [eta1,eta2]], where eta1, eta2 are the quasi-periods attached to
 [W1,W2], satisfying eta1 W2 - eta2 W1 = 2 I Pi.
Doc: Let $w$ describe a complex period lattice ($w = [w_1,w_2]$
 or an \kbd{ellinit} structure). Returns normalized periods $[W_1,W_2]$ generating
 the same lattice such that $\tau := W_1/W_2$ has positive imaginary part
 and lies in the standard fundamental domain for $\text{SL}_2(\Z)$.
 
 If $\fl = 1$, the function returns $[[W_1,W_2], [\eta_1,\eta_2]]$, where
 $\eta_1$ and $\eta_2$ are the quasi-periods attached to
 $[W_1,W_2]$, satisfying $\eta_1 W_2 - \eta_2 W_1 = 2 i \pi$.
 
 The output of this function is meant to be used as the first argument
 given to ellwp, ellzeta, ellsigma or elleisnum. Quasi-periods are
 needed by ellzeta and ellsigma only.

Function: ellpointtoz
Class: basic
Section: elliptic_curves
C-Name: zell
Prototype: GGp
Help: ellpointtoz(E,P): lattice point z corresponding to the point P on the
 elliptic curve E.
Doc: 
 if $E/\C \simeq \C/\Lambda$ is a complex elliptic curve ($\Lambda =
 \kbd{E.omega}$),
 computes a complex number $z$, well-defined modulo the lattice $\Lambda$,
 corresponding to the point $P$; i.e.~such that
  $P = [\wp_\Lambda(z),\wp'_\Lambda(z)]$
 satisfies the equation
 $$y^2 = 4x^3 - g_2 x - g_3,$$
 where $g_2$, $g_3$ are the elliptic invariants.
 
 If $E$ is defined over $\R$ and $P\in E(\R)$, we have more precisely, $0 \leq
 \Re(t) < w1$ and $0 \leq \Im(t) < \Im(w2)$, where $(w1,w2)$ are the real and
 complex periods of $E$.
 \bprog
 ? E = ellinit([0,1]); P = [2,3];
 ? z = ellpointtoz(E, P)
 %2 = 3.5054552633136356529375476976257353387
 ? ellwp(E, z)
 %3 = 2.0000000000000000000000000000000000000
 ? ellztopoint(E, z) - P
 %4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
 ? ellpointtoz(E, [0]) \\ the point at infinity
 %5 = 0
 @eprog
 
 If $E/\Q_p$ has multiplicative reduction, then $E/\bar{\Q_p}$ is analytically
 isomorphic to $\bar{\Q}_p^*/q^\Z$ (Tate curve) for some $p$-adic integer $q$.
 The behaviour is then as follows:
 
 \item If the reduction is split ($E.\kbd{tate[2]}$ is a \typ{PADIC}), we have
 an isomorphism $\phi: E(\Q_p) \simeq \Q_p^*/q^\Z$ and the function returns
 $\phi(P)\in \Q_p$.
 
 \item If the reduction is \emph{not} split ($E.\kbd{tate[2]}$ is a
 \typ{POLMOD}), we only have an isomorphism $\phi: E(K) \simeq K^*/q^\Z$ over
 the unramified quadratic extension $K/\Q_p$. In this case, the output
 $\phi(P)\in K$ is a \typ{POLMOD}.
 \bprog
 ? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
 ? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction
 %2 = "t_PADIC"
 ? ellmul(E, P, 5)  \\ P has order 5
 %3 = [0]
 ? z = ellpointtoz(E, [0,0])
 %4 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
 ? z^5
 %5 = 1 + O(11^9)
 ? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
 ? z = ellpointtoz(E,[x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
 ? liftint(z) \\ lift all p-adics
 %8 = Mod(8*u + 7, u^2 + 437)
 @eprog

Function: ellpow
Class: basic
Section: elliptic_curves
C-Name: ellmul
Prototype: GGG
Help: ellpow(E,z,n): deprecated alias for ellmul.
Doc: deprecated alias for \kbd{ellmul}.
Obsolete: 2012-06-06

Function: ellrootno
Class: basic
Section: elliptic_curves
C-Name: ellrootno
Prototype: lGDG
Help: ellrootno(E,{p}): root number for the L-function of the elliptic
 curve E/Q at a prime p (including 0, for the infinite place); global root
 number if p is omitted.
Doc: $E$ being an \kbd{ell} structure over $\Q$ as output by \kbd{ellinit},
 this function computes the local root number of its $L$-series at the place
 $p$ (at the infinite place if $p = 0$). If $p$ is omitted, return the global
 root number. Note that the global root number is the sign of the functional
 equation and conjecturally is the parity of the rank of the
 \idx{Mordell-Weil group}. The equation for $E$ needs not be minimal at $p$,
 but if the model is already minimal the function will run faster.

Function: ellsea
Class: basic
Section: elliptic_curves
C-Name: ellsea
Prototype: GD0,U,
Help: ellsea(E,{tors=0}): computes the order of the group E(Fq)
 for the elliptic curve E, defined over a finite field,
 using SEA algorithm, with early abort for curves with non prime orders.
Doc: Let $E$ be an \var{ell} structure as output by \kbd{ellinit}, defined over
 a finite field $\F_q$. This low-level function computes the order of the
 group $E(\F_q)$ using the SEA algorithm; compared to the high-level
 function \kbd{ellcard}, which includes SEA among its choice of algorithms,
 the \kbd{tors} argument allows to speed up a search for curves having almost
 prime order.
 When \kbd{tors} is set to a non-zero value, the function returns $0$ as soon
 as it detects that the order has a small prime factor not dividing \kbd{tors};
 SEA considers modular polynomials of increasing prime degree $\ell$ and we
 return $0$ as soon as we hit an $\ell$ (coprime to \kbd{tors}) dividing
 $\#E(\F_q)$:
 \bprog
 ? ellsea(ellinit([1,1], 2^56+3477), 1)
 %1 = 72057594135613381
 ? forprime(p=2^128,oo, q = ellcard(ellinit([1,1],p)); if(isprime(q),break))
 time = 6,571 ms.
 ? forprime(p=2^128,oo, q = ellsea(ellinit([1,1],p),1);if(isprime(q),break))
 time = 522 ms.
 @eprog\noindent
 In particular, set \kbd{tors} to $1$ if you want a curve with prime order,
 to $2$ if you want to allow a cofactor which is a power of two (e.g. for
 Edwards's curves), etc. The early exit on bad curves yields a massive
 speedup compared to running the cardinal algorithm to completion.
 
 The following function returns a curve of prime order over $\F_p$.
 \bprog
 cryptocurve(p) =
 {
   while(1,
     my(E, N, j = Mod(random(p), p));
     E = ellinit(ellfromj(j));
     N = ellsea(E, 1); if(!N, continue);
     if (isprime(N), return(E));
     \\ try the quadratic twist for free
     if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
   );
 }
 ? p = randomprime([2^255, 2^256]);
 ? E = cryptocurve(p); \\ insist on prime order
 %2 = 47,447ms
 @eprog\noindent The same example without early abort (using \kbd{ellsea(E,1)}
 instead of \kbd{ellsea(E)}) runs for about 5 minutes before finding a
 suitable curve.
 
 The availability of the \kbd{seadata} package will speed up the computation,
 and is strongly recommended. The generic function \kbd{ellcard} should be
 preferred when you only want to compute the cardinal of a given curve without
 caring about it having almost prime order:
 
 \item If the characteristic is too small ($p \leq 7$) or the field
 cardinality is tiny ($q \leq 523$) the generic algorithm
 \kbd{ellcard} is used instead and the \kbd{tors} argument is ignored.
 (The reason for this is that SEA is not implemented for $p \leq 7$ and
 that if $q \leq 523$ it is likely to run into an infinite loop.)
 
 \item If the field cardinality is smaller than about $2^{50}$, the
 generic algorithm will be faster.
 
 \item Contrary to \kbd{ellcard}, \kbd{ellsea} does not store the computed
 cardinality in $E$.

Function: ellsearch
Class: basic
Section: elliptic_curves
C-Name: ellsearch
Prototype: G
Help: ellsearch(N): returns all curves in the elldata database matching
 constraint N:  given name (N = "11a1" or [11,0,1]),
 given isogeny class (N = "11a" or [11,0]), or
 given conductor (N = 11, "11", or [11]).
Doc: This function finds all curves in the \tet{elldata} database satisfying
 the constraint defined by the argument $N$:
 
 \item if $N$ is a character string, it selects a given curve, e.g.
 \kbd{"11a1"}, or curves in the given isogeny class, e.g. \kbd{"11a"}, or
 curves with given conductor, e.g. \kbd{"11"};
 
 \item if $N$ is a vector of integers, it encodes the same constraints
 as the character string above, according to the \tet{ellconvertname}
 correspondance, e.g. \kbd{[11,0,1]} for \kbd{"11a1"}, \kbd{[11,0]} for
 \kbd{"11a"} and \kbd{[11]} for \kbd{"11"};
 
 \item if $N$ is an integer, curves with conductor $N$ are selected.
 
 If $N$ codes a full curve name, for instance \kbd{"11a1"} or \kbd{[11,0,1]},
 the output format is $[N, [a_1,a_2,a_3,a_4,a_6], G]$ where
 $[a_1,a_2,a_3,a_4,a_6]$ are the coefficients of the Weierstrass equation of
 the curve and $G$ is a $\Z$-basis of the free part of the
 \idx{Mordell-Weil group} attached to the curve.
 \bprog
 ? ellsearch("11a3")
 %1 = ["11a3", [0, -1, 1, 0, 0], []]
 ? ellsearch([11,0,3])
 %2 = ["11a3", [0, -1, 1, 0, 0], []]
 @eprog\noindent
 
 If $N$ is not a full curve name, then the output is a vector of all matching
 curves in the above format:
 \bprog
 ? ellsearch("11a")
 %1 = [["11a1", [0, -1, 1, -10, -20], []],
       ["11a2", [0, -1, 1, -7820, -263580], []],
       ["11a3", [0, -1, 1, 0, 0], []]]
 ? ellsearch("11b")
 %2 = []
 @eprog
Variant: Also available is \fun{GEN}{ellsearchcurve}{GEN N} that only
 accepts complete curve names (as \typ{STR}).

Function: ellsigma
Class: basic
Section: elliptic_curves
C-Name: ellsigma
Prototype: GDGD0,L,p
Help: ellsigma(L,{z='x},{flag=0}): computes the value at z of the Weierstrass
 sigma function attached to the lattice w, as given by ellperiods(,1).
 If flag = 1, returns an arbitrary determination of the logarithm of sigma.
Doc: Computes the value at $z$ of the Weierstrass $\sigma$ function attached to
 the lattice $L$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
 is useful, otherwise there are recomputed from scratch for each new $z$.
 $$ \sigma(z, L) = z \prod_{\omega\in L^*} \left(1 -
 \dfrac{z}{\omega}\right)e^{\dfrac{z}{\omega} + \dfrac{z^2}{2\omega^2}}.$$
 It is also possible to directly input $L = [\omega_1,\omega_2]$,
 or an elliptic curve $E$ as given by \kbd{ellinit} ($L = \kbd{E.omega}$).
 \bprog
 ? w = ellperiods([1,I], 1);
 ? ellsigma(w, 1/2)
 %2 = 0.47494937998792065033250463632798296855
 ? E = ellinit([1,0]);
 ? ellsigma(E) \\ at 'x, implicitly at default seriesprecision
 %4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)
 @eprog
 
 If $\fl=1$, computes an arbitrary determination of $\log(\sigma(z))$.

Function: ellsub
Class: basic
Section: elliptic_curves
C-Name: ellsub
Prototype: GGG
Help: ellsub(E,z1,z2): difference of the points z1 and z2 on elliptic curve E.
Doc: 
 difference of the points $z1$ and $z2$ on the
 elliptic curve corresponding to $E$.

Function: elltaniyama
Class: basic
Section: elliptic_curves
C-Name: elltaniyama
Prototype: GDP
Help: elltaniyama(E, {d = seriesprecision}): modular parametrization of
 elliptic curve E/Q.
Doc: 
 computes the modular parametrization of the elliptic curve $E/\Q$,
 where $E$ is an \kbd{ell} structure as output by \kbd{ellinit}. This returns
 a two-component vector $[u,v]$ of power series, given to $d$ significant
 terms (\tet{seriesprecision} by default), characterized by the following two
 properties. First the point $(u,v)$ satisfies the equation of the elliptic
 curve. Second, let $N$ be the conductor of $E$ and $\Phi: X_0(N)\to E$
 be a modular parametrization; the pullback by $\Phi$ of the
 N\'eron differential $du/(2v+a_1u+a_3)$ is equal to $2i\pi
 f(z)dz$, a holomorphic differential form. The variable used in the power
 series for $u$ and $v$ is $x$, which is implicitly understood to be equal to
 $\exp(2i\pi z)$.
 
 The algorithm assumes that $E$ is a \emph{strong} \idx{Weil curve}
 and that the Manin constant is equal to 1: in fact, $f(x) = \sum_{n > 0}
 \kbd{ellan}(E, n) x^n$.

Function: elltatepairing
Class: basic
Section: elliptic_curves
C-Name: elltatepairing
Prototype: GGGG
Help: elltatepairing(E, P, Q, m): computes the Tate pairing of the two points
 P and Q on the elliptic curve E. The point P must be of m-torsion.
Doc: Computes the Tate pairing of the two points $P$ and $Q$ on the elliptic
 curve $E$. The point $P$ must be of $m$-torsion.

Function: elltors
Class: basic
Section: elliptic_curves
C-Name: elltors
Prototype: G
Help: elltors(E): torsion subgroup of elliptic curve E: order, structure,
 generators.
Doc: 
 if $E$ is an elliptic curve defined over a number field or a finite field,
 outputs the torsion subgroup of $E$ as a 3-component vector \kbd{[t,v1,v2]},
 where \kbd{t} is the order of the torsion group, \kbd{v1} gives the structure
 of the torsion group as a product of cyclic groups (sorted by decreasing
 order), and \kbd{v2} gives generators for these cyclic groups. $E$ must be an
 \kbd{ell} structure as output by \kbd{ellinit}.
 \bprog
 ?  E = ellinit([-1,0]);
 ?  elltors(E)
 %1 = [4, [2, 2], [[0, 0], [1, 0]]]
 @eprog\noindent
 Here, the torsion subgroup is isomorphic to $\Z/2\Z \times \Z/2\Z$, with
 generators $[0,0]$ and $[1,0]$.

Function: elltwist
Class: basic
Section: elliptic_curves
C-Name: elltwist
Prototype: GDG
Help: elltwist(E,{P}): returns the coefficients [a1,a2,a3,a4,a6] of
 the twist of the elliptic curve E by the quadratic extension defined by
 P (when P is a polynomial of degree 2) or quadpoly(P) (when P is an integer).
 If E is defined over a finite field, then P can be omitted.
Doc: returns the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of the twist of the
 elliptic curve $E$ by the quadratic extension of the coefficient ring
 defined by $P$ (when $P$ is a polynomial) or \kbd{quadpoly(P)} when $P$ is an
 integer.  If $E$ is defined over a finite field, then $P$ can be omitted,
 in which case a random model of the unique non-trivial twist is returned.
 If $E$ is defined over a number field, the model should be replaced by a
 minimal model (if one exists).
 
 Example: Twist by discriminant $-3$:
 \bprog
 ? elltwist(ellinit([0,a2,0,a4,a6]),-3)
 %1 = [0,-3*a2,0,9*a4,-27*a6]
 @eprog
 Twist by the Artin-Shreier extension given by $x^2+x+T$ in
 characteristic $2$:
 \bprog
 ? lift(elltwist(ellinit([a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))
 %1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]
 @eprog
 Twist of an elliptic curve defined over a finite field:
 \bprog
 ? E=ellinit([1,7]*Mod(1,19));lift(elltwist(E))
 %1 = [0,0,0,11,12]
 @eprog

Function: ellweilpairing
Class: basic
Section: elliptic_curves
C-Name: ellweilpairing
Prototype: GGGG
Help: ellweilpairing(E, P, Q, m): computes the Weil pairing of the two points
 of m-torsion P and Q on the elliptic curve E.
Doc: Computes the Weil pairing of the two points of $m$-torsion $P$ and $Q$
 on the elliptic curve $E$.

Function: ellwp
Class: basic
Section: elliptic_curves
C-Name: ellwp0
Prototype: GDGD0,L,p
Help: ellwp(w,{z='x},{flag=0}): computes the value at z of the Weierstrass P
 function attached to the lattice w, as given by ellperiods. Optional flag
 means 0 (default), compute only P(z), 1 compute [P(z),P'(z)].
Doc: Computes the value at $z$ of the Weierstrass $\wp$ function attached to
 the lattice $w$ as given by \tet{ellperiods}. It is also possible to
 directly input $w = [\omega_1,\omega_2]$, or an elliptic curve $E$ as given
 by \kbd{ellinit} ($w = \kbd{E.omega}$).
 \bprog
 ? w = ellperiods([1,I]);
 ? ellwp(w, 1/2)
 %2 = 6.8751858180203728274900957798105571978
 ? E = ellinit([1,1]);
 ? ellwp(E, 1/2)
 %4 = 3.9413112427016474646048282462709151389
 @eprog\noindent One can also compute the series expansion around $z = 0$:
 \bprog
 ? E = ellinit([1,0]);
 ? ellwp(E)              \\ 'x implicitly at default seriesprecision
 %5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)
 ? ellwp(E, x + O(x^12)) \\ explicit precision
 %6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)
 @eprog
 
 Optional \fl\ means 0 (default): compute only $\wp(z)$, 1: compute
 $[\wp(z),\wp'(z)]$.
Variant: For $\fl = 0$, we also have
 \fun{GEN}{ellwp}{GEN w, GEN z, long prec}, and
 \fun{GEN}{ellwpseries}{GEN E, long v, long precdl} for the power series in
 variable $v$.

Function: ellxn
Class: basic
Section: elliptic_curves
C-Name: ellxn
Prototype: GLDn
Help: ellxn(E,n,{v='x}): polynomials [phi_n, (psi_n)^2] in variable v,
 where x([n]P) = phi_n/(psi_n)^2.
Doc: In standard notation, for any affine point $P = (v,w)$ on the
 curve $E$, we have
 $$[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)$$
 for some polynomials $\phi_n,\omega_n,\psi_n$ in
 $\Z[a_1,a_2,a_3,a_4,a_6][v,w]$. This function returns
 $[\phi_n(P),\psi_n(P)^2]$, which give the numerator and denominator of
 the abcissa of $[n]P$ and depend only on $v$.

Function: ellzeta
Class: basic
Section: elliptic_curves
C-Name: ellzeta
Prototype: GDGp
Help: ellzeta(w,{z='x}): computes the value at z of the Weierstrass Zeta
 function attached to the lattice w, as given by ellperiods(,1).
Doc: Computes the value at $z$ of the Weierstrass $\zeta$ function attached to
 the lattice $w$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
 is useful, otherwise there are recomputed from scratch for each new $z$.
 $$ \zeta(z, L) = \dfrac{1}{z} + z^2\sum_{\omega\in L^*}
 \dfrac{1}{\omega^2(z-\omega)}.$$
 It is also possible to directly input $w = [\omega_1,\omega_2]$,
 or an elliptic curve $E$ as given by \kbd{ellinit} ($w = \kbd{E.omega}$).
 The quasi-periods of $\zeta$, such that
 $$\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2 $$
 for integers $a$ and $b$ are obtained as $\eta_i = 2\zeta(\omega_i/2)$.
 Or using directly \tet{elleta}.
 \bprog
 ? w = ellperiods([1,I],1);
 ? ellzeta(w, 1/2)
 %2 = 1.5707963267948966192313216916397514421
 ? E = ellinit([1,0]);
 ? ellzeta(E, E.omega[1]/2)
 %4 = 0.84721308479397908660649912348219163647
 @eprog\noindent One can also compute the series expansion around $z = 0$
 (the quasi-periods are useless in this case):
 \bprog
 ? E = ellinit([0,1]);
 ? ellzeta(E) \\ at 'x, implicitly at default seriesprecision
 %4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)
 ? ellzeta(E, x + O(x^20)) \\ explicit precision
 %5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)
 @eprog\noindent

Function: ellztopoint
Class: basic
Section: elliptic_curves
C-Name: pointell
Prototype: GGp
Help: ellztopoint(E,z): inverse of ellpointtoz. Returns the coordinates of
 point P on the curve E corresponding to a complex or p-adic z.
Doc: 
 $E$ being an \var{ell} as output by
 \kbd{ellinit}, computes the coordinates $[x,y]$ on the curve $E$
 corresponding to the complex or $p$-adic parameter $z$. Hence this is the
 inverse function of \kbd{ellpointtoz}.
 
 \item If $E$ is defined over a $p$-adic field and has multiplicative
 reduction, then $z$ is understood as an element on the
 Tate curve $\bar{Q}_p^* / q^\Z$.
 \bprog
 ? E = ellinit([0,-1,1,0,0], O(11^5));
 ? [u2,u,q] = E.tate; type(u)
 %2 = "t_PADIC" \\ split multiplicative reduction
 ? z = ellpointtoz(E, [0,0])
 %3 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
 ? ellztopoint(E,z)
 %4 = [O(11^9), O(11^9)]
 
 ? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
 ? z = ellpointtoz(E,[x,y]); \\ non-split: t_POLMOD with t_PADIC coefficients
 ? P = ellztopoint(E, z);
 ? P[1] \\ y coordinate is analogous, more complicated
 %8 = Mod(O(2^4)*x + (2^-1 + O(2^5)), x^2 + (1 + 2^2 + 2^4 + 2^5 + O(2^7)))
 @eprog
 
 \item If $E$ is defined over the complex numbers (for instance over $\Q$),
 $z$ is understood as a complex number in $\C/\Lambda_E$. If the
 short Weierstrass equation is $y^2 = 4x^3 - g_2x - g_3$, then $[x,y]$
 represents the Weierstrass $\wp$-function\sidx{Weierstrass $\wp$-function}
 and its derivative. For a general Weierstrass equation we have
 $$x = \wp(z) - b_2/12,\quad y = \wp'(z) - (a_1 x + a_3)/2.$$
 If $z$ is in the lattice defining $E$ over $\C$, the result is the point at
 infinity $[0]$.
 \bprog
 ? E = ellinit([0,1]); P = [2,3];
 ? z = ellpointtoz(E, P)
 %2 = 3.5054552633136356529375476976257353387
 ? ellwp(E, z)
 %3 = 2.0000000000000000000000000000000000000
 ? ellztopoint(E, z) - P
 %4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
 ? ellztopoint(E, 0)
 %5 = [0] \\ point at infinity
 @eprog

Function: erfc
Class: basic
Section: transcendental
C-Name: gerfc
Prototype: Gp
Help: erfc(x): complementary error function.
Doc: complementary error function, analytic continuation of
 $(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt = \kbd{incgam}(1/2,x^2)/\sqrt\pi$,
 where the latter expression extends the function definition from real $x$ to
 all complex $x \neq 0$.

Function: errname
Class: basic
Section: programming/specific
C-Name: errname
Prototype: G
Help: errname(E): returns the type of the error message E.
Description: 
 (gen):errtyp err_get_num($1)
Doc: returns the type of the error message \kbd{E} as a string.

Function: error
Class: basic
Section: programming/specific
C-Name: error0
Prototype: vs*
Help: error({str}*): abort script with error message str.
Description: 
 (error):void  pari_err(0, $1)
 (?gen,...):void  pari_err(e_MISC, "${2 format_string}"${2 format_args})
Doc: outputs its argument list (each of
 them interpreted as a string), then interrupts the running \kbd{gp} program,
 returning to the input prompt. For instance
 \bprog
 error("n = ", n, " is not squarefree!")
 @eprog\noindent
  % \syn{NO}

Function: eta
Class: basic
Section: transcendental
C-Name: eta0
Prototype: GD0,L,p
Help: eta(z,{flag=0}): if flag=0, returns prod(n=1,oo, 1-q^n), where
 q = exp(2 i Pi z) if z is a complex scalar (belonging to the upper half plane);
 q = z if z is a p-adic number or can be converted to a power series.
 If flag is non-zero, the function only applies to complex scalars and returns
 the true eta function, with the factor q^(1/24) included.
Doc: Variants of \idx{Dedekind}'s $\eta$ function.
 If $\fl = 0$, return $\prod_{n=1}^\infty(1-q^n)$, where $q$ depends on $x$
 in the following way:
 
 \item $q = e^{2i\pi x}$ if $x$ is a \emph{complex number} (which must then
 have positive imaginary part); notice that the factor $q^{1/24}$ is
 missing!
 
 \item $q = x$ if $x$ is a \typ{PADIC}, or can be converted to a
 \emph{power series} (which must then have positive valuation).
 
 If $\fl$ is non-zero, $x$ is converted to a complex number and we return the
 true $\eta$ function, $q^{1/24}\prod_{n=1}^\infty(1-q^n)$,
 where $q = e^{2i\pi x}$.
Variant: 
 Also available is \fun{GEN}{trueeta}{GEN x, long prec} ($\fl=1$).

Function: eulerphi
Class: basic
Section: number_theoretical
C-Name: eulerphi
Prototype: G
Help: eulerphi(x): Euler's totient function of x.
Description: 
 (gen):int        eulerphi($1)
Doc: Euler's $\phi$ (totient)\sidx{Euler totient function} function of the
 integer $|x|$, in other words $|(\Z/x\Z)^*|$.
 \bprog
 ? eulerphi(40)
 %1 = 16
 @eprog\noindent
 According to this definition we let $\phi(0) := 2$, since $\Z^* = \{-1,1\}$;
 this is consistent with \kbd{znstar(0)}: we have
 \kbd{znstar$(n)$.no = eulerphi(n)} for all $n\in\Z$.

Function: eval
Class: basic
Section: polynomials
C-Name: geval_gp
Prototype: GC
Help: eval(x): evaluation of x, replacing variables by their value.
Description: 
 (gen):gen      geval($1)
Doc: replaces in $x$ the formal variables by the values that
 have been assigned to them after the creation of $x$. This is mainly useful
 in GP, and not in library mode. Do not confuse this with substitution (see
 \kbd{subst}).
 
 If $x$ is a character string, \kbd{eval($x$)} executes $x$ as a GP
 command, as if directly input from the keyboard, and returns its
 output.
 \bprog
 ? x1 = "one"; x2 = "two";
 ? n = 1; eval(Str("x", n))
 %2 = "one"
 ? f = "exp"; v = 1;
 ? eval(Str(f, "(", v, ")"))
 %4 = 2.7182818284590452353602874713526624978
 @eprog\noindent Note that the first construct could be implemented in a
 simpler way by using a vector \kbd{x = ["one","two"]; x[n]}, and the second
 by using a closure \kbd{f = exp; f(v)}. The final example is more interesting:
 \bprog
 ? genmat(u,v) = matrix(u,v,i,j, eval( Str("x",i,j) ));
 ? genmat(2,3)   \\ generic 2 x 3 matrix
 %2 =
 [x11 x12 x13]
 
 [x21 x22 x23]
 @eprog
 
 A syntax error in the evaluation expression raises an \kbd{e\_SYNTAX}
 exception, which can be trapped as usual:
 \bprog
 ? 1a
  ***   syntax error, unexpected variable name, expecting $end or ';': 1a
  ***                                                                   ^-
 ? E(expr) =
   {
     iferr(eval(expr),
           e, print("syntax error"),
           errname(e) == "e_SYNTAX");
   }
 ? E("1+1")
 %1 = 2
 ? E("1a")
 syntax error
 @eprog
 \synt{geval}{GEN x}.

Function: exp
Class: basic
Section: transcendental
C-Name: gexp
Prototype: Gp
Help: exp(x): exponential of x.
Description: 
 (real):real         mpexp($1)
 (mp):mp:prec        gexp($1, $prec)
 (gen):gen:prec      gexp($1, $prec)
Doc: exponential of $x$.
 $p$-adic arguments with positive valuation are accepted.
Variant: For a \typ{PADIC} $x$, the function
 \fun{GEN}{Qp_exp}{GEN x} is also available.

Function: expm1
Class: basic
Section: transcendental
C-Name: gexpm1
Prototype: Gp
Help: expm1(x): exp(x)-1.
Description: 
 (real):real         mpexpm1($1)
Doc: return $\exp(x)-1$, computed in a way that is also accurate
 when the real part of $x$ is near $0$.
 A naive direct computation would suffer from catastrophic cancellation;
 PARI's direct computation of $\exp(x)$ alleviates this well known problem at
 the expense of computing $\exp(x)$ to a higher accuracy when $x$ is small.
 Using \kbd{expm1} is recommended instead:
 \bprog
 ? default(realprecision, 10000); x = 1e-100;
 ? a = expm1(x);
 time = 4 ms.
 ? b = exp(x)-1;
 time = 28 ms.
 ? default(realprecision, 10040); x = 1e-100;
 ? c = expm1(x);  \\ reference point
 ? abs(a-c)/c  \\ relative error in expm1(x)
 %7 = 0.E-10017
 ? abs(b-c)/c  \\ relative error in exp(x)-1
 %8 = 1.7907031188259675794 E-9919
 @eprog\noindent As the example above shows, when $x$ is near $0$,
 \kbd{expm1} is both faster and more accurate than \kbd{exp(x)-1}.

Function: extern
Class: basic
Section: programming/specific
C-Name: gpextern
Prototype: s
Help: extern(str): execute shell command str, and feeds the result to GP (as
 if loading from file).
Doc: the string \var{str} is the name of an external command (i.e.~one you
 would type from your UNIX shell prompt). This command is immediately run and
 its output fed into \kbd{gp}, just as if read from a file.

Function: externstr
Class: basic
Section: programming/specific
C-Name: externstr
Prototype: s
Help: externstr(str): execute shell command str, and returns the result as a
 vector of GP strings, one component per output line.
Doc: the string \var{str} is the name of an external command (i.e.~one you
 would type from your UNIX shell prompt). This command is immediately run and
 its output is returned as a vector of GP strings, one component per output
 line.

Function: factor
Class: basic
Section: number_theoretical
C-Name: gp_factor0
Prototype: GDG
Help: factor(x,{lim}): factorization of x. lim is optional and can be set
 whenever x is of (possibly recursive) rational type. If lim is set return
 partial factorization, using primes < lim.
Description: 
 (int, ?-1):vec        Z_factor($1)
 (gen, ?-1):vec        factor($1)
 (gen, small):vec      factor0($1, $2)
Doc: general factorization function, where $x$ is a
 rational (including integers), a complex number with rational
 real and imaginary parts, or a rational function (including polynomials).
 The result is a two-column matrix: the first contains the irreducibles
 dividing $x$ (rational or Gaussian primes, irreducible polynomials),
 and the second the exponents. By convention, $0$ is factored as $0^1$.
 
 \misctitle{$\Q$ and $\Q(i)$}
 See \tet{factorint} for more information about the algorithms used.
 The rational or Gaussian primes are in fact \var{pseudoprimes}
 (see \kbd{ispseudoprime}), a priori not rigorously proven primes. In fact,
 any factor which is $\leq 2^{64}$ (whose norm is $\leq 2^{64}$ for an
 irrational Gaussian prime) is a genuine prime. Use \kbd{isprime} to prove
 primality of other factors, as in
 \bprog
 ? fa = factor(2^2^7 + 1)
 %1 =
 [59649589127497217 1]
 
 [5704689200685129054721 1]
 
 ? isprime( fa[,1] )
 %2 = [1, 1]~   \\ both entries are proven primes
 @eprog\noindent
 Another possibility is to set the global default \tet{factor_proven}, which
 will perform a rigorous primality proof for each pseudoprime factor.
 
 A \typ{INT} argument \var{lim} can be added, meaning that we look only for
 prime factors $p < \var{lim}$. The limit \var{lim} must be non-negative.
 In this case, all but the last factor are proven primes, but the remaining
 factor may actually be a proven composite! If the remaining factor is less
 than $\var{lim}^2$, then it is prime.
 \bprog
 ? factor(2^2^7 +1, 10^5)
 %3 =
 [340282366920938463463374607431768211457 1]
 @eprog\noindent
 \misctitle{Deprecated feature} Setting $\var{lim}=0$ is the same
 as setting it to $\kbd{primelimit} + 1$. Don't use this: it is unwise to
 rely on global variables when you can specify an explicit argument.
 \smallskip
 
 This routine uses trial division and perfect power tests, and should not be
 used for huge values of \var{lim} (at most $10^9$, say):
 \kbd{factorint(, 1 + 8)} will in general be faster. The latter does not
 guarantee that all small
 prime factors are found, but it also finds larger factors, and in a much more
 efficient way.
 \bprog
 ? F = (2^2^7 + 1) * 1009 * 100003; factor(F, 10^5)  \\ fast, incomplete
 time = 0 ms.
 %4 =
 [1009 1]
 
 [34029257539194609161727850866999116450334371 1]
 
 ? factor(F, 10^9)    \\ very slow
 time = 6,892 ms.
 %6 =
 [1009 1]
 
 [100003 1]
 
 [340282366920938463463374607431768211457 1]
 
 ? factorint(F, 1+8)  \\ much faster, all small primes were found
 time = 12 ms.
 %7 =
 [1009 1]
 
 [100003 1]
 
 [340282366920938463463374607431768211457 1]
 
 ? factor(F)   \\ complete factorisation
 time = 112 ms.
 %8 =
 [1009 1]
 
 [100003 1]
 
 [59649589127497217 1]
 
 [5704689200685129054721 1]
 @eprog\noindent Over $\Q$, the prime factors are sorted in increasing order.
 
 \misctitle{Rational functions}
 The polynomials or rational functions to be factored must have scalar
 coefficients. In particular PARI does not know how to factor
 \emph{multivariate} polynomials. The following domains are currently
 supported: $\Q$, $\R$, $\C$, $\Q_p$, finite fields and number fields. See
 \tet{factormod} and \tet{factorff} for the algorithms used over finite
 fields, \tet{nffactor} for the algorithms over number fields. The irreducible
 factors are sorted by increasing degree.
 
 The routine guesses a sensible ring over which to factor: the
 smallest ring containing all coefficients, taking into account quotient
 structures induced by \typ{INTMOD}s and \typ{POLMOD}s (e.g.~if a coefficient
 in $\Z/n\Z$ is known, all rational numbers encountered are first mapped to
 $\Z/n\Z$; different moduli will produce an error). Factoring modulo a
 non-prime number is not supported; to factor in $\Q_p$, use \typ{PADIC}
 coefficients not \typ{INTMOD} modulo $p^n$.
 \bprog
 ? T = x^2+1;
 ? factor(T);                         \\ over Q
 ? factor(T*Mod(1,3))                 \\ over F_3
 ? factor(T*ffgen(ffinit(3,2,'t))^0)  \\ over F_{3^2}
 ? factor(T*Mod(Mod(1,3), t^2+t+2))   \\ over F_{3^2}, again
 ? factor(T*(1 + O(3^6))              \\ over Q_3, precision 6
 ? factor(T*1.)                       \\ over R, current precision
 ? factor(T*(1.+0.*I))                \\ over C
 ? factor(T*Mod(1, y^3-2))            \\ over Q(2^{1/3})
 @eprog\noindent In most cases, it is clearer and simpler to call an
 explicit variant than to rely on the generic \kbd{factor} function and
 the above detection mechanism:
 \bprog
 ? factormod(T, 3)           \\ over F_3
 ? factorff(T, 3, t^2+t+2))  \\ over F_{3^2}
 ? factorpadic(T, 3,6)       \\ over Q_3, precision 6
 ? nffactor(y^3-2, T)        \\ over Q(2^{1/3})
 ? polroots(T)               \\ over C
 ? polrootsreal(T)           \\ over R (real polynomial)
 @eprog
 
 \misctitle{Note about inseparable polynomials} Polynomials with inexact
 coefficients (e.g. floating point or $p$-adic numbers) are assumed to be
 squarefree: in fact, there exist a squarefree polynomial arbitrarily close
 to the input, and they cannot be distinguished at the input accuracy. This
 means that irreducible factors are repeated according to their apparent
 multiplicity. On the contrary, using a specialized function such as
 \kbd{factorpadic} with an \emph{exact} rational input yields the correct
 multiplicity when the (now exact) input is not separable. Compare:
 \bprog
 ? factor(z^2 * (1 + O(5^2)))
 %1 =
 [(1 + O(5^2))*z + O(5^2) 1]
 
 [(1 + O(5^2))*z + O(5^2) 1]
 ? factorpadic(z^2, 5, 2)
 %2 =
 [1 + O(5^2))*z + O(5^2) 2]
 @eprog
 
 \misctitle{Note about contents}
 Factorization of polynomials is done up to
 multiplication by a constant. In particular, the factors of rational
 polynomials will have integer coefficients, and the content of a polynomial
 or rational function is discarded and not included in the factorization. If
 needed, you can always ask for the content explicitly:
 \bprog
 ? factor(t^2 + 5/2*t + 1)
 %1 =
 [2*t + 1 1]
 
 [t + 2 1]
 
 ? content(t^2 + 5/2*t + 1)
 %2 = 1/2
 @eprog
Variant: This function should only be used by the \kbd{gp} interface. Use
 directly \fun{GEN}{factor}{GEN x} or \fun{GEN}{boundfact}{GEN x, ulong lim}.
 The obsolete function \fun{GEN}{factor0}{GEN x, long lim} is kept for
 backward compatibility.

Function: factorback
Class: basic
Section: number_theoretical
C-Name: factorback2
Prototype: GDG
Help: factorback(f,{e}): given a factorisation f, gives the factored
 object back. If this is a prime ideal factorisation you must supply the
 corresponding number field as last argument. If e is present, f has to be a
 vector of the same length, and we return the product of the f[i]^e[i].
Description: 
 (gen):gen      factorback($1)
 (gen,):gen     factorback($1)
 (gen,gen):gen  factorback2($1, $2)
Doc: gives back the factored object
 corresponding to a factorization. The integer $1$ corresponds to the empty
 factorization.
 
 If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
 integral), and the corresponding factorization is the product of the
 $f[i]^{e[i]}$.
 
 If not, and $f$ is vector, it is understood as in the preceding case with $e$
 a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
 regular factorization, as produced with any \kbd{factor} command. A few
 examples:
 \bprog
 ? factor(12)
 %1 =
 [2 2]
 
 [3 1]
 
 ? factorback(%)
 %2 = 12
 ? factorback([2,3], [2,1])   \\ 2^3 * 3^1
 %3 = 12
 ? factorback([5,2,3])
 %4 = 30
 @eprog
Variant: Also available is \fun{GEN}{factorback}{GEN f} (case $e = \kbd{NULL}$).

Function: factorcantor
Class: basic
Section: number_theoretical
C-Name: factcantor
Prototype: GG
Help: factorcantor(x,p): factorization mod p of the polynomial x using
 Cantor-Zassenhaus.
Doc: factors the polynomial $x$ modulo the
 prime $p$, using distinct degree plus
 \idx{Cantor-Zassenhaus}\sidx{Zassenhaus}. The coefficients of $x$ must be
 operation-compatible with $\Z/p\Z$. The result is a two-column matrix, the
 first column being the irreducible polynomials dividing $x$, and the second
 the exponents. If you want only the \emph{degrees} of the irreducible
 polynomials (for example for computing an $L$-function), use
 $\kbd{factormod}(x,p,1)$. Note that the \kbd{factormod} algorithm is
 usually faster than \kbd{factorcantor}.

Function: factorff
Class: basic
Section: number_theoretical
C-Name: factorff
Prototype: GDGDG
Help: factorff(x,{p},{a}): factorization of the polynomial x in the finite field
 F_p[X]/a(X)F_p[X].
Doc: factors the polynomial $x$ in the field
 $\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
 coefficients of $x$ must be operation-compatible with $\Z/p\Z$. The result
 is a two-column matrix: the first column contains the irreducible factors of
 $x$, and the second their exponents. If all the coefficients of $x$ are in
 $\F_p$, a much faster algorithm is applied, using the computation of
 isomorphisms between finite fields.
 
 Either $a$ or $p$ can omitted (in which case both are ignored) if x has
 \typ{FFELT} coefficients; the function then becomes identical to \kbd{factor}:
 \bprog
 ? factorff(x^2 + 1, 5, y^2+3)  \\ over F_5[y]/(y^2+3) ~ F_25
 %1 =
 [Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
  + Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
 
 [Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
  + Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
 ? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
 ? factorff(x^2 + 1)   \\ not enough information to determine the base field
  ***   at top-level: factorff(x^2+1)
  ***                 ^---------------
  *** factorff: incorrect type in factorff.
 ? factorff(x^2 + t^0) \\ make sure a coeff. is a t_FFELT
 %3 =
 [x + 2 1]
 
 [x + 3 1]
 ? factorff(x^2 + t + 1)
 %11 =
 [x + (2*t + 1) 1]
 
 [x + (3*t + 4) 1]
 @eprog\noindent
 Notice that the second syntax is easier to use and much more readable.

Function: factorial
Class: basic
Section: number_theoretical
C-Name: mpfactr
Prototype: Lp
Help: factorial(x): factorial of x, the result being given as a real number.
Doc: factorial of $x$. The expression $x!$ gives a result which is an integer,
 while $\kbd{factorial}(x)$ gives a real number.
Variant: \fun{GEN}{mpfact}{long x} returns $x!$ as a \typ{INT}.

Function: factorint
Class: basic
Section: number_theoretical
C-Name: factorint
Prototype: GD0,L,
Help: factorint(x,{flag=0}): factor the integer x. flag is optional, whose
 binary digits mean 1: avoid MPQS, 2: avoid first-stage ECM (may fall back on
 it later), 4: avoid Pollard-Brent Rho and Shanks SQUFOF, 8: skip final ECM
 (huge composites will be declared prime).
Doc: factors the integer $n$ into a product of
 pseudoprimes (see \kbd{ispseudoprime}), using a combination of the
 \idx{Shanks SQUFOF} and \idx{Pollard Rho} method (with modifications due to
 Brent), \idx{Lenstra}'s \idx{ECM} (with modifications by Montgomery), and
 \idx{MPQS} (the latter adapted from the \idx{LiDIA} code with the kind
 permission of the LiDIA maintainers), as well as a search for pure powers.
 The output is a two-column matrix as for \kbd{factor}: the first column
 contains the ``prime'' divisors of $n$, the second one contains the
 (positive) exponents.
 
 By convention $0$ is factored as $0^1$, and $1$ as the empty factorization;
 also the divisors are by default not proven primes is they are larger than
 $2^{64}$, they only failed the BPSW compositeness test (see
 \tet{ispseudoprime}). Use \kbd{isprime} on the result if you want to
 guarantee primality or set the \tet{factor_proven} default to $1$.
 Entries of the private prime tables (see \tet{addprimes}) are also included
 as is.
 
 This gives direct access to the integer factoring engine called by most
 arithmetical functions. \fl\ is optional; its binary digits mean 1: avoid
 MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid
 Rho and SQUFOF, 8: don't run final ECM (as a result, a huge composite may be
 declared to be prime). Note that a (strong) probabilistic primality test is
 used; thus composites might not be detected, although no example is known.
 
 You are invited to play with the flag settings and watch the internals at
 work by using \kbd{gp}'s \tet{debug} default parameter (level 3 shows
 just the outline, 4 turns on time keeping, 5 and above show an increasing
 amount of internal details).

Function: factormod
Class: basic
Section: number_theoretical
C-Name: factormod0
Prototype: GGD0,L,
Help: factormod(x,p,{flag=0}): factors the polynomial x modulo the prime p, using Berlekamp. flag is optional, and can be 0: default or 1:
 only the degrees of the irreducible factors are given.
Doc: factors the polynomial $x$ modulo the prime integer $p$, using
 \idx{Berlekamp}. The coefficients of $x$ must be operation-compatible with
 $\Z/p\Z$. The result is a two-column matrix, the first column being the
 irreducible polynomials dividing $x$, and the second the exponents. If $\fl$
 is non-zero, outputs only the \emph{degrees} of the irreducible polynomials
 (for example, for computing an $L$-function). A different algorithm for
 computing the mod $p$ factorization is \kbd{factorcantor} which is sometimes
 faster.

Function: factornf
Class: basic
Section: number_fields
C-Name: polfnf
Prototype: GG
Help: factornf(x,t): this function is obsolete, use nffactor.
Doc: This function is obsolete, use \kbd{nffactor}.
 
 factorization of the univariate polynomial $x$
 over the number field defined by the (univariate) polynomial $t$. $x$ may
 have coefficients in $\Q$ or in the number field. The algorithm reduces to
 factorization over $\Q$ (\idx{Trager}'s trick). The direct approach of
 \tet{nffactor}, which uses \idx{van Hoeij}'s method in a relative setting, is
 in general faster.
 
 The main variable of $t$ must be of \emph{lower} priority than that of $x$
 (see \secref{se:priority}). However if non-rational number field elements
 occur (as polmods or polynomials) as coefficients of $x$, the variable of
 these polmods \emph{must} be the same as the main variable of $t$. For
 example
 
 \bprog
 ? factornf(x^2 + Mod(y, y^2+1), y^2+1);
 ? factornf(x^2 + y, y^2+1); \\@com these two are OK
 ? factornf(x^2 + Mod(z,z^2+1), y^2+1)
   ***   at top-level: factornf(x^2+Mod(z,z
   ***                 ^--------------------
   *** factornf: inconsistent data in rnf function.
 ? factornf(x^2 + z, y^2+1)
   ***   at top-level: factornf(x^2+z,y^2+1
   ***                 ^--------------------
   *** factornf: incorrect variable in rnf function.
 @eprog
Obsolete: 2016-08-08

Function: factorpadic
Class: basic
Section: polynomials
C-Name: factorpadic
Prototype: GGL
Help: factorpadic(pol,p,r): p-adic factorization of the polynomial pol
 to precision r.
Doc: $p$-adic factorization
 of the polynomial \var{pol} to precision $r$, the result being a
 two-column matrix as in \kbd{factor}. Note that this is not the same
 as a factorization over $\Z/p^r\Z$ (polynomials over that ring do not form a
 unique factorization domain, anyway), but approximations in $\Q/p^r\Z$ of
 the true factorization in $\Q_p[X]$.
 \bprog
 ? factorpadic(x^2 + 9, 3,5)
 %1 =
 [(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]
 ? factorpadic(x^2 + 1, 5,3)
 %2 =
 [  (1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]
 
 [(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]
 @eprog\noindent
 The factors are normalized so that their leading coefficient is a power of
 $p$. The method used is a modified version of the \idx{round 4} algorithm of
 \idx{Zassenhaus}.
 
 If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
 well-defined; in this case, the polynomial is first made integral by dividing
 out the $p$-adic content,  then lifted to $\Z$ using \tet{truncate}
 coefficientwise.
 Hence we actually factor exactly a polynomial which is only $p$-adically
 close to the input. To avoid pitfalls, we advise to only factor polynomials
 with exact rational coefficients.
 
 \synt{factorpadic}{GEN f,GEN p, long r} . The function \kbd{factorpadic0} is
 deprecated, provided for backward compatibility.

Function: ffgen
Class: basic
Section: number_theoretical
C-Name: ffgen
Prototype: GDn
Help: ffgen(q,{v}): return a generator X mod P(X) for the finite field with
 q elements. If v is given, the variable name is used to display g, else the
 variable 'x' is used. Alternative syntax, q = P(X) an irreducible
 polynomial with t_INTMOD
 coefficients, return the generator X mod P(X) of the finite field defined
 by P. If v is given, the variable name is used to display g, else the
 variable of the polynomial P is used.
Doc: return a \typ{FFELT} generator for the finite field with $q$ elements;
 $q = p^f$ must be a prime power. This functions computes an irreducible
 monic polynomial $P\in\F_p[X]$ of degree~$f$ (via \tet{ffinit}) and
 returns $g = X \pmod{P(X)}$. If \kbd{v} is given, the variable name is used
 to display $g$, else the variable $x$ is used.
 \bprog
 ? g = ffgen(8, 't);
 ? g.mod
 %2 = t^3 + t^2 + 1
 ? g.p
 %3 = 2
 ? g.f
 %4 = 3
 ? ffgen(6)
  ***   at top-level: ffgen(6)
  ***                 ^--------
  *** ffgen: not a prime number in ffgen: 6.
 @eprog\noindent Alternative syntax: instead of a prime power $q=p^f$, one may
 input the pair $[p,f]$:
 \bprog
 ? g = ffgen([2,4], 't);
 ? g.p
 %2 = 2
 ? g.mod
 %3 = t^4 + t^3 + t^2 + t + 1
 @eprog\noindent Finally, one may input
 directly the polynomial $P$ (monic, irreducible, with \typ{INTMOD}
 coefficients), and the function returns the generator $g = X \pmod{P(X)}$,
 inferring $p$ from the coefficients of $P$. If \kbd{v} is given, the
 variable name is used to display $g$, else the variable of the polynomial
 $P$ is used. If $P$ is not irreducible, we create an invalid object and
 behaviour of functions dealing with the resulting \typ{FFELT}
 is undefined; in fact, it is much more costly to test $P$ for
 irreducibility than it would be to produce it via \kbd{ffinit}.
Variant: 
 To create a generator for a prime finite field, the function
 \fun{GEN}{p_to_GEN}{GEN p, long v} returns \kbd{1+ffgen(x*Mod(1,p),v)}.

Function: ffinit
Class: basic
Section: number_theoretical
C-Name: ffinit
Prototype: GLDn
Help: ffinit(p,n,{v='x}): monic irreducible polynomial of degree n over F_p[v].
Description: 
 (int, small, ?var):pol        ffinit($1, $2, $3)
Doc: computes a monic polynomial of degree $n$ which is irreducible over
  $\F_p$, where $p$ is assumed to be prime. This function uses a fast variant
  of Adleman and Lenstra's algorithm.
 
 It is useful in conjunction with \tet{ffgen}; for instance if
 \kbd{P = ffinit(3,2)}, you can represent elements in $\F_{3^2}$ in term of
 \kbd{g = ffgen(P,'t)}. This can be abbreviated as
 \kbd{g = ffgen(3\pow2, 't)}, where the defining polynomial $P$ can be later
 recovered as \kbd{g.mod}.

Function: fflog
Class: basic
Section: number_theoretical
C-Name: fflog
Prototype: GGDG
Help: fflog(x,g,{o}): return the discrete logarithm of the finite field
 element x in base g. If present, o must represents the multiplicative
 order of g. If no o is given, assume that g is a primitive root.
Doc: discrete logarithm of the finite field element $x$ in base $g$, i.e.~
 an $e$ in $\Z$ such that $g^e = o$. If
 present, $o$ represents the multiplicative order of $g$, see
 \secref{se:DLfun}; the preferred format for
 this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
 order of $g$. It may be set as a side effect of calling \tet{ffprimroot}.
 
 If no $o$ is given, assume that $g$ is a primitive root. The result is
 undefined if $e$ does not exist. This function uses
 
 \item a combination of generic discrete log algorithms (see \tet{znlog})
 
 \item a cubic sieve index calculus algorithm for large fields of degree at
 least $5$.
 
 \item Coppersmith's algorithm for fields of characteristic at most $5$.
 
 \bprog
 ? t = ffgen(ffinit(7,5));
 ? o = fforder(t)
 %2 = 5602   \\@com \emph{not} a primitive root.
 ? fflog(t^10,t)
 %3 = 10
 ? fflog(t^10,t, o)
 %4 = 10
 ? g = ffprimroot(t, &o);
 ? o   \\ order is 16806, bundled with its factorization matrix
 %6 = [16806, [2, 1; 3, 1; 2801, 1]]
 ? fforder(g, o)
 %7 = 16806
 ? fflog(g^10000, g, o)
 %8 = 10000
 @eprog

Function: ffnbirred
Class: basic
Section: number_theoretical
C-Name: ffnbirred0
Prototype: GLD0,L,
Help: ffnbirred(q,n,{fl=0}): number of monic irreducible polynomials over F_q, of
 degree n (fl=0, default) or at most n (fl=1).
Description: 
 (int, small, ?0):int      ffnbirred($1, $2)
 (int, small, 1):int       ffsumnbirred($1, $2)
 (int, small, ?small):int  ffnbirred0($1, $2, $3)
Doc: computes the number of monic irreducible polynomials over $\F_q$ of degree exactly $n$,
 ($\fl=0$ or omitted) or at most $n$ ($\fl=1$).
Variant: Also available are
  \fun{GEN}{ffnbirred}{GEN q, long n} (for $\fl=0$)
  and \fun{GEN}{ffsumnbirred}{GEN q, long n} (for $\fl=1$).

Function: fforder
Class: basic
Section: number_theoretical
C-Name: fforder
Prototype: GDG
Help: fforder(x,{o}): multiplicative order of the finite field element x.
 Optional o represents a multiple of the order of the element.
Doc: multiplicative order of the finite field element $x$.  If $o$ is
 present, it represents a multiple of the order of the element,
 see \secref{se:DLfun}; the preferred format for
 this parameter is \kbd{[N, factor(N)]}, where \kbd{N} is the cardinality
 of the multiplicative group of the underlying finite field.
 \bprog
 ? t = ffgen(ffinit(nextprime(10^8), 5));
 ? g = ffprimroot(t, &o);  \\@com o will be useful!
 ? fforder(g^1000000, o)
 time = 0 ms.
 %5 = 5000001750000245000017150000600250008403
 ? fforder(g^1000000)
 time = 16 ms. \\@com noticeably slower, same result of course
 %6 = 5000001750000245000017150000600250008403
 @eprog

Function: ffprimroot
Class: basic
Section: number_theoretical
C-Name: ffprimroot
Prototype: GD&
Help: ffprimroot(x, {&o}): return a primitive root of the multiplicative group
 of the definition field of the finite field element x (not necessarily the
 same as the field generated by x). If present, o is set to [ord, fa], where
 ord is the order of the group, and fa its factorization
 (useful in fflog and fforder).
Doc: return a primitive root of the multiplicative
 group of the definition field of the finite field element $x$ (not necessarily
 the same as the field generated by $x$). If present, $o$ is set to
 a vector \kbd{[ord, fa]}, where \kbd{ord} is the order of the group
 and \kbd{fa} its factorisation \kbd{factor(ord)}. This last parameter is
 useful in \tet{fflog} and \tet{fforder}, see \secref{se:DLfun}.
 \bprog
 ? t = ffgen(ffinit(nextprime(10^7), 5));
 ? g = ffprimroot(t, &o);
 ? o[1]
 %3 = 100000950003610006859006516052476098
 ? o[2]
 %4 =
 [2 1]
 
 [7 2]
 
 [31 1]
 
 [41 1]
 
 [67 1]
 
 [1523 1]
 
 [10498781 1]
 
 [15992881 1]
 
 [46858913131 1]
 
 ? fflog(g^1000000, g, o)
 time = 1,312 ms.
 %5 = 1000000
 @eprog

Function: fibonacci
Class: basic
Section: number_theoretical
C-Name: fibo
Prototype: L
Help: fibonacci(x): fibonacci number of index x (x C-integer).
Doc: $x^{\text{th}}$ Fibonacci number.

Function: floor
Class: basic
Section: conversions
C-Name: gfloor
Prototype: G
Help: floor(x): floor of x = largest integer <= x.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             floorr($1)
 (mp):int               mpfloor($1)
 (gen):gen              gfloor($1)
Doc: 
 floor of $x$. When $x$ is in $\R$, the result is the
 largest integer smaller than or equal to $x$. Applied to a rational function,
 $\kbd{floor}(x)$ returns the Euclidean quotient of the numerator by the
 denominator.

Function: fold
Class: basic
Section: programming/specific
C-Name: fold0
Prototype: GG
Help: fold(f, A): return f(...f(f(A[1],A[2]),A[3]),...,A[#A]).
Wrapper: (GG)
Description: 
  (closure,gen):gen    genfold(${1 cookie}, ${1 wrapper}, $2)
Doc: Apply the \typ{CLOSURE} \kbd{f} of arity $2$ to the entries of \kbd{A},
 in order to return \kbd{f(\dots f(f(A[1],A[2]),A[3])\dots ,A[\#A])}.
 \bprog
 ? fold((x,y)->x*y, [1,2,3,4])
 %1 = 24
 ? fold((x,y)->[x,y], [1,2,3,4])
 %2 = [[[1, 2], 3], 4]
 ? fold((x,f)->f(x), [2,sqr,sqr,sqr])
 %3 = 256
 ? fold((x,y)->(x+y)/(1-x*y),[1..5])
 %4 = -9/19
 ? bestappr(tan(sum(i=1,5,atan(i))))
 %5 = -9/19
 @eprog
Variant: Also available is
 \fun{GEN}{genfold}{void *E, GEN (*fun)(void*,GEN, GEN), GEN A}.

Function: for
Class: basic
Section: programming/control
C-Name: forpari
Prototype: vV=GGI
Help: for(X=a,b,seq): the sequence is evaluated, X going from a up to b.
 If b is set to +oo, the loop will not stop.
Doc: evaluates \var{seq}, where
 the formal variable $X$ goes from $a$ to $b$. Nothing is done if $a>b$.
 $a$ and $b$ must be in $\R$. If $b$ is set to \kbd{+oo}, the loop will not
 stop; it is expected that the caller will break out of the loop itself at some
 point, using \kbd{break} or \kbd{return}.

Function: forcomposite
Class: basic
Section: programming/control
C-Name: forcomposite
Prototype: vV=GDGI
Help: forcomposite(n=a,{b},seq): the sequence is evaluated, n running over the
 composite numbers between a and b. Omitting b runs through composites >= a.
Iterator: 
 (gen,gen,?gen) (forcomposite, _forcomposite_init, _forcomposite_next)
Doc: evaluates \var{seq},
 where the formal variable $n$ ranges over the composite numbers between the
 non-negative real numbers $a$ to $b$, including $a$ and $b$ if they are
 composite. Nothing is done if $a>b$.
 \bprog
 ? forcomposite(n = 0, 10, print(n))
 4
 6
 8
 9
 10
 @eprog\noindent Omitting $b$ means we will run through all composites $\geq a$,
 starting an infinite loop; it is expected that the user will break out of
 the loop himself at some point, using \kbd{break} or \kbd{return}.
 
 Note that the value of $n$ cannot be modified within \var{seq}:
 \bprog
 ? forcomposite(n = 2, 10, n = [])
  ***   at top-level: forcomposite(n=2,10,n=[])
  ***                                      ^---
  ***   index read-only: was changed to [].
 @eprog

Function: fordiv
Class: basic
Section: programming/control
C-Name: fordiv
Prototype: vGVI
Help: fordiv(n,X,seq): the sequence is evaluated, X running over the
 divisors of n.
Doc: evaluates \var{seq}, where
 the formal variable $X$ ranges through the divisors of $n$
 (see \tet{divisors}, which is used as a subroutine). It is assumed that
 \kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
 it is possible to input a factorization matrix, i.e. the output of
 \kbd{factor(n)}.
 
 This routine uses \kbd{divisors} as a subroutine, then loops over the
 divisors. In particular, if $n$ is an integer, divisors are sorted by
 increasing size.
 
 To avoid storing all divisors, possibly using a lot of memory, the following
 (much slower) routine loops over the divisors using essentially constant
 space:
 \bprog
 FORDIV(N)=
 { my(P, E);
 
   P = factor(N); E = P[,2]; P = P[,1];
   forvec( v = vector(#E, i, [0,E[i]]),
   X = factorback(P, v)
   \\ ...
 );
 }
 ? for(i=1,10^5, FORDIV(i))
 time = 3,445 ms.
 ? for(i=1,10^5, fordiv(i, d, ))
 time = 490 ms.
 @eprog

Function: forell
Class: basic
Section: programming/control
C-Name: forell0
Prototype: vVLLID0,L,
Help: forell(E,a,b,seq,{flag=0}): execute seq for each elliptic curves E of
 conductor between a and b in the elldata database. If flag is non-zero, select
 only the first curve in each isogeny class.
Wrapper: (,,,vG,)
Description: 
 (,small,small,closure,?small):void forell(${4 cookie}, ${4 wrapper}, $2, $3, $5)
Doc: evaluates \var{seq}, where the formal variable $E = [\var{name}, M, G]$
 ranges through all elliptic curves of conductors from $a$ to $b$. In this
 notation \var{name} is the curve name in Cremona's elliptic  curve  database,
 $M$ is the minimal model, $G$ is a $\Z$-basis of the free part of the
 Mordell-Weil group $E(\Q)$. If flag is non-zero, select
 only the first curve in each isogeny class.
 \bprog
 ? forell(E, 1, 500, my([name,M,G] = E); \
     if (#G > 1, print(name)))
 389a1
 433a1
 446d1
 ? c = 0; forell(E, 1, 500, c++); c   \\ number of curves
 %2 = 2214
 ? c = 0; forell(E, 1, 500, c++, 1); c \\ number of isogeny classes
 %3 = 971
 @eprog\noindent
 The \tet{elldata} database must be installed and contain data for the
 specified conductors.
 
 \synt{forell}{void *data, long (*call)(void*,GEN), long a, long b, long flag}.

Function: forpart
Class: basic
Section: programming/control
C-Name: forpart0
Prototype: vV=GIDGDG
Help: forpart(X=k,seq,{a=k},{n=k}): evaluate seq where the Vecsmall X
 goes over the partitions of k. Optional parameter n (n=nmax or n=[nmin,nmax])
 restricts the length of the partition. Optional parameter a (a=amax or
 a=[amin,amax]) restricts the range of the parts. Zeros are removed unless one
 sets amin=0 to get X of fixed length nmax (=k by default).
Iterator: 
 (gen,small,?gen,?gen)         (forpart, _forpart_init, _forpart_next)
Wrapper: (,vG,,)
Description: 
 (small,closure,?gen,?gen):void forpart(${2 cookie}, ${2 wrapper}, $1, $3, $4)
Doc: evaluate \var{seq} over the partitions $X=[x_1,\dots x_n]$ of the
 integer $k$, i.e.~increasing sequences $x_1\leq x_2\dots \leq x_n$ of sum
 $x_1+\dots + x_n=k$. By convention, $0$ admits only the empty partition and
 negative numbers have no partitions. A partition is given by a
 \typ{VECSMALL}, where parts are sorted in nondecreasing order:
 \bprog
 ? forpart(X=3, print(X))
 Vecsmall([3])
 Vecsmall([1, 2])
 Vecsmall([1, 1, 1])
 @eprog\noindent Optional parameters $n$ and $a$ are as follows:
 
 \item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
 partitions to length less than $\var{nmax}$ (resp. length between
 $\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
 entries.
 
 \item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
 to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
 $\var{amax}$).
 
 By default, parts are positive and we remove zero entries unless $amin\leq0$,
 in which case $X$ is of constant length $\var{nmax}$.
 \bprog
 \\ at most 3 non-zero parts, all <= 4
 ? forpart(v=5,print(Vec(v)),4,3)
 [1, 4]
 [2, 3]
 [1, 1, 3]
 [1, 2, 2]
 
 \\ between 2 and 4 parts less than 5, fill with zeros
 ? forpart(v=5,print(Vec(v)),[0,5],[2,4])
 [0, 0, 1, 4]
 [0, 0, 2, 3]
 [0, 1, 1, 3]
 [0, 1, 2, 2]
 [1, 1, 1, 2]
 @eprog\noindent
 The behavior is unspecified if $X$ is modified inside the loop.
 
 \synt{forpart}{void *data, long (*call)(void*,GEN), long k, GEN a, GEN n}.

Function: forprime
Class: basic
Section: programming/control
C-Name: forprime
Prototype: vV=GDGI
Help: forprime(p=a,{b},seq): the sequence is evaluated, p running over the
 primes between a and b. Omitting b runs through primes >= a.
Iterator: 
 (*notype,small,small) (forprime, _u_forprime_init, _u_forprime_next)
 (*small,gen,?gen)    (forprime, _u_forprime_init, _u_forprime_next)
 (*int,gen,?gen)      (forprime, _forprime_init, _forprime_next_)
 (gen,gen,?gen)       (forprime, _forprime_init, _forprime_next_)
Doc: evaluates \var{seq},
 where the formal variable $p$ ranges over the prime numbers between the real
 numbers $a$ to $b$, including $a$ and $b$ if they are prime. More precisely,
 the value of
 $p$ is incremented to \kbd{nextprime($p$ + 1)}, the smallest prime strictly
 larger than $p$, at the end of each iteration. Nothing is done if $a>b$.
 \bprog
 ? forprime(p = 4, 10, print(p))
 5
 7
 @eprog\noindent Setting $b$ to \kbd{+oo} means we will run through all primes
 $\geq a$, starting an infinite loop; it is expected that the caller will break
 out of the loop itself at some point, using \kbd{break} or \kbd{return}.
 
 Note that the value of $p$ cannot be modified within \var{seq}:
 \bprog
 ? forprime(p = 2, 10, p = [])
  ***   at top-level: forprime(p=2,10,p=[])
  ***                                   ^---
  ***   prime index read-only: was changed to [].
 @eprog

Function: forqfvec
Class: basic
Section: linear_algebra
C-Name: forqfvec0
Prototype: vVGDGI
Help: forqfvec(v,q,b,expr): q being a square and symmetric integral matrix
 representing an positive definite quadratic form, evaluate expr
 for all vectors v such that q(v)<=b.
Doc: $q$ being a square and symmetric integral matrix representing a positive
 definite
 quadratic form, evaluate \kbd{expr} for all vector $v$ such that $q(v)\leq b$.
 The formal variable $v$ runs through all such vectors in turn.
 \bprog
 ? forqfvec(v, [3,2;2,3], 3, print(v))
 [0, 1]~
 [1, 0]~
 [-1, 1]~
 @eprog
Variant: The following function is also available:
 \fun{void}{forqfvec}{void *E, long (*fun)(void *, GEN, GEN, double), GEN q, GEN b}:
 Evaluate \kbd{fun(E,w,v,m)} on all $v$ such that $q(v)<b$, where $v$ is a
 \typ{VECSMALL} and $m=q(v)$ is a C double. The function \kbd{fun} must
 return $0$, unless \kbd{forqfvec} should stop, in which case, it should
 return $1$.

Function: forstep
Class: basic
Section: programming/control
C-Name: forstep
Prototype: vV=GGGI
Help: forstep(X=a,b,s,seq): the sequence is evaluated, X going from a to b
 in steps of s (can be a vector of steps). If b is set to +oo the loop will
 not stop.
Doc: evaluates \var{seq},
 where the formal variable $X$ goes from $a$ to $b$, in increments of $s$.
 Nothing is done if $s>0$ and $a>b$ or if $s<0$ and $a<b$. $s$ must be in
 $\R^*$ or a vector of steps $[s_1,\dots,s_n]$. In the latter case, the
 successive steps are used in the order they appear in $s$.
 
 \bprog
 ? forstep(x=5, 20, [2,4], print(x))
 5
 7
 11
 13
 17
 19
 @eprog\noindent Setting $b$ to \kbd{+oo} will start an infinite loop; it is
 expected that the caller will break out of the loop itself at some point,
 using \kbd{break} or \kbd{return}.

Function: forsubgroup
Class: basic
Section: programming/control
C-Name: forsubgroup0
Prototype: vV=GDGI
Help: forsubgroup(H=G,{bound},seq): execute seq for each subgroup H of the
 abelian group G, whose index is bounded by bound if not omitted. H is given
 as a left divisor of G in HNF form.
Wrapper: (,,vG)
Description: 
 (gen,?gen,closure):void  forsubgroup(${3 cookie}, ${3 wrapper}, $1, $2)
Doc: evaluates \var{seq} for
 each subgroup $H$ of the \emph{abelian} group $G$ (given in
 SNF\sidx{Smith normal form} form or as a vector of elementary divisors).
 
 If \var{bound} is present, and is a positive integer, restrict the output to
 subgroups of index less than \var{bound}. If \var{bound} is a vector
 containing a single positive integer $B$, then only subgroups of index
 exactly equal to $B$ are computed
 
 The subgroups are not ordered in any
 obvious way, unless $G$ is a $p$-group in which case Birkhoff's algorithm
 produces them by decreasing index. A \idx{subgroup} is given as a matrix
 whose columns give its generators on the implicit generators of $G$. For
 example, the following prints all subgroups of index less than 2 in $G =
 \Z/2\Z g_1 \times \Z/2\Z g_2$:
 
 \bprog
 ? G = [2,2]; forsubgroup(H=G, 2, print(H))
 [1; 1]
 [1; 2]
 [2; 1]
 [1, 0; 1, 1]
 @eprog\noindent
 The last one, for instance is generated by $(g_1, g_1 + g_2)$. This
 routine is intended to treat huge groups, when \tet{subgrouplist} is not an
 option due to the sheer size of the output.
 
 For maximal speed the subgroups have been left as produced by the algorithm.
 To print them in canonical form (as left divisors of $G$ in HNF form), one
 can for instance use
 \bprog
 ? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))
 [2, 1; 0, 1]
 [1, 0; 0, 2]
 [2, 0; 0, 1]
 [1, 0; 0, 1]
 @eprog\noindent
 Note that in this last representation, the index $[G:H]$ is given by the
 determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
 applications to \idx{Galois} theory.
 
 \synt{forsubgroup}{void *data, long (*call)(void*,GEN), GEN G, GEN bound}.

Function: forvec
Class: basic
Section: programming/control
C-Name: forvec
Prototype: vV=GID0,L,
Help: forvec(X=v,seq,{flag=0}): v being a vector of two-component vectors of
 length n, the sequence is evaluated with X[i] going from v[i][1] to v[i][2]
 for i=n,..,1 if flag is zero or omitted. If flag = 1 (resp. flag = 2),
 restrict to increasing (resp. strictly increasing) sequences.
Iterator: (gen,gen,?small) (forvec, _forvec_init, _forvec_next)
Doc: Let $v$ be an $n$-component
 vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$
 for $1\le i\le n$, where all entries $a_i$, $b_i$ are real numbers.
 This routine lets $X$ vary over the $n$-dimensional hyperrectangle
 given by $v$, that is, $X$ is an $n$-dimensional vector taking
 successively its entries $X[i]$ in the range $[a_i,b_i]$ with lexicographic
 ordering. (The component with the highest index moves the fastest.)
 The type of $X$ is the same as the type of $v$: \typ{VEC} or \typ{COL}.
 
 The expression \var{seq} is evaluated with the successive values of $X$.
 
 If $\fl=1$, generate only nondecreasing vectors $X$, and
 if $\fl=2$, generate only strictly increasing vectors $X$.
 \bprog
 ? forvec (X=[[0,1],[-1,1]], print(X));
 [0, -1]
 [0, 0]
 [0, 1]
 [1, -1]
 [1, 0]
 [1, 1]
 ? forvec (X=[[0,1],[-1,1]], print(X), 1);
 [0, 0]
 [0, 1]
 [1, 1]
 ? forvec (X=[[0,1],[-1,1]], print(X), 2)
 [0, 1]
 @eprog

Function: frac
Class: basic
Section: conversions
C-Name: gfrac
Prototype: G
Help: frac(x): fractional part of x = x-floor(x).
Doc: 
 fractional part of $x$. Identical to
 $x-\text{floor}(x)$. If $x$ is real, the result is in $[0,1[$.

Function: fromdigits
Class: basic
Section: conversions
C-Name: fromdigits
Prototype: GDG
Help: fromdigits(x,{b=10}): gives the integer formed by the elements of x seen
 as the digits of a number in base b.
Doc: gives the integer formed by the elements of $x$ seen as the digits of a
 number in base $b$ ($b = 10$ by default).  This is the reverse of \kbd{digits}:
 \bprog
 ? digits(1234,5)
 %1 = [1,4,4,1,4]
 ? fromdigits([1,4,4,1,4],5)
 %2 = 1234
 @eprog\noindent By convention, $0$ has no digits:
 \bprog
 ? fromdigits([])
 %3 = 0
 @eprog

Function: galoisexport
Class: basic
Section: number_fields
C-Name: galoisexport
Prototype: GD0,L,
Help: galoisexport(gal,{flag}): gal being a Galois group as output by
 galoisinit, output a string representing the underlying permutation group in
 GAP notation (default) or Magma notation (flag = 1).
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
 export the underlying permutation group as a string suitable
 for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
 compute the index of the underlying abstract group in the GAP library:
 \bprog
 ? G = galoisinit(x^6+108);
 ? s = galoisexport(G)
 %2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
 ? extern("echo \"IdGroup("s");\" | gap -q")
 %3 = [6, 1]
 ? galoisidentify(G)
 %4 = [6, 1]
 @eprog\noindent
 This command also accepts subgroups returned by \kbd{galoissubgroups}.
 
 To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for
 instance), the following GAP function may be useful:
 \bprog
 PermToGP := function(p, n)
   return Permuted([1..n],p);
 end;
 
 gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
   (16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
 gap> PermToGP(p,32);
 [ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
   29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
 @eprog

Function: galoisfixedfield
Class: basic
Section: number_fields
C-Name: galoisfixedfield
Prototype: GGD0,L,Dn
Help: galoisfixedfield(gal,perm,{flag},{v=y}): gal being a Galois group as
 output by galoisinit and perm a subgroup, an element of gal.group or a vector
 of such elements, return [P,x] such that P is a polynomial defining the fixed
 field of gal[1] by the subgroup generated by perm, and x is a root of P in gal
 expressed as a polmod in gal.pol. If flag is 1 return only P. If flag is 2
 return [P,x,F] where F is the factorization of gal.pol over the field
 defined by P, where the variable v stands for a root of P.
Description: 
 (gen, gen, ?small, ?var):vec        galoisfixedfield($1, $2, $3, $4)
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit} and
 \var{perm} an element of $\var{gal}.group$, a vector of such elements
 or a subgroup of \var{gal} as returned by galoissubgroups,
 computes the fixed field of \var{gal} by the automorphism defined by the
 permutations \var{perm} of the roots $\var{gal}.roots$. $P$ is guaranteed to
 be squarefree modulo $\var{gal}.p$.
 
 If no flags or $\fl=0$, output format is the same as for \tet{nfsubfield},
 returning $[P,x]$ such that $P$ is a polynomial defining the fixed field, and
 $x$ is a root of $P$ expressed as a polmod in $\var{gal}.pol$.
 
 If $\fl=1$ return only the polynomial $P$.
 
 If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
 factorization of $\var{gal}.pol$ over the field defined by $P$, where
 variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
 must be less than the priority of the variable of $\var{gal}.pol$ (see
 \secref{se:priority}). Example:
 
 \bprog
 ? G = galoisinit(x^4+1);
 ? galoisfixedfield(G,G.group[2],2)
 %2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]
 @eprog\noindent
 computes the factorization  $x^4+1=(x^2-\sqrt{-2}x-1)(x^2+\sqrt{-2}x-1)$

Function: galoisgetpol
Class: basic
Section: number_fields
C-Name: galoisgetpol
Prototype: LD0,L,D1,L,
Help: galoisgetpol(a,{b},{s}): query the galpol package for a polynomial with
 Galois group isomorphic to GAP4(a,b), totally real if s=1 (default) and
 totally complex if s=2.  The output is a vector [pol, den] where pol is the
 polynomial and den is the common denominator of the conjugates expressed
 as a polynomial in a root of pol. If b and s are omitted, return the number of
 isomorphism classes of groups of order a.
Description: 
 (small):int               galoisnbpol($1)
 (small,):int              galoisnbpol($1)
 (small,,):int             galoisnbpol($1)
 (small,small,small):vec   galoisgetpol($1, $2 ,$3)
Doc: Query the galpol package for a polynomial with Galois group isomorphic to
 GAP4(a,b), totally real if $s=1$ (default) and totally complex if $s=2$. The
 output is a vector [\kbd{pol}, \kbd{den}] where
 
 \item  \kbd{pol} is the polynomial of degree $a$
 
 \item \kbd{den} is the denominator of \kbd{nfgaloisconj(pol)}.
 Pass it as an optional argument to \tet{galoisinit} or \tet{nfgaloisconj} to
 speed them up:
 \bprog
 ? [pol,den] = galoisgetpol(64,4,1);
 ? G = galoisinit(pol);
 time = 352ms
 ? galoisinit(pol, den);  \\ passing 'den' speeds up the computation
 time = 264ms
 ? % == %`
 %4 = 1  \\ same answer
 @eprog
 If $b$ and $s$ are omitted, return the number of isomorphism classes of
 groups of order $a$.
Variant: Also available is \fun{GEN}{galoisnbpol}{long a} when $b$ and $s$
 are omitted.

Function: galoisidentify
Class: basic
Section: number_fields
C-Name: galoisidentify
Prototype: G
Help: galoisidentify(gal): gal being a Galois group as output by galoisinit,
 output the isomorphism class of the underlying abstract group as a
 two-components vector [o,i], where o is the group order, and i is the group
 index in the GAP4 small group library.
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
 output the isomorphism class of the underlying abstract group as a
 two-components vector $[o,i]$, where $o$ is the group order, and $i$ is the
 group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina
 Eick and Eamonn O'Brien.
 
 This command also accepts subgroups returned by \kbd{galoissubgroups}.
 
 The current implementation is limited to degree less or equal to $127$.
 Some larger ``easy'' orders are also supported.
 
 The output is similar to the output of the function \kbd{IdGroup} in GAP4.
 Note that GAP4 \kbd{IdGroup} handles all groups of order less than $2000$
 except $1024$, so you can use \tet{galoisexport} and GAP4 to identify large
 Galois groups.

Function: galoisinit
Class: basic
Section: number_fields
C-Name: galoisinit
Prototype: GDG
Help: galoisinit(pol,{den}): pol being a polynomial or a number field as
 output by nfinit defining a Galois extension of Q, compute the Galois group
 and all necessary information for computing fixed fields. den is optional
 and has the same meaning as in nfgaloisconj(,4)(see manual).
Description: 
 (gen, ?int):gal        galoisinit($1, $2)
Doc: computes the Galois group
 and all necessary information for computing the fixed fields of the
 Galois extension $K/\Q$ where $K$ is the number field defined by
 $\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
 a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
 Galois with Galois group ``weakly'' super-solvable, see below;
 returns 0 otherwise. Hence this permits to quickly check whether a polynomial
 of order strictly less than $36$ is Galois or not.
 
 The algorithm used is an improved version of the paper
 ``An efficient algorithm for the computation of Galois automorphisms'',
 Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.
 
 A group $G$ is said to be ``weakly'' super-solvable if there exists a
 normal series
 
 $\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1}
 \triangleleft H_n$
 
 such that each $H_i$ is normal in $G$ and for $i<n$, each quotient group
 $H_{i+1}/H_i$ is cyclic, and either $H_n=G$ (then $G$ is super-solvable) or
 $G/H_n$ is isomorphic to either $A_4$ or $S_4$.
 
 In practice, almost all small groups are WKSS, the exceptions having order
 36(1 exception), 48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and $\geq
 108$.
 
 This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
 For instance:
 
 \bprog
 P = x^6 + 108;
 G = galoisinit(P);
 L = galoissubgroups(G);
 vector(#L, i, galoisisabelian(L[i],1))
 vector(#L, i, galoisidentify(L[i]))
 @eprog
 
 The output is an 8-component vector \var{gal}.
 
 $\var{gal}[1]$ contains the polynomial \var{pol}
 (\kbd{\var{gal}.pol}).
 
 $\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
 prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
 modulo $p$ , $e$ is an integer and $q=p^e$ (\kbd{\var{gal}.mod}) is the
 modulus of the roots in \kbd{\var{gal}.roots}.
 
 $\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
 \var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
 (\kbd{\var{gal}.roots}).
 
 $\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
 $p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.
 
 $\var{gal}[5]$ is a multiple of the least common denominator of the
 automorphisms expressed as polynomial in a root of \var{pol}.
 
 $\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
 permutations of $L$ (\kbd{\var{gal}.group}).
 
 $\var{gal}[7]$ is a generating subset $S=[s_1,\ldots,s_g]$ of $G$
 expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).
 
 $\var{gal}[8]$ contains the relative orders $[o_1,\ldots,o_g]$ of
 the generators of $S$ (\kbd{\var{gal}.orders}).
 
 Let $H_n$ be as above, we have the following properties:
 
 \quad\item if $G/H_n\simeq A_4$ then $[o_1,\ldots,o_g]$ ends by
 $[2,2,3]$.
 
 \quad\item if $G/H_n\simeq S_4$ then $[o_1,\ldots,o_g]$ ends by
 $[2,2,3,2]$.
 
 \quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
 $[s_1,\ldots,s_g]$ is normal, with the exception of $i=g-2$ in the
 $A_4$ case and of $i=g-3$ in the $S_A$ case.
 
 \quad\item the relative order $o_i$ of $s_i$ is its order in the
 quotient group $G/\langle s_1,\ldots,s_{i-1}\rangle$, with the same
 exceptions.
 
 \quad\item for any $x\in G$ there exists a unique family
 $[e_1,\ldots,e_g]$ such that (no exceptions):
 
 -- for $1\leq i \leq g$ we have $0\leq e_i<o_i$
 
 -- $x=g_1^{e_1}g_2^{e_2}\ldots g_n^{e_n}$
 
 If present $den$ must be a suitable value for $\var{gal}[5]$.

Function: galoisisabelian
Class: basic
Section: number_fields
C-Name: galoisisabelian
Prototype: GD0,L,
Help: galoisisabelian(gal,{flag=0}): gal being as output by galoisinit,
 return 0 if gal is not abelian, the HNF matrix of gal over gal.gen if
 flag=0, 1 if flag is 1, and the SNF of gal is flag=2.
Doc: \var{gal} being as output by \kbd{galoisinit}, return $0$ if
 \var{gal} is not an abelian group, and the HNF matrix of \var{gal} over
 \kbd{gal.gen} if $fl=0$, $1$ if $fl=1$.
 
 This command also accepts subgroups returned by \kbd{galoissubgroups}.

Function: galoisisnormal
Class: basic
Section: number_fields
C-Name: galoisisnormal
Prototype: lGG
Help: galoisisnormal(gal,subgrp): gal being as output by galoisinit,
 and subgrp a subgroup of gal as output by galoissubgroups,
 return 1 if subgrp is a normal subgroup of gal, else return 0.
Doc: \var{gal} being as output by \kbd{galoisinit}, and \var{subgrp} a subgroup
 of \var{gal} as output by \kbd{galoissubgroups},return $1$ if \var{subgrp} is a
 normal subgroup of \var{gal}, else return 0.
 
 This command also accepts subgroups returned by \kbd{galoissubgroups}.

Function: galoispermtopol
Class: basic
Section: number_fields
C-Name: galoispermtopol
Prototype: GG
Help: galoispermtopol(gal,perm): gal being a Galois group as output by
 galoisinit and perm a element of gal.group, return the polynomial defining
 the corresponding Galois automorphism.
Doc: \var{gal} being a
 Galois group as output by \kbd{galoisinit} and \var{perm} a element of
 $\var{gal}.group$, return the polynomial defining the Galois
 automorphism, as output by \kbd{nfgaloisconj}, attached to the
 permutation \var{perm} of the roots $\var{gal}.roots$. \var{perm} can
 also be a vector or matrix, in this case, \kbd{galoispermtopol} is
 applied to all components recursively.
 
 \noindent Note that
 \bprog
 G = galoisinit(pol);
 galoispermtopol(G, G[6])~
 @eprog\noindent
 is equivalent to \kbd{nfgaloisconj(pol)}, if degree of \var{pol} is greater
 or equal to $2$.

Function: galoissubcyclo
Class: basic
Section: number_fields
C-Name: galoissubcyclo
Prototype: GDGD0,L,Dn
Help: galoissubcyclo(N,H,{fl=0},{v}): compute a polynomial (in variable v)
 defining the subfield of Q(zeta_n) fixed by the subgroup H of (Z/nZ)*. N can
 be an integer n, znstar(n) or bnrinit(bnfinit(y),[n,[1]],1). H can be given
 by a generator, a set of generator given by a vector or a HNF matrix (see
 manual). If flag is 1, output only the conductor of the abelian extension.
 If flag is 2 output [pol,f] where pol is the polynomial and f the conductor.
Doc: computes the subextension
 of $\Q(\zeta_n)$ fixed by the subgroup $H \subset (\Z/n\Z)^*$. By the
 Kronecker-Weber theorem, all abelian number fields can be generated in this
 way (uniquely if $n$ is taken to be minimal).
 
 \noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows
 
 \item $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
 integer or an integer modulo $n$; or a vector of generators.
 
 \item $N$ the output of \kbd{znstar($n$)}. $H$ as in the first case
 above, or a matrix, taken to be a HNF left divisor of the SNF for $(\Z/n\Z)^*$
 (of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
 
 \item $N$ the output of \kbd{bnrinit(bnfinit(y), $m$, 1)} where $m$ is a
 module. $H$ as in the first case, or a matrix taken to be a HNF left
 divisor of the SNF for the ray class group modulo $m$
 (of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
 
 In this last case, beware that $H$ is understood relatively to $N$; in
 particular, if the infinite place does not divide the module, e.g if $m$ is
 an integer, then it is not a subgroup of $(\Z/n\Z)^*$, but of its quotient by
 $\{\pm 1\}$.
 
 If $fl=0$, compute a polynomial (in the variable \var{v}) defining
 the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of $(\Z/n\Z)^*$.
 
 If $fl=1$, compute only the conductor of the abelian extension, as a module.
 
 If $fl=2$, output $[pol, N]$, where $pol$ is the polynomial as output when
 $fl=0$ and $N$ the conductor as output when $fl=1$.
 
 The following function can be used to compute all subfields of
 $\Q(\zeta_n)$ (of exact degree \kbd{d}, if \kbd{d} is set):
 \bprog
 polsubcyclo(n, d = -1)=
 { my(bnr,L,IndexBound);
   IndexBound = if (d < 0, n, [d]);
   bnr = bnrinit(bnfinit(y), [n,[1]], 1);
   L = subgrouplist(bnr, IndexBound, 1);
   vector(#L,i, galoissubcyclo(bnr,L[i]));
 }
 @eprog\noindent
 Setting \kbd{L = subgrouplist(bnr, IndexBound)} would produce subfields of exact
 conductor $n\infty$.

Function: galoissubfields
Class: basic
Section: number_fields
C-Name: galoissubfields
Prototype: GD0,L,Dn
Help: galoissubfields(G,{flag=0},{v}): output all the subfields of G. flag
 has the same meaning as for galoisfixedfield.
Doc: outputs all the subfields of the Galois group \var{G}, as a vector.
 This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of
 \var{flag} is the same as for \kbd{galoisfixedfield}.

Function: galoissubgroups
Class: basic
Section: number_fields
C-Name: galoissubgroups
Prototype: G
Help: galoissubgroups(G): output all the subgroups of G.
Doc: outputs all the subgroups of the Galois group \kbd{gal}. A subgroup is a
 vector [\var{gen}, \var{orders}], with the same meaning
 as for $\var{gal}.gen$ and $\var{gal}.orders$. Hence \var{gen} is a vector of
 permutations generating the subgroup, and \var{orders} is the relatives
 orders of the generators. The cardinality of a subgroup is the product of the
 relative orders. Such subgroup can be used instead of a Galois group in the
 following command: \kbd{galoisisabelian}, \kbd{galoissubgroups},
 \kbd{galoisexport} and \kbd{galoisidentify}.
 
 To get the subfield fixed by a subgroup \var{sub} of \var{gal}, use
 \bprog
 galoisfixedfield(gal,sub[1])
 @eprog

Function: gamma
Class: basic
Section: transcendental
C-Name: ggamma
Prototype: Gp
Help: gamma(s): gamma function at s, a complex or p-adic number, or a series.
Doc: For $s$ a complex number, evaluates Euler's gamma
 function \sidx{gamma-function}
 $$\Gamma(s)=\int_0^\infty t^{s-1}\exp(-t)\,dt.$$
 Error if $s$ is a non-positive integer, where $\Gamma$ has a pole.
 
 For $s$ a \typ{PADIC}, evaluates the Morita gamma function at $s$, that
 is the unique continuous $p$-adic function on the $p$-adic integers
 extending $\Gamma_p(k)=(-1)^k \prod_{j<k}'j$, where the prime means that $p$
 does not divide $j$.
 \bprog
 ? gamma(1/4 + O(5^10))
 %1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
 ? algdep(%,4)
 %2 = x^4 + 4*x^2 + 5
 @eprog
Variant: For a \typ{PADIC} $x$, the function \fun{GEN}{Qp_gamma}{GEN x} is
 also available.

Function: gammah
Class: basic
Section: transcendental
C-Name: ggammah
Prototype: Gp
Help: gammah(x): gamma of x+1/2 (x integer).
Doc: gamma function evaluated at the argument $x+1/2$.

Function: gammamellininv
Class: basic
Section: transcendental
C-Name: gammamellininv
Prototype: GGD0,L,b
Help: gammamellininv(G,t,{m=0}): returns G(t), where G is as output
 by gammamellininvinit. The alternative syntax gammamellininv(A,t,m)
 is also available.
Doc: returns the value at $t$ of the inverse Mellin transform
 $G$ initialized by \tet{gammamellininvinit}.
 \bprog
 ? G = gammamellininvinit([0]);
 ? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
 %2 = -4.484155085839414627 E-44
 @eprog
 
 The alternative shortcut
 \bprog
   gammamellininv(A,t,m)
 @eprog\noindent for
 \bprog
   gammamellininv(gammamellininvinit(A,m), t)
 @eprog\noindent is available.

Function: gammamellininvasymp
Class: basic
Section: transcendental
C-Name: gammamellininvasymp
Prototype: GDPD0,L,
Help: gammamellininvasymp(A,n,{m=0}): return the first n terms of the
 asymptotic expansion at infinity of the m-th derivative K^m(t) of the
 inverse Mellin transform of the function
 f(s)=Gamma_R(s+a_1)*...*Gamma_R(s+a_d), where Vga is the vector [a_1,...,a_d]
 and Gamma_R(s)=Pi^(-s/2)*gamma(s/2). The result is a vector [M[1]...M[n]]
 with M[1]=1, such that
 K^m(t) = \sqrt{2^{d+1}/d}t^{a+m(2/d-1)}e^{-d pi t^{2/d}}\sum_{n\ge0}M[n+1]
 (pi t^{2n/d})^{-n}, with a = (1-d+sum_ja_j)/d.
Doc: Return the first $n$ terms of the asymptotic expansion at infinity
 of the $m$-th derivative $K^{(m)}(t)$ of the inverse Mellin transform of the
 function
 $$f(s) = \Gamma_\R(s+a_1)\*\ldots\*\Gamma_\R(s+a_d)\;,$$
 where \kbd{A} is the vector $[a_1,\ldots,a_d]$ and
 $\Gamma_\R(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}).
 The result is a vector
 $[M[1]...M[n]]$ with M[1]=1, such that
 $$K^{(m)}(t)=\sqrt{2^{d+1}/d}t^{a+m(2/d-1)}e^{-d\pi t^{2/d}}
    \sum_{n\ge0} M[n+1] (\pi t^{2/d})^{-n} $$
 with $a=(1-d+\sum_{1\le j\le d}a_j)/d$.

Function: gammamellininvinit
Class: basic
Section: transcendental
C-Name: gammamellininvinit
Prototype: GD0,L,b
Help: gammamellininvinit(A,{m=0}): initialize data for the computation by
 gammamellininv() of the m-th derivative of the inverse Mellin transform
 of the function f(s) = Gamma_R(s+a1)*...*Gamma_R(s+ad), where
 A is the vector [a1,...,ad] and Gamma_R(s) = Pi^(-s/2)*gamma(s/2).
Doc: initialize data for the computation by \tet{gammamellininv} of
 the $m$-th derivative of the inverse Mellin transform of the function
 $$f(s) = \Gamma_\R(s+a_1)\*\ldots\*\Gamma_\R(s+a_d)$$
 where \kbd{A} is the vector $[a_1,\ldots,a_d]$ and
 $\Gamma_\R(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}). This is the
 special case of Meijer's $G$ functions used to compute $L$-values via the
 approximate functional equation.
 
 \misctitle{Caveat} Contrary to the PARI convention, this function
 guarantees an \emph{absolute} (rather than relative) error bound.
 
 For instance, the inverse Mellin transform of $\Gamma_\R(s)$ is
 $2\exp(-\pi z^2)$:
 \bprog
 ? G = gammamellininvinit([0]);
 ? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
 %2 = -4.484155085839414627 E-44
 @eprog
 The inverse Mellin transform of $\Gamma_\R(s+1)$ is
 $2 z\exp(-\pi z^2)$, and its second derivative is
 $ 4\pi z \exp(-\pi z^2)(2\pi z^2 - 3)$:
 \bprog
 ? G = gammamellininvinit([1], 2);
 ? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);
 ? b(z) = gammamellininv(G,z);
 ? t(z) = b(z) - a(z);
 ? t(3/2)
 %3 = -1.4693679385278593850 E-39
 @eprog

Function: gcd
Class: basic
Section: number_theoretical
C-Name: ggcd0
Prototype: GDG
Help: gcd(x,{y}): greatest common divisor of x and y.
Description: 
 (small, small):small   cgcd($1, $2)
 (int, int):int         gcdii($1, $2)
 (gen):gen              content($1)
 (gen, gen):gen         ggcd($1, $2)
Doc: creates the greatest common divisor of $x$ and $y$.
 If you also need the $u$ and $v$ such that $x*u + y*v = \gcd(x,y)$,
 use the \tet{bezout} function. $x$ and $y$ can have rather quite general
 types, for instance both rational numbers. If $y$ is omitted and $x$ is a
 vector, returns the $\text{gcd}$ of all components of $x$, i.e.~this is
 equivalent to \kbd{content(x)}.
 
 When $x$ and $y$ are both given and one of them is a vector/matrix type,
 the GCD is again taken recursively on each component, but in a different way.
 If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
 and components equal to \kbd{gcd(x, y[i])}, resp.~\kbd{gcd(x, y[,i])}. Else
 if $x$ is a vector/matrix the result has the same type as $x$ and an
 analogous definition. Note that for these types, \kbd{gcd} is not
 commutative.
 
 The algorithm used is a naive \idx{Euclid} except for the following inputs:
 
 \item integers: use modified right-shift binary (``plus-minus''
 variant).
 
 \item univariate polynomials with coefficients in the same number
 field (in particular rational): use modular gcd algorithm.
 
 \item general polynomials: use the \idx{subresultant algorithm} if
 coefficient explosion is likely (non modular coefficients).
 
 If $u$ and $v$ are polynomials in the same variable with \emph{inexact}
 coefficients, their gcd is defined to be scalar, so that
 \bprog
 ? a = x + 0.0; gcd(a,a)
 %1 = 1
 ? b = y*x + O(y); gcd(b,b)
 %2 = y
 ? c = 4*x + O(2^3); gcd(c,c)
 %3 = 4
 @eprog\noindent A good quantitative check to decide whether such a
 gcd ``should be'' non-trivial, is to use \tet{polresultant}: a value
 close to $0$ means that a small deformation of the inputs has non-trivial gcd.
 You may also use \tet{gcdext}, which does try to compute an approximate gcd
 $d$ and provides $u$, $v$ to check whether $u x + v y$ is close to $d$.
Variant: Also available are \fun{GEN}{ggcd}{GEN x, GEN y}, if \kbd{y} is not
 \kbd{NULL}, and \fun{GEN}{content}{GEN x}, if $\kbd{y} = \kbd{NULL}$.

Function: gcdext
Class: basic
Section: number_theoretical
C-Name: gcdext0
Prototype: GG
Help: gcdext(x,y): returns [u,v,d] such that d=gcd(x,y) and u*x+v*y=d.
Doc: Returns $[u,v,d]$ such that $d$ is the gcd of $x,y$,
 $x*u+y*v=\gcd(x,y)$, and $u$ and $v$ minimal in a natural sense.
 The arguments must be integers or polynomials. \sidx{extended gcd}
 \sidx{Bezout relation}
 \bprog
 ? [u, v, d] = gcdext(32,102)
 %1 = [16, -5, 2]
 ? d
 %2 = 2
 ? gcdext(x^2-x, x^2+x-2)
 %3 = [-1/2, 1/2, x - 1]
 @eprog
 
 If $x,y$ are polynomials in the same variable and \emph{inexact}
 coefficients, then compute $u,v,d$ such that $x*u+y*v = d$, where $d$
 approximately divides both and $x$ and $y$; in particular, we do not obtain
 \kbd{gcd(x,y)} which is \emph{defined} to be a scalar in this case:
 \bprog
 ? a = x + 0.0; gcd(a,a)
 %1 = 1
 
 ? gcdext(a,a)
 %2 = [0, 1, x + 0.E-28]
 
 ? gcdext(x-Pi, 6*x^2-zeta(2))
 %3 = [-6*x - 18.8495559, 1, 57.5726923]
 @eprog\noindent For inexact inputs, the output is thus not well defined
 mathematically, but you obtain explicit polynomials to check whether the
 approximation is close enough for your needs.

Function: genus2red
Class: basic
Section: elliptic_curves
C-Name: genus2red
Prototype: GDG
Help: genus2red(PQ,{p}): let PQ be a polynomial P, resp. a vector [P,Q] of
 polynomials, with rational coefficients.  Determines the reduction at p > 2
 of the (proper, smooth) hyperelliptic curve C/Q of genus 2 defined by
 y^2 = P, resp. y^2 + Q*y = P. More precisely, determines the special fiber X_p
 of the minimal regular model X of C over Z.
Doc: Let $PQ$ be a polynomial $P$, resp. a vector $[P,Q]$ of polynomials, with
 rational coefficients.
 Determines the reduction at $p > 2$ of the (proper, smooth) genus~2
 curve $C/\Q$, defined by the hyperelliptic equation $y^2 = P(x)$, resp.
 $y^2 + Q(x)*y = P(x)$.
 (The special fiber $X_p$ of the minimal regular model $X$ of $C$ over $\Z$.)
 
 If $p$ is omitted, determines the reduction type for all (odd) prime
 divisors of the discriminant.
 
 \noindent This function was rewritten from an implementation of Liu's
 algorithm by Cohen and Liu (1994), \kbd{genus2reduction-0.3}, see
 \url{http://www.math.u-bordeaux.fr/~liu/G2R/}.
 
 \misctitle{CAVEAT} The function interface may change: for the
 time being, it returns $[N,\var{FaN}, T, V]$
 where $N$ is either the local conductor at $p$ or the
 global conductor, \var{FaN} is its factorization, $y^2 = T$ defines a
 minimal model over $\Z[1/2]$ and $V$ describes the reduction type at the
 various considered~$p$. Unfortunately, the program is not complete for
 $p = 2$, and we may return the odd part of the conductor only: this is the
 case if the factorization includes the (impossible) term $2^{-1}$; if the
 factorization contains another power of $2$, then this is the exact local
 conductor at $2$ and $N$ is the global conductor.
 
 \bprog
 ? default(debuglevel, 1);
 ? genus2red(x^6 + 3*x^3 + 63, 3)
 (potential) stable reduction: [1, []]
 reduction at p: [III{9}] page 184, [3, 3], f = 10
 %1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []],
        ["[III{9}] page 184", [3, 3]]]]
 ? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x);  \\ X_1(13), global reduction
 p = 13
 (potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
 reduction at p: [I{0}-II-0] page 159, [], f = 2
 ? N
 %3 = 169
 ? FaN
 %4 = Mat([13, 2])   \\ in particular, good reduction at 2 !
 ? T
 %5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
 ? V
 %6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], ["[I{0}-II-0] page 159", []]]]
 @eprog\noindent
 We now first describe the format of the vector $V = V_p$ in the case where
 $p$ was specified (local reduction at~$p$): it is a triple $[p, \var{stable},
 \var{red}]$. The component $\var{stable} = [\var{type}, \var{vecj}]$ contains
 information about the stable reduction after a field extension;
 depending on \var{type}s, the stable reduction is
 
 \item 1: smooth (i.e. the curve has potentially good reduction). The
       Jacobian $J(C)$ has potentially good reduction.
 
 \item 2: an elliptic curve $E$ with an ordinary double point; \var{vecj}
 contains $j$ mod $p$, the modular invariant of $E$. The (potential)
 semi-abelian reduction of $J(C)$ is the extension of an elliptic curve (with
 modular invariant $j$ mod $p$) by a torus.
 
 \item 3: a projective line with two ordinary double points. The Jacobian
 $J(C)$ has potentially multiplicative reduction.
 
 \item 4: the union of two projective lines crossing transversally at three
 points. The Jacobian $J(C)$ has potentially multiplicative reduction.
 
 \item 5: the union of two elliptic curves $E_1$ and $E_2$ intersecting
 transversally at one point; \var{vecj} contains their modular invariants
 $j_1$ and $j_2$, which may live in a quadratic extension of $\F_p$ and need
 not be distinct. The Jacobian $J(C)$ has potentially good reduction,
 isomorphic to the product of the reductions of $E_1$ and $E_2$.
 
 \item 6: the union of an elliptic curve $E$ and a projective line which has
 an ordinary double point, and these two components intersect transversally
 at one point; \var{vecj} contains $j$ mod $p$, the modular invariant of $E$.
 The (potential) semi-abelian reduction of $J(C)$ is the extension of an
 elliptic curve (with modular invariant $j$ mod $p$) by a torus.
 
 \item 7: as in type 6, but the two components are both singular. The
 Jacobian $J(C)$ has potentially multiplicative reduction.
 
 The component $\var{red} = [\var{NUtype}, \var{neron}]$ contains two data
 concerning the reduction at $p$ without any ramified field extension.
 
 The \var{NUtype} is a \typ{STR} describing the reduction at $p$ of $C$,
 following Namikawa-Ueno, \emph{The complete classification of fibers in
 pencils of curves of genus two}, Manuscripta Math., vol. 9, (1973), pages
 143-186. The reduction symbol is followed by the corresponding page number
 or page range in this article.
 
 The second datum \var{neron} is the group of connected components (over an
 algebraic closure of $\F_p$) of the N\'eron model of $J(C)$, given as a
 finite abelian group (vector of elementary divisors).
 \smallskip
 If $p = 2$, the \var{red} component may be omitted altogether (and
 replaced by \kbd{[]}, in the case where the program could not compute it.
 When $p$ was not specified, $V$ is the vector of all $V_p$, for all
 considered $p$.
 
 \misctitle{Notes about Namikawa-Ueno types}
 
 \item A lower index is denoted between braces: for instance,
  \kbd{[I\obr2\cbr-II-5]} means \kbd{[I\_2-II-5]}.
 
 \item If $K$ and $K'$ are Kodaira symbols for singular fibers of elliptic
 curves, then \kbd{[$K$-$K'$-m]} and \kbd{[$K'$-$K$-m]} are the same.
 
 We define a total ordering on Kodaira symbol by fixing $\kbd{I} < \kbd{I*} <
 \kbd{II} < \kbd{II*}, \dots$. If the reduction type is the same, we order by
 the number of components, e.g. $\kbd{I}_2 < \kbd{I}_4$, etc.
 Then we normalize our output so that $K \leq K'$.
 
 \item \kbd{[$K$-$K'$-$-1$]}  is \kbd{[$K$-$K'$-$\alpha$]} in the notation of
 Namikawa-Ueno.
 
 \item The figure \kbd{[2I\_0-m]} in Namikawa-Ueno, page 159, must be denoted
 by \kbd{[2I\_0-(m+1)]}.

Function: getabstime
Class: basic
Section: programming/specific
C-Name: getabstime
Prototype: l
Help: getabstime(): time (in milliseconds) since startup.
Doc: returns the CPU time (in milliseconds) elapsed since \kbd{gp} startup.
 This provides a reentrant version of \kbd{gettime}:
 \bprog
 my (t = getabstime());
 ...
 print("Time: ", getabstime() - t);
 @eprog
 For a version giving wall-clock time, see \tet{getwalltime}.

Function: getenv
Class: basic
Section: programming/specific
C-Name: gp_getenv
Prototype: s
Help: getenv(s): value of the environment variable s, 0 if it is not defined.
Doc: return the value of the environment variable \kbd{s} if it is defined, otherwise return 0.

Function: getheap
Class: basic
Section: programming/specific
C-Name: getheap
Prototype: 
Help: getheap(): 2-component vector giving the current number of objects in
 the heap and the space they occupy (in long words).
Doc: returns a two-component row vector giving the
 number of objects on the heap and the amount of memory they occupy in long
 words. Useful mainly for debugging purposes.

Function: getrand
Class: basic
Section: programming/specific
C-Name: getrand
Prototype: 
Help: getrand(): current value of random number seed.
Doc: returns the current value of the seed used by the
 pseudo-random number generator \tet{random}. Useful mainly for debugging
 purposes, to reproduce a specific chain of computations. The returned value
 is technical (reproduces an internal state array), and can only be used as an
 argument to \tet{setrand}.

Function: getstack
Class: basic
Section: programming/specific
C-Name: getstack
Prototype: l
Help: getstack(): current value of stack pointer avma.
Doc: returns the current value of $\kbd{top}-\kbd{avma}$, i.e.~the number of
 bytes used up to now on the stack. Useful mainly for debugging purposes.

Function: gettime
Class: basic
Section: programming/specific
C-Name: gettime
Prototype: l
Help: gettime(): time (in milliseconds) since last call to gettime.
Doc: returns the CPU time (in milliseconds) used since either the last call to
 \kbd{gettime}, or to the beginning of the containing GP instruction (if
 inside \kbd{gp}), whichever came last.
 
 For a reentrant version, see \tet{getabstime}.
 
 For a version giving wall-clock time, see \tet{getwalltime}.

Function: getwalltime
Class: basic
Section: programming/specific
C-Name: getwalltime
Prototype: 
Help: getwalltime(): time (in milliseconds) since the UNIX Epoch.
Doc: returns the time (in milliseconds) elapsed since the UNIX Epoch
 (1970-01-01 00:00:00 (UTC)).
 \bprog
 my (t = getwalltime());
 ...
 print("Time: ", getwalltime() - t);
 @eprog

Function: global
Class: basic
Section: programming/specific
Help: global(list of variables): obsolete. Scheduled for deletion.
Doc: obsolete. Scheduled for deletion.
 % \syn{NO}
Obsolete: 2007-10-03

Function: hammingweight
Class: basic
Section: conversions
C-Name: hammingweight
Prototype: lG
Help: hammingweight(x): returns the Hamming weight of x.
Doc: 
 If $x$ is a \typ{INT}, return the binary Hamming weight of $|x|$. Otherwise
 $x$ must be of type \typ{POL}, \typ{VEC}, \typ{COL}, \typ{VECSMALL}, or
 \typ{MAT} and the function returns the number of non-zero coefficients of
 $x$.
 \bprog
 ? hammingweight(15)
 %1 = 4
 ? hammingweight(x^100 + 2*x + 1)
 %2 = 3
 ? hammingweight([Mod(1,2), 2, Mod(0,3)])
 %3 = 2
 ? hammingweight(matid(100))
 %4 = 100
 @eprog

Function: hilbert
Class: basic
Section: number_theoretical
C-Name: hilbert
Prototype: lGGDG
Help: hilbert(x,y,{p}): Hilbert symbol at p of x,y.
Doc: \idx{Hilbert symbol} of $x$ and $y$ modulo the prime $p$, $p=0$ meaning
 the place at infinity (the result is undefined if $p\neq 0$ is not prime).
 
 It is possible to omit $p$, in which case we take $p = 0$ if both $x$
 and $y$ are rational, or one of them is a real number. And take $p = q$
 if one of $x$, $y$ is a \typ{INTMOD} modulo $q$ or a $q$-adic. (Incompatible
 types will raise an error.)

Function: hyperellcharpoly
Class: basic
Section: elliptic_curves
C-Name: hyperellcharpoly
Prototype: G
Help: hyperellcharpoly(X): X being a non-singular hyperelliptic curve defined
 over a finite field, return the characteristic polynomial of the Frobenius
 automorphism.  X can be given either by a squarefree polynomial P such that
 X:y^2=P(x) or by a vector [P,Q] such that X:y^2+Q(x)*y=P(x) and Q^2+4P is
 squarefree.
Doc: 
 $X$ being a non-singular hyperelliptic curve defined over a finite field,
 return the characteristic polynomial of the Frobenius automorphism.
 $X$ can be given either by a squarefree polynomial $P$ such that
 $X: y^2 = P(x)$ or by a vector $[P,Q]$ such that
 $X: y^2 + Q(x)\*y = P(x)$ and $Q^2+4\*P$ is squarefree.

Function: hyperellpadicfrobenius
Class: basic
Section: elliptic_curves
C-Name: hyperellpadicfrobenius
Prototype: GUL
Help: hyperellpadicfrobenius(Q,p,n): Q being a  rational polynomial of degree
 d and X being the curve defined by y^2=Q(x), return the matrix of the
 Frobenius at p>=d in the standard basis of H^1_dR(X) to absolute p-adic
 precision p^n.
Doc: 
 Let $X$ be the curve defined by $y^2=Q(x)$, where  $Q$ is a polynomial of
 degree $d$ over $\Q$ and $p\ge d$ a prime such that $X$ has good reduction
 at $p$ return the matrix of the Frobenius endomorphism $\varphi$ on the
 crystalline module $D_p(X) = \Q_p \otimes H^1_{dR}(X/\Q)$ with respect to the
 basis of the given model $(\omega, x\*\omega,\ldots,x^{g-1}\*\omega)$, where
 $\omega = dx/(2\*y)$ is the invariant differential, where $g$ is the genus of
 $X$ (either $d=2\*g+1$ or $d=2\*g+2$).  The characteristic polynomial of
 $\varphi$ is the numerator of the zeta-function of the reduction of the curve
 $X$ modulo $p$. The matrix is computed to absolute $p$-adic precision $p^n$.

Function: hyperu
Class: basic
Section: transcendental
C-Name: hyperu
Prototype: GGGp
Help: hyperu(a,b,x): U-confluent hypergeometric function.
Doc: $U$-confluent hypergeometric function with
 parameters $a$ and $b$. The parameters $a$ and $b$ can be complex but
 the present implementation requires $x$ to be positive.

Function: idealadd
Class: basic
Section: number_fields
C-Name: idealadd
Prototype: GGG
Help: idealadd(nf,x,y): sum of two ideals x and y in the number field
 defined by nf.
Doc: sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
 result is given in HNF.
 \bprog
  ? K = nfinit(x^2 + 1);
  ? a = idealadd(K, 2, x + 1)  \\ ideal generated by 2 and 1+I
  %2 =
  [2 1]
 
  [0 1]
  ? pr = idealprimedec(K, 5)[1];  \\ a prime ideal above 5
  ? idealadd(K, a, pr)     \\ coprime, as expected
  %4 =
  [1 0]
 
  [0 1]
 @eprog\noindent
 This function cannot be used to add arbitrary $\Z$-modules, since it assumes
 that its arguments are ideals:
 \bprog
   ? b = Mat([1,0]~);
   ? idealadd(K, b, b)     \\ only square t_MATs represent ideals
   *** idealadd: non-square t_MAT in idealtyp.
   ? c = [2, 0; 2, 0]; idealadd(K, c, c)   \\ non-sense
   %6 =
   [2 0]
 
   [0 2]
   ? d = [1, 0; 0, 2]; idealadd(K, d, d)   \\ non-sense
   %7 =
   [1 0]
 
   [0 1]
 
 @eprog\noindent In the last two examples, we get wrong results since the
 matrices $c$ and $d$ do not correspond to an ideal: the $\Z$-span of their
 columns (as usual interpreted as coordinates with respect to the integer basis
 \kbd{K.zk}) is not an $O_K$-module. To add arbitrary $\Z$-modules generated
 by the columns of matrices $A$ and $B$, use \kbd{mathnf(concat(A,B))}.

Function: idealaddtoone
Class: basic
Section: number_fields
C-Name: idealaddtoone0
Prototype: GGDG
Help: idealaddtoone(nf,x,{y}): if y is omitted, when the sum of the ideals
 in the number field K defined by nf and given in the vector x is equal to
 Z_K, gives a vector of elements of the corresponding ideals who sum to 1.
 Otherwise, x and y are ideals, and if they sum up to 1, find one element in
 each of them such that the sum is 1.
Doc: $x$ and $y$ being two co-prime
 integral ideals (given in any form), this gives a two-component row vector
 $[a,b]$ such that $a\in x$, $b\in y$ and $a+b=1$.
 
 The alternative syntax $\kbd{idealaddtoone}(\var{nf},v)$, is supported, where
 $v$ is a $k$-component vector of ideals (given in any form) which sum to
 $\Z_K$. This outputs a $k$-component vector $e$ such that $e[i]\in x[i]$ for
 $1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.

Function: idealappr
Class: basic
Section: number_fields
C-Name: idealappr0
Prototype: GGD0,L,
Help: idealappr(nf,x,{flag}): x being a fractional ideal, gives an element
 b such that v_p(b)=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0
 for all other p; x may also be a prime ideal factorization with possibly
 zero exponents. flag is deprecated (ignored), kept for backward compatibility
Doc: if $x$ is a fractional ideal
 (given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
 all prime ideals $\goth{p}$ such that the valuation of $x$ at $\goth{p}$ is
 non-zero, we have $v_{\goth{p}}(\alpha)=v_{\goth{p}}(x)$, and
 $v_{\goth{p}}(\alpha)\ge0$ for all other $\goth{p}$.
 
 The argument $x$ may also be given as a prime ideal factorization, as
 output by \kbd{idealfactor}, but allowing zero exponents.
 This yields an element $\alpha$ such that for all prime ideals $\goth{p}$
 occurring in $x$, $v_{\goth{p}}(\alpha) = v_{\goth{p}}(x)$;
 for all other prime ideals, $v_{\goth{p}}(\alpha)\ge0$.
 
 flag is deprecated (ignored), kept for backward compatibility
Variant: Use directly \fun{GEN}{idealappr}{GEN nf, GEN x} since \fl is ignored.

Function: idealchinese
Class: basic
Section: number_fields
C-Name: idealchinese
Prototype: GGDG
Help: idealchinese(nf,x,{y}): x being a prime ideal factorization and y a
 vector of elements, gives an element b such that v_p(b-y_p)>=v_p(x) for all
 prime ideals p dividing x, and v_p(b)>=0 for all other p. If y is omitted,
 return a data structure which can be used in place of x in later calls.
Doc: $x$ being a prime ideal factorization
 (i.e.~a 2 by 2 matrix whose first column contains prime ideals, and the second
 column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by
 the ideals in $x$, computes an element $b$ such that
 
 $v_{\goth{p}}(b - y_{\goth{p}}) \geq v_{\goth{p}}(x)$ for all prime ideals
 in $x$ and $v_{\goth{p}}(b)\geq 0$ for all other $\goth{p}$.
 
 \bprog
 ? K = nfinit(t^2-2);
 ? x = idealfactor(K, 2^2*3)
 %2 =
 [[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4]
 
 [           [3, [3, 0]~, 1, 2, 1] 1]
 ? y = [t,1];
 ? idealchinese(K, x, y)
 %4 = [4, -3]~
 @eprog
 
 The argument $x$ may also be of the form $[x, s]$ where the first component
 is as above and $s$ is a vector of signs, with $r_1$ components
 $s_i$ in $\{-1,0,1\}$:
 if $\sigma_i$ denotes the $i$-th real embedding of the number field,
 the element $b$ returned satisfies further
 $s_i \kbd{sign}(\sigma_i(b)) \geq 0$ for all $i$. In other words, the sign is
 fixed to $s_i$ at the $i$-th embedding whenever $s_i$ is non-zero.
 \bprog
 ? idealchinese(K, [x, [1,1]], y)
 %5 = [16, -3]~
 ? idealchinese(K, [x, [-1,-1]], y)
 %6 = [-20, -3]~
 ? idealchinese(K, [x, [1,-1]], y)
 %7 = [4, -3]~
 @eprog
 
 If $y$ is omitted, return a data structure which can be used in
 place of $x$ in later calls and allows to solve many chinese remainder
 problems for a given $x$ more efficiently.
 \bprog
 ? C = idealchinese(K, [x, [1,1]]);
 ? idealchinese(K, C, y) \\ as above
 %9 = [16, -3]~
 ? for(i=1,10^4, idealchinese(K,C,y))  \\ ... but faster !
 time = 80 ms.
 ? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))
 time = 224 ms.
 @eprog
 Finally, this structure is itself allowed in place of $x$, the
 new $s$ overriding the one already present in the structure. This allows to
 initialize for different sign conditions more efficiently when the underlying
 ideal factorization remains the same.
 \bprog
 ? D = idealchinese(K, [C, [1,-1]]);   \\ replaces [1,1]
 ? idealchinese(K, D, y)
 %13 = [4, -3]~
 ? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))
 time = 40 ms.   \\ faster than starting from scratch
 ? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))
 time = 128 ms.
 @eprog
Variant: Also available is
 \fun{GEN}{idealchineseinit}{GEN nf, GEN x} when $y = \kbd{NULL}$.

Function: idealcoprime
Class: basic
Section: number_fields
C-Name: idealcoprime
Prototype: GGG
Help: idealcoprime(nf,x,y): gives an element b in nf such that b. x is an
 integral ideal coprime to the integral ideal y.
Doc: given two integral ideals $x$ and $y$
 in the number field $\var{nf}$, returns a $\beta$ in the field,
 such that $\beta\cdot x$ is an integral ideal coprime to $y$.

Function: idealdiv
Class: basic
Section: number_fields
C-Name: idealdiv0
Prototype: GGGD0,L,
Help: idealdiv(nf,x,y,{flag=0}): quotient x/y of two ideals x and y in HNF
 in the number field nf. If (optional) flag is non-null, the quotient is
 supposed to be an integral ideal (slightly faster).
Description: 
 (gen, gen, gen, ?0):gen        idealdiv($1, $2, $3)
 (gen, gen, gen, 1):gen         idealdivexact($1, $2, $3)
 (gen, gen, gen, #small):gen    $"invalid flag in idealdiv"
 (gen, gen, gen, small):gen     idealdiv0($1, $2, $3, $4)
Doc: quotient $x\cdot y^{-1}$ of the two ideals $x$ and $y$ in the number
 field $\var{nf}$. The result is given in HNF.
 
 If $\fl$ is non-zero, the quotient $x \cdot y^{-1}$ is assumed to be an
 integral ideal. This can be much faster when the norm of the quotient is
 small even though the norms of $x$ and $y$ are large.
Variant: Also available are \fun{GEN}{idealdiv}{GEN nf, GEN x, GEN y}
 ($\fl=0$) and \fun{GEN}{idealdivexact}{GEN nf, GEN x, GEN y} ($\fl=1$).

Function: idealfactor
Class: basic
Section: number_fields
C-Name: idealfactor
Prototype: GG
Help: idealfactor(nf,x): factorization of the ideal x into prime ideals in the
 number field nf.
Doc: factors into prime ideal powers the
 ideal $x$ in the number field $\var{nf}$. The output format is similar to the
 \kbd{factor} function, and the prime ideals are represented in the form
 output by the \kbd{idealprimedec} function.

Function: idealfactorback
Class: basic
Section: number_fields
C-Name: idealfactorback
Prototype: GGDGD0,L,
Help: idealfactorback(nf,f,{e},{flag = 0}): given a factorisation f, gives the
 ideal product back. If e is present, f has to be a
 vector of the same length, and we return the product of the f[i]^e[i]. If
 flag is non-zero, perform idealred along the way.
Doc: gives back the ideal corresponding to a factorization. The integer $1$
 corresponds to the empty factorization.
 If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
 integral), and the corresponding factorization is the product of the
 $f[i]^{e[i]}$.
 
 If not, and $f$ is vector, it is understood as in the preceding case with $e$
 a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
 regular factorization, as produced by \kbd{idealfactor}.
 \bprog
 ? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
 %1 =
 [[2, [1, 1]~, 2, 1, [1, 1]~] 2]
 
 [[5, [2, 1]~, 1, 1, [-2, 1]~] 1]
 
 ? idealfactorback(nf, %)
 %2 =
 [10 4]
 
 [0  2]
 
 ? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
 %3 =
 [10 4]
 
 [0  2]
 
 ? % == idealhnf(nf, 4 + 2*y)
 %4 = 1
 @eprog
 If \kbd{flag} is non-zero, perform ideal reductions (\tet{idealred}) along the
 way. This is most useful if the ideals involved are all \emph{extended}
 ideals (for instance with trivial principal part), so that the principal parts
 extracted by \kbd{idealred} are not lost. Here is an example:
 \bprog
 ? f = vector(#f, i, [f[i], [;]]);  \\ transform to extended ideals
 ? idealfactorback(nf, f, e, 1)
 %6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
 ? nffactorback(nf, %[2])
 %7 = [4, 2]~
 @eprog
 The extended ideal returned in \kbd{\%6} is the trivial ideal $1$, extended
 with a principal generator given in factored form. We use \tet{nffactorback}
 to recover it in standard form.

Function: idealfrobenius
Class: basic
Section: number_fields
C-Name: idealfrobenius
Prototype: GGG
Help: idealfrobenius(nf,gal,pr): returns the Frobenius element (pr|nf/Q)
 attached to the unramified prime ideal pr in prid format, in the Galois
 group gal of the number field nf.
Doc: Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
 Galois extension with Galois group given \kbd{gal=galoisinit(nf)},
 and that \var{pr} is an unramified prime ideal $\goth{p}$ in \kbd{prid}
 format.
 This function returns a permutation of \kbd{gal.group} which defines
 the Frobenius element $\Frob_{\goth{p}}$ attached to $\goth{p}$.
 If $p$ is the unique prime number in $\goth{p}$, then
 $\Frob(x)\equiv x^p\mod\goth{p}$ for all $x\in\Z_K$.
 \bprog
 ? nf = nfinit(polcyclo(31));
 ? gal = galoisinit(nf);
 ? pr = idealprimedec(nf,101)[1];
 ? g = idealfrobenius(nf,gal,pr);
 ? galoispermtopol(gal,g)
 %5 = x^8
 @eprog\noindent This is correct since $101\equiv 8\mod{31}$.

Function: idealhnf
Class: basic
Section: number_fields
C-Name: idealhnf0
Prototype: GGDG
Help: idealhnf(nf,u,{v}): hermite normal form of the ideal u in the number
 field nf if v is omitted. If called as idealhnf(nf,u,v), the ideal
 is given as uZ_K + vZ_K in the number field K defined by nf.
Doc: gives the \idx{Hermite normal form} of the ideal $u\Z_K+v\Z_K$, where $u$
 and $v$ are elements of the number field $K$ defined by \var{nf}.
 \bprog
 ? nf = nfinit(y^3 - 2);
 ? idealhnf(nf, 2, y+1)
 %2 =
 [1 0 0]
 
 [0 1 0]
 
 [0 0 1]
 ? idealhnf(nf, y/2, [0,0,1/3]~)
 %3 =
 [1/3 0 0]
 
 [0 1/6 0]
 
 [0 0 1/6]
 @eprog
 
 If $b$ is omitted, returns the HNF of the ideal defined by $u$: $u$ may be an
 algebraic number (defining a principal ideal), a maximal ideal (as given by
 \kbd{idealprimedec} or \kbd{idealfactor}), or a matrix whose columns give
 generators for the ideal. This last format is a little complicated, but
 useful to reduce general modules to the canonical form once in a while:
 
 \item if strictly less than $N = [K:\Q]$ generators are given, $u$
 is the $\Z_K$-module they generate,
 
 \item if $N$ or more are given, it is \emph{assumed} that they form a
 $\Z$-basis of the ideal, in particular that the matrix has maximal rank $N$.
 This acts as \kbd{mathnf} since the $\Z_K$-module structure is (taken for
 granted hence) not taken into account in this case.
 \bprog
 ? idealhnf(nf, idealprimedec(nf,2)[1])
 %4 =
 [2 0 0]
 
 [0 1 0]
 
 [0 0 1]
 ? idealhnf(nf, [1,2;2,3;3,4])
 %5 =
 [1 0 0]
 
 [0 1 0]
 
 [0 0 1]
 @eprog\noindent Finally, when $K$ is quadratic with discriminant $D_K$, we
 allow $u =$ \kbd{Qfb(a,b,c)}, provided $b^2 - 4ac = D_K$. As usual,
 this represents the ideal $a \Z + (1/2)(-b + \sqrt{D_K}) \Z$.
 \bprog
 ? K = nfinit(x^2 - 60); K.disc
 %1 = 60
 ? idealhnf(K, qfbprimeform(60,2))
 %2 =
 [2 1]
 
 [0 1]
 ? idealhnf(K, Qfb(1,2,3))
   ***   at top-level: idealhnf(K,Qfb(1,2,3
   ***                 ^--------------------
   *** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.
 @eprog
Variant: Also available is \fun{GEN}{idealhnf}{GEN nf, GEN a}.

Function: idealintersect
Class: basic
Section: number_fields
C-Name: idealintersect
Prototype: GGG
Help: idealintersect(nf,A,B): intersection of two ideals A and B in the
 number field defined by nf.
Doc: intersection of the two ideals
 $A$ and $B$ in the number field $\var{nf}$. The result is given in HNF.
 \bprog
 ? nf = nfinit(x^2+1);
 ? idealintersect(nf, 2, x+1)
 %2 =
 [2 0]
 
 [0 2]
 @eprog
 
 This function does not apply to general $\Z$-modules, e.g.~orders, since its
 arguments are replaced by the ideals they generate. The following script
 intersects $\Z$-modules $A$ and $B$ given by matrices of compatible
 dimensions with integer coefficients:
 \bprog
 ZM_intersect(A,B) =
 { my(Ker = matkerint(concat(A,B)));
   mathnf( A * Ker[1..#A,] )
 }
 @eprog

Function: idealinv
Class: basic
Section: number_fields
C-Name: idealinv
Prototype: GG
Help: idealinv(nf,x): inverse of the ideal x in the number field nf.
Description: 
 (gen, gen):gen        idealinv($1, $2)
Doc: inverse of the ideal $x$ in the
 number field $\var{nf}$, given in HNF. If $x$ is an extended
 ideal\sidx{ideal (extended)}, its principal part is suitably
 updated: i.e. inverting $[I,t]$, yields $[I^{-1}, 1/t]$.

Function: ideallist
Class: basic
Section: number_fields
C-Name: ideallist0
Prototype: GLD4,L,
Help: ideallist(nf,bound,{flag=4}): vector of vectors L of all idealstar of
 all ideals of norm<=bound. If (optional) flag is present, its binary digits
 are toggles meaning 1: give generators; 2: add units; 4: give only the
 ideals and not the bid.
Doc: computes the list
 of all ideals of norm less or equal to \var{bound} in the number field
 \var{nf}. The result is a row vector with exactly \var{bound} components.
 Each component is itself a row vector containing the information about
 ideals of a given norm, in no specific order, depending on the value of
 $\fl$:
 
 The possible values of $\fl$ are:
 
 \quad 0: give the \var{bid} attached to the ideals, without generators.
 
 \quad 1: as 0, but include the generators in the \var{bid}.
 
 \quad 2: in this case, \var{nf} must be a \var{bnf} with units. Each
 component is of the form $[\var{bid},U]$, where \var{bid} is as case 0
 and $U$ is a vector of discrete logarithms of the units. More precisely, it
 gives the \kbd{ideallog}s with respect to \var{bid} of \kbd{bnf.tufu}.
 This structure is technical, and only meant to be used in conjunction with
 \tet{bnrclassnolist} or \tet{bnrdisclist}.
 
 \quad 3: as 2, but include the generators in the \var{bid}.
 
 \quad 4: give only the HNF of the ideal.
 
 \bprog
 ? nf = nfinit(x^2+1);
 ? L = ideallist(nf, 100);
 ? L[1]
 %3 = [[1, 0; 0, 1]]  \\@com A single ideal of norm 1
 ? #L[65]
 %4 = 4               \\@com There are 4 ideals of norm 4 in $\Z[i]$
 @eprog
 If one wants more information, one could do instead:
 \bprog
 ? nf = nfinit(x^2+1);
 ? L = ideallist(nf, 100, 0);
 ? l = L[25]; vector(#l, i, l[i].clgp)
 %3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
 ? l[1].mod
 %4 = [[25, 18; 0, 1], []]
 ? l[2].mod
 %5 = [[5, 0; 0, 5], []]
 ? l[3].mod
 %6 = [[25, 7; 0, 1], []]
 @eprog\noindent where we ask for the structures of the $(\Z[i]/I)^*$ for all
 three ideals of norm $25$. In fact, for all moduli with finite part of norm
 $25$ and trivial Archimedean part, as the last 3 commands show. See
 \tet{ideallistarch} to treat general moduli.

Function: ideallistarch
Class: basic
Section: number_fields
C-Name: ideallistarch
Prototype: GGG
Help: ideallistarch(nf,list,arch): list is a vector of vectors of bid's as
 output by ideallist. Return a vector of vectors with the same number of
 components as the original list. The leaves give information about
 moduli whose finite part is as in original list, in the same order, and
 Archimedean part is now arch. The information contained is of the same kind
 as was present in the input.
Doc: 
 \var{list} is a vector of vectors of bid's, as output by \tet{ideallist} with
 flag $0$ to $3$. Return a vector of vectors with the same number of
 components as the original \var{list}. The leaves give information about
 moduli whose finite part is as in original list, in the same order, and
 Archimedean part is now \var{arch} (it was originally trivial). The
 information contained is of the same kind as was present in the input; see
 \tet{ideallist}, in particular the meaning of \fl.
 
 \bprog
 ? bnf = bnfinit(x^2-2);
 ? bnf.sign
 %2 = [2, 0]                         \\@com two places at infinity
 ? L = ideallist(bnf, 100, 0);
 ? l = L[98]; vector(#l, i, l[i].clgp)
 %4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
 ? La = ideallistarch(bnf, L, [1,1]); \\@com add them to the modulus
 ? l = La[98]; vector(#l, i, l[i].clgp)
 %6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
 @eprog
 Of course, the results above are obvious: adding $t$ places at infinity will
 add $t$ copies of $\Z/2\Z$ to $(\Z_K/f)^*$. The following application
 is more typical:
 \bprog
 ? L = ideallist(bnf, 100, 2);        \\@com units are required now
 ? La = ideallistarch(bnf, L, [1,1]);
 ? H = bnrclassnolist(bnf, La);
 ? H[98];
 %4 = [2, 12, 2]
 @eprog

Function: ideallog
Class: basic
Section: number_fields
C-Name: ideallog
Prototype: DGGG
Help: ideallog({nf},x,bid): if bid is a big ideal, as given by
 idealstar(nf,D,...), gives the vector of exponents on the generators bid.gen
 (even if these generators have not been explicitly computed).
Doc: $\var{nf}$ is a number field,
 \var{bid} is as output by \kbd{idealstar(nf, D, \dots)} and $x$ a
 non-necessarily integral element of \var{nf} which must have valuation
 equal to 0 at all prime ideals in the support of $\kbd{D}$. This function
 computes the discrete logarithm of $x$ on the generators given in
 \kbd{\var{bid}.gen}. In other words, if $g_i$ are these generators, of orders
 $d_i$ respectively, the result is a column vector of integers $(x_i)$ such
 that $0\le x_i<d_i$ and
 $$x \equiv \prod_i g_i^{x_i} \pmod{\ ^*D}\enspace.$$
 Note that when the support of \kbd{D} contains places at infinity, this
 congruence implies also sign conditions on the attached real embeddings.
 See \tet{znlog} for the limitations of the underlying discrete log algorithms.
 
 When \var{nf} is omitted, take it to be the rational number field. In that
 case, $x$ must be a \typ{INT} and \var{bid} must have been initialized by
 \kbd{idealstar(,N)}.
Variant: Also available is
 \fun{GEN}{Zideallog}{GEN bid, GEN x} when \kbd{nf} is \kbd{NULL}.

Function: idealmin
Class: basic
Section: number_fields
C-Name: idealmin
Prototype: GGDG
Help: idealmin(nf,ix,{vdir}): pseudo-minimum of the ideal ix in the direction
 vdir in the number field nf.
Doc: \emph{This function is useless and kept for backward compatibility only,
 use \kbd{idealred}}. Computes a pseudo-minimum of the ideal $x$ in the
 direction \var{vdir} in the number field \var{nf}.

Function: idealmul
Class: basic
Section: number_fields
C-Name: idealmul0
Prototype: GGGD0,L,
Help: idealmul(nf,x,y,{flag=0}): product of the two ideals x and y in the
 number field nf. If (optional) flag is non-nul, reduce the result.
Description: 
 (gen, gen, gen, ?0):gen        idealmul($1, $2, $3)
 (gen, gen, gen, 1):gen         idealmulred($1, $2, $3)
 (gen, gen, gen, #small):gen    $"invalid flag in idealmul"
 (gen, gen, gen, small):gen     idealmul0($1, $2, $3, $4)
Doc: ideal multiplication of the ideals $x$ and $y$ in the number field
 \var{nf}; the result is the ideal product in HNF. If either $x$ or $y$
 are extended ideals\sidx{ideal (extended)}, their principal part is suitably
 updated: i.e. multiplying $[I,t]$, $[J,u]$ yields $[IJ, tu]$; multiplying
 $I$ and $[J, u]$ yields $[IJ, u]$.
 \bprog
 ? nf = nfinit(x^2 + 1);
 ? idealmul(nf, 2, x+1)
 %2 =
 [4 2]
 
 [0 2]
 ? idealmul(nf, [2, x], x+1)        \\ extended ideal * ideal
 %3 = [[4, 2; 0, 2], x]
 ? idealmul(nf, [2, x], [x+1, x])   \\ two extended ideals
 %4 = [[4, 2; 0, 2], [-1, 0]~]
 @eprog\noindent
 If $\fl$ is non-zero, reduce the result using \kbd{idealred}.
Variant: 
 \noindent See also
 \fun{GEN}{idealmul}{GEN nf, GEN x, GEN y} ($\fl=0$) and
 \fun{GEN}{idealmulred}{GEN nf, GEN x, GEN y} ($\fl\neq0$).

Function: idealnorm
Class: basic
Section: number_fields
C-Name: idealnorm
Prototype: GG
Help: idealnorm(nf,x): norm of the ideal x in the number field nf.
Doc: computes the norm of the ideal~$x$ in the number field~$\var{nf}$.

Function: idealnumden
Class: basic
Section: number_fields
C-Name: idealnumden
Prototype: GG
Help: idealnumden(nf,x): returns [A,B], where A,B are coprime integer ideals
 such that x = A/B.
Doc: returns $[A,B]$, where $A,B$ are coprime integer ideals
 such that $x = A/B$, in the number field $\var{nf}$.
 \bprog
 ? nf = nfinit(x^2+1);
 ? idealnumden(nf, (x+1)/2)
 %2 = [[1, 0; 0, 1], [2, 1; 0, 1]]
 @eprog

Function: idealpow
Class: basic
Section: number_fields
C-Name: idealpow0
Prototype: GGGD0,L,
Help: idealpow(nf,x,k,{flag=0}): k-th power of the ideal x in HNF in the
 number field nf. If (optional) flag is non-null, reduce the result.
Doc: computes the $k$-th power of
 the ideal $x$ in the number field $\var{nf}$; $k\in\Z$.
 If $x$ is an extended
 ideal\sidx{ideal (extended)}, its principal part is suitably
 updated: i.e. raising $[I,t]$ to the $k$-th power, yields $[I^k, t^k]$.
 
 If $\fl$ is non-zero, reduce the result using \kbd{idealred}, \emph{throughout
 the (binary) powering process}; in particular, this is \emph{not} the same
 as $\kbd{idealpow}(\var{nf},x,k)$ followed by reduction.
Variant: 
 \noindent See also
 \fun{GEN}{idealpow}{GEN nf, GEN x, GEN k} and
 \fun{GEN}{idealpows}{GEN nf, GEN x, long k} ($\fl = 0$).
 Corresponding to $\fl=1$ is \fun{GEN}{idealpowred}{GEN nf, GEN vp, GEN k}.

Function: idealprimedec
Class: basic
Section: number_fields
C-Name: idealprimedec_limit_f
Prototype: GGD0,L,
Help: idealprimedec(nf,p,{f=0}): prime ideal decomposition of the prime number
 p in the number field nf as a vector of prime ideals. If f is present
 and non-zero, restrict the result to primes of residue degree <= f.
Description: 
 (gen, gen):vec idealprimedec($1, $2)
 (gen, gen, ?small):vec idealprimedec_limit_f($1, $2, $3)
Doc: computes the prime ideal
 decomposition of the (positive) prime number $p$ in the number field $K$
 represented by \var{nf}. If a non-prime $p$ is given the result is undefined.
 If $f$ is present and non-zero, restrict the result to primes of residue
 degree $\leq f$.
 
 The result is a vector of \tev{prid} structures, each representing one of the
 prime ideals above $p$ in the number field $\var{nf}$. The representation
 $\kbd{pr}=[p,a,e,f,\var{mb}]$ of a prime ideal means the following: $a$
 is an algebraic integer in the maximal order $\Z_K$ and the prime ideal is
 equal to $\goth{p} = p\Z_K + a\Z_K$;
 $e$ is the ramification index; $f$ is the residual index;
 finally, \var{mb} is the multiplication table attached to the algebraic
 integer $b$ is such that $\goth{p}^{-1}=\Z_K+ b/ p\Z_K$, which is used
 internally to compute valuations. In other words if $p$ is inert,
 then \var{mb} is the integer $1$, and otherwise it is a square \typ{MAT}
 whose $j$-th column is $b \cdot \kbd{nf.zk[j]}$.
 
 The algebraic number $a$ is guaranteed to have a
 valuation equal to 1 at the prime ideal (this is automatic if $e>1$).
 
 The components of \kbd{pr} should be accessed by member functions: \kbd{pr.p},
 \kbd{pr.e}, \kbd{pr.f}, and \kbd{pr.gen} (returns the vector $[p,a]$):
 \bprog
 ? K = nfinit(x^3-2);
 ? P = idealprimedec(K, 5);
 ? #P       \\ 2 primes above 5 in Q(2^(1/3))
 %3 = 2
 ? [p1,p2] = P;
 ? [p1.e, p1.f]    \\ the first is unramified of degree 1
 %5 = [1, 1]
 ? [p2.e, p2.f]    \\ the second is unramified of degree 2
 %6 = [1, 2]
 ? p1.gen
 %7 = [5, [2, 1, 0]~]
 ? nfbasistoalg(K, %[2])  \\ a uniformizer for p1
 %8 = Mod(x + 2, x^3 - 2)
 ? #idealprimedec(K, 5, 1) \\ restrict to f = 1
 %9 = 1            \\ now only p1
 @eprog

Function: idealprincipalunits
Class: basic
Section: number_fields
C-Name: idealprincipalunits
Prototype: GGL
Help: idealprincipalunits(nf,pr,k): returns the structure [no, cyc, gen]
 of the multiplicative group (1 + pr) / (1 + pr^k).
Doc: given a prime ideal in \tet{idealprimedec} format,
 returns the multiplicative group $(1 + \var{pr}) / (1 + \var{pr}^k)$ as an
 abelian group. This function is much faster than \tet{idealstar} when the
 norm of \var{pr} is large, since it avoids (useless) work in the
 multiplicative group of the residue field.
 \bprog
 ? K = nfinit(y^2+1);
 ? P = idealprimedec(K,2)[1];
 ? G = idealprincipalunits(K, P, 20);
 ? G.cyc
 %4 = [512, 256, 4]   \\ Z/512 x Z/256 x Z/4
 ? G.gen
 %5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order
 @eprog

Function: idealramgroups
Class: basic
Section: number_fields
C-Name: idealramgroups
Prototype: GGG
Help: idealramgroups(nf,gal,pr): let pr be a prime ideal in prid format, and
 gal the Galois group of the number field nf, return a vector g such that g[1]
 is the decomposition group of pr, g[2] is the inertia group, g[i] is the
 (i-2)th ramification group of pr, all trivial subgroups being omitted.
Doc: Let $K$ be the number field defined by \var{nf} and assume that $K/\Q$ is
 Galois with Galois group $G$ given by \kbd{gal=galoisinit(nf)}.
 Let \var{pr} be the prime ideal $\goth{P}$ in prid format.
 This function returns a vector $g$ of subgroups of \kbd{gal}
 as follow:
 
 \item \kbd{g[1]} is the decomposition group of $\goth{P}$,
 
 \item \kbd{g[2]} is $G_0(\goth{P})$, the inertia group of $\goth{P}$,
 
 and for $i\geq 2$,
 
 \item \kbd{g[i]} is $G_{i-2}(\goth{P})$, the $i-2$-th
 \idx{ramification group} of $\goth{P}$.
 
 \noindent The length of $g$ is the number of non-trivial groups in the
 sequence, thus is $0$ if $e=1$ and $f=1$, and $1$ if $f>1$ and $e=1$.
 The following function computes the cardinality of a subgroup of $G$,
 as given by the components of $g$:
 \bprog
 card(H) =my(o=H[2]); prod(i=1,#o,o[i]);
 @eprog
 \bprog
 ? nf=nfinit(x^6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];
 ? g = idealramgroups(nf, gal, pr);
 ? apply(card,g)
 %3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i
 @eprog
 
 \bprog
 ? nf=nfinit(x^6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];
 ? iso=idealramgroups(nf,gal,pr)[2]
 %5 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
 ? nfdisc(galoisfixedfield(gal,iso,1))
 %6 = -3
 @eprog\noindent The field fixed by the inertia group of $2$ is not ramified at
 $2$.

Function: idealred
Class: basic
Section: number_fields
C-Name: idealred0
Prototype: GGDG
Help: idealred(nf,I,{v=0}): LLL reduction of the ideal I in the number
 field nf along direction v, in HNF.
Doc: \idx{LLL} reduction of
 the ideal $I$ in the number field $K$ attached to \var{nf}, along the
 direction $v$. The $v$ parameter is best left omitted, but if it is present,
 it must be an $\kbd{nf.r1} + \kbd{nf.r2}$-component vector of
 \emph{non-negative} integers. (What counts is the relative magnitude of the
 entries: if all entries are equal, the effect is the same as if the vector
 had been omitted.)
 
 This function finds an $a\in K^*$ such that $J = (a)I$ is
 ``small'' and integral (see the end for technical details).
 The result is the Hermite normal form of
 the ``reduced'' ideal $J$.
 \bprog
 ? K = nfinit(y^2+1);
 ? P = idealprimedec(K,5)[1];
 ? idealred(K, P)
 %3 =
 [1 0]
 
 [0 1]
 @eprog\noindent More often than not, a \idx{principal ideal} yields the unit
 ideal as above. This is a quick and dirty way to check if ideals are principal,
 but it is not a necessary condition: a non-trivial result does not prove that
 the ideal is non-principal. For guaranteed results, see \kbd{bnfisprincipal},
 which requires the computation of a full \kbd{bnf} structure.
 
 If the input is an extended ideal $[I,s]$, the output is $[J, sa]$; in
 this way, one keeps track of the principal ideal part:
 \bprog
 ? idealred(K, [P, 1])
 %5 = [[1, 0; 0, 1], [2, -1]~]
 @eprog\noindent
 meaning that $P$ is generated by $[2, -1]~$. The number field element in the
 extended part is an algebraic number in any form \emph{or} a factorization
 matrix (in terms of number field elements, not ideals!). In the latter case,
 elements stay in factored form, which is a convenient way to avoid
 coefficient explosion; see also \tet{idealpow}.
 
 \misctitle{Technical note} The routine computes an LLL-reduced
 basis for the lattice $I^(-1)$ equipped with the quadratic
 form
 $$|| x ||_v^2 = \sum_{i=1}^{r_1+r_2} 2^{v_i}\varepsilon_i|\sigma_i(x)|^2,$$
 where as usual the $\sigma_i$ are the (real and) complex embeddings and
 $\varepsilon_i = 1$, resp.~$2$, for a real, resp.~complex place. The element
 $a$ is simply the first vector in the LLL basis. The only reason you may want
 to try to change some directions and set some $v_i\neq 0$ is to randomize
 the elements found for a fixed ideal, which is heuristically useful in index
 calculus algorithms like \tet{bnfinit} and \tet{bnfisprincipal}.
 
 \misctitle{Even more technical note} In fact, the above is a white lie.
 We do not use $||\cdot||_v$ exactly but a rescaled rounded variant which
 gets us faster and simpler LLLs. There's no harm since we are not using any
 theoretical property of $a$ after all, except that it belongs to $I^(-1)$
 and that $a I$ is ``expected to be small''.

Function: idealstar
Class: basic
Section: number_fields
C-Name: idealstar0
Prototype: DGGD1,L,
Help: idealstar({nf},N,{flag=1}): gives the structure of (Z_K/N)^*, where N is
 a modulus (an ideal in any form or a vector [f0, foo], where f0 is an ideal
 and foo is a {0,1}-vector with r1 components. flag is
 optional, and can be 0: simply gives the structure as an abelian group, i.e.
 a 3-component vector [h,d,g] where h is the order, d the orders of the cyclic
 factors and g the generators;
 if flag=1 (default), gives a bid structure used in ideallog
 to compute discrete logarithms; underlying generators are well-defined but not
 explicitly computed, which saves time; if flag=2, same as with flag=1 except
 that the generators are also given.
 If nf is omitted, N must be an integer and
 we return the structure of (Z/NZ)^*.
Doc: outputs a \kbd{bid} structure,
 necessary for computing in the finite abelian group $G = (\Z_K/N)^*$. Here,
 \var{nf} is a number field and $N$ is a \var{modulus}: either an ideal in any
 form, or a row vector whose first component is an ideal and whose second
 component is a row vector of $r_1$ 0 or 1. Ideals can also be given
 by a factorization into prime ideals, as produced by \tet{idealfactor}.
 
 This \var{bid} is used in \tet{ideallog} to compute discrete logarithms. It
 also contains useful information which can be conveniently retrieved as
 \kbd{\var{bid}.mod} (the modulus),
 \kbd{\var{bid}.clgp} ($G$ as a finite abelian group),
 \kbd{\var{bid}.no} (the cardinality of $G$),
 \kbd{\var{bid}.cyc} (elementary divisors) and
 \kbd{\var{bid}.gen} (generators).
 
 If $\fl=1$ (default), the result is a \kbd{bid} structure without
 generators: they are well defined but not explicitly computed, which saves
 time.
 
 If $\fl=2$, as $\fl=1$, but including generators.
 
 If $\fl=0$, only outputs $(\Z_K/N)^*$ as an abelian group,
 i.e as a 3-component vector $[h,d,g]$: $h$ is the order, $d$ is the vector of
 SNF\sidx{Smith normal form} cyclic components and $g$ the corresponding
 generators.
 
 If \var{nf} is omitted, we take it to be the rational number fields, $N$ must
 be an integer and we return the structure of $(\Z/N\Z)^*$. In other words
 \kbd{idealstar(, N, flag)} is short for
 \bprog
   idealstar(nfinit(x), N, flag)
 @eprog\noindent but much faster. The alternative syntax \kbd{znstar(N, flag)}
 is also available for the same effect, but due to an unfortunate historical
 oversight, the default value of \kbd{flag} is different in the two
 functions (\kbd{znstar} does not initialize by default).
Variant: Instead the above hardcoded numerical flags, one should rather use
 \fun{GEN}{Idealstar}{GEN nf, GEN ideal, long flag}, where \kbd{flag} is
 an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
 (return a full \kbd{bid}, not a group), possibly $0$. This offers
 one more combination: gen, but no init.

Function: idealtwoelt
Class: basic
Section: number_fields
C-Name: idealtwoelt0
Prototype: GGDG
Help: idealtwoelt(nf,x,{a}): two-element representation of an ideal x in the
 number field nf. If (optional) a is non-zero, first element will be equal to a.
Doc: computes a two-element
 representation of the ideal $x$ in the number field $\var{nf}$, combining a
 random search and an approximation theorem; $x$ is an ideal
 in any form (possibly an extended ideal, whose principal part is ignored)
 
 \item When called as \kbd{idealtwoelt(nf,x)}, the result is a row vector
 $[a,\alpha]$ with two components such that $x=a\Z_K+\alpha\Z_K$ and $a$ is
 chosen to be the positive generator of $x\cap\Z$, unless $x$ was given as a
 principal ideal (in which case we may choose $a = 0$). The algorithm
 uses a fast lazy factorization of $x\cap \Z$ and runs in randomized
 polynomial time.
 
 \item When called as \kbd{idealtwoelt(nf,x,a)} with an explicit non-zero $a$
 supplied as third argument, the function assumes that $a \in x$ and returns
 $\alpha\in x$ such that $x = a\Z_K + \alpha\Z_K$. Note that we must factor
 $a$ in this case, and the algorithm is generally much slower than the
 default variant.
Variant: Also available are
 \fun{GEN}{idealtwoelt}{GEN nf, GEN x} and
 \fun{GEN}{idealtwoelt2}{GEN nf, GEN x, GEN a}.

Function: idealval
Class: basic
Section: number_fields
C-Name: gpidealval
Prototype: GGG
Help: idealval(nf,x,pr): valuation at pr given in idealprimedec format of the
 ideal x in the number field nf.
Doc: gives the valuation of the ideal $x$ at the prime ideal \var{pr} in the
 number field $\var{nf}$, where \var{pr} is in \kbd{idealprimedec} format.
 The valuation of the $0$ ideal is \kbd{+oo}.
Variant: Also available is
 \fun{long}{idealval}{GEN nf, GEN x, GEN pr}, which returns
 \tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer.

Function: if
Class: basic
Section: programming/control
C-Name: ifpari
Prototype: GDEDE
Help: if(a,{seq1},{seq2}): if a is nonzero, seq1 is evaluated, otherwise seq2.
 seq1 and seq2 are optional, and if seq2 is omitted, the preceding comma can
 be omitted also.
Doc: evaluates the expression sequence \var{seq1} if $a$ is non-zero, otherwise
 the expression \var{seq2}. Of course, \var{seq1} or \var{seq2} may be empty:
 
 \kbd{if ($a$,\var{seq})} evaluates \var{seq} if $a$ is not equal to zero
 (you don't have to write the second comma), and does nothing otherwise,
 
 \kbd{if ($a$,,\var{seq})} evaluates \var{seq} if $a$ is equal to zero, and
 does nothing otherwise. You could get the same result using the \kbd{!}
 (\kbd{not}) operator: \kbd{if (!$a$,\var{seq})}.
 
 The value of an \kbd{if} statement is the value of the branch that gets
 evaluated: for instance
 \bprog
 x = if(n % 4 == 1, y, z);
 @eprog\noindent sets $x$ to $y$ if $n$ is $1$ modulo $4$, and to $z$
 otherwise.
 
 Successive 'else' blocks can be abbreviated in a single compound \kbd{if}
 as follows:
 \bprog
 if (test1, seq1,
     test2, seq2,
     ...
     testn, seqn,
     seqdefault);
 @eprog\noindent is equivalent to
 \bprog
 if (test1, seq1
          , if (test2, seq2
                     , ...
                       if (testn, seqn, seqdefault)...));
 @eprog For instance, this allows to write traditional switch / case
 constructions:
 \bprog
 if (x == 0, do0(),
     x == 1, do1(),
     x == 2, do2(),
     dodefault());
 @eprog
 
 \misctitle{Remark}
 The boolean operators \kbd{\&\&} and \kbd{||} are evaluated
 according to operator precedence as explained in \secref{se:operators}, but,
 contrary to other operators, the evaluation of the arguments is stopped
 as soon as the final truth value has been determined. For instance
 \bprog
 if (x != 0 && f(1/x), ...)
 @eprog
 \noindent is a perfectly safe statement.
 
 \misctitle{Remark} Functions such as \kbd{break} and \kbd{next} operate on
 \emph{loops}, such as \kbd{for$xxx$}, \kbd{while}, \kbd{until}. The \kbd{if}
 statement is \emph{not} a loop. (Obviously!)

Function: iferr
Class: basic
Section: programming/control
C-Name: iferrpari
Prototype: EVEDE
Help: iferr(seq1,E,seq2,{pred}): evaluates the expression sequence seq1. If
 an error occurs, set the formal parameter E set to the error data.
 If pred is not present or evaluates to true, catch the error and evaluate
 seq2. Both pred and seq2 can reference E.
Doc: evaluates the expression sequence \var{seq1}. If an error occurs,
 set the formal parameter \var{E} set to the error data.
 If \var{pred} is not present or evaluates to true, catch the error
 and evaluate \var{seq2}. Both \var{pred} and \var{seq2} can reference \var{E}.
 The error type is given by \kbd{errname(E)}, and other data can be
 accessed using the \tet{component} function. The code \var{seq2} should check
 whether the error is the one expected. In the negative the error can be
 rethrown using \tet{error(E)} (and possibly caught by an higher \kbd{iferr}
 instance). The following uses \kbd{iferr} to implement Lenstra's ECM factoring
  method
 \bprog
 ? ecm(N, B = 1000!, nb = 100)=
   {
     for(a = 1, nb,
       iferr(ellmul(ellinit([a,1]*Mod(1,N)), [0,1]*Mod(1,N), B),
         E, return(gcd(lift(component(E,2)),N)),
         errname(E)=="e_INV" && type(component(E,2)) == "t_INTMOD"))
   }
 ? ecm(2^101-1)
 %2 = 7432339208719
 @eprog
 The return value of \kbd{iferr} itself is the value of \var{seq2} if an
 error occurs, and the value of \var{seq1} otherwise. We now describe the
 list of valid error types, and the attached error data \var{E}; in each
 case, we list in order the components of \var{E}, accessed via
 \kbd{component(E,1)}, \kbd{component(E,2)}, etc.
 
  \misctitle{Internal errors, ``system'' errors}
 
  \item \kbd{"e\_ARCH"}. A requested feature $s$ is not available on this
  architecture or operating system.
  \var{E} has one component (\typ{STR}): the missing feature name $s$.
 
  \item \kbd{"e\_BUG"}. A bug in the PARI library, in function $s$.
  \var{E} has one component (\typ{STR}): the function name $s$.
 
  \item \kbd{"e\_FILE"}. Error while trying to open a file.
  \var{E} has two components, 1 (\typ{STR}): the file type (input, output,
  etc.), 2 (\typ{STR}): the file name.
 
  \item \kbd{"e\_IMPL"}. A requested feature $s$ is not implemented.
  \var{E} has one component, 1 (\typ{STR}): the feature name $s$.
 
  \item \kbd{"e\_PACKAGE"}. Missing optional package $s$.
  \var{E} has one component, 1 (\typ{STR}): the package name $s$.
 
  \misctitle{Syntax errors, type errors}
 
  \item \kbd{"e\_DIM"}. The dimensions of arguments $x$ and $y$ submitted
  to function $s$ does not match up.
  E.g., multiplying matrices of inconsistent dimension, adding vectors of
  different lengths,\dots
  \var{E} has three component, 1 (\typ{STR}): the function name $s$, 2: the
  argument $x$, 3: the argument $y$.
 
  \item \kbd{"e\_FLAG"}. A flag argument is out of bounds in function $s$.
  \var{E} has one component, 1 (\typ{STR}): the function name $s$.
 
  \item \kbd{"e\_NOTFUNC"}. Generated by the PARI evaluator; tried to use a
 \kbd{GEN} $x$ which is not a \typ{CLOSURE} in a function call syntax (as in
 \kbd{f = 1; f(2);}).
  \var{E} has one component, 1: the offending \kbd{GEN} $x$.
 
  \item \kbd{"e\_OP"}. Impossible operation between two objects than cannot
  be typecast to a sensible common domain for deeper reasons than a type
  mismatch, usually for arithmetic reasons. As in \kbd{O(2) + O(3)}: it is
  valid to add two \typ{PADIC}s, provided the underlying prime is the same; so
  the addition is not forbidden a priori for type reasons, it only becomes so
  when inspecting the objects and trying to perform the operation.
  \var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
  2: first argument, 3: second argument.
 
  \item \kbd{"e\_TYPE"}. An argument $x$ of function $s$ had an unexpected type.
  (As in \kbd{factor("blah")}.)
  \var{E} has two components, 1 (\typ{STR}): the function name $s$,
  2: the offending argument $x$.
 
  \item \kbd{"e\_TYPE2"}. Forbidden operation between two objects than cannot be
  typecast to a sensible common domain, because their types do not match up.
  (As in \kbd{Mod(1,2) + Pi}.)
  \var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
  2: first argument, 3: second argument.
 
  \item \kbd{"e\_PRIORITY"}. Object $o$ in function $s$ contains
  variables whose priority is incompatible with the expected operation.
  E.g.~\kbd{Pol([x,1], 'y)}: this raises an error because it's not possible to
  create a polynomial whose coefficients involve variables with higher priority
  than the main variable. $E$ has four components: 1 (\typ{STR}): the function
  name $s$, 2: the offending argument $o$, 3 (\typ{STR}): an operator
  $\var{op}$ describing the priority error, 4 (\typ{POL}):
  the variable $v$ describing the priority error. The argument
  satisfies $\kbd{variable}(x)~\var{op} \kbd{variable}(v)$.
 
  \item \kbd{"e\_VAR"}. The variables of arguments $x$ and $y$ submitted
  to function $s$ does not match up. E.g., considering the algebraic number
  \kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(x\pow2+1)}.
  \var{E} has three component, 1 (\typ{STR}): the function name $s$, 2
  (\typ{POL}): the argument $x$, 3 (\typ{POL}): the argument $y$.
 
  \misctitle{Overflows}
 
  \item \kbd{"e\_COMPONENT"}. Trying to access an inexistent component in a
  vector/matrix/list in a function: the index is less than $1$ or greater
  than the allowed length.
  \var{E} has four components,
  1 (\typ{STR}): the function name
  2 (\typ{STR}): an operator $\var{op}$ ($<$ or $>$),
  2 (\typ{GEN}): a numerical limit $l$ bounding the allowed range,
  3 (\kbd{GEN}): the index $x$. It satisfies $x$ \var{op} $l$.
 
  \item \kbd{"e\_DOMAIN"}. An argument is not in the function's domain.
  \var{E} has five components, 1 (\typ{STR}): the function name,
  2 (\typ{STR}): the mathematical name of the out-of-domain argument
  3 (\typ{STR}): an operator $\var{op}$ describing the domain error,
  4 (\typ{GEN}): the numerical limit $l$ describing the domain error,
  5 (\kbd{GEN}): the out-of-domain argument $x$. The argument satisfies $x$
  \var{op} $l$, which prevents it from belonging to the function's domain.
 
  \item \kbd{"e\_MAXPRIME"}. A function using the precomputed list of prime
  numbers ran out of primes.
  \var{E} has one component, 1 (\typ{INT}): the requested prime bound, which
  overflowed \kbd{primelimit} or $0$ (bound is unknown).
 
  \item \kbd{"e\_MEM"}. A call to \tet{pari_malloc} or \tet{pari_realloc}
  failed. \var{E} has no component.
 
  \item \kbd{"e\_OVERFLOW"}. An object in function $s$ becomes too large to be
  represented within PARI's hardcoded limits. (As in \kbd{2\pow2\pow2\pow10} or
  \kbd{exp(1e100)}, which overflow in \kbd{lg} and \kbd{expo}.)
  \var{E} has one component, 1 (\typ{STR}): the function name $s$.
 
  \item \kbd{"e\_PREC"}. Function $s$ fails because input accuracy is too low.
  (As in \kbd{floor(1e100)} at default accuracy.)
  \var{E} has one component, 1 (\typ{STR}): the function name $s$.
 
  \item \kbd{"e\_STACK"}. The PARI stack overflows.
  \var{E} has no component.
 
  \misctitle{Errors triggered intentionally}
 
  \item \kbd{"e\_ALARM"}. A timeout, generated by the \tet{alarm} function.
  \var{E} has one component (\typ{STR}): the error message to print.
 
  \item \kbd{"e\_USER"}. A user error, as triggered by
  \tet{error}($g_1,\dots,g_n)$.
  \var{E} has one component, 1 (\typ{VEC}): the vector of $n$ arguments given
  to \kbd{error}.
 
  \misctitle{Mathematical errors}
 
  \item \kbd{"e\_CONSTPOL"}. An argument of function $s$ is a constant
  polynomial, which does not make sense. (As in \kbd{galoisinit(Pol(1))}.)
  \var{E} has one component, 1 (\typ{STR}): the function name $s$.
 
  \item \kbd{"e\_COPRIME"}. Function $s$ expected coprime arguments,
  and did receive $x,y$, which were not.
  \var{E} has three component, 1 (\typ{STR}): the function name $s$,
  2: the argument $x$, 3: the argument $y$.
 
  \item \kbd{"e\_INV"}. Tried to invert a non-invertible object $x$ in
  function $s$.
  \var{E} has two components, 1 (\typ{STR}): the function name $s$,
  2: the non-invertible $x$. If $x = \kbd{Mod}(a,b)$
  is a \typ{INTMOD} and $a$ is not $0$ mod $b$, this allows to factor
  the modulus, as \kbd{gcd}$(a,b)$ is a non-trivial divisor of $b$.
 
  \item \kbd{"e\_IRREDPOL"}. Function $s$ expected an irreducible polynomial,
  and did receive $T$, which was not. (As in \kbd{nfinit(x\pow2-1)}.)
  \var{E} has two component, 1 (\typ{STR}): the function name $s$,
  2 (\typ{POL}): the polynomial $x$.
 
  \item \kbd{"e\_MISC"}. Generic uncategorized error.
  \var{E} has one component (\typ{STR}): the error message to print.
 
  \item \kbd{"e\_MODULUS"}. moduli $x$ and $y$ submitted to function $s$ are
  inconsistent. As in
  \bprog
    nfalgtobasis(nfinit(t^3-2), Mod(t,t^2+1)
  @eprog\noindent
  \var{E} has three component, 1 (\typ{STR}): the function $s$,
  2: the argument $x$, 3: the argument $x$.
 
  \item \kbd{"e\_PRIME"}. Function $s$ expected a prime number,
  and did receive $p$, which was not. (As in \kbd{idealprimedec(nf, 4)}.)
  \var{E} has two component, 1 (\typ{STR}): the function name $s$,
  2: the argument $p$.
 
  \item \kbd{"e\_ROOTS0"}. An argument of function $s$ is a zero polynomial,
  and we need to consider its roots. (As in \kbd{polroots(0)}.) \var{E} has
  one component, 1 (\typ{STR}): the function name $s$.
 
  \item \kbd{"e\_SQRTN"}. Trying to compute an $n$-th root of $x$, which does
  not exist, in function $s$. (As in \kbd{sqrt(Mod(-1,3))}.)
  \var{E} has two components, 1 (\typ{STR}): the function name $s$,
  2: the argument $x$.

Function: imag
Class: basic
Section: conversions
C-Name: gimag
Prototype: G
Help: imag(x): imaginary part of x.
Doc: imaginary part of $x$. When $x$ is a quadratic number, this is the
 coefficient of $\omega$ in the ``canonical'' integral basis $(1,\omega)$.

Function: incgam
Class: basic
Section: transcendental
C-Name: incgam0
Prototype: GGDGp
Help: incgam(s,x,{g}): incomplete gamma function. g is optional and is the
 precomputed value of gamma(s).
Doc: incomplete gamma function $\int_x^\infty e^{-t}t^{s-1}\,dt$, extended by
 analytic continuation to all complex $x, s$ not both $0$. The relative error
 is bounded in terms of the precision of $s$ (the accuracy of $x$ is ignored
 when determining the output precision). When $g$ is given, assume that
 $g=\Gamma(s)$. For small $|x|$, this will speed up the computation.
Variant: Also available is \fun{GEN}{incgam}{GEN s, GEN x, long prec}.

Function: incgamc
Class: basic
Section: transcendental
C-Name: incgamc
Prototype: GGp
Help: incgamc(s,x): complementary incomplete gamma function.
Doc: complementary incomplete gamma function.
 The arguments $x$ and $s$ are complex numbers such that $s$ is not a pole of
 $\Gamma$ and $|x|/(|s|+1)$ is not much larger than 1 (otherwise the
 convergence is very slow). The result returned is $\int_0^x
 e^{-t}t^{s-1}\,dt$.

Function: inline
Class: basic
Section: programming/specific
Help: inline(x,...,z): declares x,...,z as inline variables [EXPERIMENTAL].
Doc: (Experimental) declare $x,\ldots, z$ as inline variables. Such variables
 behave like lexically scoped variable (see my()) but with unlimited scope.
 It is however possible to exit the scope by using \kbd{uninline()}.
 When used in a GP script, it is recommended to call \kbd{uninline()} before
 the script's end to avoid inline variables leaking outside the script.

Function: input
Class: basic
Section: programming/specific
C-Name: gp_input
Prototype: 
Help: input(): read an expression from the input file or standard input.
Doc: reads a string, interpreted as a GP expression,
 from the input file, usually standard input (i.e.~the keyboard). If a
 sequence of expressions is given, the result is the result of the last
 expression of the sequence. When using this instruction, it is useful to
 prompt for the string by using the \kbd{print1} function. Note that in the
 present version 2.19 of \kbd{pari.el}, when using \kbd{gp} under GNU Emacs (see
 \secref{se:emacs}) one \emph{must} prompt for the string, with a string
 which ends with the same prompt as any of the previous ones (a \kbd{"? "}
 will do for instance).

Function: install
Class: basic
Section: programming/specific
C-Name: gpinstall
Prototype: vrrD"",r,D"",s,
Help: install(name,code,{gpname},{lib}): load from dynamic library 'lib' the
 function 'name'. Assign to it the name 'gpname' in this GP session, with
 prototype 'code'. If 'lib' is omitted, all symbols known to gp
 (includes the whole 'libpari.so' and possibly others) are available.
 If 'gpname' is omitted, use 'name'.
Doc: loads from dynamic library \var{lib} the function \var{name}. Assigns to it
 the name \var{gpname} in this \kbd{gp} session, with \emph{prototype}
 \var{code} (see below). If \var{gpname} is omitted, uses \var{name}.
 If \var{lib} is omitted, all symbols known to \kbd{gp} are available: this
 includes the whole of \kbd{libpari.so} and possibly others (such as
 \kbd{libc.so}).
 
 Most importantly, \kbd{install} gives you access to all non-static functions
 defined in the PARI library. For instance, the function
 \bprog
   GEN addii(GEN x, GEN y)
 @eprog\noindent adds two PARI integers, and is not directly accessible under
 \kbd{gp} (it is eventually called by the \kbd{+} operator of course):
 \bprog
 ? install("addii", "GG")
 ? addii(1, 2)
 %1 = 3
 @eprog\noindent
 It also allows to add external functions to the \kbd{gp} interpreter.
 For instance, it makes the function \tet{system} obsolete:
 \bprog
 ? install(system, vs, sys,/*omitted*/)
 ? sys("ls gp*")
 gp.c            gp.h            gp_rl.c
 @eprog\noindent This works because \kbd{system} is part of \kbd{libc.so},
 which is linked to \kbd{gp}. It is also possible to compile a shared library
 yourself and provide it to gp in this way: use \kbd{gp2c}, or do it manually
 (see the \kbd{modules\_build} variable in \kbd{pari.cfg} for hints).
 
 Re-installing a function will print a warning and update the prototype code
 if needed. However, it will not reload a symbol from the library, even if the
 latter has been recompiled.
 
 \misctitle{Prototype} We only give a simplified description here, covering
 most functions, but there are many more possibilities. The full documentation
 is available in \kbd{libpari.dvi}, see
 \bprog
   ??prototype
 @eprog
 
 \item First character \kbd{i}, \kbd{l}, \kbd{v} : return type int / long /
 void. (Default: \kbd{GEN})
 
 \item One letter for each mandatory argument, in the same order as they appear
 in the argument list: \kbd{G} (\kbd{GEN}), \kbd{\&}
 (\kbd{GEN*}), \kbd{L} (\kbd{long}), \kbd{s} (\kbd{char *}), \kbd{n}
 (variable).
 
  \item \kbd{p} to supply \kbd{realprecision} (usually \kbd{long prec} in the
  argument list), \kbd{P} to supply \kbd{seriesprecision}
  (usually \kbd{long precdl}).
 
  \noindent We also have special constructs for optional arguments and default
  values:
 
  \item \kbd{DG} (optional \kbd{GEN}, \kbd{NULL} if omitted),
 
  \item \kbd{D\&} (optional \kbd{GEN*}, \kbd{NULL} if omitted),
 
  \item \kbd{Dn} (optional variable, $-1$ if omitted),
 
 For instance the prototype corresponding to
 \bprog
   long issquareall(GEN x, GEN *n = NULL)
 @eprog\noindent is \kbd{lGD\&}.
 
 \misctitle{Caution} This function may not work on all systems, especially
 when \kbd{gp} has been compiled statically. In that case, the first use of an
 installed function will provoke a Segmentation Fault (this should never
 happen with a dynamically linked executable). If you intend to use this
 function, please check first on some harmless example such as the one above
 that it works properly on your machine.

Function: intcirc
Class: basic
Section: sums
C-Name: intcirc0
Prototype: V=GGEDGp
Help: intcirc(X=a,R,expr,{tab}): numerical integration of expr on the circle
 |z-a|=R, divided by 2*I*Pi. tab is as in intnum.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen:prec intcirc(${3 cookie}, ${3 wrapper}, $1, $2, $4, $prec)
Doc: numerical
 integration of $(2i\pi)^{-1}\var{expr}$ with respect to $X$ on the circle
 $|X-a| = R$.
 In other words, when \var{expr} is a meromorphic
 function, sum of the residues in the corresponding disk; \var{tab} is as in
 \kbd{intnum}, except that if computed with \kbd{intnuminit} it should be with
 the endpoints \kbd{[-1, 1]}.
 
 \bprog
 ? \p105
 ? intcirc(s=1, 0.5, zeta(s)) - 1
 time = 496 ms.
 %1 = 1.2883911040127271720 E-101 + 0.E-118*I
 @eprog
 
 \synt{intcirc}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab, long prec}.

Function: intformal
Class: basic
Section: polynomials
C-Name: integ
Prototype: GDn
Help: intformal(x,{v}): formal integration of x with respect to v, or to the
 main variable of x if v is omitted.
Doc: \idx{formal integration} of $x$ with respect to the variable $v$ (wrt.
 the main variable if $v$ is omitted). Since PARI cannot represent
 logarithmic or arctangent terms, any such term in the result will yield an
 error:
 \bprog
  ? intformal(x^2)
  %1 = 1/3*x^3
  ? intformal(x^2, y)
  %2 = y*x^2
  ? intformal(1/x)
    ***   at top-level: intformal(1/x)
    ***                 ^--------------
    *** intformal: domain error in intformal: residue(series, pole) != 0
 @eprog
 The argument $x$ can be of any type. When $x$ is a rational function, we
 assume that the base ring is an integral domain of characteristic zero.
 
   By  definition,   the main variable of a \typ{POLMOD} is the main variable
 among the  coefficients  from  its  two  polynomial  components
 (representative and modulus); in other words, assuming a polmod represents an
 element of $R[X]/(T(X))$, the variable $X$ is a mute variable and the
 integral is taken with respect to the main variable used in the base ring $R$.
 In particular, it is meaningless to integrate with respect to the main
 variable of \kbd{x.mod}:
 \bprog
 ? intformal(Mod(1,x^2+1), 'x)
 *** intformal: incorrect priority in intformal: variable x = x
 @eprog

Function: intfuncinit
Class: basic
Section: sums
C-Name: intfuncinit0
Prototype: V=GGED0,L,p
Help: intfuncinit(t=a,b,f,{m=0}): initialize tables for integrations
 from a to b using a weight f(t). For integral transforms such
 as Fourier or Mellin transforms.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?small):gen:prec intfuncinit(${3 cookie}, ${3 wrapper}, $1, $2, $4, $prec)
Doc: initialize tables for use with integral transforms such Fourier,
 Laplace or Mellin transforms, in order to compute
 $$ \int_a^b f(t) k(t,z) \, dt $$
 for some kernel $k(t,z)$.
 The endpoints $a$ and $b$ are coded as in \kbd{intnum}, $f$ is the
 function to which the integral transform is to be applied and the
 non-negative integer $m$ is as in \kbd{intnum}: multiply the number of
 sampling points roughly by $2^m$, hopefully increasing the accuracy. This
 function is particularly useful when the function $f$ is hard to compute,
 such as a gamma product.
 
 \misctitle{Limitation} the endpoints $a$ and $b$ must be at infinity,
 with the same asymptotic behaviour. Oscillating types are not supported.
 This is easily overcome by integrating vectors of functions, see example
 below.
 
 \misctitle{Examples}
 
 \item numerical Fourier transform
 $$F(z) = \int_{-\infty}^{+\infty} f(t)e^{-2i\pi z t}\, dt. $$
 First the easy case, assume that $f$ decrease exponentially:
 \bprog
    f(t) = exp(-t^2);
    A = [-oo,1];
    B = [+oo,1];
    \p200
    T = intfuncinit(t = A,B , f(t));
    F(z) =
    { my(a = -2*I*Pi*z);
      intnum(t = A,B, exp(a*t), T);
    }
    ? F(1) - sqrt(Pi)*exp(-Pi^2)
    %1 = -1.3... E-212
 @eprog\noindent
 Now the harder case, $f$ decrease slowly: we must specify the oscillating
 behaviour. Thus, we cannot precompute usefully since everything depends on
 the point we evaluate at:
 \bprog
    f(t) = 1 / (1+ abs(t));
    \p200
    \\ Fourier cosine transform
    FC(z) =
    { my(a = 2*Pi*z);
      intnum(t = [-oo, a*I], [+oo, a*I], cos(a*t)*f(t));
    }
    FC(1)
 @eprog
 \item Fourier coefficients: we must integrate over a period, but
 \kbd{intfuncinit} does not support finite endpoints.
 The solution is to integrate a vector of functions !
 \bprog
 FourierSin(f, T, k) =  \\ first k sine Fourier coeffs
 {
   my (w = 2*Pi/T);
   my (v = vector(k+1));
   intnum(t = -T/2, T/2,
      my (z = exp(I*w*t));
      v[1] = z;
      for (j = 2, k, v[j] = v[j-1]*z);
      f(t) * imag(v)) * 2/T;
 }
 FourierSin(t->sin(2*t), 2*Pi, 10)
 @eprog\noindent The same technique can be used instead of \kbd{intfuncinit}
 to integrate $f(t) k(t,z)$ whenever the list of $z$-values is known
 beforehand.
 
 Note that the above code includes an unrelated optimization: the
 $\sin(j w t)$ are computed as imaginary parts of $\exp(i j w t)$ and the
 latter by successive multiplications.
 
 \item numerical Mellin inversion
 $$F(z) = (2i\pi)^{-1} \int_{c -i\infty}^{c+i\infty} f(s)z^{-s}\, ds
  = (2\pi)^{-1} \int_{-\infty}^{+\infty}
     f(c + i t)e^{-\log z(c + it)}\, dt. $$
 We take $c = 2$ in the program below:
 \bprog
    f(s) = gamma(s)^3;  \\ f(c+it) decrease as exp(-3Pi|t|/2)
    c = 2; \\ arbitrary
    A = [-oo,3*Pi/2];
    B = [+oo,3*Pi/2];
    T = intfuncinit(t=A,B, f(c + I*t));
    F(z) =
    { my (a = -log(z));
      intnum(t=A,B, exp(a*I*t), T)*exp(a*c) / (2*Pi);
    }
 @eprog
 
 \synt{intfuncinit}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long m, long prec}.

Function: intnum
Class: basic
Section: sums
C-Name: intnum0
Prototype: V=GGEDGp
Help: intnum(X=a,b,expr,{tab}): numerical integration of expr from a to b with
 respect to X. Plus/minus infinity is coded as +oo/-oo. Finally tab is
 either omitted (let the program choose the integration step), a non-negative
 integer m (divide integration step by 2^m), or data precomputed with
 intnuminit.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen:prec intnum(${3 cookie}, ${3 wrapper}, $1, $2, $4, $prec)
Doc: numerical integration
 of \var{expr} on $]a,b[$ with respect to $X$, using the
 double-exponential method, and thus $O(D\log D)$ evaluation of
 the integrand in precision $D$. The integrand may have values
 belonging to a vector space over the real numbers; in particular, it can be
 complex-valued or vector-valued. But it is assumed that the function is
 regular on $]a,b[$. If the endpoints $a$ and $b$ are finite and the
 function is regular there, the situation is simple:
 \bprog
 ? intnum(x = 0,1, x^2)
 %1 = 0.3333333333333333333333333333
 ? intnum(x = 0,Pi/2, [cos(x), sin(x)])
 %2 = [1.000000000000000000000000000, 1.000000000000000000000000000]
 @eprog\noindent
 An endpoint equal to $\pm\infty$ is coded as \kbd{+oo} or \kbd{-oo}, as
 expected:
 \bprog
 ? intnum(x = 1,+oo, 1/x^2)
 %3 = 1.000000000000000000000000000
 @eprog\noindent
 In basic usage, it is assumed that the function does not decrease
 exponentially fast at infinity:
 \bprog
 ? intnum(x=0,+oo, exp(-x))
   ***   at top-level: intnum(x=0,+oo,exp(-
   ***                 ^--------------------
   *** exp: overflow in expo().
 @eprog\noindent
 We shall see in a moment how to avoid that last problem, after describing
 the last \emph{optional} argument \var{tab}.
 
 \misctitle{The \var{tab} argument}
 The routine uses weights $w_i$, which are mostly independent of the function
 being integrated, evaluated at many sampling points $x_i$ and
 approximates the integral by $\sum w_i f(x_i)$. If \var{tab} is
 
 \item a non-negative integer $m$, we multiply the number of sampling points
 by $2^m$, hopefully increasing accuracy. Note that the running time
 increases roughly by a factor $2^m$. One may try consecutive values of $m$
 until they give the same value up to an accepted error.
 
 \item a set of integration tables containing precomputed $x_i$ and $w_i$
 as output by \tet{intnuminit}. This is useful if several integrations of
 the same type are performed (on the same kind of interval and functions,
 for a given accuracy): we skip a precomputation of $O(D\log D)$
 elementary functions in accuracy $D$, whose running time has the same order
 of magnitude as the evaluation of the integrand. This is in particular
 useful for multivariate integrals.
 
 \misctitle{Specifying the behavior at endpoints}
 This is done as follows. An endpoint $a$ is either given as such (a scalar,
 real or complex, \kbd{oo} or \kbd{-oo} for $\pm\infty$), or as a two
 component vector $[a,\alpha]$, to indicate the behavior of the integrand in a
 neighborhood of $a$.
 
 If $a$ is finite, the code $[a,\alpha]$ means the function has a
 singularity of the form $(x-a)^{\alpha}$, up to logarithms. (If $\alpha \ge
 0$, we only assume the function is regular, which is the default assumption.)
 If a wrong singularity exponent is used, the result will lose a catastrophic
 number of decimals:
 \bprog
 ? intnum(x=0, 1, x^(-1/2))         \\@com assume $x^{-1/2}$ is regular at 0
 %1 = 1.9999999999999999999999999999827931660
 ? intnum(x=[0,-1/2], 1, x^(-1/2))  \\@com no, it's not
 %2 = 2.0000000000000000000000000000000000000
 ? intnum(x=[0,-1/10], 1, x^(-1/2)) \\@com using a wrong exponent is bad
 %3 = 1.9999999999999999999999999999999901912
 @eprog
 
 If $a$ is $\pm\infty$, which is coded as \kbd{+oo} or \kbd{-oo},
 the situation is more complicated, and $[\pm\kbd{oo},\alpha]$ means:
 
 \item $\alpha=0$ (or no $\alpha$ at all, i.e. simply $\pm\kbd{oo}$)
 assumes that the integrand tends to zero moderately quickly, at least as
 $O(x^{-2})$ but not exponentially fast.
 
 \item $\alpha>0$ assumes that the function tends to zero exponentially fast
 approximately as $\exp(-\alpha x)$. This includes oscillating but quickly
 decreasing functions such as $\exp(-x)\sin(x)$.
 \bprog
 ? intnum(x=0, +oo, exp(-2*x))
   ***   at top-level: intnum(x=0,+oo,exp(-
   ***                 ^--------------------
   *** exp: exponent (expo) overflow
 ? intnum(x=0, [+oo, 2], exp(-2*x))  \\@com OK!
 %1 = 0.50000000000000000000000000000000000000
 ? intnum(x=0, [+oo, 3], exp(-2*x))  \\@com imprecise exponent, still OK !
 %2 = 0.50000000000000000000000000000000000000
 ? intnum(x=0, [+oo, 10], exp(-2*x)) \\@com wrong exponent $\Rightarrow$ disaster
 %3 = 0.49999999999952372962457451698256707393
 @eprog\noindent As the last exemple shows, the exponential decrease rate
 \emph{must} be indicated to avoid overflow, but the method is robust enough
 for a rough guess to be acceptable.
 
 \item $\alpha<-1$ assumes that the function tends to $0$ slowly, like
 $x^{\alpha}$. Here the algorithm is less robust and it is essential to give a
 sharp $\alpha$, unless $\alpha \le -2$ in which case we use
 the default algorithm as if $\alpha$ were missing (or equal to $0$).
 \bprog
 ? intnum(x=1, +oo, x^(-3/2))         \\ default
 %1 = 1.9999999999999999999999999999646391207
 ? intnum(x=1, [+oo,-3/2], x^(-3/2))  \\ precise decrease rate
 %2 = 2.0000000000000000000000000000000000000
 ? intnum(x=1, [+oo,-11/10], x^(-3/2)) \\ worse than default
 %3 = 2.0000000000000000000000000089298011973
 @eprog
 
 \smallskip The last two codes are reserved for oscillating functions.
 Let $k > 0$ real, and $g(x)$ a non-oscillating function tending slowly to $0$
 (e.g. like a negative power of $x$), then
 
 \item $\alpha=k * I$ assumes that the function behaves like $\cos(kx)g(x)$.
 
 \item $\alpha=-k* I$ assumes that the function behaves like $\sin(kx)g(x)$.
 
 \noindent Here it is critical to give the exact value of $k$. If the
 oscillating part is not a pure sine or cosine, one must expand it into a
 Fourier series, use the above codings, and sum the resulting contributions.
 Otherwise you will get nonsense. Note that $\cos(kx)$, and similarly
 $\sin(kx)$, means that very function, and not a translated version such as
 $\cos(kx+a)$.
 
 \misctitle{Note} If $f(x)=\cos(kx)g(x)$ where $g(x)$ tends to zero
 exponentially fast as $\exp(-\alpha x)$, it is up to the user to choose
 between $[\pm\kbd{oo},\alpha]$ and $[\pm\kbd{oo},k* I]$, but a good rule of
 thumb is that
 if the oscillations are weaker than the exponential decrease, choose
 $[\pm\kbd{oo},\alpha]$, otherwise choose $[\pm\kbd{oo},k*I]$, although the
 latter can
 reasonably be used in all cases, while the former cannot. To take a specific
 example, in the inverse Mellin transform, the integrand is almost always a
 product of an exponentially decreasing and an oscillating factor. If we
 choose the oscillating type of integral we perhaps obtain the best results,
 at the expense of having to recompute our functions for a different value of
 the variable $z$ giving the transform, preventing us to use a function such
 as \kbd{intfuncinit}. On the other hand using the exponential type of
 integral, we obtain less accurate results, but we skip expensive
 recomputations. See \kbd{intfuncinit} for more explanations.
 
 \smallskip
 
 We shall now see many examples to get a feeling for what the various
 parameters achieve. All examples below assume precision is set to $115$
 decimal digits. We first type
 \bprog
 ? \p 115
 @eprog
 
 \misctitle{Apparent singularities} In many cases, apparent singularities
 can be ignored. For instance, if $f(x) = 1
 /(\exp(x)-1) - \exp(-x)/x$, then $\int_0^\infty f(x)\,dx=\gamma$, Euler's
 constant \kbd{Euler}. But
 
 \bprog
 ? f(x) = 1/(exp(x)-1) - exp(-x)/x
 ? intnum(x = 0, [oo,1],  f(x)) - Euler
 %1 = 0.E-115
 @eprog\noindent
 But close to $0$ the function $f$ is computed with an enormous loss of
 accuracy, and we are in fact lucky that it get multiplied by weights which are
 sufficiently close to $0$ to hide this:
 \bprog
 ? f(1e-200)
 %2 = -3.885337784451458142 E84
 @eprog
 
 A more robust solution is to define the function differently near special
 points, e.g. by a Taylor expansion
 \bprog
 ? F = truncate( f(t + O(t^10)) ); \\@com expansion around t = 0
 ? poldegree(F)
 %4 = 7
 ? g(x) = if (x > 1e-18, f(x), subst(F,t,x)); \\@com note that $7 \cdot 18 > 105$
 ? intnum(x = 0, [oo,1],  g(x)) - Euler
 %2 = 0.E-115
 @eprog\noindent It is up to the user to determine constants such as the
 $10^{-18}$ and $10$ used above.
 
 \misctitle{True singularities} With true singularities the result is worse.
 For instance
 
 \bprog
 ? intnum(x = 0, 1,  x^(-1/2)) - 2
 %1 = -3.5... E-68 \\@com only $68$ correct decimals
 
 ? intnum(x = [0,-1/2], 1,  x^(-1/2)) - 2
 %2 = 0.E-114 \\@com better
 @eprog
 
 \misctitle{Oscillating functions}
 
 \bprog
 ? intnum(x = 0, oo, sin(x) / x) - Pi/2
 %1 = 16.19.. \\@com nonsense
 ? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2
 %2 = -0.006.. \\@com bad
 ? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2
 %3 = 0.E-115 \\@com perfect
 ? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2  \\@com oops, wrong $k$
 %4 = 0.06...
 ? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2
 %5 = 0.E-115 \\@com perfect
 
 ? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4
 %6 = -0.0008... \\@com bad
 ? sin(x)^3 - (3*sin(x)-sin(3*x))/4
 %7 = O(x^17)
 @eprog\noindent
 We may use the above linearization and compute two oscillating integrals with
 endpoints \kbd{[oo, -I]} and \kbd{[oo, -3*I]} respectively, or
 notice the obvious change of variable, and reduce to the single integral
 ${1\over 2}\int_0^\infty \sin(x)/x\,dx$. We finish with some more complicated
 examples:
 
 \bprog
 ? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
 %1 = -0.0003... \\@com bad
 ? intnum(x = 0, 1, (1-cos(x))/x^2) \
 + intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2
 %2 = 0.E-115 \\@com perfect
 
 ? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3
 %3 = -7.34... E-55 \\@com bad
 ? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3
 %4 = 8.9... E-103 \\@com better. Try higher $m$
 ? tab = intnuminit(0,[oo,-I], 1); \\@com double number of sampling points
 ? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3
 %6 = 0.E-115 \\@com perfect
 @eprog
 
 \misctitle{Warning} Like \tet{sumalt}, \kbd{intnum} often assigns a
 reasonable value to diverging integrals. Use these values at your own risk!
 For example:
 
 \bprog
 ? intnum(x = 0, [oo, -I], x^2*sin(x))
 %1 = -2.0000000000...
 @eprog\noindent
 Note the formula
 $$ \int_0^\infty \sin(x)/x^s\,dx = \cos(\pi s/2) \Gamma(1-s)\;, $$
 a priori valid only for $0 < \Re(s) < 2$, but the right hand side provides an
 analytic continuation which may be evaluated at $s = -2$\dots
 
 \misctitle{Multivariate integration}
 Using successive univariate integration with respect to different formal
 parameters, it is immediate to do naive multivariate integration. But it is
 important to use a suitable \kbd{intnuminit} to precompute data for the
 \emph{internal} integrations at least!
 
 For example, to compute the double integral on the unit disc $x^2+y^2\le1$
 of the function $x^2+y^2$, we can write
 \bprog
 ? tab = intnuminit(-1,1);
 ? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab),tab) - Pi/2
 %2 = -7.1... E-115 \\@com OK
 
 @eprog\noindent
 The first \var{tab} is essential, the second optional. Compare:
 
 \bprog
 ? tab = intnuminit(-1,1);
 time = 4 ms.
 ? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));
 time = 3,092 ms. \\@com slow
 ? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);
 time = 252 ms.  \\@com faster
 ? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab));
 time = 261 ms.  \\@com the \emph{internal} integral matters most
 @eprog
 
 \synt{intnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab, long prec},
 where an omitted \var{tab} is coded as \kbd{NULL}.

Function: intnumgauss
Class: basic
Section: sums
C-Name: intnumgauss0
Prototype: V=GGEDGp
Help: intnumgauss(X=a,b,expr,{tab}): numerical integration of expr from
 a to b, a compact interval, with respect to X using Gauss-Legendre
 quadrature. tab is either omitted (and will be recomputed) or
 precomputed with intnumgaussinit.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen:prec intnumgauss(${3 cookie}, ${3 wrapper}, $1, $2, $4, $prec)
Doc: numerical integration of \var{expr} on the compact interval $[a,b]$ with
 respect to $X$ using Gauss-Legendre quadrature; \kbd{tab} is either omitted
 or precomputed with \kbd{intnumgaussinit}. As a convenience, it can be an
 integer $n$ in which case we call
 \kbd{intnumgaussinit}$(n)$ and use $n$-point quadrature.
 \bprog
 ? test(n, b = 1) = T=intnumgaussinit(n);\
     intnumgauss(x=-b,b, 1/(1+x^2),T) - 2*atan(b);
 ? test(0) \\ default
 %1 = -9.490148553624725335 E-22
 ? test(40)
 %2 = -6.186629001816965717 E-31
 ? test(50)
 %3 = -1.1754943508222875080 E-38
 ? test(50, 2) \\ double interval length
 %4 = -4.891779568527713636 E-21
 ? test(90, 2) \\ n must almost be doubled as well!
 %5 = -9.403954806578300064 E-38
 @eprog\noindent On the other hand, we recommend to split the integral
 and change variables rather than increasing $n$ too much:
 \bprog
 ? f(x) = 1/(1+x^2);
 ? b = 100;
 ? intnumgauss(x=0,1, f(x)) + intnumgauss(x=1,1/b, f(1/x)*(-1/x^2)) - atan(b)
 %3 = -1.0579449157400587572 E-37
 @eprog

Function: intnumgaussinit
Class: basic
Section: sums
C-Name: intnumgaussinit
Prototype: D0,L,p
Help: intnumgaussinit({n}): initialize tables for n-point Gauss-Legendre
 integration on a compact interval.
Doc: initialize tables for $n$-point Gauss-Legendre integration of
 a smooth function $f$ lon a compact
 interval $[a,b]$ at current \kbd{realprecision}. If $n$ is omitted, make a
 default choice $n \approx \kbd{realprecision}$, suitable for analytic
 functions on $[-1,1]$. The error is bounded by
 $$
    \dfrac{(b-a)^{2n+1} (n!)^4}{(2n+1)[(2n)!]^3} f^{(2n)} (\xi) ,
    \qquad a < \xi < b
 $$
 so, if the interval length increases, $n$ should be increased as well.
 \bprog
 ? T = intnumgaussinit();
 ? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)
 %1 = -5.877471754111437540 E-39
 ? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)
 %2 = -8.358367809712546836 E-35
 ? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
 %3 = -9.490148553624725335 E-22
 
 ? T = intnumgaussinit(50);
 ? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
 %5 = -1.1754943508222875080 E-38
 ? intnumgauss(t=-5,5,1/(1+t^2), T) - 2*atan(5)
 %6 = -1.2[...]E-8
 @eprog
 On the other hand, we recommend to split the integral and change variables
 rather than increasing $n$ too much, see \tet{intnumgauss}.

Function: intnuminit
Class: basic
Section: sums
C-Name: intnuminit
Prototype: GGD0,L,p
Help: intnuminit(a,b,{m=0}): initialize tables for integrations from a to b.
 See help for intnum for coding of a and b. Possible types: compact interval,
 semi-compact (one extremity at + or - infinity) or R, and very slowly, slowly
 or exponentially decreasing, or sine or cosine oscillating at infinities.
Doc: initialize tables for integration from
 $a$ to $b$, where $a$ and $b$ are coded as in \kbd{intnum}. Only the
 compactness, the possible existence of singularities, the speed of decrease
 or the oscillations at infinity are taken into account, and not the values.
 For instance {\tt intnuminit(-1,1)} is equivalent to {\tt intnuminit(0,Pi)},
 and {\tt intnuminit([0,-1/2],oo)} is equivalent to
 {\tt intnuminit([-1,-1/2], -oo)}; on the other hand, the order matters
 and
 {\tt intnuminit([0,-1/2], [1,-1/3])} is \emph{not} equivalent to
 {\tt intnuminit([0,-1/3], [1,-1/2])} !
 
 If $m$ is present, it must be non-negative and we multiply the default
 number of sampling points by $2^m$ (increasing the running time by a
 similar factor).
 
 The result is technical and liable to change in the future, but we document
 it here for completeness. Let $x=\phi(t)$, $t\in ]-\infty,\infty[$ be an
 internally chosen change of variable, achieving double exponential decrease of
 the integrand at infinity. The integrator \kbd{intnum} will compute
 $$ h \sum_{|n| < N} \phi'(nh) F(\phi(nh)) $$
 for some integration step $h$ and truncation parameter $N$.
 In basic use, let
 \bprog
 [h, x0, w0, xp, wp, xm, wm] = intnuminit(a,b);
 @eprog
 
 \item $h$ is the integration step
 
 \item $x_0 = \phi(0)$  and $w_0 = \phi'(0)$,
 
 \item \var{xp} contains the $\phi(nh)$, $0 < n < N$,
 
 \item \var{xm} contains the $\phi(nh)$, $0 < -n < N$, or is empty.
 
 \item \var{wp} contains the $\phi'(nh)$, $0 < n < N$,
 
 \item \var{wm} contains the $\phi'(nh)$, $0 < -n < N$, or is empty.
 
 The arrays \var{xm} and \var{wm} are left empty when $\phi$ is an odd
 function. In complicated situations when non-default behaviour is specified at
 end points, \kbd{intnuminit} may return up to $3$ such arrays, corresponding
 to a splitting of up to $3$ integrals of basic type.
 
 If the functions to be integrated later are of the form $F = f(t) k(t,z)$
 for some kernel $k$ (e.g. Fourier, Laplace, Mellin, \dots), it is
 useful to also precompute the values of $f(\phi(nh))$, which is accomplished
 by \tet{intfuncinit}. The hard part is to determine the behaviour
 of $F$ at endpoints, depending on $z$.

Function: intnumromb
Class: basic
Section: sums
C-Name: intnumromb0_bitprec
Prototype: V=GGED0,L,b
Help: intnumromb(X=a,b,expr,{flag=0}): numerical integration of expr (smooth in
 ]a,b[) from a to b with respect to X. flag is optional and mean 0: default.
 expr can be evaluated exactly on [a,b]; 1: general function; 2: a or b can be
 plus or minus infinity (chosen suitably), but of same sign; 3: expr has only
 limits at a or b.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?small):gen:prec intnumromb(${3 cookie}, ${3 wrapper}, $1, $2, $4, $bitprec)
Doc: numerical integration of \var{expr} (smooth in $]a,b[$), with respect to
 $X$. Suitable for low accuracy; if \var{expr} is very regular (e.g. analytic
 in a large region) and high accuracy is desired, try \tet{intnum} first.
 
 Set $\fl=0$ (or omit it altogether) when $a$ and $b$ are not too large, the
 function is smooth, and can be evaluated exactly everywhere on the interval
 $[a,b]$.
 
 If $\fl=1$, uses a general driver routine for doing numerical integration,
 making no particular assumption (slow).
 
 $\fl=2$ is tailored for being used when $a$ or $b$ are infinite using the
 change of variable $t = 1/X$. One \emph{must} have $ab>0$, and in fact if
 for example $b=+\infty$, then it is preferable to have $a$ as large as
 possible, at least $a\ge1$.
 
 If $\fl=3$, the function is allowed to be undefined
 at $a$ (but right continuous) or $b$ (left continuous),
 for example the function $\sin(x)/x$ between $x=0$ and $1$.
 
 The user should not require too much accuracy: \tet{realprecision} about
 30 decimal digits (\tet{realbitprecision} about 100 bits) is OK,
 but not much more. In addition, analytical cleanup of the integral must have
 been done: there must be no singularities in the interval or at the
 boundaries. In practice this can be accomplished with a change of
 variable. Furthermore, for improper integrals, where one or both of the
 limits of integration are plus or minus infinity, the function must decrease
 sufficiently rapidly at infinity, which can often be accomplished through
 integration by parts. Finally, the function to be integrated should not be
 very small (compared to the current precision) on the entire interval. This
 can of course be accomplished by just multiplying by an appropriate constant.
 
 Note that \idx{infinity} can be represented with essentially no loss of
 accuracy by an appropriate huge number. However beware of real underflow
 when dealing with rapidly decreasing functions. For example, in order to
 compute the $\int_0^\infty e^{-x^2}\,dx$ to 28 decimal digits, then one can
 set infinity equal to 10 for example, and certainly not to \kbd{1e1000}.
 
 \synt{intnumromb_bitprec}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long flag, long bitprec},
 where $\kbd{eval}(x, E)$ returns the value of the function at $x$.
 You may store any additional information required by \kbd{eval} in $E$, or set
 it to \kbd{NULL}. The historical variant
 \synt{intnumromb}{\dots, long prec}, where \kbd{prec} is expressed in words,
 not bits, is obsolete and should no longer be used.

Function: isfundamental
Class: basic
Section: number_theoretical
C-Name: isfundamental
Prototype: lG
Help: isfundamental(x): true(1) if x is a fundamental discriminant
 (including 1), false(0) if not.
Description: 
 (int):bool       Z_isfundamental($1)
 (gen):bool       isfundamental($1)
Doc: true (1) if $x$ is equal to 1 or to the discriminant of a quadratic
 field, false (0) otherwise.

Function: ispolygonal
Class: basic
Section: number_theoretical
C-Name: ispolygonal
Prototype: lGGD&
Help: ispolygonal(x,s,{&N}): true(1) if x is an s-gonal number, false(0) if
 not (s > 2). If N is given set it to n if x is the n-th s-gonal number.
Doc: true (1) if the integer $x$ is an s-gonal number, false (0) if not.
 The parameter $s > 2$ must be a \typ{INT}. If $N$ is given, set it to $n$
 if $x$ is the $n$-th $s$-gonal number.
 \bprog
 ? ispolygonal(36, 3, &N)
 %1 = 1
 ? N
 @eprog

Function: ispower
Class: basic
Section: number_theoretical
C-Name: ispower
Prototype: lGDGD&
Help: ispower(x,{k},{&n}): if k > 0 is given, return true (1) if x is a k-th
 power, false (0) if not. If k is omitted, return the maximal k >= 2 such
 that x = n^k is a perfect power, or 0 if no such k exist.
 If n is present, and the function returns a non-zero result, set n to the
 k-th root of x.
Description: 
 (int):small       Z_isanypower($1, NULL)
 (int, &int):small Z_isanypower($1, &$2)
Doc: if $k$ is given, returns true (1) if $x$ is a $k$-th power, false
 (0) if not. What it means to be a $k$-th power depends on the type of
 $x$; see \tet{issquare} for details.
 
 If $k$ is omitted, only integers and fractions are allowed for $x$ and the
 function returns the maximal $k \geq 2$ such that $x = n^k$ is a perfect
 power, or 0 if no such $k$ exist; in particular \kbd{ispower(-1)},
 \kbd{ispower(0)}, and \kbd{ispower(1)} all return $0$.
 
 If a third argument $\&n$ is given and $x$ is indeed a $k$-th power, sets
 $n$ to a $k$-th root of $x$.
 
 \noindent For a \typ{FFELT} \kbd{x}, instead of omitting \kbd{k} (which is
 not allowed for this type), it may be natural to set
 \bprog
 k = (x.p ^ x.f - 1) / fforder(x)
 @eprog
Variant: Also available is
 \fun{long}{gisanypower}{GEN x, GEN *pty} ($k$ omitted).

Function: ispowerful
Class: basic
Section: number_theoretical
C-Name: ispowerful
Prototype: lG
Help: ispowerful(x): true(1) if x is a powerful integer (valuation at all
 primes dividing x is greater than 1), false(0) if not.
Doc: true (1) if $x$ is a powerful integer, false (0) if not;
 an integer is powerful if and only if its valuation at all primes dividing
 $x$ is greater than 1.
 \bprog
 ? ispowerful(50)
 %1 = 0
 ? ispowerful(100)
 %2 = 1
 ? ispowerful(5^3*(10^1000+1)^2)
 %3 = 1
 @eprog

Function: isprime
Class: basic
Section: number_theoretical
C-Name: gisprime
Prototype: GD0,L,
Help: isprime(x,{flag=0}): true(1) if x is a (proven) prime number, false(0)
 if not. If flag is 0 or omitted, use a combination of algorithms. If flag is
 1, the primality is certified by the Pocklington-Lehmer Test. If flag is 2,
 the primality is certified using the APRCL test.
Description: 
 (int, ?0):bool        isprime($1)
 (gen, ?small):gen     gisprime($1, $2)
Doc: true (1) if $x$ is a prime
 number, false (0) otherwise. A prime number is a positive integer having
 exactly two distinct divisors among the natural numbers, namely 1 and
 itself.
 
 This routine proves or disproves rigorously that a number is prime, which can
 be very slow when $x$ is indeed prime and has more than $1000$ digits, say.
 Use \tet{ispseudoprime} to quickly check for compositeness. See also
 \kbd{factor}. It accepts vector/matrices arguments, and is then applied
 componentwise.
 
 If $\fl=0$, use a combination of Baillie-PSW pseudo primality test (see
 \tet{ispseudoprime}), Selfridge ``$p-1$'' test if $x-1$ is smooth enough, and
 Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general $x$.
 
 If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test and output a
 primality certificate as follows: return
 
 \item 0 if $x$ is composite,
 
 \item 1 if $x$ is small enough that passing Baillie-PSW test guarantees
 its primality (currently $x < 2^{64}$, as checked by Jan Feitsma),
 
 \item $2$ if $x$ is a large prime whose primality could only sensibly be
 proven (given the algorithms implemented in PARI) using the APRCL test.
 
 \item Otherwise ($x$ is large and $x-1$ is smooth) output a three column
 matrix as a primality certificate. The first column contains prime
 divisors $p$ of $x-1$ (such that $\prod p^{v_p(x-1)} > x^{1/3}$), the second
 the corresponding elements $a_p$ as in Proposition~8.3.1 in GTM~138 , and the
 third the output of isprime(p,1).
 
 The algorithm fails if one of the pseudo-prime factors is not prime, which is
 exceedingly unlikely and well worth a bug report. Note that if you monitor
 \kbd{isprime} at a high enough debug level, you may see warnings about
 untested integers being declared primes. This is normal: we ask for partial
 factorisations (sufficient to prove primality if the unfactored part is not
 too large), and \kbd{factor} warns us that the cofactor hasn't been tested.
 It may or may not be tested later, and may or may not be prime. This does
 not affect the validity of the whole \kbd{isprime} procedure.
 
 If $\fl=2$, use APRCL.

Function: isprimepower
Class: basic
Section: number_theoretical
C-Name: isprimepower
Prototype: lGD&
Help: isprimepower(x,{&n}): if x = p^k is a prime power (p prime, k > 0),
 return k, else return 0. If n is present, and the function returns a non-zero
 result, set n to p, the k-th root of x.
Doc: if $x = p^k$ is a prime power ($p$ prime, $k > 0$), return $k$, else
 return 0. If a second argument $\&n$ is given and $x$ is indeed
 the $k$-th power of a prime $p$, sets $n$ to $p$.

Function: ispseudoprime
Class: basic
Section: number_theoretical
C-Name: gispseudoprime
Prototype: GD0,L,
Help: ispseudoprime(x,{flag}): true(1) if x is a strong pseudoprime, false(0)
 if not. If flag is 0 or omitted, use BPSW test, otherwise use strong
 Rabin-Miller test for flag randomly chosen bases.
Description: 
 (int,?0):bool      BPSW_psp($1)
 (int,#small):bool  millerrabin($1,$2)
 (int,small):bool   ispseudoprime($1, $2)
 (gen,?small):gen   gispseudoprime($1, $2)
Doc: true (1) if $x$ is a strong pseudo
 prime (see below), false (0) otherwise. If this function returns false, $x$
 is not prime; if, on the other hand it returns true, it is only highly likely
 that $x$ is a prime number. Use \tet{isprime} (which is of course much
 slower) to prove that $x$ is indeed prime.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
 
 If $\fl = 0$, checks whether $x$ has no small prime divisors (up to $101$
 included) and is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime.
 Such a pseudo prime passes a Rabin-Miller test for base $2$,
 followed by a Lucas test for the sequence $(P,-1)$, $P$ smallest
 positive integer such that $P^2 - 4$ is not a square mod $x$).
 
 There are no known composite numbers passing the above test, although it is
 expected that infinitely many such numbers exist. In particular, all
 composites $\leq 2^{64}$ are correctly detected (checked using
 \url{http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html}).
 
 If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime  for
 $\fl$ randomly chosen bases (with end-matching to catch square roots of $-1$).

Function: ispseudoprimepower
Class: basic
Section: number_theoretical
C-Name: ispseudoprimepower
Prototype: lGD&
Help: ispseudoprimepower(x,{&n}): if x = p^k is a pseudo-prime power (p
 pseudo-prime, k > 0),
 return k, else return 0. If n is present, and the function returns a non-zero
 result, set n to p, the k-th root of x.
Doc: if $x = p^k$ is a pseudo-prime power ($p$ pseudo-prime as per
 \tet{ispseudoprime}, $k > 0$), return $k$, else
 return 0. If a second argument $\&n$ is given and $x$ is indeed
 the $k$-th power of a prime $p$, sets $n$ to $p$.
 
 More precisely, $k$ is always the largest integer such that $x = n^k$ for
 some integer $n$ and, when $n \leq  2^{64}$ the function returns $k > 0$ if and
 only if $n$ is indeed prime. When $n > 2^{64}$ is larger than the threshold,
 the function may return $1$ even though $n$ is composite: it only passed
 an \kbd{ispseudoprime(n)} test.

Function: issquare
Class: basic
Section: number_theoretical
C-Name: issquareall
Prototype: lGD&
Help: issquare(x,{&n}): true(1) if x is a square, false(0) if not. If n is
 given puts the exact square root there if it was computed.
Description: 
 (int):bool        Z_issquare($1)
 (gen):bool        issquare($1)
 (int, &int):bool  Z_issquareall($1, &$2)
 (gen, &gen):bool  issquareall($1, &$2)
Doc: true (1) if $x$ is a square, false (0)
 if not. What ``being a square'' means depends on the type of $x$: all
 \typ{COMPLEX} are squares, as well as all non-negative \typ{REAL}; for
 exact types such as \typ{INT}, \typ{FRAC} and \typ{INTMOD}, squares are
 numbers of the form $s^2$ with $s$ in $\Z$, $\Q$ and $\Z/N\Z$ respectively.
 \bprog
 ? issquare(3)          \\ as an integer
 %1 = 0
 ? issquare(3.)         \\ as a real number
 %2 = 1
 ? issquare(Mod(7, 8))  \\ in Z/8Z
 %3 = 0
 ? issquare( 5 + O(13^4) )  \\ in Q_13
 %4 = 0
 @eprog
 If $n$ is given, a square root of $x$ is put into $n$.
 \bprog
 ? issquare(4, &n)
 %1 = 1
 ? n
 %2 = 2
 @eprog
 For polynomials, either we detect that the characteristic is 2 (and check
 directly odd and even-power monomials) or we assume that $2$ is invertible
 and check whether squaring the truncated power series for the square root
 yields the original input.
 
 For \typ{POLMOD} $x$, we only support \typ{POLMOD}s of \typ{INTMOD}s
 encoding finite fields, assuming without checking that the intmod modulus
 $p$ is prime and that the polmod modulus is irreducible modulo $p$.
 \bprog
 ? issquare(Mod(Mod(2,3), x^2+1), &n)
 %1 = 1
 ? n
 %2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))
 @eprog
Variant: Also available is \fun{long}{issquare}{GEN x}. Deprecated
 GP-specific functions \fun{GEN}{gissquare}{GEN x} and
 \fun{GEN}{gissquareall}{GEN x, GEN *pt} return \kbd{gen\_0} and \kbd{gen\_1}
 instead of a boolean value.

Function: issquarefree
Class: basic
Section: number_theoretical
C-Name: issquarefree
Prototype: lG
Help: issquarefree(x): true(1) if x is squarefree, false(0) if not.
Description: 
 (gen):bool       issquarefree($1)
Doc: true (1) if $x$ is squarefree, false (0) if not. Here $x$ can be an
 integer or a polynomial with coefficients in an integral domain.
 \bprog
 ? issquarefree(12)
 %1 = 0
 ? issquarefree(6)
 %2 = 1
 ? issquarefree(x^3+x^2)
 %3 = 0
 ? issquarefree(Mod(1,4)*(x^2+x+1))    \\ Z/4Z is not a domain !
  ***   at top-level: issquarefree(Mod(1,4)*(x^2+x+1))
  ***                 ^--------------------------------
  *** issquarefree: impossible inverse in Fp_inv: Mod(2, 4).
 @eprog\noindent A polynomial is declared squarefree if \kbd{gcd}$(x,x')$ is
 $1$. In particular a non-zero polynomial with inexact coefficients is
 considered to be squarefree. Note that this may be inconsistent with
 \kbd{factor}, which first rounds the input to some exact approximation before
 factoring in the apropriate domain; this is correct when the input is not
 close to an inseparable polynomial (the resultant of $x$ and $x'$ is not
 close to $0$).

Function: istotient
Class: basic
Section: number_theoretical
C-Name: istotient
Prototype: lGD&
Help: istotient(x,{&N}): true(1) if x = eulerphi(n) for some integer n,
 false(0) if not. If N is given, set N = n as well.
Doc: true (1) if $x = \phi(n)$ for some integer $n$, false (0)
 if not.
 \bprog
 ? istotient(14)
 %1 = 0
 ? istotient(100)
 %2 = 0
 @eprog
 If $N$ is given, set $N = n$ as well.
 \bprog
 ? istotient(4, &n)
 %1 = 1
 ? n
 %2 = 10
 @eprog

Function: kill
Class: basic
Section: programming/specific
C-Name: kill0
Prototype: vr
Help: kill(sym): restores the symbol sym to its ``undefined'' status and kill
 attached help messages.
Doc: restores the symbol \kbd{sym} to its ``undefined'' status, and deletes any
 help messages attached to \kbd{sym} using \kbd{addhelp}. Variable names
 remain known to the interpreter and keep their former priority: you cannot
 make a variable ``less important" by killing it!
 \bprog
 ? z = y = 1; y
 %1 = 1
 ? kill(y)
 ? y            \\ restored to ``undefined'' status
 %2 = y
 ? variable()
 %3 = [x, y, z] \\ but the variable name y is still known, with y > z !
 @eprog\noindent
 For the same reason, killing a user function (which is an ordinary
 variable holding a \typ{CLOSURE}) does not remove its name from the list of
 variable names.
 
 If the symbol is attached to a variable --- user functions being an
 important special case ---, one may use the \idx{quote} operator
 \kbd{a = 'a} to reset variables to their starting values. However, this
 will not delete a help message attached to \kbd{a}, and is also slightly
 slower than \kbd{kill(a)}.
 \bprog
 ? x = 1; addhelp(x, "foo"); x
 %1 = 1
 ? x = 'x; x   \\ same as 'kill', except we don't delete help.
 %2 = x
 ? ?x
 foo
 @eprog\noindent
 On the other hand, \kbd{kill} is the only way to remove aliases and installed
 functions.
 \bprog
 ? alias(fun, sin);
 ? kill(fun);
 
 ? install(addii, GG);
 ? kill(addii);
 @eprog

Function: kronecker
Class: basic
Section: number_theoretical
C-Name: kronecker
Prototype: lGG
Help: kronecker(x,y): kronecker symbol (x/y).
Description: 
 (small, small):small  kross($1, $2)
 (int, small):small    krois($1, $2)
 (small, int):small    krosi($1, $2)
 (gen, gen):small      kronecker($1, $2)
Doc: 
 \idx{Kronecker symbol} $(x|y)$, where $x$ and $y$ must be of type integer. By
 definition, this is the extension of \idx{Legendre symbol} to $\Z \times \Z$
 by total multiplicativity in both arguments with the following special rules
 for $y = 0, -1$ or $2$:
 
 \item $(x|0) = 1$ if $|x| = 1$ and $0$ otherwise.
 
 \item $(x|-1) = 1$ if $x \geq 0$ and $-1$ otherwise.
 
 \item $(x|2) = 0$ if $x$ is even and $1$ if $x = 1,-1 \mod 8$ and $-1$
 if $x=3,-3 \mod 8$.

Function: lambertw
Class: basic
Section: transcendental
C-Name: glambertW
Prototype: Gp
Help: lambertw(y): solution of the implicit equation x*exp(x)=y.
Doc: Lambert $W$ function, solution of the implicit equation $xe^x=y$,
 for $y > 0$.

Function: lcm
Class: basic
Section: number_theoretical
C-Name: glcm0
Prototype: GDG
Help: lcm(x,{y}): least common multiple of x and y, i.e. x*y / gcd(x,y)
 up to units.
Description: 
 (int, int):int lcmii($1, $2)
 (gen):gen      glcm0($1, NULL)
 (gen, gen):gen glcm($1, $2)
Doc: least common multiple of $x$ and $y$, i.e.~such
 that $\lcm(x,y)*\gcd(x,y) = x*y$, up to units. If $y$ is omitted and $x$
 is a vector, returns the $\text{lcm}$ of all components of $x$.
 For integer arguments, return the non-negative \text{lcm}.
 
 When $x$ and $y$ are both given and one of them is a vector/matrix type,
 the LCM is again taken recursively on each component, but in a different way.
 If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
 and components equal to \kbd{lcm(x, y[i])}, resp.~\kbd{lcm(x, y[,i])}. Else
 if $x$ is a vector/matrix the result has the same type as $x$ and an
 analogous definition. Note that for these types, \kbd{lcm} is not
 commutative.
 
 Note that \kbd{lcm(v)} is quite different from
 \bprog
 l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
 @eprog\noindent
 Indeed, \kbd{lcm(v)} is a scalar, but \kbd{l} may not be (if one of
 the \kbd{v[i]} is a vector/matrix). The computation uses a divide-conquer tree
 and should be much more efficient, especially when using the GMP
 multiprecision kernel (and more subquadratic algorithms become available):
 \bprog
 ? v = vector(10^5, i, random);
 ? lcm(v);
 time = 546 ms.
 ? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
 time = 4,561 ms.
 @eprog

Function: length
Class: basic
Section: conversions
C-Name: glength
Prototype: lG
Help: length(x): number of non code words in x, number of characters for a
 string.
Description: 
 (vecsmall):lg      lg($1)
 (vec):lg           lg($1)
 (pol):small        lgpol($1)
 (gen):small        glength($1)
Doc: length of $x$; \kbd{\#}$x$ is a shortcut for \kbd{length}$(x)$.
 This is mostly useful for
 
 \item vectors: dimension (0 for empty vectors),
 
 \item lists: number of entries (0 for empty lists),
 
 \item matrices: number of columns,
 
 \item character strings: number of actual characters (without
 trailing \kbd{\bs 0}, should you expect it from $C$ \kbd{char*}).
 \bprog
  ? #"a string"
  %1 = 8
  ? #[3,2,1]
  %2 = 3
  ? #[]
  %3 = 0
  ? #matrix(2,5)
  %4 = 5
  ? L = List([1,2,3,4]); #L
  %5 = 4
 @eprog
 
 The routine is in fact defined for arbitrary GP types, but is awkward and
 useless in other cases: it returns the number of non-code words in $x$, e.g.
 the effective length minus 2 for integers since the \typ{INT} type has two code
 words.

Function: lex
Class: basic
Section: operators
C-Name: lexcmp
Prototype: iGG
Help: lex(x,y): compare x and y lexicographically (1 if x>y, 0 if x=y, -1 if x<y).
Doc: gives the result of a lexicographic comparison
 between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
 a wide sense: It is admissible to compare objects of different types
 (scalars, vectors, matrices), provided the scalars can be compared, as well
 as vectors/matrices of different lengths. The comparison is recursive.
 
 In case all components are equal up to the smallest length of the operands,
 the more complex is considered to be larger. More precisely, the longest is
 the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
 For example:
 \bprog
 ? lex([1,3], [1,2,5])
 %1 = 1
 ? lex([1,3], [1,3,-1])
 %2 = -1
 ? lex([1], [[1]])
 %3 = -1
 ? lex([1], [1]~)
 %4 = 0
 @eprog

Function: lfun
Class: basic
Section: l_functions
C-Name: lfun0
Prototype: GGD0,L,b
Help: lfun(L,s,{D=0}): compute the L-function value L(s), or
 if D is set, the derivative of order D at s. L is either an
 Lmath, an Ldata or an Linit.
Description: 
 (gen,gen):gen:prec       lfun($1, $2, $bitprec)
 (gen,gen,?0):gen:prec    lfun($1, $2, $bitprec)
 (gen,gen,small):gen:prec lfun0($1, $2, $3, $bitprec)
Doc: compute the L-function value $L(s)$, or if \kbd{D} is set, the
 derivative of order \kbd{D} at $s$. The parameter
 \kbd{L} is either an Lmath, an Ldata (created by \kbd{lfuncreate}, or an
 Linit (created by \kbd{lfuninit}), preferrably the latter if many values
 are to be computed.
 
 The argument $s$ is also allowed to be a power series; for instance, if $s =
 \alpha + x + O(x^n)$, the function returns the Taylor expansion of order $n$
 around $\alpha$. The result is given with absolute error less than $2^{-B}$,
 where $B = \text{realbitprecision}$.
 
 \misctitle{Caveat} The requested precision has a major impact on runtimes.
 It is advised to manipulate precision via \tet{realbitprecision} as
  explained above instead of \tet{realprecision} as the latter allows less
 granularity: \kbd{realprecision} increases by increments of 64 bits, i.e. 19
 decimal digits at a time.
 
 \bprog
 ? lfun(x^2+1, 2)  \\ Lmath: Dedekind zeta for Q(i) at 2
 %1 = 1.5067030099229850308865650481820713960
 
 ? L = lfuncreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function
 ? lfun(L, 1+x+O(x^4))  \\ zero of order 3 at the central point
 %3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x^2 + 1.7318[...]*x^3 + O(x^4)
 
 \\ Linit: zeta(1/2+it), |t| < 100, and derivative
 ? L = lfuninit(1, [100], 1);
 ? T = lfunzeros(L, [1,25]);
 %5 = [14.134725[...], 21.022039[...]]
 ? z = 1/2 + I*T[1];
 ? abs( lfun(L, z) )
 %7 = 8.7066865533412207420780392991125136196 E-39
 ? abs( lfun(L, z, 1) )
 %8 = 0.79316043335650611601389756527435211412  \\ simple zero
 @eprog

Function: lfunabelianrelinit
Class: basic
Section: l_functions
C-Name: lfunabelianrelinit
Prototype: GGGGD0,L,b
Help: lfunabelianrelinit(bnfL,bnfK,polrel,sdom,{der=0}): returns the
  Linit structure attached to the Dedekind zeta function of the number field
  L, given a subfield K such that L/K is abelian, where polrel defines
  L over K. The priority of the variable
  of bnfK must be lower than that of polrel; bnfL is the absolute polynomial
  corresponding to polrel, and sdom and der are as in lfuninit.
Doc: returns the \kbd{Linit} structure attached to the Dedekind zeta function
  of the number field $L$ (see \tet{lfuninit}), given a subfield $K$ such that
  $L/K$ is abelian.
  Here \kbd{polrel} defines $L$ over $K$, as usual with the priority of the
  variable of \kbd{bnfK} lower than that of \kbd{polrel}.
  \kbd{sdom} and \kbd{der} are as in \kbd{lfuninit}.
  \bprog
  ? D = -47; K = bnfinit(y^2-D);
  ? rel = quadhilbert(D); T = rnfequation(K.pol, rel); \\ degree 10
  ? L = lfunabelianrelinit(T,K,rel, [2,0,0]); \\ at 2
  time = 84 ms.
  ? lfun(L, 2)
  %4 = 1.0154213394402443929880666894468182650
  ? lfun(T, 2) \\ using parisize > 300MB
  time = 652 ms.
  %5 = 1.0154213394402443929880666894468182656
  @eprog\noindent As the example shows, using the (abelian) relative structure
  is more efficient than a direct computation. The difference becomes drastic
  as the absolute degree increases while the subfield degree remains constant.

Function: lfunan
Class: basic
Section: l_functions
C-Name: lfunan
Prototype: GLp
Help: lfunan(L,n): compute the first n terms of the Dirichlet series
  attached to the L-function given by L (Lmath, Ldata or Linit).
Doc: Compute the first $n$ terms of the Dirichlet series attached to the
  $L$-function given by \kbd{L} (\kbd{Lmath}, \kbd{Ldata} or \kbd{Linit}).
  \bprog
  ? lfunan(1, 10)  \\ Riemann zeta
  %1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
  ? lfunan(5, 10)  \\ Dirichlet L-function for kronecker(5,.)
  %2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]
  @eprog

Function: lfunartin
Class: basic
Section: l_functions
C-Name: lfunartin
Prototype: GGGL
Help: lfunartin(nf,gal,M,n): returns the Ldata structure attached to the
 Artin L-function attached to the representation R of the Galois group
 of the extension K/Q, defined over the cyclotomic field Q(zeta_n),
 where nf is the nfinit structure attached to K,
 gal is the galoisinit structure attached to K/Q, and M is the vector
 of the image of the generators G.gen by R. The elements of M are matrices
 with polynomial entries, whose variable is understood as the complex
 number exp(2*I*Pi/n).
Doc: returns the \kbd{Ldata} structure attached to the
 Artin $L$-function attached to the representation $\rho$ of the Galois group
 of the extension $K/\Q$, defined over the cyclotomic field $\Q(\zeta_n)$,
 where \var{nf} is the nfinit structure attached to $K$,
 \var{gal} is the galoisinit structure attached to $K/\Q$, and $M$ is
 the vector of the image of the generators \kbd{\var{gal}.gen} by $\rho$.
 The elements of $M$ are matrices with polynomial entries, whose variable
 is understood as the complex number $\exp(2\*i\*\pi/n)$.
 
 In the following example we build the Artin $L$-functions attached to the two
 irreducible degree $2$ representations of the dihedral group $D_{10}$ defined
 over $\Q(\zeta_5)$, for the extension $H/\Q$ where $H$ is the Hilbert class
 field of $\Q(\sqrt{-47})$.
 We show numerically some identities involving Dedekind $\zeta$ functions and
 Hecke $L$ series.
 \bprog
 ? P = quadhilbert(-47);
 ? N = nfinit(nfsplitting(P));
 ? G = galoisinit(N);
 ? L1 = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5);
 ? L2 = lfunartin(N,G, [[a^2,0;0,a^-2],[0,1;1,0]], 5);
 ? s = 1 + x + O(x^4);
 ? lfun(1,s)*lfun(-47,s)*lfun(L1,s)^2*lfun(L2,s)^2 - lfun(N,s)
 %6 ~ 0
 ? lfun(1,s)*lfun(L1,s)*lfun(L2,s) - lfun(P,s)
 %7 ~ 0
 ? bnr = bnrinit(bnfinit(x^2+47),1,1);
 ? lfun([bnr,[1]], s) - lfun(L1, s)
 %9 ~ 0
 ? lfun([bnr,[1]], s) - lfun(L1, s)
 %10 ~ 0
 @eprog
 The first identity is the factorisation of the regular representation of
 $D_{10}$, the second the factorisation of the natural representation of
 $D_{10}\subset S_5$, the next two are the expressions of the degree $2$
 representations as induced from degree $1$ representations.

Function: lfuncheckfeq
Class: basic
Section: l_functions
C-Name: lfuncheckfeq
Prototype: lGDGb
Help: lfuncheckfeq(L,{t}): given an L-function (Lmath, Ldata or Linit),
 check whether the functional equation is satisfied. If the function has
 poles, the polar part must be specified. The program returns a bit accuracy
 which should be a large negative value close to the current bit accuracy.
 If t is given, it checks the functional equation for the theta function
 at t and 1/t.
Doc: Given the data attached to an $L$-function (\kbd{Lmath}, \kbd{Ldata}
 or \kbd{Linit}), check whether the functional equation is satisfied.
 This is most useful for an \kbd{Ldata} constructed ``by hand'', via
 \kbd{lfuncreate}, to detect mistakes.
 
 If the function has poles, the polar part must be specified. The routine
 returns a bit accuracy $b$ such that $|w - \hat{w}| < 2^{b}$, where $w$ is
 the root number contained in \kbd{data}, and $\hat{w}$ is a computed value
 derived from $\overline{\theta}(t)$ and $\theta(1/t)$ at some $t\neq 0$ and
 the assumed functional equation. Of course, a large negative value of the
 order of \kbd{realbitprecision} is expected.
 
 If $t$ is given, it should be close to the unit disc for efficiency and
 such that $\overline{\theta}(t) \neq 0$. We then check the functional
 equation at that $t$.
 \bprog
 ? \pb 128       \\ 128 bits of accuracy
 ? default(realbitprecision)
 %1 = 128
 ? L = lfuncreate(1);  \\ Riemann zeta
 ? lfuncheckfeq(L)
 %3 = -124
 @eprog\noindent i.e. the given data is consistent to within 4 bits for the
 particular check consisting of estimating the root number from all other
 given quantities. Checking away from the unit disc will either fail with
 a precision error, or give disappointing results (if $\theta(1/t)$ is
 large it will be computed with a large absolute error)
 \bprog
 ? lfuncheckfeq(L, 2+I)
 %4 = -115
 ? lfuncheckfeq(L,10)
  ***   at top-level: lfuncheckfeq(L,10)
  ***                 ^------------------
  *** lfuncheckfeq: precision too low in lfuncheckfeq.
 @eprog

Function: lfunconductor
Class: basic
Section: l_functions
C-Name: lfunconductor
Prototype: GDGD0,L,b
Help: lfunconductor(L,{ab=[1,10000]},{flag=0}): give the conductor
  of the given L-function; ab = [a,b] is the interval where we expect
  to find the conductor.
  If flag=0 (default), give either the conductor found as an integer, or a
  vector (possibly empty) of conductors found. If flag=1, same but give the
  computed floating point approximations to the conductors found, without
  rounding to integers.
  If flag=2, give all the conductors found, even those far from integers.
  Note: this program is heuristic and should only be used if the primes
  dividing the conductor are unknown. If they are known, a direct search
  through possible prime exponents using lfuncheckfeq will be more efficient.
Doc: Compute the conductor of the given $L$-function
  (if the structure contains a conductor, it is ignored);
  $\kbd{ab} = [a,b]$ is the interval where we expect to find the conductor;
  it may be given as a single scalar $b$, in which case we look in $[1,b]$.
  Increasing \kbd{ab} slows down the program but gives better accuracy for the
  result.
 
  If \kbd{flag} is $0$ (default), give either the conductor found as an
  integer, or a vector (possibly empty) of conductors found. If \kbd{flag} is
  $1$, same but give the computed floating point approximations to the
  conductors found, without rounding to integers. It \kbd{flag} is $2$, give
  all the conductors found, even those far from integers.
 
  \misctitle{Caveat} This is a heuristic program and the result is not
  proven in any way:
  \bprog
  ? L = lfuncreate(857); \\ Dirichlet L function for kronecker(857,.)
  ? \p19
    realprecision = 19 significant digits
  ? lfunconductor(L)
  %2 = [17, 857]
  ? lfunconductor(L,,1) \\ don't round
  %3 = [16.99999999999999999, 857.0000000000000000]
 
  ? \p38
    realprecision = 38 significant digits
  ? lfunconductor(L)
  %4 = 857
  @eprog
 
  \misctitle{Note} This program should only be used if the primes dividing the
  conductor are unknown, which is rare. If they are known, a direct
  search through possible prime exponents using \kbd{lfuncheckfeq} will
  be more efficient and rigorous:
  \bprog
  ? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */
  ? E.disc  \\ |disc E| = 2^12
  %2 = -4096
  \\ create Ldata by hand. Guess that root number is 1 and conductor N
  ? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, 1]);
  ? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d))))
  1: 0
  2: 0
  4: -1
  8: -2
  16: -3
  32: -127
  64: -3
  128: -2
  256: -2
  512: -1
  1024: -1
  2048: 0
  4096: 0
  ? lfunconductor(L(1)) \\ lfunconductor ignores conductor = 1 in Ldata !
  %5 = 32
  @eprog\noindent The above code assumed that root number was $1$;
  had we set it to $-1$, none of the \kbd{lfuncheckfeq} values would have been
  acceptable:
  \bprog
  ? L2(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, -1]);
  ? [ lfuncheckfeq(L2(d)) | d<-divisors(E.disc) ]
  %7 = [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1]
  @eprog

Function: lfuncost
Class: basic
Section: l_functions
C-Name: lfuncost0
Prototype: GDGD0,L,b
Help: lfuncost(L,{sdom},{der=0}): estimate the cost of running
 lfuninit(L,sdom,der) at current bit precision. Returns [t,b], to indicate
 that t coefficients a_n will be computed at bit accuracy b. Subsequent
 evaluation of lfun at s evaluates a polynomial of degree t at exp(h s).
 If L is already an Linit, then sdom and der are ignored.
Doc: estimate the cost of running
 \kbd{lfuninit(L,sdom,der)} at current bit precision. Returns $[t,b]$, to
 indicate that $t$ coefficients $a_n$ will be computed, as well as $t$ values of
 \tet{gammamellininv}, all at bit accuracy $b$.
 A subsequent call to \kbd{lfun} at $s$ evaluates a polynomial of degree $t$
 at $\exp(h s)$ for some real parameter $h$, at the same bit accuracy $b$.
 If $L$ is already an \kbd{Linit}, then \var{sdom} and \var{der} are ignored
 and are best left omitted; the bit accuracy is also inferred from $L$: in
 short we get an estimate of the cost of using that particular \kbd{Linit}.
 
 \bprog
 ? \pb 128
 ? lfuncost(1, [100]) \\ for zeta(1/2+I*t), |t| < 100
 %1 = [7, 242]  \\ 7 coefficients, 242 bits
 ? lfuncost(1, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100
 %2 = [7, 246]  \\ now 246 bits
 ? lfuncost(1, [100], 10) \\ for zeta(1/2+I*t), |t| < 100
 %3 = [8, 263]  \\ 10th derivative increases the cost by a small amount
 ? lfuncost(1, [10^5])
 %3 = [158, 113438]  \\ larger imaginary part: huge accuracy increase
 
 ? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
 ? lfuncost(L, [100]) \\ at s = 1/2+I*t), |t| < 100
 %5 = [11457, 582]
 ? lfuncost(L, [200]) \\ twice higher
 %6 = [36294, 1035]
 ? lfuncost(L, [10^4])  \\ much higher: very costly !
 %7 = [70256473, 45452]
 ? \pb 256
 ? lfuncost(L, [100]); \\ doubling bit accuracy
 %8 = [17080, 710]
 @eprog\noindent In fact, some $L$ functions can be factorized algebraically
 by the \kbd{lfuninit} call, e.g. the Dedekind zeta function of abelian
 fields, leading to much faster evaluations than the above upper bounds.
 In that case, the function returns a vector of costs as above for each
 individual function in the product actually evaluated:
 \bprog
 ? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
 ? lfuncost(L, [100])  \\ a priori cost
 %2 = [11457, 582]
 ? L = lfuninit(L, [100]); \\ actually perform all initializations
 ? lfuncost(L)
 %4 = [[16, 242], [16, 242], [7, 242]]
 @eprog\noindent The Dedekind function of this abelian quartic field
 is the product of four Dirichlet $L$-functions attached to the trivial
 character, a non-trivial real character and two complex conjugate
 characters. The non-trivial characters happen to have the same conductor
 (hence same evaluation costs), and correspond to two evaluations only
 since the two conjugate characters are evaluated simultaneously.
 For a total of three $L$-functions evaluations, which explains the three
 components above. Note that the actual cost is much lower than the a priori
 cost in this case.
Variant: Also available is
 \fun{GEN}{lfuncost}{GEN L, GEN dom, long der, long bitprec}
 when $L$ is \emph{not} an \kbd{Linit}; the return value is a \typ{VECSMALL}
 in this case.

Function: lfuncreate
Class: basic
Section: l_functions
C-Name: lfuncreate
Prototype: G
Help: lfuncreate(obj): given either an object such as a polynomial, elliptic
 curve, Dirichlet or Hecke character, eta quotient, etc., or an explicit
 6 or 7 component vector [dir,real,Vga,k,N,eps,r],
 create the Ldata structure necessary for lfun computation.
Doc: This low-level routine creates \tet{Ldata} structures, needed by
 \var{lfun} functions, describing an $L$-function and its functional equation.
 You are urged to use a high-level constructor when one is available,
 and this function accepts them, see \kbd{??lfun}:
 \bprog
 ? L = lfuncreate(1); \\ Riemann zeta
 ? L = lfuncreate(5); \\ Dirichlet L-function for quadratic character (5/.)
 ? L = lfuncreate(x^2+1); \\ Dedekind zeta for Q(i)
 ? L = lfuncreate(ellinit([0,1])); \\ L-function of E/Q: y^2=x^3+1
 @eprog\noindent One can then use, e.g., \kbd{Lfun(L,s)} to directly
 evaluate the respective $L$-functions at $s$, or \kbd{lfuninit(L, [c,w,h]}
 to initialize computations in the rectangular box $\Re(s-c) \leq w$,
 $\Im(s) \leq h$.
 
 We now describe the low-level interface, used to input non-builtin
 $L$-functions. The input is now a $6$ or $7$ component vector
 $V=[a,astar,Vga,k,N,eps,poles]$, whose components are as follows:
 
 \item \kbd{V[1]=a} encodes the Dirichlet series coefficients. The
 preferred format is a closure of arity 1: \kbd{n->vector(n,i,a(i))} giving
 the vector of the first $n$ coefficients. The closure is allowed to return
 a vector of more than $n$ coefficients (only the first $n$ will be
 considered) or even less than $n$, in which case loss of accuracy will occur
 and a warning that \kbd{\#an} is less than expected is issued. This
 allows to precompute and store a fixed large number of Dirichlet
 coefficients in a vector $v$ and use the closure \kbd{n->v}, which
 does not depend on $n$. As a shorthand for this latter case, you can input
 the vector $v$ itself instead of the closure.
 
 A second format is limited to multiplicative $L$ functions affording an
 Euler product. It is a closure of arity 2 \kbd{(p,d)->L(p)} giving the local
 factor $L_p$ at $p$ as a rational function, to be evaluated at $p^{-s}$ as in
 \kbd{direuler}; $d$ is set to the floor of $\log_p(n)$, where $n$ is the
 total number of Dirichlet coefficients $(a_1,\dots,a_n)$ that will be
 computed in this way. This parameter $d$ allows to compute only part of $L_p$
 when $p$ is large and $L_p$ expensive to compute, but it can of course be
 ignored by the closure.
 
 Finally one can describe separately the generic Dirichlet coefficients
 and the bad local factors by setting $\kbd{dir} = [an, [p_1,L^{-1}_{p_1}],
 \dots,[p_k,L^{-1}_{p_k}]]$, where \kbd{an} describes the generic coefficients
 in one of the two formats above, except that coefficients $a_n$ with
 $p_i \mid n$ for some $i \leq k$ will be ignored. The subsequent pairs $[p,
 L_p^{-1}]$ give the bad primes and corresponding \emph{inverse} local
 factors.
 
 \item \kbd{V[2]=astar} is the Dirichlet series coefficients of the dual
 function, encoded as \kbd{a} above. The sentinel values $0$ and $1$ may
 be used for the special cases where $a = a^*$ and $a = \overline{a^*}$,
 respectively.
 
 \item \kbd{V[3]=Vga} is the vector of $\alpha_j$ such that the gamma
 factor of the $L$-function is equal to
 $$\gamma_A(s)=\prod_{1\le j\le d}\Gamma_{\R}(s+\alpha_j),$$
 where $\Gamma_{\R}(s)=\pi^{-s/2}\Gamma(s/2)$.
 This same syntax is used in the \kbd{gammamellininv} functions.
 In particular the length $d$ of \kbd{Vga} is the degree of the $L$-function.
 In the present implementation, the $\alpha_j$ are assumed to be exact
 rational numbers. However when calling theta functions with \emph{complex}
 (as opposed to real) arguments, determination problems occur which may
 give wrong results when the $\alpha_j$ are not integral.
 
 \item \kbd{V[4]=k} is a positive integer $k$. The functional equation relates
 values at $s$ and $k-s$. For instance, for an Artin $L$-series such as a
 Dedekind zeta function we have $k = 1$, for an elliptic curve $k = 2$, and
 for a modular form, $k$ is its weight. For motivic $L$-functions, the
 \emph{motivic} weight $w$ is $w = k-1$.
 
 \item \kbd{V[5]=N} is the conductor, an integer $N\ge1$, such that
 $\Lambda(s)=N^{s/2}\gamma_A(s)L(s)$ with $\gamma_A(s)$ as above.
 
 \item \kbd{V[6]=eps} is the root number $\varepsilon$, i.e., the
 complex number (usually of modulus $1$) such that
 $\Lambda(a, k-s) = \varepsilon \Lambda(a^*, s)$.
 
 \item The last optional component \kbd{V[7]=poles} encodes the poles of the
 $L$ or $\Lambda$-functions, and is omitted if they have no poles.
 A polar part is given by a list of $2$-component vectors
 $[\beta,P_{\beta}(x)]$, where
 $\beta$ is a pole and the power series $P_{\beta}(x)$ describes
 the attached polar part, such that $L(s) - P_\beta(s-\beta)$ is holomorphic
 in a neighbourhood of $\beta$. For instance $P_\beta = r/x+O(1)$ for a
 simple pole at $\beta$ or $r_1/x^2+r_2/x+O(1)$ for a double pole.
 The type of the list describing the polar part allows to distinguish between
 $L$ and $\Lambda$: a \typ{VEC} is attached to $L$, and a \typ{COL}
 is attached to $\Lambda$.
 
 The latter is mandatory unless $a = \overline{a^*}$ (coded by \kbd{astar}
 equal to $0$ or $1$): otherwise, the poles of $L^*$ cannot be infered from
 the poles of $L$ ! (Whereas the functional equation allows to deduce
 the polar part of $\Lambda^*$ from the polar part of $\Lambda$.)
 The special coding $\kbd{poles} = r$ a complex scalar is available in this
 case, to describe a $L$ function with at most a single simple pole at $s =
 k$ and residue $r$. (This is the usual situation, for instance for Dedekind
 zeta functions.) This value $r$ can be set to $0$ if unknown, and it will be
 computed.

Function: lfundiv
Class: basic
Section: l_functions
C-Name: lfundiv
Prototype: GGb
Help: lfundiv(L1,L2): creates the Ldata structure (without
  initialization) corresponding to the quotient of the Dirichlet series
  given by L1 and L2.
Doc: creates the \kbd{Ldata} structure (without initialization) corresponding
  to the quotient of the Dirichlet series $L_1$ and $L_2$ given by
 \kbd{L1} and \kbd{L2}. Assume that $v_z(L_1) \geq v_z(L_2)$ at all
 complex numbers $z$: the construction may not create new poles, nor increase
 the order of existing ones.

Function: lfunetaquo
Class: basic
Section: l_functions
C-Name: lfunetaquo
Prototype: G
Help: lfunetaquo(M): returns the Ldata structure attached to the
 modular form z->prod(i=1,#M[,1],eta(M[i,1]*z)^M[i,2]).
Doc: returns the \kbd{Ldata} structure attached to the $L$ function
 attached to the modular form
 $z\mapsto \prod_{i=1}^n \eta(M_{i,1}\*z)^{M_{i,2}}$
 It is currently assumed that $f$ is a self-dual cuspidal form on
 $\Gamma_0(N)$ for some $N$.
 For instance, the $L$-function $\sum \tau(n) n^{-s}$
 attached to Ramanujan's $\Delta$ function is encoded as follows
 \bprog
 ? L = lfunetaquo(Mat([1,24]));
 ? lfunan(L, 100)  \\ first 100 values of tau(n)
 @eprog

Function: lfungenus2
Class: basic
Section: l_functions
C-Name: lfungenus2
Prototype: G
Help: lfungenus2(F): returns the Ldata structure attached to the
 L-function attached to the genus-2 curve defined by y^2=F(x)
 or y^2+Q(x)*y=P(x) if F=[P,Q].
 Currently, only odd conductors are supported, and the model needs to
 be minimal at 2.
Doc: returns the \kbd{Ldata} structure attached to the $L$ function
 attached to the genus-2 curve defined by $y^2=F(x)$ or
 $y^2+Q(x)\*y=P(x)$ if $F=[P,Q]$.
 Currently, the model needs to be minimal at 2, and if the conductor
 is even, its valuation at $2$ might be incorrect (a warning is issued).

Function: lfunhardy
Class: basic
Section: l_functions
C-Name: lfunhardy
Prototype: GGb
Help: lfunhardy(L,t): variant of the Hardy L-function attached to L, used for
 plotting on the critical line.
Doc: Variant of the Hardy $Z$-function given by \kbd{L}, used for
 plotting or locating zeros of $L(k/2+it)$ on the critical line.
 The precise definition is as
 follows: if as usual $k/2$ is the center of the critical strip, $d$ is the
 degree, $\alpha_j$ the entries of \kbd{Vga} giving the gamma factors,
 and $\varepsilon$ the root number, then if we set
 $s = k/2+it = \rho e^{i\theta}$ and
 $E=(d(k/2-1)+\sum_{1\le j\le d}\alpha_j)/2$, the computed function at $t$ is
 equal to
 $$Z(t) = \varepsilon^{-1/2}\Lambda(s) \cdot |s|^{-E}e^{dt\theta/2}\;,$$
 which is a real function of $t$ for self-dual $\Lambda$,
 vanishing exactly when $L(k/2+it)$ does on the critical line. The
 normalizing factor $|s|^{-E}e^{dt\theta/2}$ compensates the
 exponential decrease of $\gamma_A(s)$ as $t\to\infty$ so that
 $Z(t) \approx 1$.
 
 \bprog
 ? T = 100; \\ maximal height
 ? L = lfuninit(1, [T]); \\ initialize for zeta(1/2+it), |t|<T
 ? \p19 \\ no need for large accuracy
 ? ploth(t = 0, T, lfunhardy(L,t))
 @eprog\noindent Using \kbd{lfuninit} is critical for this particular
 applications since thousands of values are computed. Make sure to initialize
 up to the maximal $t$ needed: otherwise expect to see many warnings for
 unsufficient initialization and suffer major slowdowns.

Function: lfuninit
Class: basic
Section: l_functions
C-Name: lfuninit0
Prototype: GGD0,L,b
Help: lfuninit(L,sdom,{der=0}): precompute data
 for evaluating the L-function given by 'L' (and its derivatives
 of order der, if set) in rectangular domain sdom = [center,w,h]
 centered on the real axis, |Re(s)-center| <= w, |Im(s)| <= h,
 where all three components of sdom are real and w,h are non-negative.
 The subdomain [k/2, 0, h] on the critical line can be encoded as [h] for
 brevity.
Doc: initalization function for all functions linked to the
 computation of the $L$-function $L(s)$ encoded by \kbd{L}, where
 $s$ belongs to the rectangular domain $\kbd{sdom} = [\var{center},w,h]$
 centered on the real axis, $|\Re(s)-\var{center}| \leq w$, $|\Im(s)| \leq h$,
 where all three components of \kbd{sdom} are real and $w$, $h$ are
 non-negative. \kbd{der} is the maximum order of derivation that will be used.
 The subdomain $[k/2, 0, h]$ on the critical line (up to height $h$)
 can be encoded as $[h]$ for brevity. The subdomain $[k/2, w, h]$
 centered on the critical line can be encoded as $[w, h]$ for brevity.
 
 The argument \kbd{L} is an \kbd{Lmath}, an \kbd{Ldata} or an \kbd{Linit}. See
 \kbd{??Ldata} and \kbd{??lfuncreate} for how to create it.
 
 The height $h$ of the domain is a \emph{crucial} parameter: if you only
 need $L(s)$ for real $s$, set $h$ to~0.
 The running time is roughly proportional to
 $$(B / d+\pi h/4)^{d/2+3}N^{1/2},$$
 where $B$ is the default bit accuracy, $d$ is the degree of the
 $L$-function, and $N$ is the conductor (the exponent $d/2+3$ is reduced
 to $d/2+2$ when $d=1$ and $d=2$). There is also a dependency on $w$,
 which is less crucial, but make sure to use the smallest rectangular
 domain that you need.
 \bprog
 ? L0 = lfuncreate(1); \\ Riemann zeta
 ? L = lfuninit(L0, [1/2, 0, 100]); \\ for zeta(1/2+it), |t| < 100
 ? lfun(L, 1/2 + I)
 ? L = lfuninit(L0, [100]); \\ same as above !
 @eprog

Function: lfunlambda
Class: basic
Section: l_functions
C-Name: lfunlambda0
Prototype: GGD0,L,b
Help: lfunlambda(L,s,{D=0}): compute the completed L function Lambda(s),
 or if D is set, the derivative of order D at s. L is either
 an Lmath, an Ldata or an Linit.
Doc: compute the completed $L$-function $\Lambda(s) = N^{s/2}\gamma(s)L(s)$,
 or if \kbd{D} is set, the derivative of order \kbd{D} at $s$.
 The parameter \kbd{L} is either an \kbd{Lmath}, an \kbd{Ldata} (created by
 \kbd{lfuncreate}, or an \kbd{Linit} (created by \kbd{lfuninit}), preferrably the
 latter if many values are to be computed.
 
 The result is given with absolute error less than $2^{-B}|\gamma(s)N^{s/2}|$,
 where $B = \text{realbitprecision}$.

Function: lfunmfspec
Class: basic
Section: l_functions
C-Name: lfunmfspec
Prototype: Gb
Help: lfunmfspec(L): L corresponding to a modular form, returns
  [valeven,valodd,omminus,omplus], where valeven (resp., valodd) is the vector
  of even (resp., odd) periods, and omminus and omplus the corresponding
  real numbers omega^- and omega^+. For the moment, only for modular forms of even weight.
Doc: returns \kbd{[valeven,valodd,omminus,omplus]},
  where \kbd{valeven} (resp., \kbd{valodd}) is the vector of even (resp., odd)
  periods of the modular form given by \kbd{L}, and \kbd{omminus} and
  \kbd{omplus} the corresponding real numbers $\omega^-$ and $\omega^+$
  normalized in a noncanonical way. For the moment, only for modular forms of even weight.

Function: lfunmul
Class: basic
Section: l_functions
C-Name: lfunmul
Prototype: GGb
Help: lfunmul(L1,L2): creates the Ldata structure (without
  initialization) corresponding to the product of the Dirichlet series
  given by L1 and L2.
Doc: creates the \kbd{Ldata} structure (without initialization) corresponding
  to the product of the Dirichlet series given by \kbd{L1} and
  \kbd{L2}.

Function: lfunorderzero
Class: basic
Section: l_functions
C-Name: lfunorderzero
Prototype: lGD-1,L,b
Help: lfunorderzero(L, {m = -1}): computes the order of the possible zero
 of the L-function at the center k/2 of the critical strip. If $m$ is
 given and has a non-negative value, assumes the order is at most $m$.
Doc: Computes the order of the possible zero of the $L$-function at the
 center $k/2$ of the critical strip; return $0$ if $L(k/2)$ does not vanish.
 
 If $m$ is given and has a non-negative value, assumes the order is at most $m$.
 Otherwise, the algorithm chooses a sensible default:
 
 \item if the $L$ argument is an \kbd{Linit}, assume that a multiple zero at
 $s = k / 2$ has order less than or equal to the maximal allowed derivation
 order.
 
 \item else assume the order is less than $4$.
 
 You may explicitly increase this value using optional argument~$m$; this
 overrides the default value above. (Possibly forcing a recomputation
 of the \kbd{Linit}.)

Function: lfunqf
Class: basic
Section: l_functions
C-Name: lfunqf
Prototype: Gp
Help: lfunqf(Q): returns the Ldata structure attached to the
 theta function of the lattice attached to the definite positive quadratic
 form Q.
Doc: returns the \kbd{Ldata} structure attached to the $\Theta$ function
 of the lattice attached to the definite positive quadratic form $Q$.
 \bprog
 ? L = lfunqf(matid(2));
 ? lfunqf(L,2)
 %2 = 6.0268120396919401235462601927282855839
 ? lfun(x^2+1,2)*4
 %3 = 6.0268120396919401235462601927282855839
 @eprog

Function: lfunrootres
Class: basic
Section: l_functions
C-Name: lfunrootres
Prototype: Gb
Help: lfunrootres(data): given the Ldata attached to an L-function (or the
 output of lfunthetainit), compute the root number and the
 residues. In the present implementation, if the polar part is not already
 known completely, at most a single pole is allowed.
 The output is a 3-component vector [r,R,w], where r is the residue of L(s)
 at the unique pole (0 if no pole), R is the residue of Lambda(s), and w is
 the root number.
Doc: Given the \kbd{Ldata} attached to an $L$-function (or the output of
 \kbd{lfunthetainit}), compute the root number and the residues.
 The output is a 3-component vector $[r,R,w]$, where $r$ is the
 residue of $L(s)$ at the unique pole, $R$ is the residue of $\Lambda(s)$,
 and $w$ is the root number. In the present implementation,
 
 \item either the polar part must be completely known (and is then arbitrary):
 the function determines the root number,
 
 \bprog
 ? L = lfunmul(1,1); \\ zeta^2
 ? [r,R,w] = lfunrootres(L);
 ? r  \\ single pole at 1, double
 %3 = [[1, 1.[...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]
 ? w
 %4 = 1
 ? R \\ double pole at 0 and 1
 %5 = [[1,[...]], [0,[...]]
 @eprog
 
 \item or at most a single pole is allowed: the function computes both
 the root number and the residue ($0$ if no pole).

Function: lfuntheta
Class: basic
Section: l_functions
C-Name: lfuntheta
Prototype: GGD0,L,b
Help: lfuntheta(data,t,{m=0}): compute the value of the m-th derivative
 at t of the theta function attached to the L-function given by data.
 data can be either the standard L-function data, or the output of
 lfunthetainit.
Doc: compute the value of the $m$-th derivative
 at $t$ of the theta function attached to the $L$-function given by \kbd{data}.
  \kbd{data} can be either the standard $L$-function data, or the output of
 \kbd{lfunthetainit}.
 The theta function is defined by the formula
 $\Theta(t)=\sum_{n\ge1}a(n)K(nt/\sqrt(N))$, where $a(n)$ are the coefficients
 of the Dirichlet series, $N$ is the conductor, and $K$ is the inverse Mellin
 transform of the gamma product defined by the \kbd{Vga} component.
 Its Mellin transform is equal to $\Lambda(s)-P(s)$, where $\Lambda(s)$
 is the completed $L$-function and the rational function $P(s)$ its polar part.
 In particular, if the $L$-function is the $L$-function of a modular form
 $f(\tau)=\sum_{n\ge0}a(n)q^n$ with $q=\exp(2\pi i\tau)$, we have
 $\Theta(t)=2(f(it/\sqrt{N})-a(0))$. Note that an easy theorem on modular
 forms implies that $a(0)$ can be recovered by the formula $a(0)=-L(f,0)$.

Function: lfunthetacost
Class: basic
Section: l_functions
C-Name: lfunthetacost0
Prototype: lGDGD0,L,b
Help: lfunthetacost(L,{tdom},{m=0}): estimates the cost of running
 lfunthetainit(L,tdom,m) at current bit precision. Returns the number of
 coefficients an that would be computed. Subsequent evaluation of lfuntheta
 computes that many values of gammamellininv.
 If L is already an Linit, then tdom and m are ignored.
Doc: This function estimates the cost of running
 \kbd{lfunthetainit(L,tdom,m)} at current bit precision. Returns the number of
 coefficients $a_n$ that would be computed. This also estimates the
 cost of a subsequent evaluation \kbd{lfuntheta}, which must compute
 that many values of \kbd{gammamellininv} at the current bit precision.
 If $L$ is already an \kbd{Linit}, then \var{tdom} and $m$ are ignored
 and are best left omitted: we get an estimate of the cost of using that
 particular \kbd{Linit}.
 
 \bprog
 ? \pb 1000
 ? L = lfuncreate(1); \\ Riemann zeta
 ? lfunthetacost(L); \\ cost for theta(t), t real >= 1
 %1 = 15
 ? lfunthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !
  ***   at top-level: lfunthetacost(1,1+I)
  ***                 ^--------------------
  *** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785
 ? lfunthetacost(L, 1 + I/2) \\ for theta(1+I/2).
 %2 = 23
 ? lfunthetacost(L, 1 + I/2, 10) \\ for theta^((10))(1+I/2).
 %3 = 24
 ? lfunthetacost(L, [2, 1/10]) \\ cost for theta(t), |t| >= 2, |arg(t)| < 1/10
 %4 = 8
 
 ? L = lfuncreate( ellinit([1,1]) );
 ? lfunthetacost(L)  \\ for t >= 1
 %6 = 2471
 @eprog

Function: lfunthetainit
Class: basic
Section: l_functions
C-Name: lfunthetainit
Prototype: GDGD0,L,b
Help: lfunthetainit(L,{tdom},{m=0}): precompute data for evaluating
  the m-th derivative of theta functions with argument in domain tdom
  (by default t is real >= 1).
Doc: Initalization function for evaluating the $m$-th derivative of theta
 functions with argument $t$ in domain \var{tdom}. By default (\var{tdom}
 omitted), $t$ is real, $t \geq 1$. Otherwise, \var{tdom} may be
 
 \item a positive real scalar $\rho$: $t$ is real, $t \geq \rho$.
 
 \item a non-real complex number: compute at this particular $t$; this
 allows to compute $\theta(z)$ for any complex $z$ satisfying $|z|\geq |t|$
 and $|\arg z| \leq |\arg t|$; we must have $|2 \arg z / d| < \pi/2$, where
 $d$ is the degree of the $\Gamma$ factor.
 
 \item a pair $[\rho,\alpha]$: assume that $|t| \geq \rho$ and $|\arg t| \leq
 \alpha$; we must have $|2\alpha / d| < \pi/2$, where $d$ is the degree of
 the $\Gamma$ factor.
 
 \bprog
 ? \p500
 ? L = lfuncreate(1); \\ Riemann zeta
 ? t = 1+I/2;
 ? lfuntheta(L, t); \\ direct computation
 time = 30 ms.
 ? T = lfunthetainit(L, 1+I/2);
 time = 30 ms.
 ? lfuntheta(T, t); \\ instantaneous
 @eprog\noindent The $T$ structure would allow to quickly compute $\theta(z)$
 for any $z$ in the cone delimited by $t$ as explained above. On the other hand
 \bprog
 ? lfuntheta(T,I)
  ***   at top-level: lfuntheta(T,I)
  ***                 ^--------------
  *** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448
 @eprog
 The initialization is equivalent to
 \bprog
 ? lfunthetainit(L, [abs(t), arg(t)])
 @eprog

Function: lfunzeros
Class: basic
Section: l_functions
C-Name: lfunzeros
Prototype: GGD8,L,b
Help: lfunzeros(L,lim,{divz=8}): lim being
 either an upper limit or a real interval, computes an ordered list of
 zeros of L(s) on the critical line up to the given upper limit or in the
 given interval. Use a naive algorithm which may miss some zeros.
 To use a finer search mesh, set divz to some integral value
 larger than the default (= 8).
Doc: \kbd{lim} being either a positive upper limit or a non-empty real
 interval inside $[0,+\infty[$, computes an
 ordered list of zeros of $L(s)$ on the critical line up to the given
 upper limit or in the given interval. Use a naive algorithm which may miss
 some zeros: it assumes that two consecutive zeros at height $T \geq 1$
 differ at least by $2\pi/\omega$, where
 $$\omega := \kbd{divz} \cdot \big(d\log(T/2\pi) +d+ 2\log(N/(\pi/2)^d)\big).$$
 To use a finer search mesh, set divz to some integral value
 larger than the default (= 8).
 \bprog
 ? lfunzeros(1, 30) \\ zeros of Rieman zeta up to height 30
 %1 = [14.134[...], 21.022[...], 25.010[...]]
 ? #lfunzeros(1, [100,110])  \\ count zeros with 100 <= Im(s) <= 110
 %2 = 4
 @eprog\noindent The algorithm also assumes that all zeros are simple except
 possibly on the real axis at $s = k/2$ and that there are no poles in the
 search interval. (The possible zero at $s = k/2$ is repeated according to
 its multiplicity.)
 
 Should you pass an \kbd{Linit} argument to the function, beware that the
 algorithm needs at least
 \bprog
    L = lfuninit(Ldata, T+1)
 @eprog\noindent where $T$ is the upper bound of the interval defined by
 \kbd{lim}: this allows to detect zeros near $T$. Make sure that your
 \kbd{Linit} domain contains this one. The algorithm assumes
 that a multiple zero at $s = k / 2$ has order less than or equal to
 the maximal derivation order allowed by the \kbd{Linit}. You may increase
 that value in the \kbd{Linit} but this is costly: only do it for zeros
 of low height or in \kbd{lfunorderzero} instead.

Function: lift
Class: basic
Section: conversions
C-Name: lift0
Prototype: GDn
Help: lift(x,{v}):
 if v is omitted, lifts elements of Z/nZ to Z, of Qp to Q, and of K[x]/(P) to
 K[x]. Otherwise lift only polmods with main variable v.
Description: 
 (pol):pol        lift($1)
 (vec):vec        lift($1)
 (gen):gen        lift($1)
 (pol, var):pol        lift0($1, $2)
 (vec, var):vec        lift0($1, $2)
 (gen, var):gen        lift0($1, $2)
Doc: 
 if $v$ is omitted, lifts intmods from $\Z/n\Z$ in $\Z$,
 $p$-adics from $\Q_p$ to $\Q$ (as \tet{truncate}), and polmods to
 polynomials. Otherwise, lifts only polmods whose modulus has main
 variable~$v$. \typ{FFELT} are not lifted, nor are List elements: you may
 convert the latter to vectors first, or use \kbd{apply(lift,L)}. More
 generally, components for which such lifts are meaningless (e.g. character
 strings) are copied verbatim.
 \bprog
 ? lift(Mod(5,3))
 %1 = 2
 ? lift(3 + O(3^9))
 %2 = 3
 ? lift(Mod(x,x^2+1))
 %3 = x
 ? lift(Mod(x,x^2+1))
 %4 = x
 @eprog
 Lifts are performed recursively on an object components, but only
 by \emph{one level}: once a \typ{POLMOD} is lifted, the components of
 the result are \emph{not} lifted further.
 \bprog
 ? lift(x * Mod(1,3) + Mod(2,3))
 %4 = x + 2
 ? lift(x * Mod(y,y^2+1) + Mod(2,3))
 %5 = y*x + Mod(2, 3)   \\@com do you understand this one?
 ? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)
 %6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)
 ? lift(%, y)
 %7 = y*x + Mod(2, 3)
 @eprog\noindent To recursively lift all components not only by one level,
 but as long as possible, use \kbd{liftall}. To lift only \typ{INTMOD}s and
 \typ{PADIC}s components, use \tet{liftint}. To lift only \typ{POLMOD}s
 components, use \tet{liftpol}. Finally, \tet{centerlift} allows to lift
 \typ{INTMOD}s and \typ{PADIC}s using centered residues (lift of smallest
 absolute value).
Variant: Also available is \fun{GEN}{lift}{GEN x} corresponding to
 \kbd{lift0(x,-1)}.

Function: liftall
Class: basic
Section: conversions
C-Name: liftall
Prototype: G
Help: liftall(x): lifts every element of Z/nZ to Z, of Qp to Q, and of
 K[x]/(P) to K[x].
Description: 
 (pol):pol        liftall($1)
 (vec):vec        liftall($1)
 (gen):gen        liftall($1)
Doc: 
 recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$,
 from $\Q_p$ to $\Q$ (as \tet{truncate}), and polmods to
 polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
 convert the latter to vectors first, or use \kbd{apply(liftall,L)}. More
 generally, components for which such lifts are meaningless (e.g. character
 strings) are copied verbatim.
 \bprog
 ? liftall(x * (1 + O(3)) + Mod(2,3))
 %1 = x + 2
 ? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
 %2 = y*x + 2*z
 @eprog

Function: liftint
Class: basic
Section: conversions
C-Name: liftint
Prototype: G
Help: liftint(x): lifts every element of Z/nZ to Z, of Qp to Q, and of
 K[x]/(P) to K[x].
Description: 
 (pol):pol        liftint($1)
 (vec):vec        liftint($1)
 (gen):gen        liftint($1)
Doc: recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$ and
 from $\Q_p$ to $\Q$ (as \tet{truncate}).
 \typ{FFELT} are not lifted, nor are List elements: you may
 convert the latter to vectors first, or use \kbd{apply(liftint,L)}. More
 generally, components for which such lifts are meaningless (e.g. character
 strings) are copied verbatim.
 \bprog
 ? liftint(x * (1 + O(3)) + Mod(2,3))
 %1 = x + 2
 ? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
 %2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)
 @eprog

Function: liftpol
Class: basic
Section: conversions
C-Name: liftpol
Prototype: G
Help: liftpol(x): lifts every polmod component of x to polynomials.
Description: 
 (pol):pol        liftpol($1)
 (vec):vec        liftpol($1)
 (gen):gen        liftpol($1)
Doc: recursively lift all components of $x$ which are polmods to
 polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
 convert the latter to vectors first, or use \kbd{apply(liftpol,L)}. More
 generally, components for which such lifts are meaningless (e.g. character
 strings) are copied verbatim.
 \bprog
 ? liftpol(x * (1 + O(3)) + Mod(2,3))
 %1 = (1 + O(3))*x + Mod(2, 3)
 ? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
 %2 = y*x + Mod(2, 3)*z
 @eprog

Function: limitnum
Class: basic
Section: sums
C-Name: limitnum0
Prototype: GD0,L,DGp
Help: limitnum(expr,{k = 20},{alpha=1}): numerical limit of sequence expr
 using Lagrange-Zagier extrapolation; k is a multiplier so that we extrapolate
 from expr(k*n). Assume u(n) ~ sum a_i n^(-alpha*i). flag=2, assuming that the
 asymptotic expansion is in powers of 1/n^2.
Doc: Lagrange-Zagier numerical extrapolation of \var{expr}, corresponding to a
 sequence
 $u_n$, either given by a closure \kbd{n->u(n)} or by a vector of values
 I.e., assuming that $u_n$ tends to a finite limit $\ell$, try to determine
 $\ell$. This routine is purely numerical and heuristic, thus may or may not
 work on your examples; $k$ is ignored if $u$ is given by a vector,
 and otherwise is a multiplier such that we extrapolate from $u(kn)$.
 
 Assume that $u_n$ has an asymptotic expansion in $n^{-\alpha}$ :
 $$u_n = \ell + \sum_{i\geq 1} a_i n^{-i\alpha}$$
 for some $a_i$.
 \bprog
 ? limitnum(n -> n*sin(1/n))
 %1 = 1.0000000000000000000000000000000000000
 
 ? limitnum(n -> (1+1/n)^n) - exp(1)
 %2 = 0.E-37
 
 ? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! )
 %3 = 3.1415926535897932384626433832795028842
 ? Pi
 %4 = 3.1415926535897932384626433832795028842
 @eprog\noindent
 If $u_n$ is given by a vector, it must be long enough for the extrapolation
 to make sense: at least $k$ times the current \kbd{realprecision}. The
 preferred format is thus a closure, although it becomes inconvenient
 when $u_n$ cannot be directly computed in time polynomial in $\log n$,
 for instance if it is defined as a sum or by induction. In that case,
 passing a vector of values is the best option. It usually pays off to
 interpolate $u(kn)$ for some $k > 1$:
 \bprog
 ? limitnum(vector(10,n,(1+1/n)^n))
  ***                 ^--------------------
  *** limitnum: non-existent component in limitnum: index < 20
 \\ at this accuracy, we must have at least 20 values
 ? limitnum(vector(20,n,(1+1/n)^n)) - exp(1)
 %5 = -2.05... E-20
 ? limitnum(vector(20,n, m=10*n;(1+1/m)^m)) - exp(1) \\ better accuracy
 %6 = 0.E-37
 
 ? v = vector(20); s = 0;
 ? for(i=1,#v, s += 1/i; v[i]= s - log(i));
 ? limitnum(v) - Euler
 %9 = -1.6... E-19
 
 ? V = vector(200); s = 0;
 ? for(i=1,#V, s += 1/i; V[i]= s);
 ? v = vector(#V \ 10, i, V[10*i] - log(10*i));
 ? limitnum(v) - Euler
 %13 = 6.43... E-29
 @eprog
 
 \synt{limitnum}{void *E, GEN (*u)(void *,GEN,long), long muli, GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return $u(n)$ in precision \kbd{prec}.
 Also available is
 \fun{GEN}{limitnum0}{GEN u, long muli, GEN alpha, long prec}, where $u$
 must be a vector of sufficient length as above.

Function: lindep
Class: basic
Section: linear_algebra
C-Name: lindep0
Prototype: GD0,L,
Help: lindep(v,{flag=0}): integral linear dependencies between components of v.
 flag is optional, and can be 0: default, guess a suitable
 accuracy, or positive: accuracy to use for the computation, in decimal
 digits.
Doc: \sidx{linear dependence} finds a small non-trivial integral linear
 combination between components of $v$. If none can be found return an empty
 vector.
 
 If $v$ is a vector with real/complex entries we use a floating point
 (variable precision) LLL algorithm. If $\fl = 0$ the accuracy is chosen
 internally using a crude heuristic. If $\fl > 0$ the computation is done with
 an accuracy of $\fl$ decimal digits. To get meaningful results in the latter
 case, the parameter $\fl$ should be smaller than the number of correct
 decimal digits in the input.
 
 \bprog
 ? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
 %1 = [-1, -1, 1]~
 @eprog
 
 If $v$ is $p$-adic, $\fl$ is ignored and the algorithm LLL-reduces a
 suitable (dual) lattice.
 \bprog
 ? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])
 %2 = [1, -2]~
 @eprog
 
 If $v$ is a matrix (or a vector of column vectors, or a vector of row
 vectors), $\fl$ is ignored and the function returns a non trivial kernel
 vector if one exists, else an empty vector.
 \bprog
 ? lindep([1,2,3;4,5,6;7,8,9])
 %3 = [1, -2, 1]~
 ? lindep([[1,0], [2,0]])
 %4 = [2, -1]~
 ? lindep([[1,0], [0,1]])
 %5 = []~
 @eprog
 
 If $v$ contains polynomials or power series over some base field, finds a
 linear relation with coefficients in the field.
 \bprog
 ? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])
 %4 = [y, y, -1, -y^2]~
 @eprog\noindent For better control, it is preferable to use \typ{POL} rather
 than \typ{SER} in the input, otherwise one gets a linear combination which is
 $t$-adically small, but not necessarily $0$. Indeed, power series are first
 converted to the minimal absolute accuracy occurring among the entries of $v$
 (which can cause some coefficients to be ignored), then truncated to
 polynomials:
 \bprog
 ? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)
 %1 = [1, 0]~
 ? v*L
 %2 = t^2+O(t^4)  \\ small but not 0
 @eprog
Variant: Also available are \fun{GEN}{lindep}{GEN v} (real/complex entries,
 $\fl=0$), \fun{GEN}{lindep2}{GEN v, long flag} (real/complex entries)
 \fun{GEN}{padic_lindep}{GEN v} ($p$-adic entries) and
 \fun{GEN}{Xadic_lindep}{GEN v} (polynomial entries).
 Finally \fun{GEN}{deplin}{GEN v} returns a non-zero kernel vector for a
 \typ{MAT} input.

Function: listcreate
Class: basic
Section: programming/specific
C-Name: listcreate_gp
Prototype: D0,L,
Help: listcreate({n}): this function is obsolete, use List().
Description: 
 (?gen):list        mklist()
Doc: This function is obsolete, use \kbd{List}.
 
 Creates an empty list. This routine used to have a mandatory argument,
 which is now ignored (for backward compatibility).
 % \syn{NO}
Obsolete: 2007-08-10

Function: listinsert
Class: basic
Section: programming/specific
C-Name: listinsert
Prototype: WGL
Help: listinsert(L,x,n): insert x at index n in list L, shifting the
 remaining elements to the right.
Description: 
 (list, gen, small):gen        listinsert($1, $2, $3)
Doc: inserts the object $x$ at
 position $n$ in $L$ (which must be of type \typ{LIST}). This has
 complexity $O(\#L - n + 1)$: all the
 remaining elements of \var{list} (from position $n+1$ onwards) are shifted
 to the right.

Function: listkill
Class: basic
Section: programming/specific
C-Name: listkill
Prototype: vG
Help: listkill(L): obsolete, retained for backward compatibility.
Doc: obsolete, retained for backward compatibility. Just use \kbd{L = List()}
 instead of \kbd{listkill(L)}. In most cases, you won't even need that, e.g.
 local variables are automatically cleared when a user function returns.
Obsolete: 2007-08-10

Function: listpop
Class: basic
Section: programming/specific
C-Name: listpop0
Prototype: vWD0,L,
Help: listpop(list,{n}): removes n-th element from list. If n is
 omitted or greater than the current list length, removes last element.
Description: 
 (list, small):void     listpop($1, $2)
Doc: 
 removes the $n$-th element of the list
 \var{list} (which must be of type \typ{LIST}). If $n$ is omitted,
 or greater than the list current length, removes the last element.
 If the list is already empty, do nothing. This runs in time $O(\#L - n + 1)$.

Function: listput
Class: basic
Section: programming/specific
C-Name: listput0
Prototype: WGD0,L,
Help: listput(list,x,{n}): sets n-th element of list equal to x. If n is
 omitted or greater than the current list length, appends x.
Description: 
 (list, gen, small):gen        listput($1, $2, $3)
Doc: 
 sets the $n$-th element of the list
 \var{list} (which must be of type \typ{LIST}) equal to $x$. If $n$ is omitted,
 or greater than the list length, appends $x$. The function returns the
 inserted element.
 \bprog
 ? L = List();
 ? listput(L, 1)
 %2 = 1
 ? listput(L, 2)
 %3 = 2
 ? L
 %4 = List([1, 2])
 @eprog
 
 You may put an element into an occupied cell (not changing the
 list length), but it is easier to use the standard \kbd{list[n] = x}
 construct.
 \bprog
 ? listput(L, 3, 1) \\ insert at position 1
 %5 = 3
 ? L
 %6 = List([3, 2])
 ? L[2] = 4 \\ simpler
 %7 = List([3, 4])
 ? L[10] = 1  \\ can't insert beyond the end of the list
  ***   at top-level: L[10]=1
  ***                  ^------
  ***   non-existent component: index > 2
 ? listput(L, 1, 10) \\ but listput can
 %8 = 1
 ? L
 %9 = List([3, 2, 1])
 @eprog
 
 This function runs in time $O(\#L)$ in the worst case (when the list must
 be reallocated), but in time $O(1)$ on average: any number of successive
 \kbd{listput}s run in time $O(\#L)$, where $\#L$ denotes the list
 \emph{final} length.

Function: listsort
Class: basic
Section: programming/specific
C-Name: listsort
Prototype: vWD0,L,
Help: listsort(L,{flag=0}): sort the list L in place. If flag is non-zero,
 suppress all but one occurence of each element in list.
Doc: sorts the \typ{LIST} \var{list} in place, with respect to the (somewhat
 arbitrary) universal comparison function \tet{cmp}. In particular, the
 ordering is the same as for sets and \tet{setsearch} can be used on a sorted
 list.
 \bprog
 ? L = List([1,2,4,1,3,-1]); listsort(L); L
 %1 = List([-1, 1, 1, 2, 3, 4])
 ? setsearch(L, 4)
 %2 = 6
 ? setsearch(L, -2)
 %3 = 0
 @eprog\noindent This is faster than the \kbd{vecsort} command since the list
 is sorted in place: no copy is made. No value returned.
 
 If $\fl$ is non-zero, suppresses all repeated coefficients.

Function: lngamma
Class: basic
Section: transcendental
C-Name: glngamma
Prototype: Gp
Help: lngamma(x): logarithm of the gamma function of x.
Doc: principal branch of the logarithm of the gamma function of $x$. This
 function is analytic on the complex plane with non-positive integers
 removed, and can have much larger arguments than \kbd{gamma} itself.
 
 For $x$ a power series such that $x(0)$ is not a pole of \kbd{gamma},
 compute the Taylor expansion. (PARI only knows about regular power series
 and can't include logarithmic terms.)
 \bprog
 ? lngamma(1+x+O(x^2))
 %1 = -0.57721566490153286060651209008240243104*x + O(x^2)
 ? lngamma(x+O(x^2))
  ***   at top-level: lngamma(x+O(x^2))
  ***                 ^-----------------
  *** lngamma: domain error in lngamma: valuation != 0
 ? lngamma(-1+x+O(x^2))
  *** lngamma: Warning: normalizing a series with 0 leading term.
  ***   at top-level: lngamma(-1+x+O(x^2))
  ***                 ^--------------------
  *** lngamma: domain error in intformal: residue(series, pole) != 0
 @eprog

Function: local
Class: basic
Section: programming/specific
Help: local(x,...,z): declare x,...,z as (dynamically scoped) local variables.

Function: localbitprec
Class: basic
Section: programming/specific
C-Name: localbitprec
Prototype: vL
Help: localbitprec(p): set the real precision to p bits in the dynamic scope.
Doc: set the real precision to $p$ bits in the dynamic scope. All computations
 are performed as if \tet{realbitprecision} was $p$:
 transcendental constants (e.g.~\kbd{Pi}) and
 conversions from exact to floating point inexact data use $p$ bits, as well as
 iterative routines implicitly using a floating point
 accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
 But \kbd{realbitprecision} itself is unaffected
 and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
 In effect, this is similar to
 \bprog
 my(bit = default(realbitprecision));
 default(realbitprecision,p);
 ...
 default(realbitprecision, bit);
 @eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
 a global variable, which in fact never changes and is only temporarily masked)
 and more robust: if the above computation is interrupted or an exception
 occurs, \kbd{realbitprecision} will not be restored as intended.
 
 Such \kbd{localbitprec} statements can be nested, the innermost one taking
 precedence as expected. Beware that \kbd{localbitprec} follows the semantic of
 \tet{local}, not \tet{my}: a subroutine called from \kbd{localbitprec} scope
 uses the local accuracy:
 \bprog
 ? f()=bitprecision(1.0);
 ? f()
 %2 = 128
 ? localbitprec(1000); f()
 %3 = 1024
 @eprog\noindent Note that the bit precision of \emph{data} (\kbd{1.0} in the
 above example) increases by steps of 64 (32 on a 32-bit machine) so we get
 $1024$ instead of the expected $1000$; \kbd{localbitprec} bounds the
 relative error exactly as specified in functions that support that
 granularity (e.g.~\kbd{lfun}), and rounded to the next multiple of 64
 (resp.~32) everywhere else.
 
 \misctitle{Warning} Changing \kbd{realbitprecision} or \kbd{realprecision}
 in programs is deprecated in favor of \kbd{localbitprec} and
 \kbd{localprec}. Think about the \kbd{realprecision} and
 \kbd{realbitprecision} defaults as interactive commands for the \kbd{gp}
 interpreter, best left out of GP programs. Indeed, the above rules imply that
 mixing both constructs yields surprising results:
 
 \bprog
 ? \p38
 ? localprec(19); default(realprecision,1000);  Pi
 %1 = 3.141592653589793239
 ? \p
   realprecision = 1001 significant digits (1000 digits displayed)
 @eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
 \kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
 we leave the \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
 it is not ``restored'' to the original value.
 %\syn{NO}

Function: localprec
Class: basic
Section: programming/specific
C-Name: localprec
Prototype: vL
Help: localprec(p): set the real precision to p in the dynamic scope.
Doc: set the real precision to $p$ in the dynamic scope. All computations
 are performed as if \tet{realprecision} was $p$:
 transcendental constants (e.g.~\kbd{Pi}) and
 conversions from exact to floating point inexact data use $p$ decimal
 digits, as well as iterative routines implicitly using a floating point
 accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
 But \kbd{realprecision} itself is unaffected
 and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
 In effect, this is similar to
 \bprog
 my(prec = default(realprecision));
 default(realprecision,p);
 ...
 default(realprecision, prec);
 @eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
 a global variable, which in fact never changes and is only temporarily masked)
 and more robust: if the above computation is interrupted or an exception
 occurs, \kbd{realprecision} will not be restored as intended.
 
 Such \kbd{localprec} statements can be nested, the innermost one taking
 precedence as expected. Beware that \kbd{localprec} follows the semantic of
 \tet{local}, not \tet{my}: a subroutine called from \kbd{localprec} scope
 uses the local accuracy:
 \bprog
 ? f()=precision(1.);
 ? f()
 %2 = 38
 ? localprec(19); f()
 %3 = 19
 @eprog\noindent
 \misctitle{Warning} Changing \kbd{realprecision} itself in programs is
 now deprecated in favor of \kbd{localprec}. Think about the
 \kbd{realprecision} default as an interactive command for the \kbd{gp}
 interpreter, best left out of GP programs. Indeed, the above rules
 imply that mixing both constructs yields surprising results:
 \bprog
 ? \p38
 ? localprec(19); default(realprecision,100);  Pi
 %1 = 3.141592653589793239
 ? \p
     realprecision = 115 significant digits (100 digits displayed)
 @eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
 \kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
 we leave \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
 it is not ``restored'' to the original value.
 %\syn{NO}

Function: log
Class: basic
Section: transcendental
C-Name: glog
Prototype: Gp
Help: log(x): natural logarithm of x.
Description: 
 (gen):gen:prec        glog($1, $prec)
Doc: principal branch of the natural logarithm of
 $x \in \C^*$, i.e.~such that $\Im(\log(x))\in{} ]-\pi,\pi]$.
 The branch cut lies
 along the negative real axis, continuous with quadrant 2, i.e.~such that
 $\lim_{b\to 0^+} \log (a+bi) = \log a$ for $a \in\R^*$. The result is complex
 (with imaginary part equal to $\pi$) if $x\in \R$ and $x < 0$. In general,
 the algorithm uses the formula
 $$\log(x) \approx {\pi\over 2\text{agm}(1, 4/s)} - m \log 2, $$
 if $s = x 2^m$ is large enough. (The result is exact to $B$ bits provided
 $s > 2^{B/2}$.) At low accuracies, the series expansion near $1$ is used.
 
 $p$-adic arguments are also accepted for $x$, with the convention that
 $\log(p)=0$. Hence in particular $\exp(\log(x))/x$ is not in general equal to
 1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$) times a power of $p$.
Variant: For a \typ{PADIC} $x$, the function
 \fun{GEN}{Qp_log}{GEN x} is also available.

Function: logint
Class: basic
Section: number_theoretical
C-Name: logint0
Prototype: lGGD&
Help: logint(x,b,{&z}): return the largest integer e so that b^e <= x, where the
 parameters b > 1 and x > 0 are both integers. If the parameter z is present,
 set it to b^e.
Description: 
 (gen,2):small        expi($1)
 (gen,gen,&int):small logint0($1, $2, &$3)
Doc: Return the largest integer $e$ so that $b^e \leq x$, where the
 parameters $b > 1$ and $x > 0$ are both integers. If the parameter $z$ is
 present, set it to $b^e$.
 \bprog
 ? logint(1000, 2)
 %1 = 9
 ? 2^9
 %2 = 512
 ? logint(1000, 2, &z)
 %3 = 9
 ? z
 %4 = 512
 @eprog\noindent The number of digits used to write $b$ in base $x$ is
 \kbd{1 + logint(x,b)}:
 \bprog
 ? #digits(1000!, 10)
 %5 = 2568
 ? logint(1000!, 10)
 %6 = 2567
 @eprog\noindent This function may conveniently replace
 \bprog
   floor( log(x) / log(b) )
 @eprog\noindent which may not give the correct answer since PARI
 does not guarantee exact rounding.

Function: mapdelete
Class: basic
Section: programming/specific
C-Name: mapdelete
Prototype: vGG
Help: mapdelete(M,x): removes x from the domain of the map M.
Doc: removes $x$ from the domain of the map $M$.
 \bprog
 ? M = Map(["a",1; "b",3; "c",7]);
 ? mapdelete(M,"b");
 ? Mat(M)
 ["a" 1]
 
 ["c" 7]
 @eprog

Function: mapget
Class: basic
Section: programming/specific
C-Name: mapget
Prototype: GG
Help: mapget(M,x): returns the image of x by the map M.
Doc: Returns the image of $x$ by the map $M$.
 \bprog
 ? M=Map(["a",23;"b",43]);
 ? mapget(M,"a")
 %2 = 23
 ? mapget(M,"b")
 %3 = 43
 @eprog\noindent Raises an exception when the key $x$ is not present in $M$.
 \bprog
 ? mapget(M,"c")
   ***   at top-level: mapget(M,"c")
   ***                 ^-------------
   *** mapget: non-existent component in mapget: index not in map
 @eprog

Function: mapisdefined
Class: basic
Section: programming/specific
C-Name: mapisdefined
Prototype: iGGD&
Help: mapisdefined(M,x,{&z}): true (1) if x has an image by the map M,
 false (0) otherwise.
 If z is present, set it to the image of x, if it exists.
Doc: Returns true ($1$) if \kbd{x} has an image by the map $M$, false ($0$)
 otherwise. If \kbd{z} is present, set \kbd{z} to the image of $x$, if it exists.
 \bprog
 ? M1 = Map([1, 10; 2, 20]);
 ? mapisdefined(M1,3)
 %1 = 0
 ? mapisdefined(M1, 1, &z)
 %2 = 1
 ? z
 %3 = 10
 @eprog
 
 \bprog
 ? M2 = Map(); N = 19;
 ? for (a=0, N-1, mapput(M2, a^3%N, a));
 ? {for (a=0, N-1,
      if (mapisdefined(M2, a, &b),
        printf("%d is the cube of %d mod %d\n",a,b,N)));}
 0 is the cube of 0 mod 19
 1 is the cube of 11 mod 19
 7 is the cube of 9 mod 19
 8 is the cube of 14 mod 19
 11 is the cube of 17 mod 19
 12 is the cube of 15 mod 19
 18 is the cube of 18 mod 19
 @eprog

Function: mapput
Class: basic
Section: programming/specific
C-Name: mapput
Prototype: vWGG
Help: mapput(M,x,y): associates x to y in the map M.
Doc: Associates $x$ to $y$ in the map $M$. The value $y$ can be retrieved
 with \tet{mapget}.
 \bprog
 ? M = Map();
 ? mapput(M, "foo", 23);
 ? mapput(M, 7718, "bill");
 ? mapget(M, "foo")
 %4 = 23
 ? mapget(M, 7718)
 %5 = "bill"
 ? Vec(M)  \\ keys
 %6 = [7718, "foo"]
 ? Mat(M)
 %7 =
 [ 7718 "bill"]
 
 ["foo"     23]
 @eprog

Function: matadjoint
Class: basic
Section: linear_algebra
C-Name: matadjoint0
Prototype: GD0,L,
Help: matadjoint(M,{flag=0}): adjoint matrix of M using Leverrier-Faddeev's
 algorithm. If flag is 1, compute the characteristic polynomial independently
 first.
Doc: 
 \idx{adjoint matrix} of $M$, i.e.~a matrix $N$
 of cofactors of $M$, satisfying $M*N=\det(M)*\Id$. $M$ must be a
 (non-necessarily invertible) square matrix of dimension $n$.
 If $\fl$ is 0 or omitted, we try to use Leverrier-Faddeev's algorithm,
 which assumes that $n!$ invertible. If it fails or $\fl = 1$,
 compute $T = \kbd{charpoly}(M)$ independently first and return
 $(-1)^{n-1} (T(x)-T(0))/x$ evaluated at $M$.
 \bprog
 ? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);
 %2 =
 [Mod(1, 4) Mod(2, 4) Mod(3, 4)]
 
 [Mod(3, 4) Mod(0, 4) Mod(1, 4)]
 
 [Mod(2, 4) Mod(3, 4) Mod(0, 4)]
 @eprog\noindent
 Both algorithms use $O(n^4)$ operations in the base ring, and are usually
 slower than computing the characteristic polynomial or the inverse of $M$
 directly.
Variant: Also available are
 \fun{GEN}{adj}{GEN x} (\fl=0) and
 \fun{GEN}{adjsafe}{GEN x} (\fl=1).

Function: matalgtobasis
Class: basic
Section: number_fields
C-Name: matalgtobasis
Prototype: GG
Help: matalgtobasis(nf,x): nfalgtobasis applied to every element of the
 vector or matrix x.
Doc: This function is deprecated, use \kbd{apply}.
 
 $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
 (row or column) vector or matrix, apply \tet{nfalgtobasis} to each entry
 of $x$.
Obsolete: 2016-08-08

Function: matbasistoalg
Class: basic
Section: number_fields
C-Name: matbasistoalg
Prototype: GG
Help: matbasistoalg(nf,x): nfbasistoalg applied to every element of the
 matrix or vector x.
Doc: This function is deprecated, use \kbd{apply}.
 
 $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
 (row or column) vector or matrix, apply \tet{nfbasistoalg} to each entry
 of $x$.
Obsolete: 2016-08-08

Function: matcompanion
Class: basic
Section: linear_algebra
C-Name: matcompanion
Prototype: G
Help: matcompanion(x): companion matrix to polynomial x.
Doc: 
 the left companion matrix to the non-zero polynomial $x$.

Function: matconcat
Class: basic
Section: linear_algebra
C-Name: matconcat
Prototype: G
Help: matconcat(v): concatenate the entries of v and return the resulting
 matrix.
Doc: returns a \typ{MAT} built from the entries of $v$, which may
 be a \typ{VEC} (concatenate horizontally), a \typ{COL} (concatenate
 vertically), or a \typ{MAT} (concatenate vertically each column, and
 concatenate vertically the resulting matrices). The entries of $v$ are always
 considered as matrices: they can themselves be \typ{VEC} (seen as a row
 matrix), a \typ{COL} seen as a column matrix), a \typ{MAT}, or a scalar (seen
 as an $1 \times 1$ matrix).
 \bprog
 ? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;
 ? matconcat([A, B]) \\ horizontal
 %1 =
 [1 2 5]
 
 [3 4 6]
 ? matconcat([A, C]~) \\ vertical
 %2 =
 [1 2]
 
 [3 4]
 
 [7 8]
 ? matconcat([A, B; C, D]) \\ block matrix
 %3 =
 [1 2 5]
 
 [3 4 6]
 
 [7 8 9]
 @eprog\noindent
 If the dimensions of the entries to concatenate do not match up, the above
 rules are extended as follows:
 
 \item each entry $v_{i,j}$ of $v$ has a natural length and height: $1 \times
 1$ for a scalar, $1 \times n$ for a \typ{VEC} of length $n$, $n \times 1$
 for a \typ{COL}, $m \times n$ for an $m\times n$ \typ{MAT}
 
 \item let $H_i$ be the maximum over $j$ of the lengths of the $v_{i,j}$,
 let $L_j$ be the maximum over $i$ of the heights of the $v_{i,j}$.
 The dimensions of the $(i,j)$-th block in the concatenated matrix are
 $H_i \times L_j$.
 
 \item a scalar $s = v_{i,j}$ is considered as $s$ times an identity matrix
 of the block dimension $\min (H_i,L_j)$
 
 \item blocks are extended by 0 columns on the right and 0 rows at the
 bottom, as needed.
 
 \bprog
 ? matconcat([1, [2,3]~, [4,5,6]~]) \\ horizontal
 %4 =
 [1 2 4]
 
 [0 3 5]
 
 [0 0 6]
 ? matconcat([1, [2,3], [4,5,6]]~) \\ vertical
 %5 =
 [1 0 0]
 
 [2 3 0]
 
 [4 5 6]
 ? matconcat([B, C; A, D]) \\ block matrix
 %6 =
 [5 0 7 8]
 
 [6 0 0 0]
 
 [1 2 9 0]
 
 [3 4 0 9]
 ? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
 ? matconcat(matdiagonal([U, V])) \\ block diagonal
 %7 =
 [1 2 0 0 0]
 
 [3 4 0 0 0]
 
 [0 0 1 2 3]
 
 [0 0 4 5 6]
 
 [0 0 7 8 9]
 @eprog

Function: matdet
Class: basic
Section: linear_algebra
C-Name: det0
Prototype: GD0,L,
Help: matdet(x,{flag=0}): determinant of the matrix x using an appropriate
 algorithm depending on the coefficients. If (optional) flag is set to 1, use
 classical Gaussian elimination (usually worse than the default).
Description: 
 (gen, ?0):gen           det($1)
 (gen, 1):gen            det2($1)
 (gen, #small):gen       $"incorrect flag in matdet"
 (gen, small):gen        det0($1, $2)
Doc: determinant of the square matrix $x$.
 
 If $\fl=0$, uses an appropriate algorithm depending on the coefficients:
 
 \item integer entries: modular method due to Dixon, Pernet and Stein.
 
 \item real or $p$-adic entries: classical Gaussian elimination using maximal
 pivot.
 
 \item intmod entries: classical Gaussian elimination using first non-zero
 pivot.
 
 \item other cases: Gauss-Bareiss.
 
 If $\fl=1$, uses classical Gaussian elimination with appropriate pivoting
 strategy (maximal pivot for real or $p$-adic coefficients). This is usually
 worse than the default.
Variant: Also available are \fun{GEN}{det}{GEN x} ($\fl=0$),
 \fun{GEN}{det2}{GEN x} ($\fl=1$) and \fun{GEN}{ZM_det}{GEN x} for integer
 entries.

Function: matdetint
Class: basic
Section: linear_algebra
C-Name: detint
Prototype: G
Help: matdetint(B): some multiple of the determinant of the lattice
 generated by the columns of B (0 if not of maximal rank). Useful with
 mathnfmod.
Doc: 
 Let $B$ be an $m\times n$ matrix with integer coefficients. The
 \emph{determinant} $D$ of the lattice generated by the columns of $B$ is
 the square root of $\det(B^T B)$ if $B$ has maximal rank $m$, and $0$
 otherwise.
 
 This function uses the Gauss-Bareiss algorithm to compute a positive
 \emph{multiple} of $D$. When $B$ is square, the function actually returns
 $D = |\det B|$.
 
 This function is useful in conjunction with \kbd{mathnfmod}, which needs to
 know such a multiple. If the rank is maximal and the matrix non-square,
 you can obtain $D$ exactly using
 \bprog
   matdet( mathnfmod(B, matdetint(B)) )
 @eprog\noindent
 Note that as soon as one of the dimensions gets large ($m$ or $n$ is larger
 than 20, say), it will often be much faster to use \kbd{mathnf(B, 1)} or
 \kbd{mathnf(B, 4)} directly.

Function: matdiagonal
Class: basic
Section: linear_algebra
C-Name: diagonal
Prototype: G
Help: matdiagonal(x): creates the diagonal matrix whose diagonal entries are
 the entries of the vector x.
Doc: $x$ being a vector, creates the diagonal matrix
 whose diagonal entries are those of $x$.
 \bprog
 ? matdiagonal([1,2,3]);
 %1 =
 [1 0 0]
 
 [0 2 0]
 
 [0 0 3]
 @eprog\noindent Block diagonal matrices are easily created using
 \tet{matconcat}:
 \bprog
 ? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
 ? matconcat(matdiagonal([U, V]))
 %1 =
 [1 2 0 0 0]
 
 [3 4 0 0 0]
 
 [0 0 1 2 3]
 
 [0 0 4 5 6]
 
 [0 0 7 8 9]
 @eprog

Function: mateigen
Class: basic
Section: linear_algebra
C-Name: mateigen
Prototype: GD0,L,p
Help: mateigen(x,{flag=0}): complex eigenvectors of the matrix x given as
 columns of a matrix H. If flag=1, return [L,H], where L contains the
 eigenvalues and H the corresponding eigenvectors.
Doc: returns the (complex) eigenvectors of $x$ as columns of a matrix.
 If $\fl=1$, return $[L,H]$, where $L$ contains the
 eigenvalues and $H$ the corresponding eigenvectors; multiple eigenvalues are
 repeated according to the eigenspace dimension (which may be less
 than the eigenvalue multiplicity in the characteristic polynomial).
 
 This function first computes the characteristic polynomial of $x$ and
 approximates its complex roots $(\lambda_i)$, then tries to compute the
 eigenspaces as kernels of the $x - \lambda_i$. This algorithm is
 ill-conditioned and is likely to miss kernel vectors if some roots of the
 characteristic polynomial are close, in particular if it has multiple roots.
 \bprog
 ? A = [13,2; 10,14]; mateigen(A)
 %1 =
 [-1/2 2/5]
 
 [   1   1]
 ? [L,H] = mateigen(A, 1);
 ? L
 %3 = [9, 18]
 ? H
 %4 =
 [-1/2 2/5]
 
 [   1   1]
 @eprog\noindent
 For symmetric matrices, use \tet{qfjacobi} instead; for Hermitian matrices,
 compute
 \bprog
  A = real(x);
  B = imag(x);
  y = matconcat([A, -B; B, A]);
 @eprog\noindent and apply \kbd{qfjacobi} to $y$.
Variant: Also available is \fun{GEN}{eigen}{GEN x, long prec} ($\fl = 0$)

Function: matfrobenius
Class: basic
Section: linear_algebra
C-Name: matfrobenius
Prototype: GD0,L,Dn
Help: matfrobenius(M,{flag},{v='x}): return the Frobenius form of the square
 matrix M. If flag is 1, return only the elementary divisors as a vector of
 polynomials in the variable v. If flag is 2, return a two-components vector
 [F,B] where F is the Frobenius form and B is the basis change so that
 M=B^-1*F*B.
Doc: returns the Frobenius form of
 the square matrix \kbd{M}. If $\fl=1$, returns only the elementary divisors as
 a vector of polynomials in the variable \kbd{v}.  If $\fl=2$, returns a
 two-components vector [F,B] where \kbd{F} is the Frobenius form and \kbd{B} is
 the basis change so that $M=B^{-1}FB$.

Function: mathess
Class: basic
Section: linear_algebra
C-Name: hess
Prototype: G
Help: mathess(x): Hessenberg form of x.
Doc: returns a matrix similar to the square matrix $x$, which is in upper Hessenberg
 form (zero entries below the first subdiagonal).

Function: mathilbert
Class: basic
Section: linear_algebra
C-Name: mathilbert
Prototype: L
Help: mathilbert(n): Hilbert matrix of order n.
Doc: $x$ being a \kbd{long}, creates the
 \idx{Hilbert matrix}of order $x$, i.e.~the matrix whose coefficient
 ($i$,$j$) is $1/ (i+j-1)$.

Function: mathnf
Class: basic
Section: linear_algebra
C-Name: mathnf0
Prototype: GD0,L,
Help: mathnf(M,{flag=0}): (upper triangular) Hermite normal form of M, basis
 for the lattice formed by the columns of M. flag is optional whose value
 range from 0 to 3 have a binary meaning. Bit 1: complete output, returns
 a 2-component vector [H,U] such that H is the HNF of M, and U is an
 invertible matrix such that MU=H. Bit 2: allow polynomial entries, otherwise
 assume that M is integral. These use a naive algorithm; larger values
 correspond to more involved algorithms and are restricted to integer
 matrices; flag = 4: returns [H,U] using LLL reduction along the way;
 flag = 5: return [H,U,P] where P is a permutation of row indices such that
 P applied to M U is H.
Doc: let $R$ be a Euclidean ring, equal to $\Z$ or to $K[X]$ for some field
 $K$. If $M$ is a (not necessarily square) matrix with entries in $R$, this
 routine finds the \emph{upper triangular} \idx{Hermite normal form} of $M$.
 If the rank of $M$ is equal to its number of rows, this is a square
 matrix. In general, the columns of the result form a basis of the $R$-module
 spanned by the columns of $M$.
 
 The values $0,1,2,3$ of $\fl$ have a binary meaning, analogous to the one
 in \tet{matsnf}; in this case, binary digits of $\fl$ mean:
 
 \item 1 (complete output): if set, outputs $[H,U]$, where $H$ is the Hermite
 normal form of $M$, and $U$ is a transformation matrix such that $MU=[0|H]$.
 The matrix $U$ belongs to $\text{GL}(R)$. When $M$ has a large kernel, the
 entries of $U$ are in general huge.
 
 \item 2 (generic input): \emph{Deprecated}. If set, assume that $R = K[X]$ is
 a polynomial ring; otherwise, assume that $R = \Z$. This flag is now useless
 since the routine always checks whether the matrix has integral entries.
 
 \noindent For these 4 values, we use a naive algorithm, which behaves well
 in small dimension only. Larger values correspond to different algorithms,
 are restricted to \emph{integer} matrices, and all output the unimodular
 matrix $U$. From now on all matrices have integral entries.
 
 \item $\fl=4$, returns $[H,U]$ as in ``complete output'' above, using a
 variant of \idx{LLL} reduction along the way. The matrix $U$ is provably
 small in the $L_2$ sense, and in general close to optimal; but the
 reduction is in general slow, although provably polynomial-time.
 
 If $\fl=5$, uses Batut's algorithm and output $[H,U,P]$, such that $H$ and
 $U$ are as before and $P$ is a permutation of the rows such that $P$ applied
 to $MU$ gives $H$. This is in general faster than $\fl=4$ but the matrix $U$
 is usually worse; it is heuristically smaller than with the default algorithm.
 
 When the matrix is dense and the dimension is large (bigger than 100, say),
 $\fl = 4$ will be fastest. When $M$ has maximal rank, then
 \bprog
   H = mathnfmod(M, matdetint(M))
 @eprog\noindent will be even faster. You can then recover $U$ as $M^{-1}H$.
 
 \bprog
 ? M = matrix(3,4,i,j,random([-5,5]))
 %1 =
 [ 0 2  3  0]
 
 [-5 3 -5 -5]
 
 [ 4 3 -5  4]
 
 ? [H,U] = mathnf(M, 1);
 ? U
 %3 =
 [-1 0 -1 0]
 
 [ 0 5  3 2]
 
 [ 0 3  1 1]
 
 [ 1 0  0 0]
 
 ? H
 %5 =
 [19 9 7]
 
 [ 0 9 1]
 
 [ 0 0 1]
 
 ? M*U
 %6 =
 [0 19 9 7]
 
 [0  0 9 1]
 
 [0  0 0 1]
 @eprog
 
 For convenience, $M$ is allowed to be a \typ{VEC}, which is then
 automatically converted to a \typ{MAT}, as per the \tet{Mat} function.
 For instance to solve the generalized extended gcd problem, one may use
 \bprog
 ? v = [116085838, 181081878, 314252913,10346840];
 ? [H,U] = mathnf(v, 1);
 ? U
 %2 =
 [ 103 -603    15  -88]
 
 [-146   13 -1208  352]
 
 [  58  220   678 -167]
 
 [-362 -144   381 -101]
 ? v*U
 %3 = [0, 0, 0, 1]
 @eprog\noindent This also allows to input a matrix as a \typ{VEC} of
 \typ{COL}s of the same length (which \kbd{Mat} would concatenate to
 the \typ{MAT} having those columns):
 \bprog
 ? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)
 %1 =
 [47 32 12]
 
 [ 0  1  0]
 
 [ 0  0  1]
 @eprog
Variant: Also available are \fun{GEN}{hnf}{GEN M} ($\fl=0$) and
 \fun{GEN}{hnfall}{GEN M} ($\fl=1$). To reduce \emph{huge} relation matrices
 (sparse with small entries, say dimension $400$ or more), you can use the
 pair \kbd{hnfspec} / \kbd{hnfadd}. Since this is quite technical and the
 calling interface may change, they are not documented yet. Look at the code
 in \kbd{basemath/hnf\_snf.c}.

Function: mathnfmod
Class: basic
Section: linear_algebra
C-Name: hnfmod
Prototype: GG
Help: mathnfmod(x,d): (upper triangular) Hermite normal form of x, basis for
 the lattice formed by the columns of x, where d is a multiple of the
 non-zero determinant of this lattice.
Doc: if $x$ is a (not necessarily square) matrix of
 maximal rank with integer entries, and $d$ is a multiple of the (non-zero)
 determinant of the lattice spanned by the columns of $x$, finds the
 \emph{upper triangular} \idx{Hermite normal form} of $x$.
 
 If the rank of $x$ is equal to its number of rows, the result is a square
 matrix. In general, the columns of the result form a basis of the lattice
 spanned by the columns of $x$. Even when $d$ is known, this is in general
 slower than \kbd{mathnf} but uses much less memory.

Function: mathnfmodid
Class: basic
Section: linear_algebra
C-Name: hnfmodid
Prototype: GG
Help: mathnfmodid(x,d): (upper triangular) Hermite normal form of x
 concatenated with matdiagonal(d).
Doc: outputs the (upper triangular)
 \idx{Hermite normal form} of $x$ concatenated with the diagonal
 matrix with diagonal $d$. Assumes that $x$ has integer entries.
 Variant: if $d$ is an integer instead of a vector, concatenate $d$ times the
 identity matrix.
 \bprog
 ? m=[0,7;-1,0;-1,-1]
 %1 =
 [ 0  7]
 
 [-1  0]
 
 [-1 -1]
 ? mathnfmodid(m, [6,2,2])
 %2 =
 [2 1 1]
 
 [0 1 0]
 
 [0 0 1]
 ? mathnfmodid(m, 10)
 %3 =
 [10 7 3]
 
 [ 0 1 0]
 
 [ 0 0 1]
 @eprog

Function: mathouseholder
Class: basic
Section: linear_algebra
C-Name: mathouseholder
Prototype: GG
Help: mathouseholder(Q,v): applies a sequence Q of Householder transforms
 to the vector or matrix v.
Doc: \sidx{Householder transform}applies a sequence $Q$ of Householder
 transforms, as returned by \kbd{matqr}$(M,1)$ to the vector or matrix $v$.

Function: matid
Class: basic
Section: linear_algebra
C-Name: matid
Prototype: L
Help: matid(n): identity matrix of order n.
Description: 
 (small):vec    matid($1)
Doc: creates the $n\times n$ identity matrix.

Function: matimage
Class: basic
Section: linear_algebra
C-Name: matimage0
Prototype: GD0,L,
Help: matimage(x,{flag=0}): basis of the image of the matrix x. flag is
 optional and can be set to 0 or 1, corresponding to two different algorithms.
Description: 
 (gen, ?0):vec           image($1)
 (gen, 1):vec            image2($1)
 (gen, #small)           $"incorrect flag in matimage"
 (gen, small):vec        matimage0($1, $2)
Doc: gives a basis for the image of the
 matrix $x$ as columns of a matrix. A priori the matrix can have entries of
 any type. If $\fl=0$, use standard Gauss pivot. If $\fl=1$, use
 \kbd{matsupplement} (much slower: keep the default flag!).
Variant: Also available is \fun{GEN}{image}{GEN x} ($\fl=0$).

Function: matimagecompl
Class: basic
Section: linear_algebra
C-Name: imagecompl
Prototype: G
Help: matimagecompl(x): vector of column indices not corresponding to the
 indices given by the function matimage.
Description: 
 (gen):vecsmall                imagecompl($1)
Doc: gives the vector of the column indices which
 are not extracted by the function \kbd{matimage}, as a permutation
 (\typ{VECSMALL}). Hence the number of
 components of \kbd{matimagecompl(x)} plus the number of columns of
 \kbd{matimage(x)} is equal to the number of columns of the matrix $x$.

Function: matindexrank
Class: basic
Section: linear_algebra
C-Name: indexrank
Prototype: G
Help: matindexrank(x): gives two extraction vectors (rows and columns) for
 the matrix x such that the extracted matrix is square of maximal rank.
Doc: $x$ being a matrix of rank $r$, returns a vector with two
 \typ{VECSMALL} components $y$ and $z$ of length $r$ giving a list of rows
 and columns respectively (starting from 1) such that the extracted matrix
 obtained from these two vectors using $\tet{vecextract}(x,y,z)$ is
 invertible.

Function: matintersect
Class: basic
Section: linear_algebra
C-Name: intersect
Prototype: GG
Help: matintersect(x,y): intersection of the vector spaces whose bases are
 the columns of x and y.
Doc: $x$ and $y$ being two matrices with the same
 number of rows each of whose columns are independent, finds a basis of the
 $\Q$-vector space equal to the intersection of the spaces spanned by the
 columns of $x$ and $y$ respectively. The faster function
 \tet{idealintersect} can be used to intersect fractional ideals (projective
 $\Z_K$ modules of rank $1$); the slower but much more general function
 \tet{nfhnf} can be used to intersect general $\Z_K$-modules.

Function: matinverseimage
Class: basic
Section: linear_algebra
C-Name: inverseimage
Prototype: GG
Help: matinverseimage(x,y): an element of the inverse image of the vector y
 by the matrix x if one exists, the empty vector otherwise.
Doc: given a matrix $x$ and
 a column vector or matrix $y$, returns a preimage $z$ of $y$ by $x$ if one
 exists (i.e such that $x z = y$), an empty vector or matrix otherwise. The
 complete inverse image is $z + \text{Ker} x$, where a basis of the kernel of
 $x$ may be obtained by \kbd{matker}.
 \bprog
 ? M = [1,2;2,4];
 ? matinverseimage(M, [1,2]~)
 %2 = [1, 0]~
 ? matinverseimage(M, [3,4]~)
 %3 = []~    \\@com no solution
 ? matinverseimage(M, [1,3,6;2,6,12])
 %4 =
 [1 3 6]
 
 [0 0 0]
 ? matinverseimage(M, [1,2;3,4])
 %5 = [;]    \\@com no solution
 ? K = matker(M)
 %6 =
 [-2]
 
 [1]
 @eprog

Function: matisdiagonal
Class: basic
Section: linear_algebra
C-Name: isdiagonal
Prototype: iG
Help: matisdiagonal(x): true(1) if x is a diagonal matrix, false(0)
 otherwise.
Doc: returns true (1) if $x$ is a diagonal matrix, false (0) if not.

Function: matker
Class: basic
Section: linear_algebra
C-Name: matker0
Prototype: GD0,L,
Help: matker(x,{flag=0}): basis of the kernel of the matrix x. flag is
 optional, and may be set to 0: default; non-zero: x is known to have
 integral entries.
Description: 
 (gen, ?0):vec           ker($1)
 (gen, 1):vec            keri($1)
 (gen, #small)           $"incorrect flag in matker"
 (gen, small):vec        matker0($1, $2)
Doc: gives a basis for the kernel of the matrix $x$ as columns of a matrix.
 The matrix can have entries of any type, provided they are compatible with
 the generic arithmetic operations ($+$, $\times$ and $/$).
 
 If $x$ is known to have integral entries, set $\fl=1$.
Variant: Also available are \fun{GEN}{ker}{GEN x} ($\fl=0$),
 \fun{GEN}{keri}{GEN x} ($\fl=1$).

Function: matkerint
Class: basic
Section: linear_algebra
C-Name: matkerint0
Prototype: GD0,L,
Help: matkerint(x,{flag=0}): LLL-reduced Z-basis of the kernel of the matrix
 x with integral entries. flag is deprecated, and may be set to 0 or 1
 for backward compatibility.
Doc: gives an \idx{LLL}-reduced $\Z$-basis
 for the lattice equal to the kernel of the matrix $x$ with rational entries.
 
 \fl is deprecated, kept for backward compatibility.
Variant: Use directly \fun{GEN}{kerint}{GEN x} if $x$ is known to have
 integer entries, and \tet{Q_primpart} first otherwise.

Function: matmuldiagonal
Class: basic
Section: linear_algebra
C-Name: matmuldiagonal
Prototype: GG
Help: matmuldiagonal(x,d): product of matrix x by diagonal matrix whose
 diagonal coefficients are those of the vector d, equivalent but faster than
 x*matdiagonal(d).
Doc: product of the matrix $x$ by the diagonal
 matrix whose diagonal entries are those of the vector $d$. Equivalent to,
 but much faster than $x*\kbd{matdiagonal}(d)$.

Function: matmultodiagonal
Class: basic
Section: linear_algebra
C-Name: matmultodiagonal
Prototype: GG
Help: matmultodiagonal(x,y): product of matrices x and y, knowing that the
 result will be a diagonal matrix. Much faster than general multiplication in
 that case.
Doc: product of the matrices $x$ and $y$ assuming that the result is a
 diagonal matrix. Much faster than $x*y$ in that case. The result is
 undefined if $x*y$ is not diagonal.

Function: matpascal
Class: basic
Section: linear_algebra
C-Name: matqpascal
Prototype: LDG
Help: matpascal(n,{q}): Pascal triangle of order n if q is omitted. q-Pascal
 triangle otherwise.
Doc: creates as a matrix the lower triangular
 \idx{Pascal triangle} of order $x+1$ (i.e.~with binomial coefficients
 up to $x$). If $q$ is given, compute the $q$-Pascal triangle (i.e.~using
 $q$-binomial coefficients).
Variant: Also available is \fun{GEN}{matpascal}{GEN x}.

Function: matqr
Class: basic
Section: linear_algebra
C-Name: matqr
Prototype: GD0,L,p
Help: matqr(M,{flag=0}): returns [Q,R], the QR-decomposition of the square
 invertible matrix M. If flag=1, Q is given as a sequence of Householder
 transforms (faster and stabler).
Doc: returns $[Q,R]$, the \idx{QR-decomposition} of the square invertible
 matrix $M$ with real entries: $Q$ is orthogonal and $R$ upper triangular. If
 $\fl=1$, the orthogonal matrix is returned as a sequence of Householder
 transforms: applying such a sequence is stabler and faster than
 multiplication by the corresponding $Q$ matrix.\sidx{Householder transform}
 More precisely, if
 \bprog
   [Q,R] = matqr(M);
   [q,r] = matqr(M, 1);
 @eprog\noindent then $r = R$ and \kbd{mathouseholder}$(q, M)$ is
 (close to) $R$; furthermore
 \bprog
   mathouseholder(q, matid(#M)) == Q~
 @eprog\noindent the inverse of $Q$. This function raises an error if the
 precision is too low or $x$ is singular.

Function: matrank
Class: basic
Section: linear_algebra
C-Name: rank
Prototype: lG
Help: matrank(x): rank of the matrix x.
Doc: rank of the matrix $x$.

Function: matrix
Class: basic
Section: linear_algebra
C-Name: matrice
Prototype: GGDVDVDE
Help: matrix(m,n,{X},{Y},{expr=0}): mXn matrix of expression expr, the row
 variable X going from 1 to m and the column variable Y going from 1 to n. By
 default, fill with 0s.
Doc: creation of the
 $m\times n$ matrix whose coefficients are given by the expression
 \var{expr}. There are two formal parameters in \var{expr}, the first one
 ($X$) corresponding to the rows, the second ($Y$) to the columns, and $X$
 goes from 1 to $m$, $Y$ goes from 1 to $n$. If one of the last 3 parameters
 is omitted, fill the matrix with zeroes.
 %\syn{NO}

Function: matrixqz
Class: basic
Section: linear_algebra
C-Name: matrixqz0
Prototype: GDG
Help: matrixqz(A,{p=0}): if p>=0, transforms the rational or integral mxn (m>=n)
 matrix A into an integral matrix with gcd of maximal determinants coprime to
 p. If p=-1, finds a basis of the intersection with Z^n of the lattice spanned
 by the columns of A. If p=-2, finds a basis of the intersection with Z^n of
 the Q-vector space spanned by the columns of A.
Doc: $A$ being an $m\times n$ matrix in $M_{m,n}(\Q)$, let
 $\text{Im}_\Q A$ (resp.~$\text{Im}_\Z A$) the $\Q$-vector space
 (resp.~the $\Z$-module) spanned by the columns of $A$. This function has
 varying behavior depending on the sign of $p$:
 
 If $p \geq 0$, $A$ is assumed to have maximal rank $n\leq m$. The function
 returns a matrix $B\in M_{m,n}(\Z)$, with $\text{Im}_\Q B = \text{Im}_\Q A$,
 such that the GCD of all its $n\times n$ minors is coprime to
 $p$; in particular, if $p = 0$ (default), this GCD is $1$.
 \bprog
 ? minors(x) = vector(#x[,1], i, matdet(x[^i,]));
 ? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
 %1 = [4/7, 8/7, 4/7]   \\ determinants of all 2x2 minors
 ? B = matrixqz(A)
 %2 =
 [3 1]
 
 [5 2]
 
 [7 3]
 ? minors(%)
 %3 = [1, 2, 1]   \\ B integral with coprime minors
 @eprog
 
 If $p=-1$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Z A$.
 
 If $p=-2$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Q A$.
 \bprog
 ? matrixqz(A,-1)
 %4 =
 [8 5]
 
 [4 3]
 
 [0 1]
 
 ? matrixqz(A,-2)
 %5 =
 [2 -1]
 
 [1 0]
 
 [0 1]
 @eprog

Function: matsize
Class: basic
Section: linear_algebra
C-Name: matsize
Prototype: G
Help: matsize(x): number of rows and columns of the vector/matrix x as a
 2-vector.
Doc: $x$ being a vector or matrix, returns a row vector
 with two components, the first being the number of rows (1 for a row vector),
 the second the number of columns (1 for a column vector).

Function: matsnf
Class: basic
Section: linear_algebra
C-Name: matsnf0
Prototype: GD0,L,
Help: matsnf(X,{flag=0}): Smith normal form (i.e. elementary divisors) of
 the matrix X, expressed as a vector d. Binary digits of flag mean 1: returns
 [u,v,d] where d=u*X*v, otherwise only the diagonal d is returned, 2: allow
 polynomial entries, otherwise assume X is integral, 4: removes all
 information corresponding to entries equal to 1 in d.
Doc: if $X$ is a (singular or non-singular) matrix outputs the vector of
 \idx{elementary divisors} of $X$, i.e.~the diagonal of the
 \idx{Smith normal form} of $X$, normalized so that $d_n \mid d_{n-1} \mid
 \ldots \mid d_1$.
 
 The binary digits of \fl\ mean:
 
 1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
 unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
 output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
 will be a square diagonal matrix padded with zeros on the left or the top.
 
 2 (generic input): if set, allows polynomial entries, in which case the
 input matrix must be square. Otherwise, assume that $X$ has integer
 coefficients with arbitrary shape.
 
 4 (cleanup): if set, cleans up the output. This means that elementary
 divisors equal to $1$ will be deleted, i.e.~outputs a shortened vector $D'$
 instead of $D$. If complete output was required, returns $[U',V',D']$ so
 that $U'XV' = D'$ holds. If this flag is set, $X$ is allowed to be of the
 form `vector of elementary divisors' or $[U,V,D]$ as would normally be output with the cleanup flag
 unset.

Function: matsolve
Class: basic
Section: linear_algebra
C-Name: gauss
Prototype: GG
Help: matsolve(M,B): solution of MX=B (M matrix, B column vector).
Doc: $M$ being an invertible matrix and $B$ a column
 vector, finds the solution $X$ of $MX=B$, using Dixon $p$-adic lifting method
 if $M$ and $B$ are integral and Gaussian elimination otherwise. This
 has the same effect as, but is faster, than $M^{-1}*B$.
Variant: For integral input, the function
 \fun{GEN}{ZM_gauss}{GEN M,GEN B} is also available.

Function: matsolvemod
Class: basic
Section: linear_algebra
C-Name: matsolvemod0
Prototype: GGGD0,L,
Help: matsolvemod(M,D,B,{flag=0}): one solution of system of congruences
 MX=B mod D (M matrix, B and D column vectors). If (optional) flag is
 non-null return all solutions.
Doc: $M$ being any integral matrix,
 $D$ a column vector of non-negative integer moduli, and $B$ an integral
 column vector, gives a small integer solution to the system of congruences
 $\sum_i m_{i,j}x_j\equiv b_i\pmod{d_i}$ if one exists, otherwise returns
 zero. Shorthand notation: $B$ (resp.~$D$) can be given as a single integer,
 in which case all the $b_i$ (resp.~$d_i$) above are taken to be equal to $B$
 (resp.~$D$).
 \bprog
 ? M = [1,2;3,4];
 ? matsolvemod(M, [3,4]~, [1,2]~)
 %2 = [-2, 0]~
 ? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
 %3 = [-1, 1]~
 ? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
 %4 = [6, -4]~
 @eprog
 If $\fl=1$, all solutions are returned in the form of a two-component row
 vector $[x,u]$, where $x$ is a small integer solution to the system of
 congruences and $u$ is a matrix whose columns give a basis of the homogeneous
 system (so that all solutions can be obtained by adding $x$ to any linear
 combination of columns of $u$). If no solution exists, returns zero.
Variant: Also available are \fun{GEN}{gaussmodulo}{GEN M, GEN D, GEN B}
 ($\fl=0$) and \fun{GEN}{gaussmodulo2}{GEN M, GEN D, GEN B} ($\fl=1$).

Function: matsupplement
Class: basic
Section: linear_algebra
C-Name: suppl
Prototype: G
Help: matsupplement(x): supplement the columns of the matrix x to an
 invertible matrix.
Doc: assuming that the columns of the matrix $x$
 are linearly independent (if they are not, an error message is issued), finds
 a square invertible matrix whose first columns are the columns of $x$,
 i.e.~supplement the columns of $x$ to a basis of the whole space.
 \bprog
 ? matsupplement([1;2])
 %1 =
 [1 0]
 
 [2 1]
 @eprog
 Raises an error if $x$ has 0 columns, since (due to a long standing design
 bug), the dimension of the ambient space (the number of rows) is unknown in
 this case:
 \bprog
 ? matsupplement(matrix(2,0))
   ***   at top-level: matsupplement(matrix
   ***                 ^--------------------
   *** matsupplement: sorry, suppl [empty matrix] is not yet implemented.
 @eprog

Function: mattranspose
Class: basic
Section: linear_algebra
C-Name: gtrans
Prototype: G
Help: mattranspose(x): x~ = transpose of x.
Doc: transpose of $x$ (also $x\til$).
 This has an effect only on vectors and matrices.

Function: max
Class: basic
Section: operators
C-Name: gmax
Prototype: GG
Help: max(x,y): maximum of x and y.
Description: 
 (small, small):small  maxss($1, $2)
 (small, int):int      gmaxsg($1, $2)
 (int, small):int      gmaxgs($1, $2)
 (int, int):int        gmax($1, $2)
 (small, mp):mp        gmaxsg($1, $2)
 (mp, small):mp        gmaxgs($1, $2)
 (mp, mp):mp           gmax($1, $2)
 (small, gen):gen      gmaxsg($1, $2)
 (gen, small):gen      gmaxgs($1, $2)
 (gen, gen):gen        gmax($1, $2)
Doc: creates the maximum of $x$ and $y$ when they can be compared.

Function: min
Class: basic
Section: operators
C-Name: gmin
Prototype: GG
Help: min(x,y): minimum of x and y.
Description: 
 (small, small):small  minss($1, $2)
 (small, int):int      gminsg($1, $2)
 (int, small):int      gmings($1, $2)
 (int, int):int        gmin($1, $2)
 (small, mp):mp        gminsg($1, $2)
 (mp, small):mp        gmings($1, $2)
 (mp, mp):mp           gmin($1, $2)
 (small, gen):gen      gminsg($1, $2)
 (gen, small):gen      gmings($1, $2)
 (gen, gen):gen        gmin($1, $2)
Doc: creates the minimum of $x$ and $y$ when they can be compared.

Function: minpoly
Class: basic
Section: linear_algebra
C-Name: minpoly
Prototype: GDn
Help: minpoly(A,{v='x}): minimal polynomial of the matrix or polmod A.
Doc: \idx{minimal polynomial}
 of $A$ with respect to the variable $v$., i.e. the monic polynomial $P$
 of minimal degree (in the variable $v$) such that $P(A) = 0$.

Function: modreverse
Class: basic
Section: number_fields
C-Name: modreverse
Prototype: G
Help: modreverse(z): reverse polmod of the polmod z, if it exists.
Doc: let $z = \kbd{Mod(A, T)}$ be a polmod, and $Q$ be its minimal
 polynomial, which must satisfy $\text{deg}(Q) = \text{deg}(T)$.
 Returns a ``reverse polmod'' \kbd{Mod(B, Q)}, which is a root of $T$.
 
 This is quite useful when one changes the generating element in algebraic
 extensions:
 \bprog
 ? u = Mod(x, x^3 - x -1); v = u^5;
 ? w = modreverse(v)
 %2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)
 @eprog\noindent
 which means that $x^3 - 5x^2 + 4x -1$ is another defining polynomial for the
 cubic field
 $$\Q(u) = \Q[x]/(x^3 - x - 1) = \Q[x]/(x^3 - 5x^2 + 4x - 1) = \Q(v),$$
 and that $u \to v^2 - 4v + 1$ gives an explicit isomorphism. From this, it is
 easy to convert elements between the $A(u)\in \Q(u)$ and $B(v)\in \Q(v)$
 representations:
 \bprog
 ? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
 %3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
 ? B = v^2 + v + 1;   subst(lift(B), 'x, v)
 %4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)
 @eprog
 If the minimal polynomial of $z$ has lower degree than expected, the routine
 fails
 \bprog
 ? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
 ? modreverse(u)
  *** modreverse: domain error in modreverse: deg(minpoly(z)) < 4
  ***   Break loop: type 'break' to go back to GP prompt
 break> Vec( dbg_err() ) \\ ask for more info
 ["e_DOMAIN", "modreverse", "deg(minpoly(z))", "<", 4,
   Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]
 break> minpoly(u)
 x^2 - 8
 @eprog

Function: moebius
Class: basic
Section: number_theoretical
C-Name: moebius
Prototype: lG
Help: moebius(x): Moebius function of x.
Doc: \idx{Moebius} $\mu$-function of $|x|$. $x$ must be of type integer.

Function: msatkinlehner
Class: basic
Section: modular_symbols
C-Name: msatkinlehner
Prototype: GLDG
Help: msatkinlehner(M,Q,{H}): M being a full modular symbol space of level N,
 as given by msinit, let Q | N, (Q,N/Q) = 1, and let H be a subspace stable
 under the Atkin-Lehner involution w_Q. Return the matrix of w_Q
 acting on H (M if omitted).
Doc: Let $M$ be a full modular symbol space of level $N$,
 as given by \kbd{msinit}, let $Q \mid N$, $(Q,N/Q) = 1$,
 and let $H$ be a subspace stable under the Atkin-Lehner involution $w_Q$.
 Return the matrix of $w_Q$ acting on $H$ ($M$ if omitted).
 \bprog
 ? M = msinit(36,2); \\ M_2(Gamma_0(36))
 ? w = msatkinlehner(M,4); w^2 == 1
 %2 = 1
 ? #w   \\ involution acts on a 13-dimensional space
 %3 = 13
 ? M = msinit(36,2, -1); \\ M_2(Gamma_0(36))^-
 ? w = msatkinlehner(M,4); w^2 == 1
 %5 = 1
 ? #w
 %6 = 4
 @eprog

Function: mscuspidal
Class: basic
Section: modular_symbols
C-Name: mscuspidal
Prototype: GD0,L,
Help: mscuspidal(M, {flag=0}): M being a full modular symbol space, as given
 by msinit, return its cuspidal part S. If flag = 1, return [S,E] its
 decomposition into Eisenstein and cuspidal parts.
Doc: 
 $M$ being a full modular symbol space, as given by \kbd{msinit},
 return its cuspidal part $S$. If $\fl = 1$, return
 $[S,E]$ its decomposition into cuspidal and Eisenstein parts.
 
 A subspace is given by a structure allowing quick projection and
 restriction of linear operators; its first component is
 a matrix with integer coefficients whose columns form a $\Q$-basis of
 the subspace.
 \bprog
 ? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
 ? [S,E] = mscuspidal(M, 1);
 ? E[1]  \\ 2-dimensional
 %3 =
 [0 -10]
 
 [0 -15]
 
 [0  -3]
 
 [1   0]
 
 ? S[1]  \\ 1-dimensional
 %4 =
 [ 3]
 
 [30]
 
 [ 6]
 
 [-8]
 @eprog

Function: mseisenstein
Class: basic
Section: modular_symbols
C-Name: mseisenstein
Prototype: G
Help: mseisenstein(M): M being a full modular symbol space, as given by msinit,
 return its Eisenstein subspace.
Doc: 
 $M$ being a full modular symbol space, as given by \kbd{msinit},
 return its Eisenstein subspace.
 A subspace is given by a structure allowing quick projection and
 restriction of linear operators; its first component is
 a matrix with integer coefficients whose columns form a $\Q$-basis of
 the subspace.
 This is the same basis as given by the second component of
 \kbd{mscuspidal}$(M, 1)$.
 \bprog
 ? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
 ? E = mseisenstein(M);
 ? E[1]  \\ 2-dimensional
 %3 =
 [0 -10]
 
 [0 -15]
 
 [0  -3]
 
 [1   0]
 
 ? E == mscuspidal(M,1)[2]
 %4 = 1
 @eprog

Function: mseval
Class: basic
Section: modular_symbols
C-Name: mseval
Prototype: GGDG
Help: mseval(M,s,{p}): M being a full modular symbol space, as given by
 msinit, s being a modular symbol from M and p being a path between two
 elements in P^1(Q), return s(p).
Doc: Let $\Delta:=\text{Div}^0(\P^1 (\Q))$.
 Let $M$ be a full modular symbol space, as given by \kbd{msinit},
 let $s$ be a modular symbol from $M$, i.e. an element
 of $\Hom_G(\Delta, V)$, and let $p=[a,b] \in \Delta$ be a path between
 two elements in $\P^1(\Q)$, return $s(p)\in V$. The path extremities $a$ and
 $b$ may be given as \typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$.
 The symbol $s$ is either
 
 \item a \typ{COL} coding an element of a modular symbol subspace in terms of
 the fixed basis of $\Hom_G(\Delta,V)$ chosen in $M$; if $M$ was
 initialized with a non-zero \emph{sign} ($+$ or $-$), then either the
 basis for the full symbol space or the $\pm$-part can be used (the dimension
 being used to distinguish the two).
 
 \item a \typ{VEC} $(v_i)$ of elements of $V$, where the $v_i = s(g_i)$ give
 the image of the generators $g_i$ of $\Delta$, see \tet{mspathgens}.
 We assume that $s$ is a proper symbol, i.e.~that the $v_i$ satisfy
 the \kbd{mspathgens} relations.
 
 If $p$ is omitted, convert the symbol $s$ to the second form: a vector of
 the $s(g_i)$.
 \bprog
 ? M = msinit(2,8,1); \\ M_8(Gamma_0(2))^+
 ? g = mspathgens(M)[1]
 %2 = [[+oo, 0], [0, 1]]
 ? N = msnew(M)[1]; #N \\ Q-basis of new subspace, dimension 1
 %3 = 1
 ? s = N[,1]         \\ t_COL representation
 %4 = [-3, 6, -8]~
 ? S = mseval(M, s)   \\ t_VEC representation
 %5 = [64*x^6-272*x^4+136*x^2-8, 384*x^5+960*x^4+192*x^3-672*x^2-432*x-72]
 ? mseval(M,s, g[1])
 %6 = 64*x^6 - 272*x^4 + 136*x^2 - 8
 ? mseval(M,S, g[1])
 %7 = 64*x^6 - 272*x^4 + 136*x^2 - 8
 @eprog\noindent Note that the symbol should have values in
 $V = \Q[x,y]_{k-2}$, we return the de-homogenized values corresponding to $y
 = 1$ instead.

Function: msfromcusp
Class: basic
Section: modular_symbols
C-Name: msfromcusp
Prototype: GG
Help: msfromcusp(M, c): returns the modular symbol attached to the cusp
 c, where M is a modular symbol space of level N.
Doc: returns the modular symbol attached to the cusp
 $c$, where $M$ is a modular symbol space of level $N$, attached to
 $G = \Gamma_0(N)$. The cusp $c$ in  $\P^1(\Q)/G$
 can be given either as \kbd{oo} ($=(1:0)$), as a rational number $a/b$
 ($=(a:b)$). The attached symbol maps the path $[b] - [a] \in
 \text{Div}^0 (\P^1(\Q))$ to $E_c(b) - E_c(a)$, where $E_c(r)$ is
 $0$ when $r \neq c$ and $X^{k-2} \mid \gamma_r$ otherwise, where
 $\gamma_r \cdot r = (1:0)$. These symbol span the  Eisenstein subspace
 of $M$.
 \bprog
 ? M = msinit(2,8);  \\  M_8(Gamma_0(2))
 ? E =  mseisenstein(M);
 ? E[1] \\ two-dimensional
 %3 =
 [0 -10]
 
 [0 -15]
 
 [0  -3]
 
 [1   0]
 
 ? s = msfromcusp(M,oo)
 %4 = [0, 0, 0, 1]~
 ? mseval(M, s)
 %5 = [1, 0]
 ? s = msfromcusp(M,1)
 %6 = [-5/16, -15/32, -3/32, 0]~
 ? mseval(M,s)
 %7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]
 @eprog
 In case $M$ was initialized with a non-zero \emph{sign}, the symbol is given
 in terms of the fixed basis of the whole symbol space, not the $+$ or $-$
 part (to which it need not belong).
 \bprog
 ? M = msinit(2,8, 1);  \\  M_8(Gamma_0(2))^+
 ? E =  mseisenstein(M);
 ? E[1] \\ still two-dimensional, in a smaller space
 %3 =
 [ 0 -10]
 
 [ 0   3]
 
 [-1   0]
 
 ? s = msfromcusp(M,oo) \\ in terms of the basis for M_8(Gamma_0(2)) !
 %4 = [0, 0, 0, 1]~
 ? mseval(M, s) \\ same symbol as before
 %5 = [1, 0]
 @eprog

Function: msfromell
Class: basic
Section: modular_symbols
C-Name: msfromell
Prototype: GD0,L,
Help: msfromell(E, {sign=0}): return the [M, x], where M is msinit(N,2)
 and x is the modular symbol in M attached to the elliptic curve E/Q.
Doc: Let $E/\Q$ be an elliptic curve of conductor $N$. For $\varepsilon =
 \pm1$, we define the (cuspidal, new) modular symbol $x^\varepsilon$ in
 $H^1_c(X_0(N),\Q)^\varepsilon$  attached to
 $E$. For all primes $p$ not dividing $N$ we have
 $T_p(x^\varepsilon) =  a_p x^\varepsilon$, where $a_p = p+1-\#E(\F_p)$.
 
 Let $\Omega^+ = \kbd{E.omega[1]}$ be the real period of $E$
 (integration of the N\'eron differential $dx/(2y+a_1x+a3)$ on the connected
 component of $E(\R)$, i.e.~the generator of $H_1(E,\Z)^+$) normalized by
 $\Omega^+>0$. Let $i\Omega^-$ the integral on a generator of $H_1(E,\Z)^-$ with
 $\Omega^- \in \R_{>0}$. If $c_\infty$ is the number of connected
 components of $E(\R)$, $\Omega^-$ is equal to
 $(-2/c_\infty) \times \kbd{imag(E.omega[2])}$.
 The complex modular symbol is defined by
 $$F: \delta \to  2i\pi \int_{\delta} f(z) dz$$
 The modular symbols $x^\varepsilon$ are normalized so that
 $ F = x^+ \Omega^+ + x^- i\Omega^-$.
 In particular, we have
 $$ x^+([0]-[\infty]) = L(E,1) / \Omega^+,$$
 which defines $x^{\pm}$ unless $L(E,1)=0$.
 Furthermore, for all fundamental discriminants $D$ such
 that $\varepsilon \cdot D > 0$, we also have
 $$\sum_{0\leq a<|D|} (D|a) x^\varepsilon([a/|D|]-[\infty])
    = L(E,(D|.),1) / \Omega^{\varepsilon},$$
 where $(D|.)$ is the Kronecker symbol.
 The period $\Omega^-$ is also $2/c_\infty \times$ the real period
 of the twist $E^{(-4)} = \kbd{elltwist(E,-4)}$.
 
 This function returns the pair $[M, x]$, where $M$ is
 \kbd{msinit}$(N,2)$ and $x$ is $x^{\var{sign}}$ as above when $\var{sign}=
 \pm1$, and $x = [x^+,x^-]$ when \var{sign} is $0$.
 The modular symbols $x^\pm$ are given as a \typ{COL} (in terms
 of the fixed basis of $\Hom_G(\Delta,\Q)$ chosen in $M$).
 \bprog
 ? E=ellinit([0,-1,1,-10,-20]);  \\ X_0(11)
 ? [M,xp]= msfromell(E,1);
 ? xp
 %3 = [1/5, -1/2, -1/2]~
 ? [M,x]= msfromell(E);
 ? x    \\ both x^+ and x^-
 %5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~]
 ? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]
 %6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]
 @eprog

Function: msfromhecke
Class: basic
Section: modular_symbols
C-Name: msfromhecke
Prototype: GGDG
Help: msfromhecke(M, v, {H}): given a msinit M and a vector v
 of pairs [p, P] (where p is prime and P is a polynomial with integer
 coefficients), return a basis of all modular symbols such that
 P(Tp) * s = 0. If H is present, it must be a Hecke-stable subspace
 and we restrict to s in H.
Doc: given a msinit $M$ and a vector $v$ of pairs $[p, P]$ (where $p$ is prime
 and $P$ is a polynomial with integer coefficients), return a basis of all
 modular symbols such that $P(T_p)(s) = 0$. If $H$ is present, it must
 be a Hecke-stable subspace and we restrict to $s \in H$. When $T_p$ has
 a rational eigenvalue and $P(x) = x-a_p$ has degree $1$, we also accept the
 integer $a_p$ instead of $P$.
 \bprog
 ? E = ellinit([0,-1,1,-10,-20]) \\11a1
 ? ellap(E,2)
 %2 = -2
 ? ellap(E,3)
 %3 = -1
 ? M = msinit(11,2);
 ? S = msfromhecke(M, [[2,-2],[3,-1]])
 %5 =
 [ 1  1]
 
 [-5  0]
 
 [ 0 -5]
 ? mshecke(M, 2, S)
 %6 =
 [-2  0]
 
 [ 0 -2]
 
 ? M = msinit(23,4);
 ? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);
 ? factor( charpoly(mshecke(M,5,S)) )
 %9 =
 [x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]
 @eprog

Function: msgetlevel
Class: basic
Section: modular_symbols
C-Name: msgetlevel
Prototype: lG
Help: msgetlevel(M): M being a full modular symbol space, as given by msinit, return its level N.
Doc: $M$ being a full modular symbol space, as given by \kbd{msinit}, return
 its level $N$.

Function: msgetsign
Class: basic
Section: modular_symbols
C-Name: msgetsign
Prototype: lG
Help: msgetsign(M): M being a full modular symbol space, as given by msinit, return its sign.
Doc: $M$ being a full modular symbol space, as given by \kbd{msinit}, return
 its sign: $\pm1$ or 0 (unset).
 \bprog
 ? M = msinit(11,4, 1);
 ? msgetsign(M)
 %2 = 1
 ? M = msinit(11,4);
 ? msgetsign(M)
 %4 = 0
 @eprog

Function: msgetweight
Class: basic
Section: modular_symbols
C-Name: msgetweight
Prototype: lG
Help: msgetweight(M): M being a full modular symbol space, as given by msinit, return its weight k.
Doc: $M$ being a full modular symbol space, as given by \kbd{msinit}, return
 its weight $k$.
 \bprog
 ? M = msinit(11,4);
 ? msgetweight(M)
 %2 = 4
 @eprog

Function: mshecke
Class: basic
Section: modular_symbols
C-Name: mshecke
Prototype: GLDG
Help: mshecke(M,p,{H}): M being a full modular symbol space, as given by msinit,
 p being a prime number, and H being a Hecke-stable subspace (M if omitted),
 return the matrix of T_p acting on H (U_p if p divides the level).
Doc: $M$ being a full modular symbol space, as given by \kbd{msinit},
 $p$ being a prime number, and $H$ being a Hecke-stable subspace ($M$ if
 omitted) return the matrix of $T_p$ acting on $H$
 ($U_p$ if $p$ divides $N$). Result is undefined if $H$ is not stable
 by $T_p$ (resp.~$U_p$).
 \bprog
 ? M = msinit(11,2); \\ M_2(Gamma_0(11))
 ? T2 = mshecke(M,2)
 %2 =
 [3  0  0]
 
 [1 -2  0]
 
 [1  0 -2]
 ? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
 ? T2 = mshecke(M,2)
 %4 =
 [ 3  0]
 
 [-1 -2]
 
 ? N = msnew(M)[1] \\ Q-basis of new cuspidal subspace
 %5 =
 [-2]
 
 [-5]
 
 ? p = 1009; mshecke(M, p, N) \\ action of T_1009 on N
 %6 =
 [-10]
 ? ellap(ellinit("11a1"), p)
 %7 = -10
 @eprog

Function: msinit
Class: basic
Section: modular_symbols
C-Name: msinit
Prototype: GGD0,L,
Help: msinit(G, V, {sign=0}): given G a finite index subgroup of SL(2,Z)
 and a finite dimensional representation V of GL(2,Q), creates a space of
 modular symbols, the G-module Hom_G(Div^0(P^1 Q), V). This is canonically
 isomorphic to H^1_c(X(G), V), and allows to compute modular forms for G.
 If sign is present and non-zero, it must be +1 or -1 and we consider
 the subspace defined by Ker (Sigma - sign), where Sigma is induced by
 [-1,0;0,1]. Currently the only supported groups are the Gamma_0(N), coded by
 the integer N. The only supported representation is V_k = Q[X,Y]_{k-2}, coded
 by the integer k >= 2.
Doc: given $G$ a finite index subgroup of $\text{SL}(2,\Z)$
 and a finite dimensional representation $V$ of $\text{GL}(2,\Q)$, creates a
 space of modular symbols, the $G$-module $\Hom_G(\text{Div}^0(\P^1
 (\Q)), V)$. This is canonically isomorphic to $H^1_c(X(G), V)$, and allows to
 compute modular forms for $G$. If \emph{sign} is present and non-zero, it
 must be $\pm1$ and we consider the subspace defined by $\text{Ker} (\sigma -
 \var{sign})$, where $\sigma$ is induced by \kbd{[-1,0;0,1]}. Currently the
 only supported groups are the $\Gamma_0(N)$, coded by the integer $N > 1$.
 The only supported representation is $V_k = \Q[X,Y]_{k-2}$, coded by the
 integer $k \geq 2$.

Function: msissymbol
Class: basic
Section: modular_symbols
C-Name: msissymbol
Prototype: lGG
Help: msissymbol(M,s): M being a full modular symbol space, as given by msinit,
 check whether s is a modular symbol attached to M.
Doc: 
 $M$ being a full modular symbol space, as given by \kbd{msinit},
 check whether $s$ is a modular symbol attached to $M$.
 \bprog
 ? M = msinit(7,8, 1); \\ M_8(Gamma_0(7))^+
 ? N = msnew(M)[1];
 ? s = N[,1];
 ? msissymbol(M, s)
 %4 = 1
 ? S = mseval(M,s);
 ? msissymbol(M, S)
 %6 = 1
 ? [g,R] = mspathgens(M); g
 %7 = [[+oo, 0], [0, 1/2], [1/2, 1]]
 ? #R  \\ 3 relations among the generators g_i
 %8 = 3
 ? T = S; T[3]++; \\ randomly perturb S(g_3)
 ? msissymbol(M, T)
 %10 = 0  \\ no longer satisfies the relations
 @eprog

Function: msnew
Class: basic
Section: modular_symbols
C-Name: msnew
Prototype: G
Help: msnew(M): M being a full modular symbol space, as given by msinit,
 return its new cuspidal subspace.
Doc: 
 $M$ being a full modular symbol space, as given by \kbd{msinit},
 return the \emph{new} part of its cuspidal subspace. A subspace is given by
 a structure allowing quick projection and restriction of linear operators;
 its first component is a matrix with integer coefficients whose columns form
 a $\Q$-basis of the subspace.
 \bprog
 ? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
 ? N = msnew(M);
 ? #N[1]  \\ 6-dimensional
 %3 = 6
 @eprog

Function: msomseval
Class: basic
Section: modular_symbols
C-Name: msomseval
Prototype: GGG
Help: msomseval(Mp, PHI, path):
 return the vectors of moments of the p-adic distribution attached
 to the path 'path' via the overconvergent modular symbol 'PHI'.
Doc: return the vectors of moments of the $p$-adic distribution attached
 to the path \kbd{path} by the overconvergent modular symbol \kbd{PHI}.
 \bprog
 ? M = msinit(3,6,1);
 ? Mp= mspadicinit(M,5,10);
 ? phi = [5,-3,-1]~;
 ? msissymbol(M,phi)
 %4 = 1
 ? PHI = mstooms(Mp,phi);
 ? ME = msomseval(Mp,PHI,[oo, 0]);
 @eprog

Function: mspadicL
Class: basic
Section: modular_symbols
C-Name: mspadicL
Prototype: GDGD0,L,
Help: mspadicL(mu, {s = 0}, {r = 0}): given
 mu from mspadicmoments (p-adic distributions attached to an
 overconvergent symbol PHI) returns the value on a
 character of Z_p^* represented by s of the derivative of order r of the
 p-adic L-function attached to PHI.
Doc: Returns the value (or $r$-th derivative)
 on a character $\chi^s$ of $\Z_p^*$ of the $p$-adic $L$-function
 attached to \kbd{mu}.
 
 Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
 attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for
 $T_N(p)$ for the eigenvalue $a_p$). Then $L_p(\Phi,\chi^s)=L_p(\mu,s)$ is the
 $p$-adic $L$ function defined by
 $$L_p(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) d\mu(z)$$
 where $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of
 $\Phi([\infty]-[0])$ to $\Z_p^*$. The $r$-th derivative is taken in
 direction $\langle \chi\rangle$:
 $$L_p^{(r)}(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) (\log z)^r d\mu(z).$$
 In the argument list,
 
 \item \kbd{mu} is as returned by \tet{mspadicmoments} (distributions
 attached to $\Phi$ by restriction to discs $a + p^\nu\Z_p$, $(a,p)=1$).
 
 \item $s=[s_1,s_2]$ with $s_1 \in \Z \subset \Z_p$ and $s_2 \bmod p-1$ or
 $s_2 \bmod 2$ for $p=2$, encoding the $p$-adic character $\chi^s := \langle
 \chi \rangle^{s_1} \tau^{s_2}$; here $\chi$ is the cyclotomic character from
 $\text{Gal}(\Q_p(\mu_{p^\infty})/\Q_p)$ to $\Z_p^*$, and $\tau$ is the
 Teichm\"uller character (for $p>2$ and the character of order 2 on
 $(\Z/4\Z)^*$ if $p=2$); for convenience, the character $[s,s]$ can also be
 represented by the integer $s$.
 
 When $a_p$ is a $p$-adic unit, $L_p$ takes its values in $\Q_p$.
 When $a_p$ is not a unit, it takes its values in the
 two-dimensional $\Q_p$-vector space $D_{cris}(M(\phi))$ where $M(\phi)$ is
 the ``motive'' attached to $\phi$, and we return the two $p$-adic components
 with respect to some fixed $\Q_p$-basis.
 \bprog
 ? M = msinit(3,6,1); phi=[5, -3, -1]~;
 ? msissymbol(M,phi)
 %2 = 1
 ? Mp = mspadicinit(M, 5, 4);
 ? mu = mspadicmoments(Mp, phi); \\ no twist
 \\ End of initializations
 
 ? mspadicL(mu,0) \\ L_p(chi^0)
 %5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...
 ? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons
 %6 = [O(5^13)]~
 ? mspadicL(mu,2) \\ L_p(chi^2)
 %7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...
 ? mspadicL(mu,[0,2]) \\ L_p(tau^2)
 %8 = 3 + 5 + 2*5^2 + 2*5^3 + ...
 ? mspadicL(mu, [1,0]) \\ L_p(<chi>)
 %9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)
 ? mspadicL(mu,0,1) \\ L_p'(chi^0)
 %10 = 2*5 + 4*5^2 + 3*5^3 + ...
 ? mspadicL(mu, 2, 1) \\ L_p'(chi^2)
 %11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...
 @eprog
 
 Now several quadratic twists: \tet{mstooms} is indicated.
 \bprog
 ? PHI = mstooms(Mp,phi);
 ? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
 ? mspadicL(mu)
 %14 = 5 + 5^2 + 5^3 + 2*5^4 + ...
 ? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8
 ? mspadicL(mu)
 %16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...
 ? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0
 ? mspadicL(mu)
 %18 = O(5^13) \\ always 0, phi is in the + part and D < 0
 @eprog
 
 One can locate interesting symbols of level $N$ and weight $k$ with
 \kbd{msnew} and \kbd{mssplit}. Note that instead of a symbol, one can
 input a 1-dimensional Hecke-subspace from \kbd{mssplit}: the function will
 automatically use the underlying basis vector.
 \bprog
 ? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+
 ? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces
 ? phi = L[1]; \\ one Galois orbit of newforms
 ? #phi[1] \\... this one is rational
 %4 = 1
 ? Mp = mspadicinit(M, 3, 4);
 ? mu = mspadicmoments(Mp, phi);
 ? mspadicL(mu)
 %7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)
 
 ? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
 ? Mp = mspadicinit(M, 3, 4);
 ? L = mssplit(M, msnew(M));
 ? phi = L[1]; #phi[1] \\ ... this one is two-dimensional
 %11 = 2
 ? mu = mspadicmoments(Mp, phi);
  ***   at top-level: mu=mspadicmoments(Mp,ph
  ***                    ^--------------------
  *** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]
 @eprog

Function: mspadicinit
Class: basic
Section: modular_symbols
C-Name: mspadicinit
Prototype: GLLD-1,L,
Help: mspadicinit(M, p, n, {flag}): M being a full modular symbol space,
 as given by msinit and a prime p, initialize
 technical data needed to compute with overconvergent modular symbols
 (modulo p^n). If flag is unset, allow all symbols; if flag = 0, restrict
 to ordinary symbols; else initialize for symbols phi such that
 Tp(phi) = a_p * phi, with v_p(a_p) >= flag.
Doc: $M$ being a full modular symbol space, as given by \kbd{msinit}, and $p$
 a prime, initialize technical data needed to compute with overconvergent
 modular symbols, modulo $p^n$. If $\fl$ is unset, allow
 all symbols; else initialize only for a restricted range of symbols
 depending on $\fl$: if $\fl = 0$ restrict to ordinary symbols, else
 restrict to symbols $\phi$ such that $T_p(\phi) = a_p \phi$,
 with $v_p(a_p) \geq \fl$, which is faster as $\fl$ increases.
 (The fastest initialization is obtained for $\fl = 0$ where we only allow
 ordinary symbols.) For supersingular eigensymbols, such that $p\mid a_p$, we
 must further assume that $p$ does not divide the level.
 \bprog
 ? E = ellinit("11a1");
 ? [M,phi] = msfromell(E,1);
 ? ellap(E,3)
 %3 = -1
 ? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
 ? PHI = mstooms(Mp,phi);
 @eprog
 
 If we restrict the range of allowed symbols with \fl (for faster
 initialization), exceptions will occur if $v_p(a_p)$ violates this bound:
 \bprog
 ? E = ellinit("15a1");
 ? [M,phi] = msfromell(E,1);
 ? ellap(E,7)
 %3 = 0
 ? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
 ? PHI = mstooms(Mp,phi)
 ***   at top-level: PHI=mstooms(Mp,phi)
 ***                     ^---------------
 *** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
 ? Mp = mspadicinit(M,7,5); \\ no restriction
 ? PHI = mstooms(Mp,phi);
 @eprog\noindent This function uses $O(N^2(n+k)^2p)$ memory, where $N$ is the
 level of $M$.

Function: mspadicmoments
Class: basic
Section: modular_symbols
C-Name: mspadicmoments
Prototype: GGD1,L,
Help: mspadicmoments(Mp, PHI, {D = 1}): given Mp from mspadicinit, an
 overconvergent eigensymbol PHI, and optionally a fundamental discriminant
 D coprime to p, return the moments of the p-1 distributions
 PHI^D([0]-[oo]) | (a + pZp), 0 < a < p. To be used by mspadicL and
 mspadicseries.
Doc: given \kbd{Mp} from \kbd{mspadicinit}, an overconvergent
 eigensymbol \kbd{PHI} from \kbd{mstooms} and a fundamental discriminant
 $D$ coprime to $p$,
 let $\kbd{PHI}^D$ denote the twisted symbol. This function computes
 the distribution $\mu = \kbd{PHI}^D([0] - \infty]) \mid \Z_p^*$ restricted
 to $\Z_p^*$. More precisely, it returns
 the moments of the $p-1$ distributions $\kbd{PHI}^D([0]-[\infty])
 \mid (a + p\Z_p)$, $0 < a < p$.
 We also allow \kbd{PHI} to be given as a classical
 symbol, which is then lifted to an overconvergent symbol by \kbd{mstooms};
 but this is wasteful if more than one twist is later needed.
 
 The returned data $\mu$ ($p$-adic distributions attached to \kbd{PHI})
 can then be used in \tet{mspadicL} or \tet{mspadicseries}.
 This precomputation allows to quickly compute derivatives of different
 orders or values at different characters.
 \bprog
 ? M = msinit(3,6, 1);
 ? phi = [5,-3,-1]~;
 ? msissymbol(M, phi)
 %3 = 1
 ? p = 5; mshecke(M,p) * phi  \\ eigenvector of T_5, a_5 = 6
 %4 = [30, -18, -6]~
 ? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
 ? PHI = mstooms(Mp, phi);
 ? mu = mspadicmoments(Mp, PHI);
 ? mspadicL(mu)
 %8 = 5 + 2*5^2 + 2*5^3 + ...
 ? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
 ? mspadicL(mu)
 %10 = 5 + 5^2 + 5^3 + 2*5^4 + ...
 @eprog

Function: mspadicseries
Class: basic
Section: modular_symbols
C-Name: mspadicseries
Prototype: GD0,L,
Help: mspadicseries(mu, {i=0}): given mu from mspadicmoments,
 returns the attached p-adic series with maximal p-adic precision, depending
 on the precision of M (i-th Teichmueller component, if present).
Doc: Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
 attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for
 $T_N(p)$ for the eigenvalue $a_p$).
 If $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of
 $\Phi([\infty]-[0])$ to $\Z_p^*$, let
 $$\hat{L}_p(\mu,\tau^{i})(x)
   = \int_{\Z_p^*} \tau^i(t) (1+x)^{\log_p(t)/\log_p(u)}d\mu(t)$$
 Here, $\tau$ is the Teichm\"uller character and $u$ is a specific
 multiplicative generator of $1+2p\Z_p$. (Namely $1+p$ if $p>2$ or $5$
 if $p=2$.) To explain
 the formula, let $G_\infty := \text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$,
 let $\chi:G_\infty\to \Z_p^*$ be the cyclotomic character (isomorphism)
 and $\gamma$ the element of $G_\infty$ such that $\chi(\gamma)=u$;
 then
 $\chi(\gamma)^{\log_p(t)/\log_p(u)}= \langle t \rangle$.
 
 The $p$-padic precision of individual terms is maximal given the precision of
 the overconvergent symbol $\mu$.
 \bprog
 ? [M,phi] = msfromell(ellinit("17a1"),1);
 ? Mp = mspadicinit(M, 5,7);
 ? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol
 ? mspadicseries(mu)
 %4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \
  + (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \
  + (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \
  + (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \
  + (3 + O(5))*x^4 + O(x^5)
 @eprog\noindent
 An example with non-zero Teichm\"uller:
 \bprog
 ? [M,phi] = msfromell(ellinit("11a1"),1);
 ? Mp = mspadicinit(M, 3,10);
 ? mu = mspadicmoments(Mp, phi,1);
 ? mspadicseries(mu, 2)
 %4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \
  + (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \
  + (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \
  + (3 + O(3^2))*x^3 + O(x^4)
 @eprog\noindent
 Supersingular example (not checked)
 \bprog
 ? E = ellinit("17a1"); ellap(E,3)
 %1 = 0
 ? [M,phi] = msfromell(E,1);
 ? Mp = mspadicinit(M, 3,7);
 ? mu = mspadicmoments(Mp, phi,1);
 ? mspadicseries(mu)
 %5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
  + (2 + 3^3 + O(3^5))*x \
  + (1 + 2*3 + O(3^2))*x^2 + O(x^3),\
  (3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
  + (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \
  + (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)]
 @eprog\noindent
 Example with a twist:
 \bprog
 ? E = ellinit("11a1");
 ? [M,phi] = msfromell(E,1);
 ? Mp = mspadicinit(M, 3,10);
 ? mu = mspadicmoments(Mp, phi,5); \\ twist by 5
 ? L = mspadicseries(mu)
 %5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
  + (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \
  + (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)
 ? mspadicL(mu)
 %6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~
 ? ellpadicL(E,3,10,,5)
 %7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)
 ? mspadicseries(mu,1) \\ must be 0
 %8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)
 @eprog

Function: mspathgens
Class: basic
Section: modular_symbols
C-Name: mspathgens
Prototype: G
Help: mspathgens(M): M being a full modular symbol space, as given by
 msinit, return a set of Z[G]-generators for Div^0(P^1 Q). The output
 is [g,R], where g is a minimal system of generators and R the vector of
 Z[G]-relations between the given generators.
Doc: Let $\Delta:=\text{Div}^0(\P^1(\Q))$.
 Let $M$ being a full modular symbol space, as given by \kbd{msinit},
 return a set of $\Z[G]$-generators for $\Delta$. The output
 is $[g,R]$, where $g$ is a minimal system of generators and $R$
 the vector of $\Z[G]$-relations between the given generators. A
 relation is coded by a vector of pairs $[a_i,i]$ with $a_i\in \Z[G]$
 and $i$ the index of a generator, so that $\sum_i a_i g[i] = 0$.
 
 An element $[v]-[u]$ in $\Delta$ is coded by the ``path'' $[u,v]$,
 where \kbd{oo} denotes the point at infinity $(1:0)$ on the projective
 line.
 An element of $\Z[G]$ is coded by a ``factorization matrix'': the first
 column contains distinct elements of $G$, and the second integers:
 \bprog
 ? M = msinit(11,8); \\ M_8(Gamma_0(11))
 ? [g,R] = mspathgens(M);
 ? g
 %3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \\ 3 paths
 ? #R  \\ a single relation
 %4 = 1
 ? r = R[1]; #r \\ ...involving all 3 generators
 %5 = 3
 ? r[1]
 %6 = [[1, 1; [1, 1; 0, 1], -1], 1]
 ? r[2]
 %7 = [[1, 1; [7, -2; 11, -3], -1], 2]
 ? r[3]
 %8 = [[1, 1; [8, -3; 11, -4], -1], 3]
 @eprog\noindent
 The given relation is of the form $\sum_i (1-\gamma_i) g_i = 0$, with
 $\gamma_i\in \Gamma_0(11)$. There will always be a single relation involving
 all generators (corresponding to a round trip along all cusps), then
 relations involving a single generator (corresponding to $2$ and $3$-torsion
 elements in the group:
 \bprog
 ? M = msinit(2,8); \\ M_8(Gamma_0(2))
 ? [g,R] = mspathgens(M);
 ? g
 %3 = [[+oo, 0], [0, 1]]
 @eprog\noindent
 Note that the output depends only on the group $G$, not on the
 representation $V$.

Function: mspathlog
Class: basic
Section: modular_symbols
C-Name: mspathlog
Prototype: GG
Help: mspathlog(M,p): M being a full modular symbol space, as given by
 msinit and p being a path between two elements in P^1(Q), return (p_i)
 in Z[G] such that p = \sum p_i g_i, and the g_i are fixed Z[G]-generators
 for Div^0(P^1 Q), see mspathgens.
Doc: Let $\Delta:=\text{Div}^0(\P^1(\Q))$.
 Let $M$ being a full modular symbol space, as given by \kbd{msinit},
 encoding fixed $\Z[G]$-generators $(g_i)$ of $\Delta$ (see \tet{mspathgens}).
 A path $p=[a,b]$ between two elements in $\P^1(\Q)$ corresponds to
 $[b]-[a]\in \Delta$. The path extremities $a$ and $b$ may be given as
 \typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$.
 
 Returns $(p_i)$ in $\Z[G]$ such that $p = \sum_i p_i g_i$.
 \bprog
 ? M = msinit(2,8); \\ M_8(Gamma_0(2))
 ? [g,R] = mspathgens(M);
 ? g
 %3 = [[+oo, 0], [0, 1]]
 ? p = mspathlog(M, [1/2,2/3]);
 ? p[1]
 %5 =
 [[1, 0; 2, 1] 1]
 
 ? p[2]
 %6 =
 [[1, 0; 0, 1] 1]
 
 [[3, -1; 4, -1] 1]
 
 @eprog\noindent
 Note that the output depends only on the group $G$, not on the
 representation $V$.

Function: msqexpansion
Class: basic
Section: modular_symbols
C-Name: msqexpansion
Prototype: GGDP
Help: msqexpansion(M,projH,{B = seriesprecision}): M being a full modular
 symbol space, as given by msinit, and projH being a projector on a
 Hecke-simple subspace, return the Fourier coefficients [a_n, n <= B]
 of the corresponding normalized newform. If B omitted, use seriesprecision.
Doc: 
 $M$ being a full modular symbol space, as given by \kbd{msinit},
 and \var{projH} being a projector on a Hecke-simple subspace (as given
 by \tet{mssplit}), return the Fourier coefficients $a_n$, $n\leq B$ of the
 corresponding normalized newform. If $B$ is omitted, use
 \kbd{seriesprecision}.
 
 This function uses a naive $O(B^2 d^3)$
 algorithm, where $d = O(kN)$ is the dimension of $M_k(\Gamma_0(N))$.
 \bprog
 ? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
 ? L = mssplit(M, msnew(M));
 ? msqexpansion(M,L[1], 20)
 %3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
 ? ellan(ellinit("11a1"), 20)
 %4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
 @eprog\noindent The shortcut \kbd{msqexpansion(M, s, B)} is available for
 a symbol $s$, provided it is a Hecke eigenvector:
 \bprog
 ? E = ellinit("11a1");
 ? [M,s]=msfromell(E);
 ? msqexpansion(M,s,10)
 %3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
 ? ellan(E, 10)
 %4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
 @eprog

Function: mssplit
Class: basic
Section: modular_symbols
C-Name: mssplit
Prototype: GGD0,L,
Help: mssplit(M,H,{dimlim}): M being a full modular symbol space, as given by
 msinit, and H being a subspace, split H into Hecke-simple subspaces.
 If dimlim is present and positive, restrict to dim <= dimlim.
Doc: 
 Let $M$ denote a full modular symbol space, as given by \kbd{msinit}$(N,k,1)$
 or $\kbd{msinit}(N,k,-1)$ and let $H$ be a Hecke-stable subspace of
 \kbd{msnew}$(M)$. This function split $H$ into Hecke-simple subspaces. If
 \kbd{dimlim} is present and positive, restrict to subspaces of dimension
 $\leq \kbd{dimlim}$. A subspace is given by a structure allowing quick
 projection and restriction of linear operators; its first component is a
 matrix with integer coefficients whose columns form a $\Q$-basis of the
 subspace.
 
 \bprog
 ? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
 ? L = mssplit(M, msnew(M));
 ? #L
 %3 = 2
 ? f = msqexpansion(M,L[1],5); f[1].mod
 %4 = x^2 + 8*x - 44
 ? lift(f)
 %5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
 ? g = msqexpansion(M,L[2],5); g[1].mod
 %6 = x^4 - 558*x^2 + 140*x + 51744
 @eprog\noindent To a Hecke-simple subspace corresponds an orbit of
 (normalized) newforms, defined over a number field. In the above example,
 we printed the polynomials defining the said fields, as well as the first
 5 Fourier coefficients (at the infinite cusp) of one such form.

Function: msstar
Class: basic
Section: modular_symbols
C-Name: msstar
Prototype: GDG
Help: msstar(M,{H}): M being a full modular symbol space,
 as given by msinit, return the matrix of the * involution, induced by
 complex conjugation, acting on the (stable) subspace H (M if omitted).
Doc: $M$ being a full modular symbol space, as given by \kbd{msinit},
 return the matrix of the \kbd{*} involution, induced by complex conjugation,
 acting on the (stable) subspace $H$ ($M$ if omitted).
 \bprog
 ? M = msinit(11,2); \\ M_2(Gamma_0(11))
 ? w = msstar(M);
 ? w^2 == 1
 %3 = 1
 @eprog

Function: mstooms
Class: basic
Section: modular_symbols
C-Name: mstooms
Prototype: GG
Help: mstooms(Mp, phi): given Mp from mspadicinit, lift the
 (classical) eigen symbol phi to a distribution-valued overconvergent symbol
 in the sense of Pollack and Stevens.
 The resulting overconvergent eigensymbol can then be used in
 mspadicmoments, then mspadicL or mspadicseries.
Doc: given \kbd{Mp} from \kbd{mspadicinit}, lift the (classical) eigen symbol
 \kbd{phi} to a $p$-adic distribution-valued overconvergent symbol in the
 sense of Pollack and Stevens. More precisely, let $\phi$ belong to the space
 $W$ of modular symbols of level $N$, $v_p(N) \leq 1$, and weight $k$ which is
 an eigenvector for the Hecke operator $T_N(p)$ for a non-zero eigenvalue
 $a_p$ and let $N_0 = \text{lcm}(N,p)$.
 
 Under the action of $T_{N_0}(p)$, $\phi$ generates a subspace $W_\phi$ of
 dimension $1$ (if $p\mid N$) or $2$ (if $p$ does not divide $N$) in the
 space of modular symbols of level $N_0$.
 
 Let $V_p=[p,0;0,1]$ and $C_p=[a_p,p^{k-1};-1,0]$.
 When $p$ does not divide $N$ and $a_p$ is divisible by $p$, \kbd{mstooms}
 returns the lift $\Phi$ of $(\phi,\phi|_k V_p)$ such that
  $$T_{N_0}(p) \Phi = C_p \Phi$$
 
 When $p$ does not divide $N$ and $a_p$ is not divisible by $p$, \kbd{mstooms}
 returns the lift $\Phi$ of $\phi - \alpha^{-1} \phi|_k V_p$
 which is an eigenvector of $T_{N_0}(p)$ for the unit eigenvalue
 where $\alpha^2 - a_p \alpha + p^{k-1}=0$.
 
 The resulting overconvergent eigensymbol can then be used in
 \tet{mspadicmoments}, then \tet{mspadicL} or \tet{mspadicseries}.
 \bprog
 ? M = msinit(3,6, 1); p = 5;
 ? Tp = mshecke(M, p); factor(charpoly(Tp))
 %2 =
 [x - 3126 2]
 
 [   x - 6 1]
 ? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6
 %3 = [5, -3, -1]~
 ? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
 ? PHI = mstooms(Mp, phi);
 ? mu = mspadicmoments(Mp, PHI);
 ? mspadicL(mu)
 %7 = 5 + 2*5^2 + 2*5^3 + ...
 @eprog
 A non ordinary symbol.
 \bprog
 ? M = msinit(4,6,1); p = 3;
 ? Tp = mshecke(M, p); factor(charpoly(Tp))
 %2 =
 [x - 244 3]
 
 [ x + 12 1]
 ? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
 %3 = [-1/32, -1/4, -1/32, 1]~
 ? msissymbol(M,phi)
 %4 = 1
 ? Mp = mspadicinit(M,3,5,0);
 ? PHI = mstooms(Mp,phi);
  ***   at top-level: PHI=mstooms(Mp,phi)
  ***                     ^---------------
  *** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
 ? Mp = mspadicinit(M,3,5,1);
 ? PHI = mstooms(Mp,phi);
 @eprog

Function: my
Class: basic
Section: programming/specific
Help: my(x,...,z): declare x,...,z as lexically-scoped local variables.

Function: newtonpoly
Class: basic
Section: number_fields
C-Name: newtonpoly
Prototype: GG
Help: newtonpoly(x,p): Newton polygon of polynomial x with respect to the
 prime p.
Doc: gives the vector of the slopes of the Newton
 polygon of the polynomial $x$ with respect to the prime number $p$. The $n$
 components of the vector are in decreasing order, where $n$ is equal to the
 degree of $x$. Vertical slopes occur iff the constant coefficient of $x$ is
 zero and are denoted by \kbd{+oo}.

Function: next
Class: basic
Section: programming/control
C-Name: next0
Prototype: D1,L,
Help: next({n=1}): interrupt execution of current instruction sequence, and
 start another iteration from the n-th innermost enclosing loops.
Doc: interrupts execution of current $seq$,
 resume the next iteration of the innermost enclosing loop, within the
 current function call (or top level loop). If $n$ is specified, resume at
 the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
 loops, all enclosing loops are exited.

Function: nextprime
Class: basic
Section: number_theoretical
C-Name: nextprime
Prototype: G
Help: nextprime(x): smallest pseudoprime >= x.
Description: 
 (gen):int        nextprime($1)
Doc: finds the smallest pseudoprime (see
 \tet{ispseudoprime}) greater than or equal to $x$. $x$ can be of any real
 type. Note that if $x$ is a pseudoprime, this function returns $x$ and not
 the smallest pseudoprime strictly larger than $x$. To rigorously prove that
 the result is prime, use \kbd{isprime}.

Function: nfalgtobasis
Class: basic
Section: number_fields
C-Name: algtobasis
Prototype: GG
Help: nfalgtobasis(nf,x): transforms the algebraic number x into a column
 vector on the integral basis nf.zk.
Doc: Given an algebraic number $x$ in the number field $\var{nf}$,
 transforms it to a column vector on the integral basis \kbd{\var{nf}.zk}.
 \bprog
 ? nf = nfinit(y^2 + 4);
 ? nf.zk
 %2 = [1, 1/2*y]
 ? nfalgtobasis(nf, [1,1]~)
 %3 = [1, 1]~
 ? nfalgtobasis(nf, y)
 %4 = [0, 2]~
 ? nfalgtobasis(nf, Mod(y, y^2+4))
 %5 = [0, 2]~
 @eprog
 This is the inverse function of \kbd{nfbasistoalg}.

Function: nfbasis
Class: basic
Section: number_fields
C-Name: nfbasis_gp
Prototype: G
Help: nfbasis(T): integral basis of the field Q[a], where a is
 a root of the polynomial T, using the round 4 algorithm. An argument
 [T,listP] is possible, where listP is a list of primes (to get an
 order which is maximal at certain primes only) or a prime bound.
Doc: 
 Let $T(X)$ be an irreducible polynomial with integral coefficients. This
 function returns an \idx{integral basis} of the number field defined by $T$,
 that is a $\Z$-basis of its maximal order. The basis elements are given as
 elements in $\Q[X]/(T)$:
 \bprog
 ? nfbasis(x^2 + 1)
 %1 = [1, x]
 @eprog
 This function uses a modified version of the \idx{round 4} algorithm,
 due to David \idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}.
 
 \misctitle{Local basis, orders maximal at certain primes}
 
 Obtaining the maximal order is hard: it requires factoring the discriminant
 $D$ of $T$. Obtaining an order which is maximal at a finite explicit set of
 primes is easy, but it may then be a strict suborder of the maximal order. To
 specify that we are interested in a given set of places only, we can replace
 the argument $T$ by an argument $[T,\var{listP}]$, where \var{listP} encodes
 the primes we are interested in: it must be a factorization matrix, a vector
 of integers or a single integer.
 
 \item Vector: we assume that it contains distinct \emph{prime} numbers.
 
 \item Matrix: we assume that it is a two-column matrix of a
 (partial) factorization of $D$; namely the first column contains
 distinct \emph{primes} and the second one the valuation of $D$ at each of
 these primes.
 
 \item Integer $B$: this is replaced by the vector of primes up to $B$. Note
 that the function will use at least $O(B)$ time: a small value, about
 $10^5$, should be enough for most applications. Values larger than $2^{32}$
 are not supported.
 
 In all these cases, the primes may or may not divide the discriminant $D$
 of $T$. The function then returns a $\Z$-basis of an order whose index is
 not divisible by any of these prime numbers. The result is actually a global
 integral basis if all prime divisors of the \emph{field} discriminant are
 included! Note that \kbd{nfinit} has built-in support for such
 a check:
 \bprog
 ? K = nfinit([T, listP]);
 ? nfcertify(K)   \\ we computed an actual maximal order
 %2 = [];
 @eprog\noindent The first line initializes a number field structure
 incorporating \kbd{nfbasis([T, listP]} in place of a proven integral basis.
 The second line certifies that the resulting structure is correct. This
 allows to create an \kbd{nf} structure attached to the number field $K =
 \Q[X]/(T)$, when the discriminant of $T$ cannot be factored completely,
 whereas the prime divisors of $\disc K$ are known.
 
 Of course, if \var{listP} contains a single prime number $p$,
 the function returns a local integral basis for $\Z_p[X]/(T)$:
 \bprog
 ? nfbasis(x^2+x-1001)
 %1 = [1, 1/3*x - 1/3]
 ? nfbasis( [x^2+x-1001, [2]] )
 %2 = [1, x]
 @eprog
 
 \misctitle{The Buchmann-Lenstra algorithm}
 
 We now complicate the picture: it is in fact allowed to include
 \emph{composite} numbers instead of primes
 in \kbd{listP} (Vector or Matrix case), provided they are pairwise coprime.
 The result will still be a correct integral basis \emph{if}
 the field discriminant factors completely over the actual primes in the list.
 Adding a composite $C$ such that $C^2$ \emph{divides} $D$ may help because
 when we consider $C$ as a prime and run the algorithm, two good things can
 happen: either we
 succeed in proving that no prime dividing $C$ can divide the index
 (without actually needing to find those primes), or the computation
 exhibits a non-trivial zero divisor, thereby factoring $C$ and
 we go on with the refined factorization. (Note that including a $C$
 such that $C^2$ does not divide $D$ is useless.) If neither happen, then the
 computed basis need not generate the maximal order. Here is an example:
 \bprog
 ? B = 10^5;
 ? P = factor(poldisc(T), B)[,1]; \\ primes <= B dividing D + cofactor
 ? basis = nfbasis([T, listP])
 ? disc = nfdisc([T, listP])
 @eprog\noindent We obtain the maximal order and its discriminant if the
 field discriminant factors
 completely over the primes less than $B$ (together with the primes
 contained in the \tet{addprimes} table). This can be tested as follows:
 \bprog
   check = factor(disc, B);
   lastp = check[-1..-1,1];
   if (lastp > B && !setsearch(addprimes(), lastp),
     warning("nf may be incorrect!"))
 @eprog\noindent
 This is a sufficient but not a necessary condition, hence the warning,
 instead of an error. N.B. \kbd{lastp} is the last entry
 in the first column of the \kbd{check} matrix, i.e. the largest prime
 dividing \kbd{nf.disc} if $\leq B$ or if it belongs to the prime table.
 
 The function \tet{nfcertify} speeds up and automates the above process:
 \bprog
 ? B = 10^5;
 ? nf = nfinit([T, B]);
 ? nfcertify(nf)
 %3 = []      \\ nf is unconditionally correct
 ? basis = nf.zk;
 ? disc = nf.disc;
 @eprog
 
 \synt{nfbasis}{GEN T, GEN *d, GEN listP = NULL}, which returns the order
 basis, and where \kbd{*d} receives the order discriminant.

Function: nfbasistoalg
Class: basic
Section: number_fields
C-Name: basistoalg
Prototype: GG
Help: nfbasistoalg(nf,x): transforms the column vector x on the integral
 basis into an algebraic number.
Doc: Given an algebraic number $x$ in the number field \var{nf}, transforms it
 into \typ{POLMOD} form.
 \bprog
 ? nf = nfinit(y^2 + 4);
 ? nf.zk
 %2 = [1, 1/2*y]
 ? nfbasistoalg(nf, [1,1]~)
 %3 = Mod(1/2*y + 1, y^2 + 4)
 ? nfbasistoalg(nf, y)
 %4 = Mod(y, y^2 + 4)
 ? nfbasistoalg(nf, Mod(y, y^2+4))
 %5 = Mod(y, y^2 + 4)
 @eprog
 This is the inverse function of \kbd{nfalgtobasis}.

Function: nfcertify
Class: basic
Section: number_fields
C-Name: nfcertify
Prototype: G
Help: nfcertify(nf): returns a vector of composite integers used to certify
 nf.zk and nf.disc unconditionally (both are correct when the output
 is the empty vector).
Doc: $\var{nf}$ being as output by
 \kbd{nfinit}, checks whether the integer basis is known unconditionally.
 This is in particular useful when the argument to \kbd{nfinit} was of the
 form $[T, \kbd{listP}]$, specifying a finite list of primes when
 $p$-maximality had to be proven, or a list of coprime integers to which
 Buchmann-Lenstra algorithm was to be applied.
 
 The function returns a vector of coprime composite integers. If this vector
 is empty, then \kbd{nf.zk} and \kbd{nf.disc} are correct. Otherwise, the
 result is dubious. In order to obtain a certified result, one must completely
 factor each of the given integers, then \kbd{addprime} each of their prime
 factors, then check whether \kbd{nfdisc(nf.pol)} is equal to \kbd{nf.disc}.

Function: nfcompositum
Class: basic
Section: number_fields
C-Name: nfcompositum
Prototype: GGGD0,L,
Help: nfcompositum(nf,P,Q,{flag=0}): vector of all possible compositums
 of the number fields defined by the polynomials P and Q; flag is
 optional, whose binary digits mean 1: output for each compositum, not only
 the compositum polynomial pol, but a vector [R,a,b,k] where a (resp. b) is a
 root of P (resp. Q) expressed as a polynomial modulo R, and a small integer k
 such that al2+k*al1 is the chosen root of R; 2: assume that the number
 fields defined by P and Q are linearly disjoint.
Doc: Let \var{nf} be a number field structure attached to the field $K$
 and let \sidx{compositum} $P$ and $Q$
 be squarefree polynomials in $K[X]$ in the same variable. Outputs
 the simple factors of the \'etale $K$-algebra $A = K[X, Y] / (P(X), Q(Y))$.
 The factors are given by a list of polynomials $R$ in $K[X]$, attached to
 the number field $K[X]/ (R)$, and sorted by increasing degree (with respect
 to lexicographic ordering for factors of equal degrees). Returns an error if
 one of the polynomials is not squarefree.
 
 Note that it is more efficient to reduce to the case where $P$ and $Q$ are
 irreducible first. The routine will not perform this for you, since it may be
 expensive, and the inputs are irreducible in most applications anyway. In
 this case, there will be a single factor $R$ if and only if the number
 fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
 $K$).
 
 The binary digits of $\fl$ mean
 
 1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
 ranges through the list of all possible compositums as above, and $a$
 (resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
 $K[X]/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
 $R$.
 
 2: assume that $P$ and $Q$ define number fields that are linearly disjoint:
 both polynomials are irreducible and the corresponding number fields
 have no common subfield besides $K$. This allows to save a costly
 factorization over $K$. In this case return the single simple factor
 instead of a vector with one element.
 
 A compositum is often defined by a complicated polynomial, which it is
 advisable to reduce before further work. Here is an example involving
 the field $K(\zeta_5, 5^{1/10})$, $K=\Q(\sqrt{5})$:
 \bprog
 ? K = nfinit(y^2-5);
 ? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
 ? [R, a] = L[1];  \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
 ? lift(R)         \\@com defines the compositum
 %4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \
 (-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 +    \
 (-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
 ? a^5 - y         \\@com a fifth root of $y$
 %5 = 0
 ? [T, X] = rnfpolredbest(K, R, 1);
 ? lift(T)     \\@com simpler defining polynomial for $K[x]/(R)$
 %7 = x^10 + (-11/2*y + 25/2)
 ? liftall(X)  \\ @com root of $R$ in $K[x]/(T(x))$
 %8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
 ? a = subst(a.pol, 'x, X);  \\@com \kbd{a} in the new coordinates
 ? liftall(a)
 %10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
 ? a^5 - y
 %11 = 0
 @eprog
 
 The main variables of $P$ and $Q$ must be the same and have higher priority
 than that of \var{nf} (see~\kbd{varhigher} and~\kbd{varlower}).

Function: nfdetint
Class: basic
Section: number_fields
C-Name: nfdetint
Prototype: GG
Help: nfdetint(nf,x): multiple of the ideal determinant of the pseudo
 generating set x.
Doc: given a pseudo-matrix $x$, computes a
 non-zero ideal contained in (i.e.~multiple of) the determinant of $x$. This
 is particularly useful in conjunction with \kbd{nfhnfmod}.

Function: nfdisc
Class: basic
Section: number_fields
C-Name: nfdisc
Prototype: G
Help: nfdisc(T): discriminant of the number field defined by
 the polynomial T. An argument [T,listP] is possible, where listP is a list
 of primes or a prime bound.
Doc: \idx{field discriminant} of the number field defined by the integral,
 preferably monic, irreducible polynomial $T(X)$. Returns the discriminant of
 the number field $\Q[X]/(T)$, using the Round $4$ algorithm.
 
 \misctitle{Local discriminants, valuations at certain primes}
 
 As in \kbd{nfbasis}, the argument $T$ can be replaced by $[T,\var{listP}]$,
 where \kbd{listP} is as in \kbd{nfbasis}: a vector of
 pairwise coprime integers (usually distinct primes), a factorization matrix,
 or a single integer. In that case, the function returns the discriminant of
 an order whose basis is given by \kbd{nfbasis(T,listP)}, which need not be
 the maximal order, and whose valuation at a prime entry in \kbd{listP} is the
 same as the valuation of the field discriminant.
 
 In particular, if \kbd{listP} is $[p]$ for a prime $p$, we can
 return the $p$-adic discriminant of the maximal order of $\Z_p[X]/(T)$,
 as a power of $p$, as follows:
 \bprog
 ? padicdisc(T,p) = p^valuation(nfdisc(T,[p]), p);
 ? nfdisc(x^2 + 6)
 %2 = -24
 ? padicdisc(x^2 + 6, 2)
 %3 = 8
 ? padicdisc(x^2 + 6, 3)
 %4 = 3
 @eprog
 
 \synt{nfdisc}{GEN T} (\kbd{listP = NULL}). Also available is
 \fun{GEN}{nfbasis}{GEN T, GEN *d, GEN listP = NULL}, which returns the order
 basis, and where \kbd{*d} receives the order discriminant.

Function: nfeltadd
Class: basic
Section: number_fields
C-Name: nfadd
Prototype: GGG
Help: nfeltadd(nf,x,y): element x+y in nf.
Doc: 
 given two elements $x$ and $y$ in
 \var{nf}, computes their sum $x+y$ in the number field $\var{nf}$.

Function: nfeltdiv
Class: basic
Section: number_fields
C-Name: nfdiv
Prototype: GGG
Help: nfeltdiv(nf,x,y): element x/y in nf.
Doc: given two elements $x$ and $y$ in
 \var{nf}, computes their quotient $x/y$ in the number field $\var{nf}$.

Function: nfeltdiveuc
Class: basic
Section: number_fields
C-Name: nfdiveuc
Prototype: GGG
Help: nfeltdiveuc(nf,x,y): gives algebraic integer q such that x-qy is small.
Doc: given two elements $x$ and $y$ in
 \var{nf}, computes an algebraic integer $q$ in the number field $\var{nf}$
 such that the components of $x-qy$ are reasonably small. In fact, this is
 functionally identical to \kbd{round(nfdiv(\var{nf},x,y))}.

Function: nfeltdivmodpr
Class: basic
Section: number_fields
C-Name: nfdivmodpr
Prototype: GGGG
Help: nfeltdivmodpr(nf,x,y,pr): this function is obsolete, use nfmodpr.
Doc: this function is obsolete, use \kbd{nfmodpr}.
 
 Given two elements $x$
 and $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
 \tet{nfmodprinit}), computes their quotient $x / y$ modulo the prime ideal
 \var{pr}.
Obsolete: 2016-08-09
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfeltdivrem
Class: basic
Section: number_fields
C-Name: nfdivrem
Prototype: GGG
Help: nfeltdivrem(nf,x,y): gives [q,r] such that r=x-qy is small.
Doc: given two elements $x$ and $y$ in
 \var{nf}, gives a two-element row vector $[q,r]$ such that $x=qy+r$, $q$ is
 an algebraic integer in $\var{nf}$, and the components of $r$ are
 reasonably small.

Function: nfeltmod
Class: basic
Section: number_fields
C-Name: nfmod
Prototype: GGG
Help: nfeltmod(nf,x,y): gives r such that r=x-qy is small with q algebraic
 integer.
Doc: 
 given two elements $x$ and $y$ in
 \var{nf}, computes an element $r$ of $\var{nf}$ of the form $r=x-qy$ with
 $q$ and algebraic integer, and such that $r$ is small. This is functionally
 identical to
 $$\kbd{x - nfmul(\var{nf},round(nfdiv(\var{nf},x,y)),y)}.$$

Function: nfeltmul
Class: basic
Section: number_fields
C-Name: nfmul
Prototype: GGG
Help: nfeltmul(nf,x,y): element x.y in nf.
Doc: 
 given two elements $x$ and $y$ in
 \var{nf}, computes their product $x*y$ in the number field $\var{nf}$.

Function: nfeltmulmodpr
Class: basic
Section: number_fields
C-Name: nfmulmodpr
Prototype: GGGG
Help: nfeltmulmodpr(nf,x,y,pr): this function is obsolete, use nfmodpr.
Doc: this function is obsolete, use \kbd{nfmodpr}.
 
 Given two elements $x$ and
 $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
 \tet{nfmodprinit}), computes their product $x*y$ modulo the prime ideal
 \var{pr}.
Obsolete: 2016-08-09
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfeltnorm
Class: basic
Section: number_fields
C-Name: nfnorm
Prototype: GG
Help: nfeltnorm(nf,x): norm of x.
Doc: returns the absolute norm of $x$.

Function: nfeltpow
Class: basic
Section: number_fields
C-Name: nfpow
Prototype: GGG
Help: nfeltpow(nf,x,k): element x^k in nf.
Doc: given an element $x$ in \var{nf}, and a positive or negative integer $k$,
 computes $x^k$ in the number field $\var{nf}$.
Variant: \fun{GEN}{nfinv}{GEN nf, GEN x} correspond to $k = -1$, and
 \fun{GEN}{nfsqr}{GEN nf,GEN x} to $k = 2$.

Function: nfeltpowmodpr
Class: basic
Section: number_fields
C-Name: nfpowmodpr
Prototype: GGGG
Help: nfeltpowmodpr(nf,x,k,pr): this function is obsolete, use nfmodpr.
Doc: this function is obsolete, use \kbd{nfmodpr}.
 
 Given an element $x$ in \var{nf}, an integer $k$ and a prime ideal
 \var{pr} in \kbd{modpr} format
 (see \tet{nfmodprinit}), computes $x^k$ modulo the prime ideal \var{pr}.
Obsolete: 2016-08-09
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfeltreduce
Class: basic
Section: number_fields
C-Name: nfreduce
Prototype: GGG
Help: nfeltreduce(nf,a,id): gives r such that a-r is in the ideal id and r
 is small.
Doc: given an ideal \var{id} in
 Hermite normal form and an element $a$ of the number field $\var{nf}$,
 finds an element $r$ in $\var{nf}$ such that $a-r$ belongs to the ideal
 and $r$ is small.

Function: nfeltreducemodpr
Class: basic
Section: number_fields
C-Name: nfreducemodpr
Prototype: GGG
Help: nfeltreducemodpr(nf,x,pr): this function is obsolete, use nfmodpr.
Doc: this function is obsolete, use \kbd{nfmodpr}.
 
 Given an element $x$ of the number field $\var{nf}$ and a prime ideal
 \var{pr} in \kbd{modpr} format compute a canonical representative for the
 class of $x$ modulo \var{pr}.
Obsolete: 2016-08-09
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfelttrace
Class: basic
Section: number_fields
C-Name: nftrace
Prototype: GG
Help: nfelttrace(nf,x): trace of x.
Doc: returns the absolute trace of $x$.

Function: nfeltval
Class: basic
Section: number_fields
C-Name: gpnfvalrem
Prototype: GGGD&
Help: nfeltval(nf,x,pr,{&y}): valuation of element x at the prime pr as output
 by idealprimedec.
Doc: given an element $x$ in
 \var{nf} and a prime ideal \var{pr} in the format output by
 \kbd{idealprimedec}, computes the valuation $v$ at \var{pr} of the
 element $x$. The valuation of $0$ is \kbd{+oo}.
 \bprog
 ? nf = nfinit(x^2 + 1);
 ? P = idealprimedec(nf, 2)[1];
 ? nfeltval(nf, x+1, P)
 %3 = 1
 @eprog\noindent
 This particular valuation can also be obtained using
 \kbd{idealval(\var{nf},x,\var{pr})}, since $x$ is then converted to a
 principal ideal.
 
 If the $y$ argument is present, sets $y = x \tau^v$, where $\tau$ is a
 fixed ``anti-uniformizer'' for \var{pr}: its valuation at \var{pr} is $-1$;
 its valuation is $0$ at other prime ideals dividing \kbd{\var{pr}.p} and
 nonnegative at all other primes. In other words $y$ is the part of $x$
 coprime to \var{pr}. If $x$ is an algebraic integer, so is $y$.
 \bprog
 ? nfeltval(nf, x+1, P, &y); y
 %4 = [0, 1]~
 @eprog
 For instance if $x = \prod_i x_i^{e_i}$ is known to be coprime to \var{pr},
 where the $x_i$ are algebraic integers and $e_i\in\Z$ then,
 if $v_i = \kbd{nfeltval}(\var{nf}, x_i, \var{pr}, \&y_i)$, we still
 have $x = \prod_i y_i^{e_i}$, where the $y_i$ are still algebraic integers
 but now all of them are coprime to \var{pr}. They can then be mapped to
 the residue field of \var{pr} more efficiently than if the product had
 been expanded beforehand: we can reduce mod \var{pr} after each ring
 operation.
Variant: Also available is
 \fun{long}{nfvalrem}{GEN nf, GEN x, GEN pr, GEN *y = NULL}, which returns
 \tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer.

Function: nffactor
Class: basic
Section: number_fields
C-Name: nffactor
Prototype: GG
Help: nffactor(nf,T): factor polynomial T in number field nf.
Doc: factorization of the univariate
 polynomial $T$ over the number field $\var{nf}$ given by \kbd{nfinit}; $T$
 has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or
 column vector). The factors are sorted by increasing degree.
 
 The main variable of $\var{nf}$ must be of \emph{lower}
 priority than that of $T$, see \secref{se:priority}. However if
 the polynomial defining the number field occurs explicitly  in the
 coefficients of $T$ as modulus of a \typ{POLMOD} or as a \typ{POL}
 coefficient, its main variable must be \emph{the same} as the main variable
 of $T$. For example,
 \bprog
 ? nf = nfinit(y^2 + 1);
 ? nffactor(nf, x^2 + y); \\@com OK
 ? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ @com OK
 ? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ @com WRONG
 @eprog
 
 It is possible to input a defining polynomial for \var{nf}
 instead, but this is in general less efficient since parts of an \kbd{nf}
 structure will then be computed internally. This is useful in two
 situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
 initialize an \kbd{nf} due to integer factorization difficulties when
 attempting to compute the field discriminant and maximal order. In all
 cases, the function runs in polynomial time using Belabas's variant
 of \idx{van Hoeij}'s algorithm, which copes with hundreds of modular factors.
 
 \misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
 time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
 which is not guaranteed to be maximal at all primes. Always either use
 \kbd{nfcertify} first (which may not run in polynomial time) or make sure
 to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nffactor} is
 able to recover in polynomial time in this case, instead of potentially
 missing a factor.

Function: nffactorback
Class: basic
Section: number_fields
C-Name: nffactorback
Prototype: GGDG
Help: nffactorback(nf,f,{e}): given a factorisation f, returns
 the factored object back as an nf element.
Doc: gives back the \var{nf} element corresponding to a factorization.
 The integer $1$ corresponds to the empty factorization.
 
 If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
 integral), and the corresponding factorization is the product of the
 $f[i]^{e[i]}$.
 
 If not, and $f$ is vector, it is understood as in the preceding case with $e$
 a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
 regular factorization matrix.
 \bprog
 ? nf = nfinit(y^2+1);
 ? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
 %2 = [12, -66]~
 ? 3 * (I+1)^2 * (1+2*I)^3
 %3 = 12 - 66*I
 @eprog

Function: nffactormod
Class: basic
Section: number_fields
C-Name: nffactormod
Prototype: GGG
Help: nffactormod(nf,Q,pr): this routine is obsolete, use nfmodpr and
 factorff. Factor polynomial Q modulo prime ideal pr
 in number field nf.
Doc: this routine is obsolete, use \kbd{nfmodpr} and \kbd{factorff}.
 
 Factors the univariate polynomial $Q$ modulo the prime ideal \var{pr} in
 the number field $\var{nf}$. The coefficients of $Q$ belong to the number
 field (scalar, polmod, polynomial, even column vector) and the main variable
 of $\var{nf}$ must be of lower priority than that of $Q$ (see
 \secref{se:priority}). The prime ideal \var{pr} is either in
 \tet{idealprimedec} or (preferred) \tet{modprinit} format. The coefficients
 of the polynomial factors are lifted to elements of \var{nf}:
 \bprog
 ? K = nfinit(y^2+1);
 ? P = idealprimedec(K, 3)[1];
 ? nffactormod(K, x^2 + y*x + 18*y+1, P)
 %3 =
 [x + (2*y + 1) 1]
 
 [x + (2*y + 2) 1]
 ? P = nfmodprinit(K, P);  \\ convert to nfmodprinit format
 ? nffactormod(K, x^2 + y*x + 18*y+1)
 %5 =
 [x + (2*y + 1) 1]
 
 [x + (2*y + 2) 1]
 @eprog\noindent Same result, of course, here about 10\% faster due to the
 precomputation.
Obsolete: 2016-09-18

Function: nfgaloisapply
Class: basic
Section: number_fields
C-Name: galoisapply
Prototype: GGG
Help: nfgaloisapply(nf,aut,x): apply the Galois automorphism aut to the object
 x (element or ideal) in the number field nf.
Doc: let $\var{nf}$ be a
 number field as output by \kbd{nfinit}, and let \var{aut} be a \idx{Galois}
 automorphism of $\var{nf}$ expressed by its image on the field generator
 (such automorphisms can be found using \kbd{nfgaloisconj}). The function
 computes the action of the automorphism \var{aut} on the object $x$ in the
 number field; $x$ can be a number field element, or an ideal (possibly
 extended). Because of possible confusion with elements and ideals, other
 vector or matrix arguments are forbidden.
  \bprog
  ? nf = nfinit(x^2+1);
  ? L = nfgaloisconj(nf)
  %2 = [-x, x]~
  ? aut = L[1]; /* the non-trivial automorphism */
  ? nfgaloisapply(nf, aut, x)
  %4 = Mod(-x, x^2 + 1)
  ? P = idealprimedec(nf,5); /* prime ideals above 5 */
  ? nfgaloisapply(nf, aut, P[2]) == P[1]
  %6 = 0 \\ !!!!
  ? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
  %7 = 1
 @eprog\noindent The surprising failure of the equality test (\kbd{\%7}) is
 due to the fact that although the corresponding prime ideals are equal, their
 representations are not. (A prime ideal is specified by a uniformizer, and
 there is no guarantee that applying automorphisms yields the same elements
 as a direct \kbd{idealprimedec} call.)
 
 The automorphism can also be given as a column vector, representing the
 image of \kbd{Mod(x, nf.pol)} as an algebraic number. This last
 representation is more efficient and should be preferred if a given
 automorphism must be used in many such calls.
 \bprog
  ? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
  ? aut = nfgaloisconj(nf)[2]; \\ @com an automorphism in basistoalg form
  %2 = -31/11*x^2 + 1109/11*x - 925/11
  ? AUT = nfalgtobasis(nf, aut); \\ @com same in algtobasis form
  %3 = [16, -6, 5]~
  ? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
  %4 = 1 \\ @com same result...
  ? for (i=1,10^5, nfgaloisapply(nf, aut, v))
  time = 463 ms.
  ? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
  time = 343 ms.  \\ @com but the latter is faster
 @eprog

Function: nfgaloisconj
Class: basic
Section: number_fields
C-Name: galoisconj0
Prototype: GD0,L,DGp
Help: nfgaloisconj(nf,{flag=0},{d}): list of conjugates of a root of the
 polynomial x=nf.pol in the same number field. flag is optional (set to 0 by
 default), meaning 0: use combination of flag 4 and 1, always complete; 1:
 use nfroots; 4: use Allombert's algorithm, complete if the field is Galois of
 degree <= 35 (see manual for details). nf can be simply a polynomial.
Doc: $\var{nf}$ being a number field as output by \kbd{nfinit}, computes the
 conjugates of a root $r$ of the non-constant polynomial $x=\var{nf}[1]$
 expressed as polynomials in $r$. This also makes sense when the number field
 is not \idx{Galois} since some conjugates may lie in the field.
 $\var{nf}$ can simply be a polynomial.
 
 If no flags or $\fl=0$, use a combination of flag $4$ and $1$ and the result
 is always complete. There is no point whatsoever in using the other flags.
 
 If $\fl=1$, use \kbd{nfroots}: a little slow, but guaranteed to work in
 polynomial time.
 
 If $\fl=4$, use \kbd{galoisinit}: very fast, but only applies to (most)
 Galois fields. If the field is Galois with weakly super-solvable Galois
 group (see \tet{galoisinit}), return the complete list of automorphisms, else
 only the identity element. If present, $d$ is assumed to be a multiple of the
 least common denominator of the conjugates expressed as polynomial in a root
 of \var{pol}.
 
 This routine can only compute $\Q$-automorphisms, but it may be used to get
 $K$-automorphism for any base field $K$ as follows:
 \bprog
 rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
 {
   my(polabs, N,al,S, ala,k, vR);
   R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
   vR = variable(R);
   al = Mod(variable(nfK.pol),nfK.pol);
   [polabs,ala,k] = rnfequation(nfK, R, 1);
   Rt = if(k==0,R,subst(R,vR,vR-al*k));
   N = nfgaloisconj(polabs) % Rt; \\ Q-automorphisms of L
   S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);
   if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));
 }
 K  = nfinit(y^2 + 7);
 rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1)  \\ K-automorphisms of L
 @eprog
Variant: Use directly
 \fun{GEN}{galoisconj}{GEN nf, GEN d}, corresponding to $\fl = 0$, the others
 only have historical interest.

Function: nfgrunwaldwang
Class: basic
Section: number_fields
C-Name: nfgrunwaldwang
Prototype: GGGGDn
Help: nfgrunwaldwang(nf,Lpr,Ld,pl,{v='x}): a polynomial in the variable v
 defining a cyclic extension of nf (given in nf or bnf form) with local
 behaviour prescribed by Lpr, Ld and pl: the extension has local degree a
 multiple of Ld[i] at the prime Lpr[i], and the extension is complex at the
 i-th real place of nf if pl[i]=-1 (no condition if pl[i]=0). The extension
 has degree the LCM of the local degrees.
Doc: Given \var{nf} a number field in \var{nf} or \var{bnf} format,
 a \typ{VEC} \var{Lpr} of primes of \var{nf} and a \typ{VEC} \var{Ld} of
 positive integers of the same length, a \typ{VECSMALL} \var{pl} of length
 $r_1$ the number of real places of \var{nf}, computes a polynomial with
 coefficients in \var{nf} defining a cyclic extension of \var{nf} of
 minimal degree satisfying certain local conditions:
 
 \item at the prime \kbd{Lpr[i]}, the extension has local degree a multiple of
 \kbd{Ld[i]};
 
 \item at the $i$-th real place of \var{nf}, it is complex if $pl[i]=-1$
 (no condition if $pl[i]=0$).
 
 The extension has degree the LCM of the local degrees. Currently, the degree
 is restricted to be a prime power for the search, and to be prime for the
 construction because of the \kbd{rnfkummer} restrictions.
 
 When \var{nf} is $\Q$, prime integers are accepted instead of \kbd{prid}
 structures. However, their primality is not checked and the behaviour is
 undefined if you provide a composite number.
 
 \misctitle{Warning} If the number field \var{nf} does not contain the $n$-th
 roots of unity where $n$ is the degree of the extension to be computed,
 triggers the computation of the \var{bnf} of $nf(\zeta_n)$, which may be
 costly.
 
 \bprog
 ? nf = nfinit(y^2-5);
 ? pr = idealprimedec(nf,13)[1];
 ? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)
 %3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)
 @eprog

Function: nfhilbert
Class: basic
Section: number_fields
C-Name: nfhilbert0
Prototype: lGGGDG
Help: nfhilbert(nf,a,b,{pr}): if pr is omitted, global Hilbert symbol (a,b) in
 nf, that is 1 if X^2-aY^2-bZ^2 has a non-trivial solution (X,Y,Z) in nf, -1
 otherwise. Otherwise compute the local symbol modulo the prime ideal pr.
Doc: if \var{pr} is omitted,
 compute the global quadratic \idx{Hilbert symbol} $(a,b)$ in $\var{nf}$, that
 is $1$ if $x^2 - a y^2 - b z^2$ has a non trivial solution $(x,y,z)$ in
 $\var{nf}$, and $-1$ otherwise. Otherwise compute the local symbol modulo
 the prime ideal \var{pr}, as output by \kbd{idealprimedec}.
Variant: 
 Also available is \fun{long}{nfhilbert}{GEN bnf,GEN a,GEN b} (global
 quadratic Hilbert symbol).

Function: nfhnf
Class: basic
Section: number_fields
C-Name: nfhnf0
Prototype: GGD0,L,
Help: nfhnf(nf,x,{flag=0}): if x=[A,I], gives a pseudo-basis [B,J] of the module
 sum A_jI_j. If flag is non-zero, return [[B,J], U], where U is the
 transformation matrix such that AU = [0|B].
Doc: given a pseudo-matrix $(A,I)$, finds a
 pseudo-basis $(B,J)$ in \idx{Hermite normal form} of the module it generates.
 If $\fl$ is non-zero, also return the transformation matrix $U$ such that
 $AU = [0|B]$.
Variant: Also available:
 
 \fun{GEN}{nfhnf}{GEN nf, GEN x} ($\fl = 0$).
 
 \fun{GEN}{rnfsimplifybasis}{GEN bnf, GEN x} simplifies the pseudo-basis
 given by $x = (A,I)$. The ideals in the list $I$ are integral, primitive and
 either trivial (equal to the full ring of integer) or non-principal.

Function: nfhnfmod
Class: basic
Section: number_fields
C-Name: nfhnfmod
Prototype: GGG
Help: nfhnfmod(nf,x,detx): if x=[A,I], and detx is a multiple of the ideal
 determinant of x, gives a pseudo-basis of the module sum A_jI_j.
Doc: given a pseudo-matrix $(A,I)$
 and an ideal \var{detx} which is contained in (read integral multiple of) the
 determinant of $(A,I)$, finds a pseudo-basis in \idx{Hermite normal form}
 of the module generated by $(A,I)$. This avoids coefficient explosion.
 \var{detx} can be computed using the function \kbd{nfdetint}.

Function: nfinit
Class: basic
Section: number_fields
C-Name: nfinit0
Prototype: GD0,L,p
Help: nfinit(pol,{flag=0}): pol being a nonconstant irreducible polynomial,
 gives the vector: [pol,[r1,r2],discf,index,[M,MC,T2,T,different] (see
 manual),r1+r2 first roots, integral basis, matrix of power basis in terms of
 integral basis, multiplication table of basis]. flag is optional and can be
 set to 0: default; 1: do not compute different; 2: first use polred to find
 a simpler polynomial; 3: outputs a two-element vector [nf,Mod(a,P)], where
 nf is as in 2 and Mod(a,P) is a polmod equal to Mod(x,pol) and P=nf.pol.
Description: 
 (gen, ?0):nf:prec       nfinit0($1, 0, $prec)
 (gen, 1):nf:prec        nfinit0($1, 1, $prec)
 (gen, 2):nf:prec        nfinit0($1, 2, $prec)
 (gen, 3):gen:prec       nfinit0($1, 3, $prec)
 (gen, 4):nf:prec        nfinit0($1, 4, $prec)
 (gen, 5):gen:prec       nfinit0($1, 5, $prec)
 (gen, #small):void      $"incorrect flag in nfinit"
 (gen, small):gen:prec   nfinit0($1, $2, $prec)
Doc: \var{pol} being a non-constant,
 preferably monic, irreducible polynomial in $\Z[X]$, initializes a
 \emph{number field} structure (\kbd{nf}) attached to the field $K$ defined
 by \var{pol}. As such, it's a technical object passed as the first argument
 to most \kbd{nf}\var{xxx} functions, but it contains some information which
 may be directly useful. Access to this information via \emph{member
 functions} is preferred since the specific data organization given below
 may change in the future. Currently, \kbd{nf} is a row vector with 9
 components:
 
 $\var{nf}[1]$ contains the polynomial \var{pol} (\kbd{\var{nf}.pol}).
 
 $\var{nf}[2]$ contains $[r1,r2]$ (\kbd{\var{nf}.sign}, \kbd{\var{nf}.r1},
 \kbd{\var{nf}.r2}), the number of real and complex places of $K$.
 
 $\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\var{nf}.disc}) of $K$.
 
 $\var{nf}[4]$ contains the index of $\var{nf}[1]$ (\kbd{\var{nf}.index}),
 i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.
 
 $\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, \var{roundG}, $T$,
 $MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.
 
 \quad\item $M$ is the $(r1+r2)\times n$ matrix whose columns represent
 the numerical values of the conjugates of the elements of the integral
 basis.
 
 \quad\item $G$ is an $n\times n$ matrix such that $T2 = {}^t G G$,
 where $T2$ is the quadratic form $T_2(x) = \sum |\sigma(x)|^2$, $\sigma$
 running over the embeddings of $K$ into $\C$.
 
 \quad\item \var{roundG} is a rescaled copy of $G$, rounded to nearest
 integers.
 
 \quad\item $T$ is the $n\times n$ matrix whose coefficients are
 $\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the
 integral basis. Note also that $\det(T)$ is equal to the discriminant of the
 field $K$. Also, when understood as an ideal, the matrix $T^{-1}$
 generates the codifferent ideal.
 
 \quad\item The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
 of the different of $K$ on the integral basis.
 
 \quad\item $TI$ is equal to the primitive part of $T^{-1}$, which has integral
 coefficients.
 
 \quad\item Finally, $MDI$ is a two-element representation (for faster
 ideal product) of $d(K)$ times the codifferent ideal
 (\kbd{\var{nf}.disc$*$\var{nf}.codiff}, which is an integral ideal). $MDI$
 is only used in \tet{idealinv}.
 
 $\var{nf}[6]$ is the vector containing the $r1+r2$ roots
 (\kbd{\var{nf}.roots}) of $\var{nf}[1]$ corresponding to the $r1+r2$
 embeddings of the number field into $\C$ (the first $r1$ components are real,
 the next $r2$ have positive imaginary part).
 
 $\var{nf}[7]$ is an integral basis for $\Z_K$ (\kbd{\var{nf}.zk}) expressed
 on the powers of~$\theta$. Its first element is guaranteed to be $1$. This
 basis is LLL-reduced with respect to $T_2$ (strictly speaking, it is a
 permutation of such a basis, due to the condition that the first element be
 $1$).
 
 $\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
 basis in terms of the integral basis, and finally
 
 $\var{nf}[9]$ is the $n\times n^2$ matrix giving the multiplication table
 of the integral basis.
 
 If a non monic polynomial is input, \kbd{nfinit} will transform it into a
 monic one, then reduce it (see $\fl=3$). It is allowed, though not very
 useful given the existence of \tet{nfnewprec}, to input a \var{nf} or a
 \var{bnf} instead of a polynomial. It is also allowed to
 input a \var{rnf}, in which case an \kbd{nf} structure attached to the
 absolute defining polynomial \kbd{polabs} is returned (\fl is then ignored).
 
 \bprog
 ? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
 ? nf.pol   \\ defining polynomial
 %2 = x^3 - 12
 ? nf.disc  \\ field discriminant
 %3 = -972
 ? nf.index \\ index of power basis order in maximal order
 %4 = 2
 ? nf.zk    \\ integer basis, lifted to Q[X]
 %5 = [1, x, 1/2*x^2]
 ? nf.sign  \\ signature
 %6 = [1, 1]
 ? factor(abs(nf.disc ))  \\ determines ramified primes
 %7 =
 [2 2]
 
 [3 5]
 ? idealfactor(nf, 2)
 %8 =
 [[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3]  \\ @com $\goth{p}_2^3$
 @eprog
 
 \misctitle{Huge discriminants, helping nfdisc}
 
 In case \var{pol} has a huge discriminant which is difficult to factor,
 it is hard to compute from scratch the maximal order. The special input
 format $[\var{pol}, B]$ is also accepted where \var{pol} is a polynomial as
 above and $B$ has one of the following forms
 
 \item an integer basis, as would be computed by \tet{nfbasis}: a vector of
 polynomials with first element $1$. This is useful if the maximal order is
 known in advance.
 
 \item an argument \kbd{listP} which specifies a list of primes (see
 \tet{nfbasis}). Instead of the maximal order, \kbd{nfinit} then computes an
 order which is maximal at these particular primes as well as the primes
 contained in the private prime table (see \tet{addprimes}). The result is
 unconditionaly correct when the discriminant \kbd{nf.disc} factors
 completely over this set of primes. The function \tet{nfcertify} automates
 this:
 \bprog
 ? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
 ? nf = nfinit( [pol, 10^3] );
 ? nfcertify(nf)
 %3 = []
 @eprog\noindent A priori, \kbd{nf.zk} defines an order which is only known
 to be maximal at all primes $\leq 10^3$ (no prime $\leq 10^3$ divides
 \kbd{nf.index}). The certification step proves the correctness of the
 computation. Had it failed, that particular \kbd{nf} structure could
 not have been trusted and may have caused routines using it to fail randomly.
 One particular functions that remains trustworthy in all cases is
 \kbd{idealprimedec} when applied to a prime included in the above list
 of primes.
 \medskip
 
 If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same
 number field, which is as simple as can easily be found using the
 \tet{polredbest} algorithm, and all the subsequent computations are done
 using this new polynomial. In particular, the first component of the result
 is the modified polynomial.
 
 If $\fl=3$, apply \kbd{polredbest} as in case 2, but outputs
 $[\var{nf},\kbd{Mod}(a,P)]$, where $\var{nf}$ is as before and
 $\kbd{Mod}(a,P)=\kbd{Mod}(x,\var{pol})$ gives the change of
 variables. This is implicit when \var{pol} is not monic: first a linear change
 of variables is performed, to get a monic polynomial, then \kbd{polredbest}.
Variant: Also available are
 \fun{GEN}{nfinit}{GEN x, long prec} ($\fl = 0$),
 \fun{GEN}{nfinitred}{GEN x, long prec} ($\fl = 2$),
 \fun{GEN}{nfinitred2}{GEN x, long prec} ($\fl = 3$).
 Instead of the above hardcoded numerical flags in \kbd{nfinit0}, one should
 rather use
 
 \fun{GEN}{nfinitall}{GEN x, long flag, long prec}, where \fl\ is an
 or-ed combination of
 
 \item \tet{nf_RED}: find a simpler defining polynomial,
 
 \item \tet{nf_ORIG}: if \tet{nf_RED} set, also return the change of variable,
 
 \item \tet{nf_ROUND2}: \emph{Deprecated}. Slow down the routine by using an
 obsolete normalization algorithm (do not use this one!),
 
 \item \tet{nf_PARTIALFACT}: \emph{Deprecated}. Lazy factorization of the
 polynomial discriminant. Result is conditional unless \kbd{nfcertify}
 can certify it.

Function: nfisideal
Class: basic
Section: number_fields
C-Name: isideal
Prototype: lGG
Help: nfisideal(nf,x): true(1) if x is an ideal in the number field nf,
 false(0) if not.
Doc: returns 1 if $x$ is an ideal in the number field $\var{nf}$, 0 otherwise.

Function: nfisincl
Class: basic
Section: number_fields
C-Name: nfisincl
Prototype: GG
Help: nfisincl(x,y): tests whether the number field x is isomorphic to a
 subfield of y (where x and y are either polynomials or number fields as
 output by nfinit). Return 0 if not, and otherwise all the isomorphisms. If y
 is a number field, a faster algorithm is used.
Doc: tests whether the number field $K$ defined
 by the polynomial $x$ is conjugate to a subfield of the field $L$ defined
 by $y$ (where $x$ and $y$ must be in $\Q[X]$). If they are not, the output
 is the number 0. If they are, the output is a vector of polynomials, each
 polynomial $a$ representing an embedding of $K$ into $L$, i.e.~being such
 that $y\mid x\circ a$.
 
 If $y$ is a number field (\var{nf}), a much faster algorithm is used
 (factoring $x$ over $y$ using \tet{nffactor}). Before version 2.0.14, this
 wasn't guaranteed to return all the embeddings, hence was triggered by a
 special flag. This is no longer the case.

Function: nfisisom
Class: basic
Section: number_fields
C-Name: nfisisom
Prototype: GG
Help: nfisisom(x,y): as nfisincl but tests whether x is isomorphic to y.
Doc: as \tet{nfisincl}, but tests for isomorphism. If either $x$ or $y$ is a
 number field, a much faster algorithm will be used.

Function: nfislocalpower
Class: basic
Section: number_fields
C-Name: nfislocalpower
Prototype: lGGGG
Help: nfislocalpower(nf,pr,a,n): true(1) if a is an n-th power in
 the local field K_v, false(0) if not.
Doc: Let \var{nf} be a number field structure attached to $K$,
 let $a \in K$ and let \var{pr} be a \var{prid} attched to the
 maximal ideal $v$. Return $1$ if $a$ is an $n$-th power in the completed
 local field $K_v$, and $0$ otherwise.
 \bprog
 ? K = nfinit(y^2+1);
 ? P = idealprimedec(K,2)[1]; \\ the ramified prime above 2
 ? nfislocalpower(K,P,-1, 2) \\ -1 is a square
 %3 = 1
 ? nfislocalpower(K,P,-1, 4) \\ ... but not a 4-th power
 %4 = 0
 ? nfislocalpower(K,P,2, 2)  \\ 2 is not a square
 %5 = 0
 
 ? Q = idealprimedec(K,5)[1]; \\ a prime above 5
 ? nfislocalpower(K,Q, [0, 32]~, 30)  \\ 32*I is locally a 30-th power
 %7 = 1
 @eprog

Function: nfkermodpr
Class: basic
Section: number_fields
C-Name: nfkermodpr
Prototype: GGG
Help: nfkermodpr(nf,x,pr): this function is obsolete, use nfmodpr.
Doc: this function is obsolete, use \kbd{nfmodpr}.
 
 Kernel of the matrix $a$ in $\Z_K/\var{pr}$, where \var{pr} is in
 \key{modpr} format (see \kbd{nfmodprinit}).
Obsolete: 2016-08-09
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.

Function: nfmodpr
Class: basic
Section: number_fields
C-Name: nfmodpr
Prototype: GGG
Help: nfmodpr(nf,x,pr): map x to the residue field mod pr.
Doc: map $x$ to the residue field modulo \var{pr}, to a \typ{FFELT}.
 The argument \var{pr} is either a maximal ideal in \kbd{idealprimedec}
 format or, preferably, a \kbd{modpr} structure from \tet{nfmodprinit}. The
 function \tet{nfmodprlift} allows to lift back to $\Z_K$.
 
 Note that the function applies to number field elements and not to
 vector / matrices / polynomials of such. Use \kbd{apply} to convert
 recursive structures.
 
 \bprog
 ? K = nfinit(y^3-250);
 ? P = idealprimedec(K, 5)[2]
 ? modP = nfmodprinit(K,P);
 ? K.zk
 %4 = [1, 1/5*y, 1/25*y^2]
 ? apply(t->nfmodpr(K,t,modP), K.zk)
 %5 = [1, y, 2*y + 1]
 @eprog

Function: nfmodprinit
Class: basic
Section: number_fields
C-Name: nfmodprinit
Prototype: GG
Help: nfmodprinit(nf,pr): transform the prime ideal pr into modpr format
 necessary for all operations mod pr in the number field nf.
Doc: transforms the prime ideal \var{pr} into \tet{modpr} format necessary
 for all operations modulo \var{pr} in the number field \var{nf}.
 The functions \tet{nfmodpr} and \tet{nfmodprlift} allow to project
 to and lift from the residue field.

Function: nfmodprlift
Class: basic
Section: number_fields
C-Name: nfmodprlift
Prototype: GGG
Help: nfmodprlift(nf,x,pr): lift x from residue field mod pr to nf.
Doc: lift the \typ{FFELT} $x$ (from \tet{nfmodpr}) to the residue field
 modulo \var{pr}. Vectors and matrices are also supported. For polynomials,
 use \kbd{apply} and the present function.
 
 The argument \kbd{pr} is either a maximal ideal in \kbd{idealprimedec}
 format or, preferably, a \kbd{modpr} structure from \tet{nfmodprinit}.
 There are no compatibility checks to try and decide whether $x$ is attached
 the same residue field as defined by \kbd{pr}: the result is undefined
 if not.
 
 The function \tet{nfmodpr} allows to reduce to the residue field.
 \bprog
 ? K = nfinit(y^3-250);
 ? P = idealprimedec(K, 5)[2]
 ? modP = nfmodprinit(K,P);
 ? K.zk
 %4 = [1, 1/5*y, 1/25*y^2]
 ? apply(t->nfmodpr(K,t,modP), K.zk)
 %5 = [1, y, 2*y + 1]
 ? nfmodprlift(K, %, modP)
 %6 = [1, 1/5*y, 2/5*y + 1]
 ? nfeltval(K, %[3] - K.zk[3], P)
 %7 = 1
 @eprog

Function: nfnewprec
Class: basic
Section: number_fields
C-Name: nfnewprec
Prototype: Gp
Help: nfnewprec(nf): transform the number field data nf into new data using
 the current (usually larger) precision.
Doc: transforms the number field $\var{nf}$
 into the corresponding data using current (usually larger) precision. This
 function works as expected if \var{nf} is in fact a \var{bnf} or a \var{bnr}
 (update structure to current precision) but may be quite slow: many
 generators of principal ideals have to be computed; note that in this latter
 case, the \var{bnf} must contain fundamental units.
Variant: See also \fun{GEN}{bnfnewprec}{GEN bnf, long prec} and
 \fun{GEN}{bnrnewprec}{GEN bnr, long prec}.

Function: nfroots
Class: basic
Section: number_fields
C-Name: nfroots
Prototype: DGG
Help: nfroots({nf},x): roots of polynomial x belonging to nf (Q if
 omitted) without multiplicity.
Doc: roots of the polynomial $x$ in the
 number field $\var{nf}$ given by \kbd{nfinit} without multiplicity (in $\Q$
 if $\var{nf}$ is omitted). $x$ has coefficients in the number field (scalar,
 polmod, polynomial, column vector). The main variable of $\var{nf}$ must be
 of lower priority than that of $x$ (see \secref{se:priority}). However if the
 coefficients of the number field occur explicitly (as polmods) as
 coefficients of $x$, the variable of these polmods \emph{must} be the same as
 the main variable of $t$ (see \kbd{nffactor}).
 
 It is possible to input a defining polynomial for \var{nf}
 instead, but this is in general less efficient since parts of an \kbd{nf}
 structure will then be computed internally. This is useful in two
 situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
 initialize an \kbd{nf} due to integer factorization difficulties when
 attempting to compute the field discriminant and maximal order.
 
 \misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
 time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
 which is not guaranteed to be maximal at all primes. Always either use
 \kbd{nfcertify} first (which may not run in polynomial time) or make sure
 to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nfroots} is
 able to recover in polynomial time in this case, instead of potentially
 missing a factor.
Variant: See also \fun{GEN}{nfrootsQ}{GEN x},
 corresponding to $\kbd{nf} = \kbd{NULL}$.

Function: nfrootsof1
Class: basic
Section: number_fields
C-Name: rootsof1
Prototype: G
Help: nfrootsof1(nf): number of roots of unity and primitive root of unity
 in the number field nf.
Doc: Returns a two-component vector $[w,z]$ where $w$ is the number of roots of
 unity in the number field \var{nf}, and $z$ is a primitive $w$-th root
 of unity.
 \bprog
 ? K = nfinit(polcyclo(11));
 ? nfrootsof1(K)
 %2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
 ? z = nfbasistoalg(K, %[2])   \\ in algebraic form
 %3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
 ? [lift(z^11), lift(z^2)]     \\ proves that the order of z is 22
 %4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
 @eprog
 This function guesses the number $w$ as the gcd of the $\#k(v)^*$ for
 unramified $v$ above odd primes, then computes the roots in \var{nf}
 of the $w$-th cyclotomic polynomial: the algorithm is polynomial time with
 respect to the field degree and the bitsize of the multiplication table in
 \var{nf} (both of them polynomially bounded in terms of the size of the
 discriminant). Fields of degree up to $100$ or so should require less than
 one minute.
Variant: Also available is \fun{GEN}{rootsof1_kannan}{GEN nf}, that computes
 all algebraic integers of $T_2$ norm equal to the field degree
 (all roots of $1$, by Kronecker's theorem). This is in general a little
 faster than the default when there \emph{are} roots of $1$ in the field
 (say twice faster), but can be much slower (say, \emph{days} slower), since
 the algorithm is a priori exponential in the field degree.

Function: nfsnf
Class: basic
Section: number_fields
C-Name: nfsnf0
Prototype: GGD0,L,
Help: nfsnf(nf,x,{flag=0}): if x=[A,I,J], outputs D=[d_1,...d_n] Smith normal
 form of x. If flag is non-zero return [D,U,V], where UAV = Id.
Doc: given a torsion $\Z_K$-module $x$ attached to the square integral
 invertible pseudo-matrix $(A,I,J)$, returns an ideal list
 $D=[d_1,\dots,d_n]$ which is the \idx{Smith normal form} of $x$. In other
 words, $x$ is isomorphic to $\Z_K/d_1\oplus\cdots\oplus\Z_K/d_n$ and $d_i$
 divides $d_{i-1}$ for $i\ge2$. If $\fl$ is non-zero return $[D,U,V]$, where
 $UAV$ is the identity.
 
 See \secref{se:ZKmodules} for the definition of integral pseudo-matrix;
 briefly, it is input as a 3-component row vector $[A,I,J]$ where
 $I = [b_1,\dots,b_n]$ and $J = [a_1,\dots,a_n]$ are two ideal lists,
 and $A$ is a square $n\times n$ matrix with columns $(A_1,\dots,A_n)$,
 seen as elements in $K^n$ (with canonical basis $(e_1,\dots,e_n)$).
 This data defines the $\Z_K$ module $x$ given by
 $$ (b_1e_1\oplus\cdots\oplus b_ne_n) / (a_1A_1\oplus\cdots\oplus a_nA_n)
 \enspace, $$
 The integrality condition is $a_{i,j} \in b_i a_j^{-1}$ for all $i,j$. If it
 is not satisfied, then the $d_i$ will not be integral. Note that every
 finitely generated torsion module is isomorphic to a module of this form and
 even with $b_i=Z_K$ for all $i$.
Variant: Also available:
 
 \fun{GEN}{nfsnf}{GEN nf, GEN x} ($\fl = 0$).

Function: nfsolvemodpr
Class: basic
Section: number_fields
C-Name: nfsolvemodpr
Prototype: GGGG
Help: nfsolvemodpr(nf,a,b,P): this function is obsolete, use nfmodpr.
Doc: this function is obsolete, use \kbd{nfmodpr}.
 
 Let $P$ be a prime ideal in \key{modpr} format (see \kbd{nfmodprinit}),
 let $a$ be a matrix, invertible over the residue field, and let $b$ be
 a column vector or matrix. This function returns a solution of $a\cdot x =
 b$; the coefficients of $x$ are lifted to \var{nf} elements.
 \bprog
 ? K = nfinit(y^2+1);
 ? P = idealprimedec(K, 3)[1];
 ? P = nfmodprinit(K, P);
 ? a = [y+1, y; y, 0]; b = [1, y]~
 ? nfsolvemodpr(K, a,b, P)
 %5 = [1, 2]~
 @eprog
Obsolete: 2016-08-09
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.

Function: nfsplitting
Class: basic
Section: number_fields
C-Name: nfsplitting
Prototype: GDG
Help: nfsplitting(nf,{d}): defining polynomial over Q for the splitting field of
 the number field nf; if d is given, it must be a multiple of the splitting
 field degree.
Doc: defining polynomial over~$\Q$ for the splitting field of \var{nf};
 if $d$ is given, it must be a multiple of the splitting field degree.
 Instead of~\kbd{nf}, it is possible to input a defining (irreducible)
 polynomial $T$ for~\kbd{nf}, but in general this is less efficient.
 
 \bprog
 ? K = nfinit(x^3-2);
 ? nfsplitting(K)
 %2 = x^6 + 108
 ?  nfsplitting(x^8-2)
 %3 = x^16 + 272*x^8 + 64
 @eprog
 \noindent
 Specifying the degree of the splitting field can make the computation faster.
 \bprog
 ? nfsplitting(x^17-123);
 time = 3,607 ms.
 ? poldegree(%)
 %2 = 272
 ? nfsplitting(x^17-123,272);
 time = 150 ms.
 ? nfsplitting(x^17-123,273);
  *** nfsplitting: Warning: ignoring incorrect degree bound 273
 time = 3,611 ms.
 @eprog
 \noindent
 The complexity of the algorithm is polynomial in the degree $d$ of the
 splitting field and the bitsize of $T$; if $d$ is large the result will
 likely be unusable, e.g. \kbd{nfinit} will not be an option:
 \bprog
 ? nfsplitting(x^6-x-1)
 [... degree 720 polynomial deleted ...]
 time = 11,020 ms.
 @eprog

Function: nfsubfields
Class: basic
Section: number_fields
C-Name: nfsubfields
Prototype: GD0,L,
Help: nfsubfields(pol,{d=0}): find all subfields of degree d of number field
 defined by pol (all subfields if d is null or omitted). Result is a vector of
 subfields, each being given by [g,h], where g is an absolute equation and h
 expresses one of the roots of g in terms of the root x of the polynomial
 defining nf.
Doc: finds all subfields of degree
 $d$ of the number field defined by the (monic, integral) polynomial
 \var{pol} (all subfields if $d$ is null or omitted). The result is a vector
 of subfields, each being given by $[g,h]$, where $g$ is an absolute equation
 and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
 polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm
 in the general case, and B.~Allombert's \tet{galoissubfields} when \var{nf}
 is Galois (with weakly supersolvable Galois group).\sidx{Galois}\sidx{subfield}

Function: norm
Class: basic
Section: conversions
C-Name: gnorm
Prototype: G
Help: norm(x): norm of x.
Doc: 
 algebraic norm of $x$, i.e.~the product of $x$ with
 its conjugate (no square roots are taken), or conjugates for polmods. For
 vectors and matrices, the norm is taken componentwise and hence is not the
 $L^2$-norm (see \kbd{norml2}). Note that the norm of an element of
 $\R$ is its square, so as to be compatible with the complex norm.

Function: norml2
Class: basic
Section: linear_algebra
C-Name: gnorml2
Prototype: G
Help: norml2(x): square of the L2-norm of x.
Doc: square of the $L^2$-norm of $x$. More precisely,
 if $x$ is a scalar, $\kbd{norml2}(x)$ is defined to be the square
 of the complex modulus of $x$ (real \typ{QUAD}s are not supported).
 If $x$ is a polynomial, a (row or column) vector or a matrix, \kbd{norml2($x$)} is
 defined recursively as $\sum_i \kbd{norml2}(x_i)$, where $(x_i)$ run through
 the components of $x$. In particular, this yields the usual $\sum |x_i|^2$
 (resp.~$\sum |x_{i,j}|^2$) if $x$ is a polynomial or vector (resp.~matrix) with
 complex components.
 
 \bprog
 ? norml2( [ 1, 2, 3 ] )      \\ vector
 %1 = 14
 ? norml2( [ 1, 2; 3, 4] )   \\ matrix
 %2 = 30
 ? norml2( 2*I + x )
 %3 = 5
 ? norml2( [ [1,2], [3,4], 5, 6 ] )   \\ recursively defined
 %4 = 91
 @eprog

Function: normlp
Class: basic
Section: linear_algebra
C-Name: gnormlp
Prototype: GDGp
Help: normlp(x,{p=oo}): Lp-norm of x; sup norm if p is omitted.
Doc: 
 $L^p$-norm of $x$; sup norm if $p$ is omitted or \kbd{+oo}. More precisely,
 if $x$ is a scalar, \kbd{normlp}$(x, p)$ is defined to be \kbd{abs}$(x)$.
 If $x$ is a polynomial, a (row or column) vector or a matrix:
 
 \item  if $p$ is omitted or \kbd{+oo}, then \kbd{normlp($x$)} is defined
 recursively as $\max_i \kbd{normlp}(x_i))$, where $(x_i)$ run through the
 components of~$x$. In particular, this yields the usual sup norm if $x$ is a
 polynomial or vector with complex components.
 
 \item otherwise, \kbd{normlp($x$, $p$)} is defined recursively as $(\sum_i
 \kbd{normlp}^p(x_i,p))^{1/p}$. In particular, this yields the usual $(\sum
 |x_i|^p)^{1/p}$ if $x$ is a polynomial or vector with complex components.
 
 \bprog
 ? v = [1,-2,3]; normlp(v)      \\ vector
 %1 = 3
 ? normlp(v, +oo)               \\ same, more explicit
 %2 = 3
 ? M = [1,-2;-3,4]; normlp(M)   \\ matrix
 %3 = 4
 ? T = (1+I) + I*x^2; normlp(T)
 %4 = 1.4142135623730950488016887242096980786
 ? normlp([[1,2], [3,4], 5, 6])   \\ recursively defined
 %5 = 6
 
 ? normlp(v, 1)
 %6 = 6
 ? normlp(M, 1)
 %7 = 10
 ? normlp(T, 1)
 %8 = 2.4142135623730950488016887242096980786
 @eprog

Function: numbpart
Class: basic
Section: number_theoretical
C-Name: numbpart
Prototype: G
Help: numbpart(n): number of partitions of n.
Doc: gives the number of unrestricted partitions of
 $n$, usually called $p(n)$ in the literature; in other words the number of
 nonnegative integer solutions to $a+2b+3c+\cdots=n$. $n$ must be of type
 integer and $n<10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and
 $p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula.
 To explicitly enumerate them, see \tet{partitions}.

Function: numdiv
Class: basic
Section: number_theoretical
C-Name: numdiv
Prototype: G
Help: numdiv(x): number of divisors of x.
Description: 
 (gen):int        numdiv($1)
Doc: number of divisors of $|x|$. $x$ must be of type integer.

Function: numerator
Class: basic
Section: conversions
C-Name: numer
Prototype: G
Help: numerator(x): numerator of x.
Doc: 
 numerator of $x$. The meaning of this
 is clear when $x$ is a rational number or function. If $x$ is an integer
 or a polynomial, it is treated as a rational number or function,
 respectively, and the result is $x$ itself. For polynomials, you
 probably want to use
 \bprog
 numerator( content(x) )
 @eprog\noindent
 instead.
 
 In other cases, \kbd{numerator(x)} is defined to be
 \kbd{denominator(x)*x}. This is the case when $x$ is a vector or a
 matrix, but also for \typ{COMPLEX} or \typ{QUAD}. In particular since a
 \typ{PADIC} or \typ{INTMOD} has  denominator $1$, its numerator is
 itself.
 
 \misctitle{Warning} Multivariate objects are created according to variable
 priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
 $y/x$ is a rational function). See \secref{se:priority}.

Function: numtoperm
Class: basic
Section: conversions
C-Name: numtoperm
Prototype: LG
Help: numtoperm(n,k): permutation number k (mod n!) of n letters (n
 C-integer).
Doc: generates the $k$-th permutation (as a row vector of length $n$) of the
 numbers $1$ to $n$. The number $k$ is taken modulo $n!\,$, i.e.~inverse
 function of \tet{permtonum}. The numbering used is the standard lexicographic
 ordering, starting at $0$.

Function: omega
Class: basic
Section: number_theoretical
C-Name: omega
Prototype: lG
Help: omega(x): number of distinct prime divisors of x.
Doc: number of distinct prime divisors of $|x|$. $x$ must be of type integer.
 \bprog
 ? factor(392)
 %1 =
 [2 3]
 
 [7 2]
 
 ? omega(392)
 %2 = 2;  \\ without multiplicity
 ? bigomega(392)
 %3 = 5;  \\ = 3+2, with multiplicity
 @eprog

Function: oo
Class: basic
Section: conversions
C-Name: mkoo
Prototype: 
Help: oo=oo(): infinity.
Description: 
Doc: returns an object meaning $+\infty$, for use in functions such as
 \kbd{intnum}. It can be negated (\kbd{-oo} represents $-\infty$), and
 compared to real numbers (\typ{INT}, \typ{FRAC}, \typ{REAL}), with the
 expected meaning: $+\infty$ is greater than any real number and $-\infty$ is
 smaller.

Function: padicappr
Class: basic
Section: polynomials
C-Name: padicappr
Prototype: GG
Help: padicappr(pol,a): p-adic roots of the polynomial pol congruent to a mod p.
Doc: vector of $p$-adic roots of the
 polynomial $pol$ congruent to the $p$-adic number $a$ modulo $p$, and with
 the same $p$-adic precision as $a$. The number $a$ can be an ordinary
 $p$-adic number (type \typ{PADIC}, i.e.~an element of $\Z_p$) or can be an
 integral element of a finite extension of $\Q_p$, given as a \typ{POLMOD}
 at least one of whose coefficients is a \typ{PADIC}. In this case, the result
 is the vector of roots belonging to the same extension of $\Q_p$ as $a$.
Variant: Also available is \fun{GEN}{Zp_appr}{GEN f, GEN a} when $a$ is a
 \typ{PADIC}.

Function: padicfields
Class: basic
Section: polynomials
C-Name: padicfields0
Prototype: GGD0,L,
Help: padicfields(p, N, {flag=0}): returns polynomials generating all
 the extensions of degree N of the field of p-adic rational numbers; N is
 allowed to be a 2-component vector [n,d], in which case, returns the
 extensions of degree n and discriminant p^d. flag is optional,
 and can be 0: default, 1: return also the ramification index, the residual
 degree, the valuation of the discriminant and the number of conjugate fields,
 or 2: return only the number of extensions in a fixed algebraic closure.
Doc: returns a vector of polynomials generating all the extensions of degree
 $N$ of the field $\Q_p$ of $p$-adic rational numbers; $N$ is
 allowed to be a 2-component vector $[n,d]$, in which case we return the
 extensions of degree $n$ and discriminant $p^d$.
 
 The list is minimal in the sense that two different polynomials generate
 non-isomorphic extensions; in particular, the number of polynomials is the
 number of classes of non-isomorphic extensions. If $P$ is a polynomial in this
 list, $\alpha$ is any root of $P$ and $K = \Q_p(\alpha)$, then $\alpha$
 is the sum of a uniformizer and a (lift of a) generator of the residue field
 of $K$; in particular, the powers of $\alpha$ generate the ring of $p$-adic
 integers of $K$.
 
 If $\fl = 1$, replace each polynomial $P$ by a vector $[P, e, f, d, c]$
 where $e$ is the ramification index, $f$ the residual degree, $d$ the
 valuation of the discriminant, and $c$ the number of conjugate fields.
 If $\fl = 2$, only return the \emph{number} of extensions in a fixed
 algebraic closure (Krasner's formula), which is much faster.
Variant: Also available is
 \fun{GEN}{padicfields}{GEN p, long n, long d, long flag}, which computes
 extensions of $\Q_p$ of degree $n$ and discriminant $p^d$.

Function: padicprec
Class: basic
Section: conversions
C-Name: gppadicprec
Prototype: GG
Help: padicprec(x,p):
 return the absolute p-adic precision of object x.
Doc: returns the absolute $p$-adic precision of the object $x$; this is the
 minimum precision of the components of $x$. The result is \tet{+oo} if $x$
 is an exact object (as a $p$-adic):
 \bprog
 ? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)
 %1 = 4
 ? padicprec(x + 2, 2)
 %2 = +oo
 ? padicprec(2 + x + O(x^2), 2)
 %3 = +oo
 @eprog\noindent The function raises an exception if it encounters
 an object incompatible with $p$-adic computations:
 \bprog
 ? padicprec(O(3), 2)
  ***   at top-level: padicprec(O(3),2)
  ***                 ^-----------------
  *** padicprec: inconsistent moduli in padicprec: 3 != 2
 
 ? padicprec(1.0, 2)
  ***   at top-level: padicprec(1.0,2)
  ***                 ^----------------
  *** padicprec: incorrect type in padicprec (t_REAL).
 @eprog
Variant: Also available is the function \fun{long}{padicprec}{GEN x, GEN p},
 which returns \tet{LONG_MAX} if $x = 0$ and the $p$-adic precision as a
 \kbd{long} integer.

Function: parapply
Class: basic
Section: programming/parallel
C-Name: parapply
Prototype: GG
Help: parapply(f, x): parallel evaluation of f on the elements of x.
Doc: parallel evaluation of \kbd{f} on the elements of \kbd{x}.
 The function \kbd{f} must not access global variables or variables
 declared with local(), and must be free of side effects.
 \bprog
 parapply(factor,[2^256 + 1, 2^193 - 1])
 @eprog
 factors $2^{256} + 1$ and $2^{193} - 1$ in parallel.
 \bprog
 {
   my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));
   parapply(p->ellcard(E,p), V)
 }
 @eprog
 computes the order of $E(\F_p)$ for $12$ random primes of $200$ bits.

Function: pareval
Class: basic
Section: programming/parallel
C-Name: pareval
Prototype: G
Help: pareval(x): parallel evaluation of the elements of the vector of
 closures x.
Doc: parallel evaluation of the elements of \kbd{x}, where \kbd{x} is a
 vector of closures. The closures must be of arity $0$, must not access
 global variables or variables declared with \kbd{local} and must be
 free of side effects.

Function: parfor
Class: basic
Section: programming/parallel
C-Name: parfor0
Prototype: vV=GDGJDVDI
Help: parfor(i=a,{b},expr1,{r},{expr2}):
 evaluates the expression expr1 in parallel for all i between a and b
 (if b is set to +oo, the loop will not stop), resulting in as many
 values; if the formal variables r and expr2 are present, evaluate
 sequentially expr2, in which r has been replaced by the different results
 obtained for expr1 and i with the corresponding arguments.
Description: 
 (gen,gen,closure):void parfor($1, $2, $3, NULL, NULL)
Doc: evaluates in parallel the expression \kbd{expr1} in the formal
 argument $i$ running from $a$ to $b$.
 If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
 If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
 formal variables $r$ and $i$ is evaluated with $r$ running through all
 the different results obtained for \kbd{expr1} and $i$ takes the
 corresponding argument.
 
 The computations of \kbd{expr1} are \emph{started} in increasing order
 of $i$; otherwise said, the computation for $i=c$ is started after those
 for $i=1, \ldots, c-1$ have been started, but before the computation for
 $i=c+1$ is started. Notice that the order of \emph{completion}, that is,
 the order in which the different $r$ become available, may be different;
 \kbd{expr2} is evaluated sequentially on each $r$ as it appears.
 
 The following example computes the sum of the squares of the integers
 from $1$ to $10$ by computing the squares in parallel and is equivalent
 to \kbd{parsum (i=1, 10, i\^{}2)}:
 \bprog
 ? s=0;
 ? parfor (i=1, 10, i^2, r, s=s+r)
 ? s
 %3 = 385
 @eprog
 More precisely, apart from a potentially different order of evaluation
 due to the parallelism, the line containing \kbd{parfor} is equivalent to
 \bprog
 ? my (r); for (i=1, 10, r=i^2; s=s+r)
 @eprog
 The sequentiality of the evaluation of \kbd{expr2} ensures that the
 variable \kbd{s} is not modified concurrently by two different additions,
 although the order in which the terms are added is non-deterministic.
 
 It is allowed for \kbd{expr2} to exit the loop using
 \kbd{break}/\kbd{next}/\kbd{return}. If that happens for $i=c$,
 then the evaluation of \kbd{expr1} and \kbd{expr2} is continued
 for all values $i<c$, and the return value is the one obtained for
 the smallest $i$ causing an interruption in \kbd{expr2} (it may be
 undefined if this is a \kbd{break}/\kbd{next}).
 In that case, using side-effects
 in \kbd{expr2} may lead to undefined behavior, as the exact
 number of values of $i$ for which it is executed is non-deterministic.
 The following example computes \kbd{nextprime(1000)} in parallel:
 \bprog
 ? parfor (i=1000, , isprime (i), r, if (r, return (i)))
 %1 = 1009
 @eprog
 
 %\syn{NO}

Function: parforprime
Class: basic
Section: programming/parallel
C-Name: parforprime0
Prototype: vV=GDGJDVDI
Help: parforprime(p=a,{b},expr1,{r},{expr2}):
 evaluates the expression expr1 in parallel for all primes p between a and b
 (if b is set to +oo, the loop will not stop), resulting in as many
 values; if the formal variables r and expr2 are present, evaluate
 sequentially expr2, in which r has been replaced by the different results
 obtained for expr1 and p with the corresponding arguments.
Description: 
 (gen,gen,closure):void parforprime($1, $2, $3, NULL, NULL)
Doc: 
 behaves exactly as \kbd{parfor}, but loops only over prime values $p$.
 Precisely, the functions evaluates in parallel the expression \kbd{expr1}
 in the formal
 argument $p$ running through the primes from $a$ to $b$.
 If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
 If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
 formal variables $r$ and $p$ is evaluated with $r$ running through all
 the different results obtained for \kbd{expr1} and $p$ takes the
 corresponding argument.
 
 It is allowed fo \kbd{expr2} to exit the loop using
 \kbd{break}/\kbd{next}/\kbd{return}; see the remarks in the documentation
 of \kbd{parfor} for details.
 
 %\syn{NO}

Function: parforvec
Class: basic
Section: programming/parallel
C-Name: parforvec0
Prototype: vV=GJDVDID0,L,
Help: parforvec(X=v,expr1,{j},{expr2},{flag}): evaluates the sequence expr2
 (dependent on X and j) for X as generated by forvec, in random order,
 computed in parallel. Substitute for j the value of expr1 (dependent on X).
Description: 
 (gen,closure,,,?small):void parforvec($1, $2, $5, NULL, NULL)
Doc: evaluates the sequence \kbd{expr2} (dependent on $X$ and $j$) for $X$
 as generated by \kbd{forvec}, in random order, computed in parallel. Substitute
 for $j$ the value of \kbd{expr1} (dependent on $X$).
 
 It is allowed fo \kbd{expr2} to exit the loop using
 \kbd{break}/\kbd{next}/\kbd{return}, however in that case, \kbd{expr2} will
 still be evaluated for all remaining value of $p$ less than the current one,
 unless a subsequent \kbd{break}/\kbd{next}/\kbd{return} happens.
 %\syn{NO}

Function: parselect
Class: basic
Section: programming/parallel
C-Name: parselect
Prototype: GGD0,L,
Help: parselect(f, A, {flag = 0}): (parallel select) selects elements of A
 according to the selection function f which is tested in parallel. If flag
 is 1, return the indices of those elements (indirect selection).
Doc: selects elements of $A$ according to the selection function $f$, done in
 parallel.  If \fl is $1$, return the indices of those elements (indirect
 selection) The function \kbd{f} must not access global variables or
 variables declared with local(), and must be free of side effects.

Function: parsum
Class: basic
Section: programming/parallel
C-Name: parsum
Prototype: V=GGJDG
Help: parsum(i=a,b,expr,{x}): x plus the sum (X goes from a to b) of
 expression expr, evaluated in parallel (in random order).
Description: 
 (gen,gen,closure,?gen):gen parsum($1, $2, $3, $4)
Doc: sum of expression \var{expr}, initialized at $x$, the formal parameter
 going from $a$ to $b$, evaluated in parallel in random order.
 The expression \kbd{expr} must not access global variables or
 variables declared with \kbd{local()}, and must be free of side effects.
 \bprog
 parsum(i=1,1000,ispseudoprime(2^prime(i)-1))
 @eprog
 returns the numbers of prime numbers among the first $1000$ Mersenne numbers.
 %\syn{NO}

Function: partitions
Class: basic
Section: number_theoretical
C-Name: partitions
Prototype: LDGDG
Help: partitions(k,{a=k},{n=k})): vector of partitions of the integer k.
 You can restrict the length of the partitions with parameter n (n=nmax or
 n=[nmin,nmax]), or the range of the parts with parameter a (a=amax
 or a=[amin,amax]). By default remove zeros, but one can set amin=0 to get X of
 fixed length nmax (=k by default).
Doc: returns the vector of partitions of the integer $k$ as a sum of positive
 integers (parts); for $k < 0$, it returns the empty set \kbd{[]}, and for $k
 = 0$ the trivial partition (no parts). A partition is given by a
 \typ{VECSMALL}, where parts are sorted in nondecreasing order:
 \bprog
 ? partitions(3)
 %1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 1])]
 @eprog\noindent correspond to $3$, $1+2$ and $1+1+1$. The number
 of (unrestricted) partitions of $k$ is given
 by \tet{numbpart}:
 \bprog
 ? #partitions(50)
 %1 = 204226
 ? numbpart(50)
 %2 = 204226
 @eprog
 
 \noindent Optional parameters $n$ and $a$ are as follows:
 
 \item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
 partitions to length less than $\var{nmax}$ (resp. length between
 $\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
 entries.
 
 \item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
 to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
 $\var{amax}$).
 \bprog
 ? partitions(4, 2)  \\ parts bounded by 2
 %1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
 ? partitions(4,, 2) \\ at most 2 parts
 %2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
 ? partitions(4,[0,3], 2) \\ at most 2 parts
 %3 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
 @eprog\noindent
 By default, parts are positive and we remove zero entries unless
 $amin\leq0$, in which case $nmin$ is ignored and $X$ is of constant length
 $\var{nmax}$:
 \bprog
 ? partitions(4, [0,3])  \\ parts between 0 and 3
 %1 = [Vecsmall([0, 0, 1, 3]), Vecsmall([0, 0, 2, 2]),\
       Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1])]
 @eprog

Function: parvector
Class: basic
Section: programming/parallel
C-Name: parvector
Prototype: LVJ
Help: parvector(N,i,expr): as vector(N,i,expr) but the evaluations of expr are
 done in parallel.
Description: 
  (small,,closure):vec    parvector($1, $3)
Doc: As \kbd{vector(N,i,expr)} but the evaluations of \kbd{expr} are done in
 parallel. The expression \kbd{expr} must not access global variables or
 variables declared with \kbd{local()}, and must be free of side effects.
 \bprog
 parvector(10,i,quadclassunit(2^(100+i)+1).no)
 @eprog\noindent
 computes the class numbers in parallel.
 %\syn{NO}

Function: permtonum
Class: basic
Section: conversions
C-Name: permtonum
Prototype: G
Help: permtonum(x): ordinal (between 1 and n!) of permutation x.
Doc: given a permutation $x$ on $n$ elements, gives the number $k$ such that
 $x=\kbd{numtoperm(n,k)}$, i.e.~inverse function of \tet{numtoperm}.
 The numbering used is the standard lexicographic ordering, starting at $0$.

Function: plot
Class: basic
Section: graphic
C-Name: pariplot
Prototype: vV=GGEDGDGp
Help: plot(X=a,b,expr,{Ymin},{Ymax}): crude plot of expression expr, X goes
 from a to b, with Y ranging from Ymin to Ymax. If Ymin (resp. Ymax) is not
 given, the minimum (resp. the maximum) of the expression is used instead.
Doc: crude ASCII plot of the function represented by expression \var{expr}
 from $a$ to $b$, with \var{Y} ranging from \var{Ymin} to \var{Ymax}. If
 \var{Ymin} (resp. \var{Ymax}) is not given, the minimum (resp. the maximum)
 of the computed values of the expression is used instead.

Function: plotbox
Class: highlevel
Section: graphic
C-Name: rectbox
Prototype: vLGG
Help: plotbox(w,x2,y2): if the cursor is at position (x1,y1), draw a box
 with diagonal (x1,y1) and (x2,y2) in rectwindow w (cursor does not move).
Doc: let $(x1,y1)$ be the current position of the virtual cursor. Draw in the
 rectwindow $w$ the outline of the rectangle which is such that the points
 $(x1,y1)$ and $(x2,y2)$ are opposite corners. Only the part of the rectangle
 which is in $w$ is drawn. The virtual cursor does \emph{not} move.

Function: plotclip
Class: highlevel
Section: graphic
C-Name: rectclip
Prototype: vL
Help: plotclip(w): clip the contents of the rectwindow to the bounding box
 (except strings).
Doc: `clips' the content of rectwindow $w$, i.e remove all parts of the
 drawing that would not be visible on the screen. Together with
 \tet{plotcopy} this function enables you to draw on a scratchpad before
 committing the part you're interested in to the final picture.

Function: plotcolor
Class: highlevel
Section: graphic
C-Name: rectcolor
Prototype: vLL
Help: plotcolor(w,c): in rectwindow w, set default color to c. Possible
 values for c are given by the graphcolormap default: factory settings
 are 1=black, 2=blue, 3=sienna, 4=red, 5=green, 6=grey, 7=gainsborough.
Doc: set default color to $c$ in rectwindow $w$.
 This is only implemented for the X-windows, fltk and Qt graphing engines.
 Possible values for $c$ are given by the \tet{graphcolormap} default,
 factory setting are
 
 1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough.
 
 but this can be considerably extended.

Function: plotcopy
Class: highlevel
Section: graphic
C-Name: rectcopy_gen
Prototype: vLLGGD0,L,
Help: plotcopy(sourcew,destw,dx,dy,{flag=0}): copy the contents of
 rectwindow sourcew to rectwindow destw with offset (dx,dy). If flag's bit 1
 is set, dx and dy express fractions of the size of the current output
 device, otherwise dx and dy are in pixels. dx and dy are relative positions
 of northwest corners if other bits of flag vanish, otherwise of: 2:
 southwest, 4: southeast, 6: northeast corners.
Doc: copy the contents of rectwindow \var{sourcew} to rectwindow \var{destw}
 with offset (dx,dy). If flag's bit 1 is set, dx and dy express fractions of
 the size of the current output device, otherwise dx and dy are in pixels. dx
 and dy are relative positions of northwest corners if other bits of flag
 vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners

Function: plotcursor
Class: highlevel
Section: graphic
C-Name: rectcursor
Prototype: L
Help: plotcursor(w): current position of cursor in rectwindow w.
Doc: give as a 2-component vector the current
 (scaled) position of the virtual cursor corresponding to the rectwindow $w$.

Function: plotdraw
Class: highlevel
Section: graphic
C-Name: rectdraw_flag
Prototype: vGD0,L,
Help: plotdraw(list, {flag=0}): draw vector of rectwindows list at indicated
 x,y positions; list is a vector w1,x1,y1,w2,x2,y2,etc. If flag!=0, x1, y1
 etc. express fractions of the size of the current output device.
Doc: physically draw the rectwindows given in $list$
 which must be a vector whose number of components is divisible by 3. If
 $list=[w1,x1,y1,w2,x2,y2,\dots]$, the windows $w1$, $w2$, etc.~are
 physically placed with their upper left corner at physical position
 $(x1,y1)$, $(x2,y2)$,\dots\ respectively, and are then drawn together.
 Overlapping regions will thus be drawn twice, and the windows are considered
 transparent. Then display the whole drawing in a special window on your
 screen. If $\fl \neq 0$, x1, y1 etc. express fractions of the size of the
 current output device

Function: ploth
Class: highlevel
Section: graphic
C-Name: ploth
Prototype: V=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: ploth(X=a,b,expr,{flags=0},{n=0}): plot of expression expr, X goes
 from a to b in high resolution. Both flags and n are optional. Binary digits
 of flags mean: 1=Parametric, 2=Recursive, 4=no_Rescale, 8=no_X_axis,
 16=no_Y_axis, 32=no_Frame, 64=no_Lines (do not join points), 128=Points_too
 (plot both lines and points), 256=Splines (use cubic splines),
 512=no_X_ticks, 1024= no_Y_ticks, 2048=Same_ticks (plot all ticks with the
 same length), 4096=Complex (the two coordinates of each point are encoded
 as a complex number). n specifies number of reference points on the graph
 (0=use default value). Returns a vector for the bounding box.
Doc: high precision plot of the function $y=f(x)$ represented by the expression
 \var{expr}, $x$ going from $a$ to $b$. This opens a specific window (which is
 killed whenever you click on it), and returns a four-component vector giving
 the coordinates of the bounding box in the form
 $[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.
 
 \misctitle{Important note} \kbd{ploth} may evaluate \kbd{expr} thousands of
 times; given the relatively low resolution of plotting devices, few
 significant digits of the result will be meaningful. Hence you should keep
 the current precision to a minimum (e.g.~9) before calling this function.
 
 $n$ specifies the number of reference point on the graph, where a value of 0
 means we use the hardwired default values (1000 for general plot, 1500 for
 parametric plot, and 8 for recursive plot).
 
 If no $\fl$ is given, \var{expr} is either a scalar expression $f(X)$, in which
 case the plane curve $y=f(X)$ will be drawn, or a vector
 $[f_1(X),\dots,f_k(X)]$, and then all the curves $y=f_i(X)$ will be drawn in
 the same window.
 
 \noindent The binary digits of $\fl$ mean:
 
 \item $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
 be a vector with an even number of components. Successive pairs are then
 understood as the parametric coordinates of a plane curve. Each of these are
 then drawn.
 
 For instance:
 \bprog
 ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
 ploth(X=0,2*Pi,[sin(X),cos(X)])
 ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
 @eprog\noindent draw successively a circle, two entwined sinusoidal curves
 and a circle cut by the line $y=x$.
 
 \item $2 = \kbd{Recursive}$: \tev{recursive plot}. If this flag is set,
 only \emph{one} curve can be drawn at a time, i.e.~\var{expr} must be either a
 two-component vector (for a single parametric curve, and the parametric flag
 \emph{has} to be set), or a scalar function. The idea is to choose pairs of
 successive reference points, and if their middle point is not too far away
 from the segment joining them, draw this as a local approximation to the
 curve. Otherwise, add the middle point to the reference points. This is
 fast, and usually more precise than usual plot. Compare the results of
 \bprog
 ploth(X=-1,1, sin(1/X), "Recursive")
 ploth(X=-1,1, sin(1/X))
 @eprog\noindent
 for instance. But beware that if you are extremely unlucky, or choose too few
 reference points, you may draw some nice polygon bearing little resemblance
 to the original curve. For instance you should \emph{never} plot recursively
 an odd function in a symmetric interval around 0. Try
 \bprog
 ploth(x = -20, 20, sin(x), "Recursive")
 @eprog\noindent
 to see why. Hence, it's usually a good idea to try and plot the same curve
 with slightly different parameters.
 
 The other values toggle various display options:
 
 \item $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
 computed extrema. This is used in conjunction with \tet{plotscale} when
 graphing multiple functions on a rectwindow (as a \tet{plotrecth} call):
 \bprog
   s = plothsizes();
   plotinit(0, s[2]-1, s[2]-1);
   plotscale(0, -1,1, -1,1);
   plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")
   plotdraw([0, -1,1]);
 @eprog\noindent
 This way we get a proper circle instead of the distorted ellipse produced by
 \bprog
   ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")
 @eprog
 
 \item $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.
 
 \item $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.
 
 \item $32 = \kbd{no\_Frame}$: do not print frame.
 
 \item $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.
 
 \item $128 = \kbd{Points\_too}$: plot both lines and points.
 
 \item $256 = \kbd{Splines}$: use splines to interpolate the points.
 
 \item $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.
 
 \item $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.
 
 \item $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.
 
 \item $4096 = \kbd{Complex}$: is a parametric plot but where each member of
 \kbd{expr} is considered a complex number encoding the two coordinates of a
 point. For instance:
 \bprog
 ploth(X=0,2*Pi,exp(I*X), "Complex")
 ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
 @eprog\noindent will draw respectively a circle and a circle cut by the line
 $y=x$.

Function: plothraw
Class: highlevel
Section: graphic
C-Name: plothraw
Prototype: GGD0,L,
Help: plothraw(listx,listy,{flag=0}): plot in high resolution points whose x
 (resp. y) coordinates are in listx (resp. listy). If flag is 1, join points,
 other non-0 flags should be combinations of bits 8,16,32,64,128,256 meaning
 the same as for ploth().
Doc: given \var{listx} and \var{listy} two vectors of equal length, plots (in
 high precision) the points whose $(x,y)$-coordinates are given in
 \var{listx} and \var{listy}. Automatic positioning and scaling is done, but
 with the same scaling factor on $x$ and $y$. If $\fl$ is 1, join points,
 other non-0 flags toggle display options and should be combinations of bits
 $2^k$, $k \geq 3$ as in \kbd{ploth}.

Function: plothsizes
Class: highlevel
Section: graphic
C-Name: plothsizes_flag
Prototype: D0,L,
Help: plothsizes({flag=0}): returns array of 6 elements: terminal width and
 height, sizes for ticks in horizontal and vertical directions, width and
 height of characters. If flag=0, sizes of ticks and characters are in
 pixels, otherwise are fractions of the screen size.
Doc: return data corresponding to the output window
 in the form of a 6-component vector: window width and height, sizes for ticks
 in horizontal and vertical directions (this is intended for the \kbd{gnuplot}
 interface and is currently not significant), width and height of characters.
 
 If $\fl = 0$, sizes of ticks and characters are in
 pixels, otherwise are fractions of the screen size

Function: plotinit
Class: highlevel
Section: graphic
C-Name: initrect_gen
Prototype: vLDGDGD0,L,
Help: plotinit(w,{x},{y},{flag=0}): initialize rectwindow w to size x,y.
 If flag!=0, x and y express fractions of the size of the current output
 device. Omitting x or y means use the full size of the device.
Doc: initialize the rectwindow $w$,
 destroying any rect objects you may have already drawn in $w$. The virtual
 cursor is set to $(0,0)$. The rectwindow size is set to width $x$ and height
 $y$; omitting either $x$ or $y$ means we use the full size of the device
 in that direction.
 If $\fl=0$, $x$ and $y$ represent pixel units. Otherwise, $x$ and $y$
 are understood as fractions of the size of the current output device (hence
 must be between $0$ and $1$) and internally converted to pixels.
 
 The plotting device imposes an upper bound for $x$ and $y$, for instance the
 number of pixels for screen output. These bounds are available through the
 \tet{plothsizes} function. The following sequence initializes in a portable
 way (i.e independent of the output device) a window of maximal size, accessed
 through coordinates in the $[0,1000] \times [0,1000]$ range:
 
 \bprog
 s = plothsizes();
 plotinit(0, s[1]-1, s[2]-1);
 plotscale(0, 0,1000, 0,1000);
 @eprog

Function: plotkill
Class: highlevel
Section: graphic
C-Name: killrect
Prototype: vL
Help: plotkill(w): erase the rectwindow w.
Doc: erase rectwindow $w$ and free the corresponding memory. Note that if you
 want to use the rectwindow $w$ again, you have to use \kbd{plotinit} first
 to specify the new size. So it's better in this case to use \kbd{plotinit}
 directly as this throws away any previous work in the given rectwindow.

Function: plotlines
Class: highlevel
Section: graphic
C-Name: rectlines
Prototype: vLGGD0,L,
Help: plotlines(w,X,Y,{flag=0}): draws an open polygon in rectwindow
 w where X and Y contain the x (resp. y) coordinates of the vertices.
 If X and Y are both single values (i.e not vectors), draw the
 corresponding line (and move cursor). If (optional) flag is non-zero, close
 the polygon.
Doc: draw on the rectwindow $w$
 the polygon such that the (x,y)-coordinates of the vertices are in the
 vectors of equal length $X$ and $Y$. For simplicity, the whole
 polygon is drawn, not only the part of the polygon which is inside the
 rectwindow. If $\fl$ is non-zero, close the polygon. In any case, the
 virtual cursor does not move.
 
 $X$ and $Y$ are allowed to be scalars (in this case, both have to).
 There, a single segment will be drawn, between the virtual cursor current
 position and the point $(X,Y)$. And only the part thereof which
 actually lies within the boundary of $w$. Then \emph{move} the virtual cursor
 to $(X,Y)$, even if it is outside the window. If you want to draw a
 line from $(x1,y1)$ to $(x2,y2)$ where $(x1,y1)$ is not necessarily the
 position of the virtual cursor, use \kbd{plotmove(w,x1,y1)} before using this
 function.

Function: plotlinetype
Class: highlevel
Section: graphic
C-Name: rectlinetype
Prototype: vLL
Help: plotlinetype(w,type): this function is obsolete; no graphing engine
 implement this functionality.
Doc: This function is obsolete and currently a no-op.
 
 Change the type of lines subsequently plotted in rectwindow $w$.
 \var{type} $-2$ corresponds to frames, $-1$ to axes, larger values may
 correspond to something else. $w = -1$ changes highlevel plotting.
Obsolete: 2007-05-11

Function: plotmove
Class: highlevel
Section: graphic
C-Name: rectmove
Prototype: vLGG
Help: plotmove(w,x,y): move cursor to position x,y in rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position $(x,y)$.

Function: plotpoints
Class: highlevel
Section: graphic
C-Name: rectpoints
Prototype: vLGG
Help: plotpoints(w,X,Y): draws in rectwindow w the points whose x
 (resp y) coordinates are in X (resp Y). If X and Y are both
 single values (i.e not vectors), draw the corresponding point (and move
 cursor).
Doc: draw on the rectwindow $w$ the
 points whose $(x,y)$-coordinates are in the vectors of equal length $X$ and
 $Y$ and which are inside $w$. The virtual cursor does \emph{not} move. This
 is basically the same function as \kbd{plothraw}, but either with no scaling
 factor or with a scale chosen using the function \kbd{plotscale}.
 
 As was the case with the \kbd{plotlines} function, $X$ and $Y$ are allowed to
 be (simultaneously) scalar. In this case, draw the single point $(X,Y)$ on
 the rectwindow $w$ (if it is actually inside $w$), and in any case
 \emph{move} the virtual cursor to position $(x,y)$.

Function: plotpointsize
Class: highlevel
Section: graphic
C-Name: rectpointsize
Prototype: vLG
Help: plotpointsize(w,size): change the "size" of following points in
 rectwindow w. w=-1 changes global value.
Doc: This function is obsolete. It is currently a no-op.
 
 Changes the ``size'' of following points in rectwindow $w$. If $w = -1$,
 change it in all rectwindows.
Obsolete: 2007-05-11

Function: plotpointtype
Class: highlevel
Section: graphic
C-Name: rectpointtype
Prototype: vLL
Help: plotpointtype(w,type): this function is obsolete; no graphing engine
 implement this functionality.
Doc: This function is obsolete and currently a no-op.
 
 change the type of points subsequently plotted in rectwindow $w$.
 $\var{type} = -1$ corresponds to a dot, larger values may correspond to
 something else. $w = -1$ changes highlevel plotting.
Obsolete: 2007-05-11

Function: plotrbox
Class: highlevel
Section: graphic
C-Name: rectrbox
Prototype: vLGG
Help: plotrbox(w,dx,dy): if the cursor is at (x1,y1), draw a box with
 diagonal (x1,y1)-(x1+dx,y1+dy) in rectwindow w (cursor does not move).
Doc: draw in the rectwindow $w$ the outline of the rectangle which is such
 that the points $(x1,y1)$ and $(x1+dx,y1+dy)$ are opposite corners, where
 $(x1,y1)$ is the current position of the cursor. Only the part of the
 rectangle which is in $w$ is drawn. The virtual cursor does \emph{not} move.

Function: plotrecth
Class: highlevel
Section: graphic
C-Name: rectploth
Prototype: LV=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: plotrecth(w,X=a,b,expr,{flag=0},{n=0}):
 writes to rectwindow w the curve output of
 ploth(w,X=a,b,expr,flag,n). Returns a vector for the bounding box.
Doc: writes to rectwindow $w$ the curve output of
 \kbd{ploth}$(w,X=a,b,\var{expr},\fl,n)$. Returns a vector for the bounding box.

Function: plotrecthraw
Class: highlevel
Section: graphic
C-Name: rectplothraw
Prototype: LGD0,L,
Help: plotrecthraw(w,data,{flags=0}): plot graph(s) for data in rectwindow
 w, where data is a vector of vectors. If plot is parametric, length of data
 should be even, and pairs of entries give curves to plot. If not, first
 entry gives x-coordinate, and the other ones y-coordinates. Admits the same
 optional flags as plotrecth, save that recursive plot is meaningless.
Doc: plot graph(s) for
 \var{data} in rectwindow $w$. $\fl$ has the same significance here as in
 \kbd{ploth}, though recursive plot is no more significant.
 
 \var{data} is a vector of vectors, each corresponding to a list a coordinates.
 If parametric plot is set, there must be an even number of vectors, each
 successive pair corresponding to a curve. Otherwise, the first one contains
 the $x$ coordinates, and the other ones contain the $y$-coordinates
 of curves to plot.

Function: plotrline
Class: highlevel
Section: graphic
C-Name: rectrline
Prototype: vLGG
Help: plotrline(w,dx,dy): if the cursor is at (x1,y1), draw a line from
 (x1,y1) to (x1+dx,y1+dy) (and move the cursor) in the rectwindow w.
Doc: draw in the rectwindow $w$ the part of the segment
 $(x1,y1)-(x1+dx,y1+dy)$ which is inside $w$, where $(x1,y1)$ is the current
 position of the virtual cursor, and move the virtual cursor to
 $(x1+dx,y1+dy)$ (even if it is outside the window).

Function: plotrmove
Class: highlevel
Section: graphic
C-Name: rectrmove
Prototype: vLGG
Help: plotrmove(w,dx,dy): move cursor to position (dx,dy) relative to the
 present position in the rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position
 $(x1+dx,y1+dy)$, where $(x1,y1)$ is the initial position of the cursor
 (i.e.~to position $(dx,dy)$ relative to the initial cursor).

Function: plotrpoint
Class: highlevel
Section: graphic
C-Name: rectrpoint
Prototype: vLGG
Help: plotrpoint(w,dx,dy): draw a point (and move cursor) at position dx,dy
 relative to present position of the cursor in rectwindow w.
Doc: draw the point $(x1+dx,y1+dy)$ on the rectwindow $w$ (if it is inside
 $w$), where $(x1,y1)$ is the current position of the cursor, and in any case
 move the virtual cursor to position $(x1+dx,y1+dy)$.

Function: plotscale
Class: highlevel
Section: graphic
C-Name: rectscale
Prototype: vLGGGG
Help: plotscale(w,x1,x2,y1,y2): scale the coordinates in rectwindow w so
 that x goes from x1 to x2 and y from y1 to y2 (y2<y1 is allowed).
Doc: scale the local coordinates of the rectwindow $w$ so that $x$ goes from
 $x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2<x1$ and $y2<y1$ being
 allowed). Initially, after the initialization of the rectwindow $w$ using
 the function \kbd{plotinit}, the default scaling is the graphic pixel count,
 and in particular the $y$ axis is oriented downwards since the origin is at
 the upper left. The function \kbd{plotscale} allows to change all these
 defaults and should be used whenever functions are graphed.

Function: plotstring
Class: highlevel
Section: graphic
C-Name: rectstring3
Prototype: vLsD0,L,
Help: plotstring(w,x,{flags=0}): draw in rectwindow w the string
 corresponding to x. Bits 1 and 2 of flag regulate horizontal alignment: left
 if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical alignment:
 bottom if 0, top if 8, v-center if 4. Can insert additional gap between
 point and string: horizontal if bit 16 is set, vertical if bit 32 is set.
Doc: draw on the rectwindow $w$ the String $x$ (see \secref{se:strings}), at
 the current position of the cursor.
 
 \fl\ is used for justification: bits 1 and 2 regulate horizontal alignment:
 left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical
 alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small
 gap between point and string: horizontal if bit 16 is set, vertical if bit
 32 is set (see the tutorial for an example).

Function: polchebyshev
Class: basic
Section: polynomials
C-Name: polchebyshev_eval
Prototype: LD1,L,DG
Help: polchebyshev(n,{flag=1},{a='x}): Chebychev polynomial of the first (flag
 = 1) or second (flag = 2) kind, of degree n, evaluated at a.
Description: 
 (small,?1,?var):gen polchebyshev1($1,$3)
 (small,2,?var):gen  polchebyshev2($1,$3)
 (small,small,?var):gen polchebyshev($1,$2,$3)
Doc: returns the $n^{\text{th}}$
 \idx{Chebyshev} polynomial of the first kind $T_n$ ($\fl=1$) or the second
 kind $U_n$ ($\fl=2$), evaluated at $a$ (\kbd{'x} by default). Both series of
 polynomials satisfy the 3-term relation
 $$ P_{n+1} = 2xP_n - P_{n-1}, $$
 and are determined by the initial conditions $U_0 = T_0 = 1$, $T_1 = x$,
 $U_1 = 2x$. In fact $T_n' = n U_{n-1}$ and, for all complex numbers $z$, we
 have $T_n(\cos z) = \cos (nz)$ and $U_{n-1}(\cos z) = \sin(nz)/\sin z$.
 If $n \geq 0$, then these polynomials have degree $n$.  For $n < 0$,
 $T_n$ is equal to $T_{-n}$ and $U_n$ is equal to $-U_{-2-n}$.
 In particular, $U_{-1} = 0$.
Variant: Also available are
 \fun{GEN}{polchebyshev}{long n, long flag, long v},
 \fun{GEN}{polchebyshev1}{long n, long v} and
 \fun{GEN}{polchebyshev2}{long n, long v} for $T_n$ and $U_n$ respectively.

Function: polclass
Class: basic
Section: polynomials
C-Name: polclass
Prototype: GD0,L,Dn
Help: polclass(D, {inv = 0}, {x = 'x}): return a polynomial generating the
 Hilbert class field of Q(sqrt(D)) for the discriminant D<0.
Doc: 
 Return a polynomial in $\Z[x]$ generating the Hilbert class field for the
 imaginary quadratic discriminant $D$.  If $inv$ is 0 (the default),
 use the modular $j$-function and return the classical Hilbert polynomial,
 otherwise use a class invariant. The following invariants correspond to
 the different values of $inv$, where $f$ denotes Weber's function
 \kbd{weber}, and $w_{p,q}$ the double eta quotient given by
 $w_{p,q} = \dfrac{ \eta(x/p)\*\eta(x/q) }{ \eta(x)\*\eta(x/{pq}) }$
 
 The invariants $w_{p,q}$ are not allowed unless they satisfy the following
 technical conditions ensuring they do generate the Hilbert class
 field and not a strict subfield:
 
 \item if $p\neq q$, we need them both non-inert, prime to the conductor of
 $\Z[\sqrt{D}]$. Let $P, Q$ be prime ideals  above $p$ and $q$; if both are
 unramified, we further require that $P^{\pm 1} Q^{\pm 1}$ be all distinct in
 the class group of $\Z[\sqrt{D}]$; if both are ramified, we require that $PQ
 \neq 1$ in the class group.
 
 \item if $p = q$, we want it split and prime to the conductor and
 the prime ideal above it must have order $\neq 1, 2, 4$ in the class group.
 
 \noindent Invariants are allowed under the additional conditions on $D$
 listed below.
 
 \item 0 : $j$
 
 \item 1 : $f$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
 
 \item 2 : $f^2$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
 
 \item 3 : $f^3$, $D = 1 \mod 8$;
 
 \item 4 : $f^4$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
 
 \item 5 : $\gamma_2= j^{1/3}$, $D = 1,2 \mod 3$;
 
 \item 6 : $w_{2,3}$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
 
 \item 8 : $f^8$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
 
 \item 9 : $w_{3,3}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;
 
 \item 10: $w_{2,5}$, $D \neq 60 \mod 80$ and $D = 1,2 \mod 3$;
 
 \item 14: $w_{2,7}$, $D = 1 \mod 8$;
 
 \item 15: $w_{3,5}$, $D = 1,2 \mod 3$;
 
 \item 21: $w_{3,7}$, $D = 1 \mod 2$ and $21$ does not divide $D$
 
 \item 23: $w_{2,3}^2$, $D = 1,2 \mod 3$;
 
 \item 24: $w_{2,5}^2$, $D = 1,2 \mod 3$;
 
 \item 26: $w_{2,13}$, $D \neq 156 \mod 208$;
 
 \item 27: $w_{2,7}^2$, $D\neq 28 \mod 112$;
 
 \item 28: $w_{3,3}^2$, $D = 1,2 \mod 3$;
 
 \item 35: $w_{5,7}$, $D = 1,2 \mod 3$;
 
 \item 39: $w_{3,13}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;
 
 The algorithm for computing the polynomial does not use the floating point
 approach, which would evaluate a precise modular function in a precise
 complex argument. Instead, it relies on a faster Chinese remainder based
 approach modulo small primes, in which the class invariant is only defined
 algebraically by the modular polynomial relating the modular function to $j$.
 So in fact, any of the several roots of the modular polynomial may actually
 be the class invariant, and more precise assertions cannot be made.
 
 For instance, while \kbd{polclass(D)} returns the minimal polynomial of
 $j(\tau)$ with $\tau$ (any) quadratic integer for the discriminant $D$,
 the polynomial returned by \kbd{polclass(D, 5)} can be the minimal polynomial
 of any of $\gamma_2 (\tau)$, $\zeta_3 \gamma_2 (\tau)$ or
 $\zeta_3^2 \gamma_2 (\tau)$, the three roots of the modular polynomial
 $j = \gamma_2^3$, in which $j$ has been specialised to $j (\tau)$.
 
 The modular polynomial is given by
 $j = {(f^{24}-16)^3 \over f^{24}}$ for Weber's function $f$.
 
 For the double eta quotients of level $N = p q$, all functions are covered
 such that the modular curve $X_0^+ (N)$, the function field of which is
 generated by the functions invariant under $\Gamma^0 (N)$ and the
 Fricke--Atkin--Lehner involution, is of genus $0$ with function field
 generated by (a power of) the double eta quotient $w$.
 This ensures that the full Hilbert class field (and not a proper subfield)
 is generated by class invariants from these double eta quotients.
 Then the modular polynomial is of degree $2$ in $j$, and
 of degree $\psi (N) = (p+1)(q+1)$ in $w$.
 
 \bprog
 ? polclass(-163)
 %1 = x + 262537412640768000
 ? polclass(-51, , 'z)
 %2 = z^2 + 5541101568*z + 6262062317568
 ? polclass(-151,1)
 x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1
 @eprog

Function: polcoeff
Class: basic
Section: polynomials
C-Name: polcoeff0
Prototype: GLDn
Help: polcoeff(x,n,{v}): coefficient of degree n of x, or the n-th component
 for vectors or matrices (for which it is simpler to use x[]). With respect
 to the main variable if v is omitted, with respect to the variable v
 otherwise.
Description: 
 (pol, 0):gen:copy       constant_coeff($1)
 (pol, 0,):gen:copy      constant_coeff($1)
 (pol, small):gen:copy   RgX_coeff($1, $2)
 (pol, small,):gen:copy  RgX_coeff($1, $2)
 (gen, small, ?var):gen polcoeff0($1, $2, $3)
Doc: coefficient of degree $n$ of the polynomial $x$, with respect to the
 main variable if $v$ is omitted, with respect to $v$ otherwise.  If $n$
 is greater than the degree, the result is zero.
 
 Naturally applies to scalars (polynomial of degree $0$), as well as to
 rational functions whose denominator is a monomial.
 It also applies to power series: if $n$ is less than the valuation, the result
 is zero. If it is greater than the largest significant degree, then an error
 message is issued.
 
  For greater flexibility, $x$ can be a vector or matrix type and the
  function then returns \kbd{component(x,n)}.

Function: polcompositum
Class: basic
Section: number_fields
C-Name: polcompositum0
Prototype: GGD0,L,
Help: polcompositum(P,Q,{flag=0}): vector of all possible compositums
 of the number fields defined by the polynomials P and Q; flag is
 optional, whose binary digits mean 1: output for each compositum, not only
 the compositum polynomial pol, but a vector [R,a,b,k] where a (resp. b) is a
 root of P (resp. Q) expressed as a polynomial modulo R, and a small integer k
 such that al2+k*al1 is the chosen root of R; 2: assume that the number
 fields defined by P and Q are linearly disjoint.
Doc: \sidx{compositum} $P$ and $Q$
 being squarefree polynomials in $\Z[X]$ in the same variable, outputs
 the simple factors of the \'etale $\Q$-algebra $A = \Q(X, Y) / (P(X), Q(Y))$.
 The factors are given by a list of polynomials $R$ in $\Z[X]$, attached to
 the number field $\Q(X)/ (R)$, and sorted by increasing degree (with respect
 to lexicographic ordering for factors of equal degrees). Returns an error if
 one of the polynomials is not squarefree.
 
 Note that it is more efficient to reduce to the case where $P$ and $Q$ are
 irreducible first. The routine will not perform this for you, since it may be
 expensive, and the inputs are irreducible in most applications anyway. In
 this case, there will be a single factor $R$ if and only if the number
 fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
 $\Q$).
 
 Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it
 is in general much faster to proceed as follows
 \bprog
 nf = nfinit(P); L = nffactor(nf, Q)[,1];
 vector(#L, i, rnfequation(nf, L[i]))
 @eprog\noindent
 to obtain the same result. If you are only interested in the degrees of the
 simple factors, the \kbd{rnfequation} instruction can be replaced by a
 trivial \kbd{poldegree(P) * poldegree(L[i])}.
 
 The binary digits of $\fl$ mean
 
 1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
 ranges through the list of all possible compositums as above, and $a$
 (resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
 $\Q(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
 $R$.
 
 2: assume that $P$ and $Q$ define number fields which are linearly disjoint:
 both polynomials are irreducible and the corresponding number fields
 have no common subfield besides $\Q$. This allows to save a costly
 factorization over $\Q$. In this case return the single simple factor
 instead of a vector with one element.
 
 A compositum is often defined by a complicated polynomial, which it is
 advisable to reduce before further work. Here is an example involving
 the field $\Q(\zeta_5, 5^{1/5})$:
 \bprog
 ? L = polcompositum(x^5 - 5, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
 ? [R, a] = L[1];  \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
 ? R               \\@com defines the compositum
 %3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14\
 + 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8    \
 + 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2     \
 - 320*x + 256
 ? a^5 - 5         \\@com a fifth root of $5$
 %4 = 0
 ? [T, X] = polredbest(R, 1);
 ? T     \\@com simpler defining polynomial for $\Q[x]/(R)$
 %6 = x^20 + 25*x^10 + 5
 ? X     \\ @com root of $R$ in $\Q[y]/(T(y))$
 %7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,\
 x^20 + 25*x^10 + 5)
 ? a = subst(a.pol, 'x, X)  \\@com \kbd{a} in the new coordinates
 %8 = Mod(1/11*x^14 + 29/11*x^4, x^20 + 25*x^10 + 5)
 ? a^5 - 5
 %9 = 0
 @eprog\noindent In the above example, $x^5-5$ and the $5$-th cyclotomic
 polynomial are irreducible over $\Q$; they have coprime degrees so
 define linearly disjoint extensions and we could have started by
 \bprog
 ? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \\@com $[R,a,b,k]$
 @eprog
Variant: Also available are
 \fun{GEN}{compositum}{GEN P, GEN Q} ($\fl = 0$) and
 \fun{GEN}{compositum2}{GEN P, GEN Q} ($\fl = 1$).

Function: polcyclo
Class: basic
Section: polynomials
C-Name: polcyclo_eval
Prototype: LDG
Help: polcyclo(n,{a = 'x}): n-th cyclotomic polynomial evaluated at a.
Description: 
  (small,?var):gen     polcyclo($1,$2)
  (small,gen):gen      polcyclo_eval($1,$2)
Doc: $n$-th cyclotomic polynomial, evaluated at $a$ (\kbd{'x} by default). The
 integer $n$ must be positive.
 
 Algorithm used: reduce to the case where $n$ is squarefree; to compute the
 cyclotomic polynomial, use $\Phi_{np}(x)=\Phi_n(x^p)/\Phi(x)$; to compute
 it evaluated, use $\Phi_n(x) = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}$. In the
 evaluated case, the algorithm assumes that $a^d - 1$ is either $0$ or
 invertible, for all $d\mid n$. If this is not the case (the base ring has
 zero divisors), use \kbd{subst(polcyclo(n),x,a)}.
Variant: The variant \fun{GEN}{polcyclo}{long n, long v} returns the $n$-th
 cyclotomic polynomial in variable $v$.

Function: polcyclofactors
Class: basic
Section: polynomials
C-Name: polcyclofactors
Prototype: G
Help: polcyclofactors(f): returns a vector of polynomials, whose product is
 the product of distinct cyclotomic polynomials dividing f.
Doc: returns a vector of polynomials, whose product is the product of
 distinct cyclotomic polynomials dividing $f$.
 \bprog
 ? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;
 ? v = polcyclofactors(f)
 %2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]
 ? apply(poliscycloprod, v)
 %3 = [1, 1, 1]
 ? apply(poliscyclo, v)
 %4 = [4, 3, 10]
 @eprog\noindent In general, the polynomials are products of cyclotomic
 polynomials and not themselves irreducible:
 \bprog
 ? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;
 ? polcyclofactors(g)
 %2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]
 ? factor(%[1])
 %3 =
 [            x^2 + x + 1 1]
 
 [x^4 + x^3 + x^2 + x + 1 1]
 @eprog

Function: poldegree
Class: basic
Section: polynomials
C-Name: gppoldegree
Prototype: GDn
Help: poldegree(x,{v}): degree of the polynomial or rational function x with
 respect to main variable if v is omitted, with respect to v otherwise.
 For scalar x, return 0 if x is non-zero and -oo otherwise.
Doc: degree of the polynomial $x$ in the main variable if $v$ is omitted, in
 the variable $v$ otherwise.
 
 The degree of $0$ is \kbd{-oo}. The degree of a non-zero scalar is $0$.
 Finally, when $x$ is a non-zero polynomial or rational function, returns the
 ordinary degree of $x$. Raise an error otherwise.
Variant: Also available is
 \fun{long}{poldegree}{GEN x, long v}, which returns \tet{-LONG_MAX} if $x = 0$
 and the degree as a \kbd{long} integer.

Function: poldisc
Class: basic
Section: polynomials
C-Name: poldisc0
Prototype: GDn
Help: poldisc(pol,{v}): discriminant of the polynomial pol, with respect to main
 variable if v is omitted, with respect to v otherwise.
Description: 
 (gen):gen        poldisc0($1, -1)
 (gen, var):gen   poldisc0($1, $2)
Doc: discriminant of the polynomial
 \var{pol} in the main variable if $v$ is omitted, in $v$ otherwise. Uses a
 modular algorithm over $\Z$ or $\Q$, and the \idx{subresultant algorithm}
 otherwise.
 \bprog
 ? T = x^4 + 2*x+1;
 ? poldisc(T)
 %2 = -176
 ? poldisc(T^2)
 %3 = 0
 @eprog
 
 For convenience, the function also applies to types \typ{QUAD} and
 \typ{QFI}/\typ{QFR}:
 \bprog
 ? z = 3*quadgen(8) + 4;
 ? poldisc(z)
 %2 = 8
 ? q = Qfb(1,2,3);
 ? poldisc(q)
 %4 = -8
 @eprog

Function: poldiscreduced
Class: basic
Section: polynomials
C-Name: reduceddiscsmith
Prototype: G
Help: poldiscreduced(f): vector of elementary divisors of Z[a]/f'(a)Z[a],
 where a is a root of the polynomial f.
Doc: reduced discriminant vector of the
 (integral, monic) polynomial $f$. This is the vector of elementary divisors
 of $\Z[\alpha]/f'(\alpha)\Z[\alpha]$, where $\alpha$ is a root of the
 polynomial $f$. The components of the result are all positive, and their
 product is equal to the absolute value of the discriminant of~$f$.

Function: polgalois
Class: basic
Section: number_fields
C-Name: polgalois
Prototype: Gp
Help: polgalois(T): Galois group of the polynomial T (see manual for group
 coding). Return [n, s, k, name] where n is the group order, s the signature,
 k the index and name is the GAP4 name of the transitive group.
Doc: \idx{Galois} group of the non-constant
 polynomial $T\in\Q[X]$. In the present version \vers, $T$ must be irreducible
 and the degree $d$ of $T$ must be less than or equal to 7. If the
 \tet{galdata} package has been installed, degrees 8, 9, 10 and 11 are also
 implemented. By definition, if $K = \Q[x]/(T)$, this computes the action of
 the Galois group of the Galois closure of $K$ on the $d$ distinct roots of
 $T$, up to conjugacy (corresponding to different root orderings).
 
 The output is a 4-component vector $[n,s,k,name]$ with the
 following meaning: $n$ is the cardinality of the group, $s$ is its signature
 ($s=1$ if the group is a subgroup of the alternating group $A_d$, $s=-1$
 otherwise) and name is a character string containing name of the transitive
 group according to the GAP 4 transitive groups library by Alexander Hulpke.
 
 $k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
 unfortunate: for $d > 7$, $k$ is the numbering of the group among all
 transitive subgroups of $S_d$, as given in ``The transitive groups of degree up
 to eleven'', G.~Butler and J.~McKay, \emph{Communications in Algebra}, vol.~11,
 1983,
 pp.~863--911 (group $k$ is denoted $T_k$ there). And for $d \leq 7$, it was ad
 hoc, so as to ensure that a given triple would denote a unique group.
 Specifically, for polynomials of degree $d\leq 7$, the groups are coded as
 follows, using standard notations
 \smallskip
 In degree 1: $S_1=[1,1,1]$.
 \smallskip
 In degree 2: $S_2=[2,-1,1]$.
 \smallskip
 In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,1]$.
 \smallskip
 In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,1]$, $D_4=[8,-1,1]$, $A_4=[12,1,1]$,
 $S_4=[24,-1,1]$.
 \smallskip
 In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,1]$, $M_{20}=[20,-1,1]$,
 $A_5=[60,1,1]$, $S_5=[120,-1,1]$.
 \smallskip
 In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,1]$, $A_4=[12,1,1]$,
 $G_{18}=[18,-1,1]$, $S_4^-=[24,-1,1]$, $A_4\times C_2=[24,-1,2]$,
 $S_4^+=[24,1,1]$, $G_{36}^-=[36,-1,1]$, $G_{36}^+=[36,1,1]$,
 $S_4\times C_2=[48,-1,1]$, $A_5=PSL_2(5)=[60,1,1]$, $G_{72}=[72,-1,1]$,
 $S_5=PGL_2(5)=[120,-1,1]$, $A_6=[360,1,1]$, $S_6=[720,-1,1]$.
 \smallskip
 In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[21,1,1]$,
 $M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,
 $S_7=[5040,-1,1]$.
 \smallskip
 This is deprecated and obsolete, but for reasons of backward compatibility,
 we cannot change this behavior yet. So you can use the default
 \tet{new_galois_format} to switch to a consistent naming scheme, namely $k$ is
 always the standard numbering of the group among all transitive subgroups of
 $S_n$. If this default is in effect, the above groups will be coded as:
 \smallskip
 In degree 1: $S_1=[1,1,1]$.
 \smallskip
 In degree 2: $S_2=[2,-1,1]$.
 \smallskip
 In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,2]$.
 \smallskip
 In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,2]$, $D_4=[8,-1,3]$, $A_4=[12,1,4]$,
 $S_4=[24,-1,5]$.
 \smallskip
 In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,2]$, $M_{20}=[20,-1,3]$,
 $A_5=[60,1,4]$, $S_5=[120,-1,5]$.
 \smallskip
 In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,3]$, $A_4=[12,1,4]$,
 $G_{18}=[18,-1,5]$, $A_4\times C_2=[24,-1,6]$, $S_4^+=[24,1,7]$,
 $S_4^-=[24,-1,8]$, $G_{36}^-=[36,-1,9]$, $G_{36}^+=[36,1,10]$,
 $S_4\times C_2=[48,-1,11]$, $A_5=PSL_2(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
 $S_5=PGL_2(5)=[120,-1,14]$, $A_6=[360,1,15]$, $S_6=[720,-1,16]$.
 \smallskip
 In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,2]$, $M_{21}=[21,1,3]$,
 $M_{42}=[42,-1,4]$, $PSL_2(7)=PSL_3(2)=[168,1,5]$, $A_7=[2520,1,6]$,
 $S_7=[5040,-1,7]$.
 \smallskip
 
 \misctitle{Warning} The method used is that of resolvent polynomials and is
 sensitive to the current precision. The precision is updated internally but,
 in very rare cases, a wrong result may be returned if the initial precision
 was not sufficient.
Variant: To enable the new format in library mode,
 set the global variable \tet{new_galois_format} to $1$.

Function: polgraeffe
Class: basic
Section: polynomials
C-Name: polgraeffe
Prototype: G
Help: polgraeffe(f): returns the Graeffe transform g of f, such that
 g(x^2) = f(x)f(-x).
Doc: returns the \idx{Graeffe} transform $g$ of $f$, such that $g(x^2) = f(x)
 f(-x)$.

Function: polhensellift
Class: basic
Section: polynomials
C-Name: polhensellift
Prototype: GGGL
Help: polhensellift(A, B, p, e): lift the factorization B of A modulo p to a
 factorization modulo p^e using Hensel lift. The factors in B must be
 pairwise relatively prime modulo p.
Doc: given a prime $p$, an integral polynomial $A$ whose leading coefficient
 is a $p$-unit, a vector $B$ of integral polynomials that are monic and
 pairwise relatively prime modulo $p$, and whose product is congruent to
 $A/\text{lc}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose
 product is congruent to $A$ modulo $p^e$.
 
 More generally, if $T$ is an integral polynomial irreducible mod $p$, and
 $B$ is a factorization of $A$ over the finite field $\F_p[t]/(T)$, you can
 lift it to $\Z_p[t]/(T, p^e)$ by replacing the $p$ argument with $[p,T]$:
 \bprog
 ? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
     B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
     r = polhensellift(A, B, [p, T], 6) }
 %1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
 ? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )
 %2 = x^2 + (t + 1)
 @eprog

Function: polhermite
Class: basic
Section: polynomials
C-Name: polhermite_eval
Prototype: LDG
Help: polhermite(n,{a='x}): Hermite polynomial H(n,v) of degree n, evaluated
 at a.
Description: 
  (small,?var):gen    polhermite($1,$2)
  (small,gen):gen     polhermite_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Hermite} polynomial $H_n$ evaluated at $a$
 (\kbd{'x} by default), i.e.
 $$ H_n(x) = (-1)^n\*e^{x^2} \dfrac{d^n}{dx^n}e^{-x^2}.$$
Variant: The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th
 Hermite polynomial in variable $v$.

Function: polinterpolate
Class: basic
Section: polynomials
C-Name: polint
Prototype: GDGDGD&
Help: polinterpolate(X,{Y},{t = 'x},{&e}): polynomial interpolation at t
 according to data vectors X, Y (i.e. given P of minimal degree
 such that P(X[i]) = Y[i] for all i, return P(t)). If Y is omitted,
 take P such that P(i) = X[i]. If present, e will contain an error estimate on
 the returned value.
Doc: given the data vectors
 $X$ and $Y$ of the same length $n$ ($X$ containing the $x$-coordinates,
 and $Y$ the corresponding $y$-coordinates), this function finds the
 \idx{interpolating polynomial} $P$ of minimal degree passing through these
 points and evaluates it at~$t$. If $Y$ is omitted, the polynomial $P$
 interpolates the $(i,X[i])$. If present, $e$ will contain an error estimate
 on the returned value.

Function: poliscyclo
Class: basic
Section: polynomials
C-Name: poliscyclo
Prototype: lG
Help: poliscyclo(f): returns 0 if f is not a cyclotomic polynomial, and n
 > 0 if f = Phi_n, the n-th cyclotomic polynomial.
Doc: returns 0 if $f$ is not a cyclotomic polynomial, and $n > 0$ if $f =
 \Phi_n$, the $n$-th cyclotomic polynomial.
 \bprog
 ? poliscyclo(x^4-x^2+1)
 %1 = 12
 ? polcyclo(12)
 %2 = x^4 - x^2 + 1
 ? poliscyclo(x^4-x^2-1)
 %3 = 0
 @eprog

Function: poliscycloprod
Class: basic
Section: polynomials
C-Name: poliscycloprod
Prototype: lG
Help: poliscycloprod(f): returns 1 if f is a product of cyclotomic
 polynonials, and 0 otherwise.
Doc: returns 1 if $f$ is a product of cyclotomic polynomial, and $0$
 otherwise.
 \bprog
 ? f = x^6+x^5-x^3+x+1;
 ? poliscycloprod(f)
 %2 = 1
 ? factor(f)
 %3 =
 [  x^2 + x + 1 1]
 
 [x^4 - x^2 + 1 1]
 ? [ poliscyclo(T) | T <- %[,1] ]
 %4 = [3, 12]
 ? polcyclo(3) * polcyclo(12)
 %5 = x^6 + x^5 - x^3 + x + 1
 @eprog

Function: polisirreducible
Class: basic
Section: polynomials
C-Name: isirreducible
Prototype: lG
Help: polisirreducible(pol): true(1) if pol is an irreducible non-constant
 polynomial, false(0) if pol is reducible or constant.
Doc: \var{pol} being a polynomial (univariate in the present version \vers),
 returns 1 if \var{pol} is non-constant and irreducible, 0 otherwise.
 Irreducibility is checked over the smallest base field over which \var{pol}
 seems to be defined.

Function: pollead
Class: basic
Section: polynomials
C-Name: pollead
Prototype: GDn
Help: pollead(x,{v}): leading coefficient of polynomial or series x, or x
 itself if x is a scalar. Error otherwise. With respect to the main variable
 of x if v is omitted, with respect to the variable v otherwise.
Description: 
 (pol):gen:copy         leading_coeff($1)
 (gen):gen              pollead($1, -1)
 (gen, var):gen         pollead($1, $2)
Doc: leading coefficient of the polynomial or power series $x$. This is
  computed with respect to the main variable of $x$ if $v$ is omitted, with
  respect to the variable $v$ otherwise.

Function: pollegendre
Class: basic
Section: polynomials
C-Name: pollegendre_eval
Prototype: LDG
Help: pollegendre(n,{a='x}): legendre polynomial of degree n evaluated at a.
Description: 
  (small,?var):gen    pollegendre($1,$2)
  (small,gen):gen     pollegendre_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Legendre polynomial} evaluated at $a$ (\kbd{'x} by
 default).
Variant: To obtain the $n$-th Legendre polynomial in variable $v$,
 use \fun{GEN}{pollegendre}{long n, long v}.

Function: polmodular
Class: basic
Section: polynomials
C-Name: polmodular
Prototype: LD0,L,DGDnD0,L,
Help: polmodular(L, {inv = 0}, {x = 'x}, {y = 'y}, {derivs = 0}):
 return the modular polynomial of level L and invariant inv.
Doc: Return the modular polynomial of prime level $L$ in variables $x$ and $y$
 for the modular function specified by \kbd{inv}.  If \kbd{inv} is 0 (the
 default), use the modular $j$ function, if \kbd{inv} is 1 use the
 Weber-$f$ function, and if \kbd{inv} is 5 use $\gamma_2 =
 \sqrt[3]{j}$.
 See \kbd{polclass} for the full list of invariants.
 If $x$ is given as \kbd{Mod(j, p)} or an element $j$ of
 a finite field (as a \typ{FFELT}), then return the modular polynomial of
 level $L$ evaluated at $j$.  If $j$ is from a finite field and
 \kbd{derivs} is non-zero, then return a triple where the
 last two elements are the first and second derivatives of the modular
 polynomial evaluated at $j$.
 \bprog
 ? polmodular(3)
 %1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ...
 ? polmodular(7, 1, , 'J)
 %2 = x^8 - J^7*x^7 + 7*J^4*x^4 - 8*J*x + J^8
 ? polmodular(7, 5, 7*ffgen(19)^0, 'j)
 %3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18
 ? polmodular(7, 5, Mod(7,19), 'j)
 %4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ...
 
 ? u = ffgen(5)^0; T = polmodular(3,0,,'j)*u;
 ? polmodular(3, 0, u,'j,1)
 %6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2]
 ? subst(T,x,u)
 %7 = j^4 + 3*j^2 + 4*j + 1
 ? subst(T',x,u)
 %8 = 3*j^2 + 2*j + 4
 ? subst(T'',x,u)
 %9 = 3*j^3 + 4*j^2 + 4*j + 2
 @eprog

Function: polrecip
Class: basic
Section: polynomials
C-Name: polrecip
Prototype: G
Help: polrecip(pol): reciprocal polynomial of pol.
Doc: reciprocal polynomial of \var{pol}, i.e.~the coefficients are in
 reverse order. \var{pol} must be a polynomial.

Function: polred
Class: basic
Section: number_fields
C-Name: polred0
Prototype: GD0,L,DG
Help: polred(T,{flag=0}): deprecated, use polredbest. Reduction of the
 polynomial T (gives minimal polynomials only). The following binary digits of
 (optional) flag are significant 1: partial reduction, 2: gives also elements.
Doc: This function is \emph{deprecated}, use \tet{polredbest} instead.
 Finds polynomials with reasonably small coefficients defining subfields of
 the number field defined by $T$. One of the polynomials always defines $\Q$
 (hence is equal to $x-1$), and another always defines the same number field
 as $T$ if $T$ is irreducible.
 
 All $T$ accepted by \tet{nfinit} are also allowed here;
 in particular, the format \kbd{[T, listP]} is recommended, e.g. with
 $\kbd{listP} = 10^5$ or a vector containing all ramified primes. Otherwise,
 the maximal order of $\Q[x]/(T)$ must be computed.
 
 The following binary digits of $\fl$ are significant:
 
 1: Possibly use a suborder of the maximal order. The
 primes dividing the index of the order chosen are larger than
 \tet{primelimit} or divide integers stored in the \tet{addprimes} table.
 This flag is \emph{deprecated}, the \kbd{[T, listP]} format is more
 flexible.
 
 2: gives also elements. The result is a two-column matrix, the first column
 giving primitive elements defining these subfields, the second giving the
 corresponding minimal polynomials.
 \bprog
 ? M = polred(x^4 + 8, 2)
 %1 =
 [1 x - 1]
 
 [1/2*x^2 x^2 + 2]
 
 [1/4*x^3 x^4 + 2]
 
 [x x^4 + 8]
 ? minpoly(Mod(M[2,1], x^4+8))
 %2 = x^2 + 2
 @eprog
 
 \synt{polred}{GEN T} ($\fl = 0$). Also available is
 \fun{GEN}{polred2}{GEN T} ($\fl = 2$). The function \kbd{polred0} is
 deprecated, provided for backward compatibility.
Obsolete: 2013-03-27

Function: polredabs
Class: basic
Section: number_fields
C-Name: polredabs0
Prototype: GD0,L,
Help: polredabs(T,{flag=0}): a smallest generating polynomial of the number
 field for the T2 norm on the roots, with smallest index for the minimal T2
 norm. flag is optional, whose binary digit mean 1: give the element whose
 characteristic polynomial is the given polynomial. 4: give all polynomials
 of minimal T2 norm (give only one of P(x) and P(-x)).
Doc: returns a canonical defining polynomial $P$ for the number field
 $\Q[X]/(T)$ defined by $T$, such that the sum of the squares of the modulus
 of the roots (i.e.~the $T_2$-norm) is minimal. Different $T$ defining
 isomorphic number fields will yield the same $P$. All $T$ accepted by
 \tet{nfinit} are also allowed here, e.g. non-monic polynomials, or pairs
 \kbd{[T, listP]} specifying that a non-maximal order may be used. For
 convenience, any number field structure (\var{nf}, \var{bnf},\dots) can also
 be used instead of $T$.
 \bprog
 ? polredabs(x^2 + 16)
 %1 = x^2 + 1
 ? K = bnfinit(x^2 + 16); polredabs(K)
 %2 = x^2 + 1
 @eprog
 
 \misctitle{Warning 1} Using a \typ{POL} $T$ requires computing
 and fully factoring the discriminant $d_K$ of the maximal order which may be
 very hard. You can use the format \kbd{[T, listP]}, where \kbd{listP}
 encodes a list of known coprime divisors of $\disc(T)$ (see \kbd{??nfbasis}),
 to help the routine, thereby replacing this part of the algorithm by a
 polynomial time computation But this may only compute a suborder of the
 maximal order, when the divisors are not squarefree or do not include all
 primes dividing $d_K$. The routine attempts to certify the result
 independently of this order computation as per \tet{nfcertify}: we try to
 prove that the computed order is maximal. If the certification fails,
 the routine then fully factors the integers returned by \kbd{nfcertify}.
 You can use \tet{polredbest} or \kbd{polredabs(,16)} to avoid this
 factorization step; in both cases, the result is no longer canonical.
 
 \misctitle{Warning 2} Apart from the factorization of the discriminant of
 $T$, this routine runs in polynomial time for a \emph{fixed} degree.
 But the complexity is exponential in the degree: this routine
 may be exceedingly slow when the number field has many subfields, hence a
 lot of elements of small $T_2$-norm. If you do not need a canonical
 polynomial, the function \tet{polredbest} is in general much faster (it runs
 in polynomial time), and tends to return polynomials with smaller
 discriminants.
 
 The binary digits of $\fl$ mean
 
 1: outputs a two-component row vector $[P,a]$, where $P$ is the default
 output and \kbd{Mod(a, P)} is a root of the original $T$.
 
 4: gives \emph{all} polynomials of minimal $T_2$ norm; of the two polynomials
 $P(x)$ and $\pm P(-x)$, only one is given.
 
 16: Possibly use a suborder of the maximal order, \emph{without} attempting to
 certify the result as in Warning 1: we always return a polynomial and never
 $0$. The result is a priori not canonical.
 
 \bprog
 ? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \
       - 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
 ? T1 = polredabs(T); T2 = polredbest(T);
 ? [ norml2(polroots(T1)), norml2(polroots(T2)) ]
 %3 = [88.0000000, 120.000000]
 ? [ sizedigit(poldisc(T1)), sizedigit(poldisc(T2)) ]
 %4 = [75, 67]
 @eprog
Variant: Instead of the above hardcoded numerical flags, one should use an
 or-ed combination of
 
 \item \tet{nf_PARTIALFACT}: possibly use a suborder of the maximal order,
 \emph{without} attempting to certify the result.
 
 \item \tet{nf_ORIG}: return $[P, a]$, where \kbd{Mod(a, P)} is a root of $T$.
 
 \item \tet{nf_RAW}: return $[P, b]$, where \kbd{Mod(b, T)} is a root of $P$.
 The algebraic integer $b$ is the raw result produced by the small vectors
 enumeration in the maximal order; $P$ was computed as the characteristic
 polynomial of \kbd{Mod(b, T)}. \kbd{Mod(a, P)} as in \tet{nf_ORIG}
 is obtained with \tet{modreverse}.
 
 \item \tet{nf_ADDZK}: if $r$ is the result produced with some of the above
 flags (of the form $P$ or $[P,c]$), return \kbd{[r,zk]}, where \kbd{zk} is a
 $\Z$-basis for the maximal order of $\Q[X]/(P)$.
 
 \item \tet{nf_ALL}: return a vector of results of the above form, for all
 polynomials of minimal $T_2$-norm.

Function: polredbest
Class: basic
Section: number_fields
C-Name: polredbest
Prototype: GD0,L,
Help: polredbest(T,{flag=0}): reduction of the polynomial T (gives minimal
 polynomials only). If flag=1, gives also elements.
Doc: finds a polynomial with reasonably
 small coefficients defining the same number field as $T$.
 All $T$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic
 polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[T,Z\_K\_basis]}). Contrary to
 \tet{polredabs}, this routine runs in polynomial time, but it offers no
 guarantee as to the minimality of its result.
 
 This routine computes an LLL-reduced basis for the ring of integers of
 $\Q[X]/(T)$, then examines small linear combinations of the basis vectors,
 computing their characteristic polynomials. It returns the \emph{separable}
 $P$ polynomial of smallest discriminant (the one with lexicographically
 smallest \kbd{abs(Vec(P))} in case of ties). This is a good candidate
 for subsequent number field computations, since it guarantees that
 the denominators of algebraic integers, when expressed in the power basis,
 are reasonably small. With no claim of minimality, though.
 
 It can happen that iterating this functions yields better and better
 polynomials, until it stabilizes:
 \bprog
 ? \p5
 ? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
 ? poldisc(P)*1.
 %2 = 1.2622 E55
 ? P = polredbest(P);
 ? poldisc(P)*1.
 %4 = 2.9012 E51
 ? P = polredbest(P);
 ? poldisc(P)*1.
 %6 = 8.8704 E44
 @eprog\noindent In this example, the initial polynomial $P$ is the one
 returned by \tet{polredabs}, and the last one is stable.
 
 If $\fl = 1$: outputs a two-component row vector $[P,a]$,  where $P$ is the
 default output and \kbd{Mod(a, P)} is a root of the original $T$.
 \bprog
 ? [P,a] = polredbest(x^4 + 8, 1)
 %1 = [x^4 + 2, Mod(x^3, x^4 + 2)]
 ? charpoly(a)
 %2 = x^4 + 8
 @eprog\noindent In particular, the map $\Q[x]/(T) \to \Q[x]/(P)$,
 $x\mapsto \kbd{Mod(a,P)}$ defines an isomorphism of number fields, which can
 be computed as
 \bprog
   subst(lift(Q), 'x, a)
 @eprog\noindent if $Q$ is a \typ{POLMOD} modulo $T$; \kbd{b = modreverse(a)}
 returns a \typ{POLMOD} giving the inverse of the above map (which should be
 useless since $\Q[x]/(P)$ is a priori a better representation for the number
 field and its elements).

Function: polredord
Class: basic
Section: number_fields
C-Name: polredord
Prototype: G
Help: polredord(x): this function is obsolete, use polredbest.
Doc: This function is obsolete, use polredbest.
Obsolete: 2008-07-20

Function: polresultant
Class: basic
Section: polynomials
C-Name: polresultant0
Prototype: GGDnD0,L,
Help: polresultant(x,y,{v},{flag=0}): resultant of the polynomials x and y,
 with respect to the main variables of x and y if v is omitted, with respect
 to the variable v otherwise. flag is optional, and can be 0: default,
 uses either the subresultant algorithm, a modular algorithm or Sylvester's
 matrix, depending on the inputs; 1 uses Sylvester's matrix (should always be
 slower than the default).
Doc: resultant of the two
 polynomials $x$ and $y$ with exact entries, with respect to the main
 variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$
 otherwise. The algorithm assumes the base ring is a domain. If you also need
 the $u$ and $v$ such that $x*u + y*v = \text{Res}(x,y)$, use the
 \tet{polresultantext} function.
 
 If $\fl=0$ (default), uses the algorithm best suited to the inputs,
 either the \idx{subresultant algorithm} (Lazard/Ducos variant, generic case),
 a modular algorithm (inputs in $\Q[X]$) or Sylvester's matrix (inexact
 inputs).
 
 If $\fl=1$, uses the determinant of Sylvester's matrix instead; this should
 always be slower than the default.

Function: polresultantext
Class: basic
Section: polynomials
C-Name: polresultantext0
Prototype: GGDn
Help: polresultantext(A,B,{v}): return [U,V,R] such that
 R=polresultant(A,B,v) and U*A+V*B = R, where A and B are polynomials.
Doc: finds polynomials $U$ and $V$ such that $A*U + B*V = R$, where $R$ is
 the resultant of $U$ and $V$ with respect to the main variables of $A$ and
 $B$ if $v$ is omitted, and with respect to $v$ otherwise. Returns the row
 vector $[U,V,R]$. The algorithm used (subresultant) assumes that the base
 ring is a domain.
 \bprog
 ? A = x*y; B = (x+y)^2;
 ? [U,V,R] = polresultantext(A, B)
 %2 = [-y*x - 2*y^2, y^2, y^4]
 ? A*U + B*V
 %3 = y^4
 ? [U,V,R] = polresultantext(A, B, y)
 %4 = [-2*x^2 - y*x, x^2, x^4]
 ? A*U+B*V
 %5 = x^4
 @eprog
Variant: Also available is
 \fun{GEN}{polresultantext}{GEN x, GEN y}.

Function: polroots
Class: basic
Section: polynomials
C-Name: roots
Prototype: Gp
Help: polroots(T): complex roots of the polynomial T using
 Schonhage's method, as modified by Gourdon.
Doc: complex roots of the polynomial
 $T$, given as a column vector where each root is repeated according to
 its multiplicity. The precision is given as for transcendental functions: in
 GP it is kept in the variable \kbd{realprecision} and is transparent to the
 user, but it must be explicitly given as a second argument in library mode.
 
 The algorithm used is a modification of Sch\"onhage\sidx{Sch\"onage}'s
 root-finding algorithm, due to and originally implemented by Gourdon.
 It is guaranteed to converge; if furthermore $T$ has rational coefficients,
 roots are guaranteed to the required relative accuracy.

Function: polrootsff
Class: basic
Section: number_theoretical
C-Name: polrootsff
Prototype: GDGDG
Help: polrootsff(x,{p},{a}): returns the roots of the polynomial x in the finite
 field F_p[X]/a(X)F_p[X]. a or p can be omitted if x has t_FFELT coefficients.
Doc: returns the vector of distinct roots of the polynomial $x$ in the field
 $\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
 coefficients of $x$ must be operation-compatible with $\Z/p\Z$.
 Either $a$ or $p$ can omitted (in which case both are ignored) if x has
 \typ{FFELT} coefficients:
 \bprog
 ? polrootsff(x^2 + 1, 5, y^2+3)  \\ over F_5[y]/(y^2+3) ~ F_25
 %1 = [Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)),
       Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5))]
 ? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
 ? polrootsff(x^2 + 1)   \\ not enough information to determine the base field
  ***   at top-level: polrootsff(x^2+1)
  ***                 ^-----------------
  *** polrootsff: incorrect type in factorff.
 ? polrootsff(x^2 + t^0) \\ make sure one coeff. is a t_FFELT
 %3 = [3, 2]
 ? polrootsff(x^2 + t + 1)
 %4 = [2*t + 1, 3*t + 4]
 @eprog\noindent
 Notice that the second syntax is easier to use and much more readable.

Function: polrootsmod
Class: basic
Section: polynomials
C-Name: rootmod0
Prototype: GGD0,L,
Help: polrootsmod(pol,p,{flag=0}): roots mod the prime p of the polynomial pol. flag is
 optional, and can be 0: default, or 1: use a naive search, useful for small p.
Description: 
 (pol, int, ?0):vec           rootmod($1, $2)
 (pol, int, 1):vec            rootmod2($1, $2)
 (pol, int, #small):vec       $"Bad flag in polrootsmod"
 (pol, int, small):vec        rootmod0($1, $2, $3)
Doc: row vector of roots modulo $p$ of the polynomial \var{pol}.
 Multiple roots are \emph{not} repeated.
 \bprog
 ? polrootsmod(x^2-1,2)
 %1 = [Mod(1, 2)]~
 @eprog\noindent
 If $p$ is very small, you may set $\fl=1$, which uses a naive search.

Function: polrootspadic
Class: basic
Section: polynomials
C-Name: rootpadic
Prototype: GGL
Help: polrootspadic(x,p,r): p-adic roots of the polynomial x to precision r.
Doc: vector of $p$-adic roots of the polynomial \var{pol}, given to
 $p$-adic precision $r$ $p$ is assumed to be a prime. Multiple roots are
 \emph{not} repeated. Note that this is not the same as the roots in
 $\Z/p^r\Z$, rather it gives approximations in $\Z/p^r\Z$ of the true roots
 living in $\Q_p$.
 \bprog
 ? polrootspadic(x^3 - x^2 + 64, 2, 5)
 %1 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~
 @eprog
 If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
 well-defined; in this case, the polynomial is first made integral by dividing
 out the $p$-adic content, then lifted
 to $\Z$ using \tet{truncate} coefficientwise. Hence the roots given are
 approximations of the roots of an exact polynomial which is $p$-adically
 close to the input. To avoid pitfalls, we advise to only factor polynomials
 with exact rational coefficients.

Function: polrootsreal
Class: basic
Section: polynomials
C-Name: realroots
Prototype: GDGp
Help: polrootsreal(T, {ab}): real roots of the polynomial T with rational
 coefficients, using Uspensky's method. In interval ab = [a,b] if present.
Doc: real roots of the polynomial $T$ with rational coefficients, multiple
 roots being included according to their multiplicity. The roots are given
 to a relative accuracy of \kbd{realprecision}. If argument \var{ab} is
 present, it must be a vector $[a,b]$ with two components (of type
 \typ{INT}, \typ{FRAC} or \typ{INFINITY}) and we restrict to roots belonging
 to that closed interval.
 \bprog
 ? \p9
 ? polrootsreal(x^2-2)
 %1 = [-1.41421356, 1.41421356]~
 ? polrootsreal(x^2-2, [1,+oo])
 %2 = [1.41421356]~
 ? polrootsreal(x^2-2, [2,3])
 %3 = []~
 ? polrootsreal((x-1)*(x-2), [2,3])
 %4 = [2.00000000]~
 @eprog\noindent
 The algorithm used is a modification of Uspensky's method (relying on
 Descartes's rule of sign), following Rouillier and Zimmerman's article
 ``Efficient isolation of a polynomial real roots''
 (\url{http://hal.inria.fr/inria-00072518/}). Barring bugs, it is guaranteed
 to converge and to give the roots to the required accuracy.
 
 \misctitle{Remark} If the polynomial $T$ is of the
 form $Q(x^h)$ for some $h\geq 2$ and \var{ab} is omitted, the routine will
 apply the algorithm to $Q$ (restricting to non-negative roots when $h$ is
 even), then take $h$-th roots. On the other hand, if you want to specify
 \var{ab}, you should apply the routine to $Q$ yourself and a suitable
 interval $[a',b']$ using approximate $h$-th roots adapted to your problem:
 the function will not perform this change of variables if \var{ab} is present.

Function: polsturm
Class: basic
Section: polynomials
C-Name: sturmpart
Prototype: lGDGDG
Help: polsturm(T,{ab}): number of real roots of the squarefree polynomial
 T (in the interval ab = [a,b] if present).
Doc: number of real roots of the real squarefree polynomial \var{T}. If
 the argument \var{ab} is present, it must be a vector $[a,b]$ with
 two real components (of type \typ{INT}, \typ{REAL}, \typ{FRAC}
 or  \typ{INFINITY}) and we count roots belonging to that closed interval.
 
 If possible, you should stick to exact inputs, that is avoid \typ{REAL}s in
 $T$ and the bounds $a,b$: the result is then guaranteed and we use a fast
 algorithm (Uspensky's method, relying on Descartes's rule of sign, see
 \tet{polrootsreal}); otherwise, we use Sturm's algorithm and the result
 may be wrong due to round-off errors.
 \bprog
 ? T = (x-1)*(x-2)*(x-3);
 ? polsturm(T)
 %2 = 3
 ? polsturm(T, [-oo,2])
 %3 = 2
 ? polsturm(T, [1/2,+oo])
 %4 = 3
 ? polsturm(T, [1, Pi])  \\ Pi inexact: not recommended !
 %5 = 3
 ? polsturm(T*1., [0, 4])  \\ T*1. inexact: not recommended !
 %6 = 3
 ? polsturm(T^2, [0, 4])  \\ not squarefree
  ***   at top-level: polsturm(T^2,[0,4])
  ***                 ^-------------------
  *** polsturm: domain error in polsturm: issquarefree(pol) = 0
 ? polsturm((T*1.)^2, [0, 4])  \\ not squarefree AND inexact
  ***   at top-level: polsturm((T*1.)^2,[0
  ***                 ^--------------------
  *** polsturm: precision too low in polsturm.
 @eprog\noindent In the last example, the input polynomial is not
 squarefree but there is no way to ascertain it from the given
 floating point approximation: we get a precision error in this case.
 %\syn{NO}
 
 The library syntax is \fun{long}{RgX_sturmpart}{GEN T, GEN ab} or
 \fun{long}{sturm}{GEN T} (for the case \kbd{ab = NULL}). The function
 \fun{long}{sturmpart}{GEN T, GEN a, GEN b} is obsolete and deprecated.

Function: polsubcyclo
Class: basic
Section: polynomials
C-Name: polsubcyclo
Prototype: LLDn
Help: polsubcyclo(n,d,{v='x}): finds an equation (in variable v) for the d-th
 degree subfields of Q(zeta_n). Output is a polynomial, or a vector of
 polynomials if there are several such fields or none.
Doc: gives polynomials (in variable $v$) defining the sub-Abelian extensions
 of degree $d$ of the cyclotomic field $\Q(\zeta_n)$, where $d\mid \phi(n)$.
 
 If there is exactly one such extension the output is a polynomial, else it is
 a vector of polynomials, possibly empty. To get a vector in all cases,
 use \kbd{concat([], polsubcyclo(n,d))}.
 
 The function \tet{galoissubcyclo} allows to specify exactly which
 sub-Abelian extension should be computed.

Function: polsylvestermatrix
Class: basic
Section: polynomials
C-Name: sylvestermatrix
Prototype: GG
Help: polsylvestermatrix(x,y): forms the sylvester matrix attached to the
 two polynomials x and y. Warning: the polynomial coefficients are in
 columns, not in rows.
Doc: forms the Sylvester matrix
 corresponding to the two polynomials $x$ and $y$, where the coefficients of
 the polynomials are put in the columns of the matrix (which is the natural
 direction for solving equations afterwards). The use of this matrix can be
 essential when dealing with polynomials with inexact entries, since
 polynomial Euclidean division doesn't make much sense in this case.

Function: polsym
Class: basic
Section: polynomials
C-Name: polsym
Prototype: GL
Help: polsym(x,n): column vector of symmetric powers of the roots of x up to n.
Doc: creates the column vector of the \idx{symmetric powers} of the roots of the
 polynomial $x$ up to power $n$, using Newton's formula.

Function: poltchebi
Class: basic
Section: polynomials
C-Name: polchebyshev1
Prototype: LDn
Help: poltchebi(n,{v='x}): deprecated alias for polchebyshev.
Doc: deprecated alias for \kbd{polchebyshev}
Obsolete: 2013-04-03

Function: poltschirnhaus
Class: basic
Section: number_fields
C-Name: tschirnhaus
Prototype: G
Help: poltschirnhaus(x): random Tschirnhausen transformation of the
 polynomial x.
Doc: applies a random Tschirnhausen
 transformation to the polynomial $x$, which is assumed to be non-constant
 and separable, so as to obtain a new equation for the \'etale algebra
 defined by $x$. This is for instance useful when computing resolvents,
 hence is used by the \kbd{polgalois} function.

Function: polylog
Class: basic
Section: transcendental
C-Name: polylog0
Prototype: LGD0,L,p
Help: polylog(m,x,{flag=0}): m-th polylogarithm of x. flag is optional, and
 can be 0: default, 1: D_m~-modified m-th polylog of x, 2: D_m-modified m-th
 polylog of x, 3: P_m-modified m-th polylog of x.
Doc: one of the different polylogarithms, depending on \fl:
 
 If $\fl=0$ or is omitted: $m^\text{th}$ polylogarithm of $x$, i.e.~analytic
 continuation of the power series $\text{Li}_m(x)=\sum_{n\ge1}x^n/n^m$
 ($x < 1$). Uses the functional equation linking the values at $x$ and $1/x$
 to restrict to the case $|x|\leq 1$, then the power series when
 $|x|^2\le1/2$, and the power series expansion in $\log(x)$ otherwise.
 
 Using $\fl$, computes a modified $m^\text{th}$ polylogarithm of $x$.
 We use Zagier's notations; let $\Re_m$ denote $\Re$ or $\Im$ depending
 on whether $m$ is odd or even:
 
 If $\fl=1$: compute $\tilde D_m(x)$, defined for $|x|\le1$ by
 $$\Re_m\left(\sum_{k=0}^{m-1} \dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
 +\dfrac{(-\log|x|)^{m-1}}{m!}\log|1-x|\right).$$
 
 If $\fl=2$: compute $D_m(x)$, defined for $|x|\le1$ by
 $$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
 -\dfrac{1}{2}\dfrac{(-\log|x|)^m}{m!}\right).$$
 
 If $\fl=3$: compute $P_m(x)$, defined for $|x|\le1$ by
 $$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{2^kB_k}{k!}(\log|x|)^k\text{Li}_{m-k}(x)
 -\dfrac{2^{m-1}B_m}{m!}(\log|x|)^m\right).$$
 
 These three functions satisfy the functional equation
 $f_m(1/x) = (-1)^{m-1}f_m(x)$.
Variant: Also available is
 \fun{GEN}{gpolylog}{long m, GEN x, long prec} (\fl = 0).

Function: polzagier
Class: basic
Section: polynomials
C-Name: polzag
Prototype: LL
Help: polzagier(n,m): Zagier's polynomials of index n,m.
Doc: creates Zagier's polynomial $P_n^{(m)}$ used in
 the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$), see
 ``Convergence acceleration of alternating series'', Cohen et al.,
 \emph{Experiment.~Math.}, vol.~9, 2000, pp.~3--12.
 
 If $m < 0$ or $m \ge n$, $P_n^{(m)} = 0$.
 We have
 $P_n := P_n^{(0)}$ is $T_n(2x-1)$, where $T_n$ is the Legendre polynomial of
 the second kind. For $n > m > 0$, $P_n^{(m)}$ is the $m$-th difference with
 step $2$ of the sequence $n^{m+1}P_n$; in this case, it satisfies
 $$2 P_n^{(m)}(sin^2 t) = \dfrac{d^{m+1}}{dt^{m+1}}(\sin(2t)^m \sin(2(n-m)t)).$$
 
 %@article {MR2001m:11222,
 %    AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
 %     TITLE = {Convergence acceleration of alternating series},
 %   JOURNAL = {Experiment. Math.},
 %    VOLUME = {9},
 %      YEAR = {2000},
 %    NUMBER = {1},
 %     PAGES = {3--12},
 %}

Function: powers
Class: basic
Section: operators
C-Name: gpowers0
Prototype: GLDG
Help: powers(x,n,{x0}): return the vector [1,x,...,x^n] if x0 is omitted,
 and [x0, x0*x, ..., x0*x^n] otherwise.
Description: 
 (gen, small):vec  gpowers($1, $2)
Doc: for non-negative $n$, return the vector with $n+1$ components
 $[1,x,\dots,x^n]$ if \kbd{x0} is omitted, and $[x_0, x_0*x, ..., x_0*x^n]$
 otherwise.
 \bprog
 ? powers(Mod(3,17), 4)
 %1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]
 ? powers(Mat([1,2;3,4]), 3)
 %2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]
 ? powers(3, 5, 2)
 %3 = [2, 6, 18, 54, 162, 486]
 @eprog\noindent When $n < 0$, the function returns the empty vector \kbd{[]}.
Variant: Also available is
 \fun{GEN}{gpowers}{GEN x, long n} when \kbd{x0} is \kbd{NULL}.

Function: precision
Class: basic
Section: conversions
C-Name: precision0
Prototype: GD0,L,
Help: precision(x,{n}): if n is present, return x at precision n. If n is
 omitted, return real precision of object x.
Description: 
 (real):small          prec2ndec(gprecision($1))
 (gen):int             precision0($1, 0)
 (real,0):small        prec2ndec(gprecision($1))
 (gen,0):int           precision0($1, 0)
 (real,#small):real    rtor($1, ndec2prec($2))
 (gen,#small):gen      gprec($1, $2)
 (real,small):real     precision0($1, $2)
 (mp,small):mp         precision0($1, $2)
 (gen,small):gen       precision0($1, $2)
Doc: the function behaves differently according to whether $n$ is
 present and positive or not. If $n$ is missing, the function returns the
 precision in decimal digits of the PARI object $x$. If $x$ is an exact
 object, the function returns \kbd{+oo}.
 
 \bprog
 ? precision(exp(1e-100))
 %1 = 154                \\ 154 significant decimal digits
 ? precision(2 + x)
 %2 = +oo                \\ exact object
 ? precision(0.5 + O(x))
 %3 = 38                 \\ floating point accuracy, NOT series precision
 ? precision( [ exp(1e-100), 0.5 ] )
 %4 = 38                 \\ minimal accuracy among components
 @eprog
 
 If $n$ is present, the function creates a new object equal to $x$ with a new
 floating point precision $n$: $n$ is the number of desired significant
 \emph{decimal} digits. If $n$ is smaller than the precision of a \typ{REAL}
 component of $x$, it is truncated, otherwise it is extended with zeros.
 For exact or non-floating point types, no change.
Variant: Also available are \fun{GEN}{gprec}{GEN x, long n} and
 \fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
 \emph{words} (32-bit or 64-bit depending on the architecture).

Function: precprime
Class: basic
Section: number_theoretical
C-Name: precprime
Prototype: G
Help: precprime(x): largest pseudoprime <= x, 0 if x<=1.
Description: 
 (gen):int        precprime($1)
Doc: finds the largest pseudoprime (see
 \tet{ispseudoprime}) less than or equal to $x$. $x$ can be of any real type.
 Returns 0 if $x\le1$. Note that if $x$ is a prime, this function returns $x$
 and not the largest prime strictly smaller than $x$. To rigorously prove that
 the result is prime, use \kbd{isprime}.

Function: prime
Class: basic
Section: number_theoretical
C-Name: prime
Prototype: L
Help: prime(n): returns the n-th prime (n C-integer).
Doc: the $n^{\text{th}}$ prime number
 \bprog
 ? prime(10^9)
 %1 = 22801763489
 @eprog\noindent Uses checkpointing and a naive $O(n)$ algorithm.

Function: primepi
Class: basic
Section: number_theoretical
C-Name: primepi
Prototype: G
Help: primepi(x): the prime counting function pi(x) = #{p <= x, p prime}.
Description: 
 (gen):int        primepi($1)
Doc: the prime counting function. Returns the number of
 primes $p$, $p \leq x$.
 \bprog
 ? primepi(10)
 %1 = 4;
 ? primes(5)
 %2 = [2, 3, 5, 7, 11]
 ? primepi(10^11)
 %3 = 4118054813
 @eprog\noindent Uses checkpointing and a naive $O(x)$ algorithm.

Function: primes
Class: basic
Section: number_theoretical
C-Name: primes0
Prototype: G
Help: primes(n): returns the vector of the first n primes (integer), or the
 primes in interval n = [a,b].
Doc: creates a row vector whose components are the first $n$ prime numbers.
 (Returns the empty vector for $n \leq 0$.) A \typ{VEC} $n = [a,b]$ is also
 allowed, in which case the primes in $[a,b]$ are returned
 \bprog
 ? primes(10)     \\ the first 10 primes
 %1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
 ? primes([0,29])  \\ the primes up to 29
 %2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
 ? primes([15,30])
 %3 = [17, 19, 23, 29]
 @eprog

Function: print
Class: basic
Section: programming/specific
C-Name: print
Prototype: vs*
Help: print({str}*): outputs its string arguments (in raw format) ending with
 a newline.
Description: 
 (?gen,...):void  pari_printf("${2 format_string}\n"${2 format_args})
Doc: outputs its (string) arguments in raw format, ending with a newline.
 %\syn{NO}

Function: print1
Class: basic
Section: programming/specific
C-Name: print1
Prototype: vs*
Help: print1({str}*): outputs its string arguments (in raw format) without
 ending with newline.
Description: 
 (?gen,...):void  pari_printf("${2 format_string}"${2 format_args})
Doc: outputs its (string) arguments in raw
 format, without ending with a newline. Note that you can still embed newlines
 within your strings, using the \b{n} notation~!
 %\syn{NO}

Function: printf
Class: basic
Section: programming/specific
C-Name: printf0
Prototype: vss*
Help: printf(fmt,{x}*): prints its arguments according to the format fmt.
Doc: This function is based on the C library command of the same name.
 It prints its arguments according to the format \var{fmt}, which specifies how
 subsequent arguments are converted for output. The format is a
 character string composed of zero or more directives:
 
 \item ordinary characters (not \kbd{\%}), printed unchanged,
 
 \item conversions specifications (\kbd{\%} followed by some characters)
 which fetch one argument from the list and prints it according to the
 specification.
 
 More precisely, a conversion specification consists in a \kbd{\%}, one or more
 optional flags (among \kbd{\#}, \kbd{0}, \kbd{-}, \kbd{+}, ` '), an optional
 decimal digit string specifying a minimal field width, an optional precision
 in the form of a period (`\kbd{.}') followed by a decimal digit string, and
 the conversion specifier (among \kbd{d},\kbd{i}, \kbd{o}, \kbd{u},
 \kbd{x},\kbd{X}, \kbd{p}, \kbd{e},\kbd{E}, \kbd{f}, \kbd{g},\kbd{G}, \kbd{s}).
 
 \misctitle{The flag characters} The character \kbd{\%} is followed by zero or
 more of the following flags:
 
 \item \kbd{\#}: the value is converted to an ``alternate form''. For
 \kbd{o} conversion (octal), a \kbd{0} is prefixed to the string. For \kbd{x}
 and \kbd{X} conversions (hexa), respectively \kbd{0x} and \kbd{0X} are
 prepended. For other conversions, the flag is ignored.
 
 \item \kbd{0}: the value should be zero padded. For
 \kbd{d},
 \kbd{i},
 \kbd{o},
 \kbd{u},
 \kbd{x},
 \kbd{X}
 \kbd{e},
 \kbd{E},
 \kbd{f},
 \kbd{F},
 \kbd{g}, and
 \kbd{G} conversions, the value is padded on the left with zeros rather than
 blanks. (If the \kbd{0} and \kbd{-} flags both appear, the \kbd{0} flag is
 ignored.)
 
 \item \kbd{-}: the value is left adjusted on the field boundary. (The
 default is right justification.) The value is padded on the right with
 blanks, rather than on the left with blanks or zeros. A \kbd{-} overrides a
 \kbd{0} if both are given.
 
 \item \kbd{` '} (a space): a blank is left before a positive number
 produced by a signed conversion.
 
 \item \kbd{+}: a sign (+ or -) is placed before a number produced by a
 signed conversion. A \kbd{+} overrides a space if both are used.
 
 \misctitle{The field width} An optional decimal digit string (whose first
 digit is non-zero) specifying a \emph{minimum} field width. If the value has
 fewer characters than the field width, it is padded with spaces on the left
 (or right, if the left-adjustment flag has been given). In no case does a
 small field width cause truncation of a field; if the value is wider than
 the field width, the field is expanded to contain the conversion result.
 Instead of a decimal digit string, one may write \kbd{*} to specify that the
 field width is given in the next argument.
 
 \misctitle{The precision} An optional precision in the form of a period
 (`\kbd{.}') followed by a decimal digit string. This gives
 the number of digits to appear after the radix character for \kbd{e},
 \kbd{E}, \kbd{f}, and \kbd{F} conversions, the maximum number of significant
 digits for \kbd{g} and \kbd{G} conversions, and the maximum number of
 characters to be printed from an \kbd{s} conversion.
 Instead of a decimal digit string, one may write \kbd{*} to specify that the
 field width is given in the next argument.
 
 \misctitle{The length modifier} This is ignored under \kbd{gp}, but
 necessary for \kbd{libpari} programming. Description given here for
 completeness:
 
 \item \kbd{l}: argument is a \kbd{long} integer.
 
 \item \kbd{P}: argument is a \kbd{GEN}.
 
 \misctitle{The conversion specifier} A character that specifies the type of
 conversion to be applied.
 
 \item \kbd{d}, \kbd{i}: a signed integer.
 
 \item \kbd{o}, \kbd{u}, \kbd{x}, \kbd{X}: an unsigned integer, converted
 to unsigned octal (\kbd{o}), decimal (\kbd{u}) or hexadecimal (\kbd{x} or
 \kbd{X}) notation. The letters \kbd{abcdef} are used for \kbd{x}
 conversions;  the letters \kbd{ABCDEF} are used for \kbd{X} conversions.
 
 \item \kbd{e}, \kbd{E}: the (real) argument is converted in the style
 \kbd{[ -]d.ddd e[ -]dd}, where there is one digit before the decimal point,
 and the number of digits after it is equal to the precision; if the
 precision is missing, use the current \kbd{realprecision} for the total
 number of printed digits. If the precision is explicitly 0, no decimal-point
 character appears. An \kbd{E} conversion uses the letter \kbd{E} rather
 than \kbd{e} to introduce the exponent.
 
 \item \kbd{f}, \kbd{F}: the (real) argument is converted in the style
 \kbd{[ -]ddd.ddd}, where the number of digits after the decimal point
 is equal to the precision; if the precision is missing, use the current
 \kbd{realprecision} for the total number of printed digits. If the precision
 is explicitly 0, no decimal-point character appears. If a decimal point
 appears, at least one digit appears before it.
 
 \item \kbd{g}, \kbd{G}: the (real) argument is converted in style
 \kbd{e} or \kbd{f} (or \kbd{E} or \kbd{F} for \kbd{G} conversions)
 \kbd{[ -]ddd.ddd}, where the total number of digits printed
 is equal to the precision; if the precision is missing, use the current
 \kbd{realprecision}. If the precision is explicitly 0, it is treated as 1.
 Style \kbd{e} is used when
 the decimal exponent is $< -4$, to print \kbd{0.}, or when the integer
 part cannot be decided given the known significant digits, and the \kbd{f}
 format otherwise.
 
 \item \kbd{c}: the integer argument is converted to an unsigned char, and the
 resulting character is written.
 
 \item \kbd{s}: convert to a character string. If a precision is given, no
 more than the specified number of characters are written.
 
 \item \kbd{p}: print the address of the argument in hexadecimal (as if by
 \kbd{\%\#x}).
 
 \item \kbd{\%}: a \kbd{\%} is written. No argument is converted. The complete
 conversion specification is \kbd{\%\%}.
 
 \noindent Examples:
 
 \bprog
 ? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
 floor: 3, field width 3:   1, with sign:  +2
 
 ? printf("%.5g %.5g %.5g\n",123,123/456,123456789);
 123.00 0.26974 1.2346 e8
 
 ? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
 P :PARI:PARIG
 
 \\ min field width and precision given by arguments
 ? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
 x=+23.00 y=-00.04
 
 \\ minimum fields width 5, pad left with zeroes
 ? for (i = 2, 5, printf("%05d\n", 10^i))
 00100
 01000
 10000
 100000  \\@com don't truncate fields whose length is larger than the minimum width
 ? printf("%.2f  |%06.2f|", Pi,Pi)
 3.14  |  3.14|
 @eprog\noindent All numerical conversions apply recursively to the entries
 of vectors and matrices:
 \bprog
 ? printf("%4d", [1,2,3]);
 [   1,   2,   3]
 ? printf("%5.2f", mathilbert(3));
 [ 1.00  0.50  0.33]
 
 [ 0.50  0.33  0.25]
 
 [ 0.33  0.25  0.20]
 @eprog
 \misctitle{Technical note} Our implementation of \tet{printf}
 deviates from the C89 and C99 standards in a few places:
 
 \item whenever a precision is missing, the current \kbd{realprecision} is
 used to determine the number of printed digits (C89: use 6 decimals after
 the radix character).
 
 \item in conversion style \kbd{e}, we do not impose that the
 exponent has at least two digits; we never write a \kbd{+} sign in the
 exponent; 0 is printed in a special way, always as \kbd{0.E\var{exp}}.
 
 \item in conversion style \kbd{f}, we switch to style \kbd{e} if the
 exponent is greater or equal to the precision.
 
 \item in conversion \kbd{g} and \kbd{G}, we do not remove trailing zeros
  from the fractional part of the result; nor a trailing decimal point;
  0 is printed in a special way, always as \kbd{0.E\var{exp}}.
 %\syn{NO}

Function: printsep
Class: basic
Section: programming/specific
C-Name: printsep
Prototype: vss*
Help: printsep(sep,{str}*): outputs its string arguments (in raw format),
 separated by 'sep', ending with a newline.
Doc: outputs its (string) arguments in raw format, ending with a newline.
 Successive entries are separated by \var{sep}:
 \bprog
 ? printsep(":", 1,2,3,4)
 1:2:3:4
 @eprog
 %\syn{NO}

Function: printsep1
Class: basic
Section: programming/specific
C-Name: printsep1
Prototype: vss*
Help: printsep1(sep,{str}*): outputs its string arguments (in raw format),
 separated by 'sep', without ending with a newline.
Doc: outputs its (string) arguments in raw format, without ending with a
 newline.  Successive entries are separated by \var{sep}:
 \bprog
 ? printsep1(":", 1,2,3,4);print("|")
 1:2:3:4
 @eprog
 %\syn{NO}

Function: printtex
Class: basic
Section: programming/specific
C-Name: printtex
Prototype: vs*
Help: printtex({str}*): outputs its string arguments in TeX format.
Doc: outputs its (string) arguments in \TeX\ format. This output can then be
 used in a \TeX\ manuscript.
 The printing is done on the standard output. If you want to print it to a
 file you should use \kbd{writetex} (see there).
 
 Another possibility is to enable the \tet{log} default
 (see~\secref{se:defaults}).
 You could for instance do:\sidx{logfile}
 %
 \bprog
 default(logfile, "new.tex");
 default(log, 1);
 printtex(result);
 @eprog
 %\syn{NO}

Function: prod
Class: basic
Section: sums
C-Name: produit
Prototype: V=GGEDG
Help: prod(X=a,b,expr,{x=1}): x times the product (X runs from a to b) of
 expression.
Doc: product of expression
 \var{expr}, initialized at $x$, the formal parameter $X$ going from $a$ to
 $b$. As for \kbd{sum}, the main purpose of the initialization parameter $x$
 is to force the type of the operations being performed. For example if it is
 set equal to the integer 1, operations will start being done exactly. If it
 is set equal to the real $1.$, they will be done using real numbers having
 the default precision. If it is set equal to the power series $1+O(X^k)$ for
 a certain $k$, they will be done using power series of precision at most $k$.
 These are the three most common initializations.
 
 \noindent As an extreme example, compare
 
 \bprog
 ? prod(i=1, 100, 1 - X^i);  \\@com this has degree $5050$ !!
 time = 128 ms.
 ? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
 time = 8 ms.
 %2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
 X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)
 @eprog\noindent
 Of course, in  this specific case, it is faster to use \tet{eta},
 which is computed using Euler's formula.
 \bprog
 ? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));
 time = 589 ms.
 ? \ps1000
 seriesprecision = 1000 significant terms
 ? eta(X) - %
 time = 8ms.
 %4 = O(X^1001)
 @eprog
 
 \synt{produit}{GEN a, GEN b, char *expr, GEN x}.

Function: prodeuler
Class: basic
Section: sums
C-Name: prodeuler0
Prototype: V=GGEp
Help: prodeuler(X=a,b,expr): Euler product (X runs over the primes between a
 and b) of real or complex expression.
Doc: product of expression \var{expr},
 initialized at 1. (i.e.~to a \emph{real} number equal to 1 to the current
 \kbd{realprecision}), the formal parameter $X$ ranging over the prime numbers
 between $a$ and $b$.\sidx{Euler product}
 
 \synt{prodeuler}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long prec}.

Function: prodinf
Class: basic
Section: sums
C-Name: prodinf0
Prototype: V=GED0,L,p
Help: prodinf(X=a,expr,{flag=0}): infinite product (X goes from a to
 infinity) of real or complex expression. flag can be 0 (default) or 1, in
 which case compute the product of the 1+expr instead.
Wrapper: (,G)
Description: 
  (gen,gen,?small):gen:prec prodinf(${2 cookie}, ${2 wrapper}, $1, $3, $prec)
Doc: \idx{infinite product} of
 expression \var{expr}, the formal parameter $X$ starting at $a$. The evaluation
 stops when the relative error of the expression minus 1 is less than the
 default precision. In particular, non-convergent products result in infinite
 loops. The expressions must always evaluate to an element of $\C$.
 
 If $\fl=1$, do the product of the ($1+\var{expr}$) instead.
 
 \synt{prodinf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}
 ($\fl=0$), or \tet{prodinf1} with the same arguments ($\fl=1$).

Function: psdraw
Class: highlevel
Section: graphic
C-Name: postdraw_flag
Prototype: vGD0,L,
Help: psdraw(list, {flag=0}): same as plotdraw, except that the output is a
 PostScript program in psfile (pari.ps by default), and flag!=0 scales the
 plot from size of the current output device to the standard PostScript
 plotting size.
Doc: same as \kbd{plotdraw}, except that the output is a PostScript program
 appended to the \kbd{psfile}, and flag!=0 scales the plot from size of the
 current output device to the standard PostScript plotting size

Function: psi
Class: basic
Section: transcendental
C-Name: gpsi
Prototype: Gp
Help: psi(x): psi-function at x.
Doc: the $\psi$-function of $x$, i.e.~the logarithmic derivative
 $\Gamma'(x)/\Gamma(x)$.

Function: psploth
Class: highlevel
Section: graphic
C-Name: postploth
Prototype: V=GGEpD0,L,D0,L,
Help: psploth(X=a,b,expr,{flags=0},{n=0}): same as ploth, except that the
 output is a PostScript program in psfile (pari.ps by default).
Doc: same as \kbd{ploth}, except that the output is a PostScript program
 appended to the \kbd{psfile}.

Function: psplothraw
Class: highlevel
Section: graphic
C-Name: postplothraw
Prototype: GGD0,L,
Help: psplothraw(listx,listy,{flag=0}): same as plothraw, except that the
 output is a postscript program in psfile (pari.ps by default).
Doc: same as \kbd{plothraw}, except that the output is a PostScript program
 appended to the \kbd{psfile}.

Function: qfauto
Class: basic
Section: linear_algebra
C-Name: qfauto0
Prototype: GDG
Help: qfauto(G,{fl}): automorphism group of the positive definite quadratic
 form G.
Doc: 
 $G$ being a square and symmetric matrix with integer entries representing a
 positive definite quadratic form, outputs the automorphism group of the
 associate lattice.
 Since this requires computing the minimal vectors, the computations can
 become very lengthy as the dimension grows. $G$ can also be given by an
 \kbd{qfisominit} structure.
 See \kbd{qfisominit} for the meaning of \var{fl}.
 
 The output is a two-components vector $[o,g]$ where $o$ is the group order
 and $g$ is the list of generators (as a vector). For each generator $H$,
 the equality $G={^t}H\*G\*H$ holds.
 
 The interface of this function is experimental and will likely change in the
 future.
 
 This function implements an algorithm of Plesken and Souvignier, following
 Souvignier's implementation.
Variant: The function \fun{GEN}{qfauto}{GEN G, GEN fl} is also available
 where $G$ is a vector of \kbd{zm} matrices.

Function: qfautoexport
Class: basic
Section: linear_algebra
C-Name: qfautoexport
Prototype: GD0,L,
Help: qfautoexport(qfa,{flag}): qfa being an automorphism group as output by
 qfauto, output a string representing the underlying matrix group in
 GAP notation (default) or Magma notation (flag = 1).
Doc: \var{qfa} being an automorphism group as output by
 \tet{qfauto}, export the underlying matrix group as a string suitable
 for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
 computes the size of the matrix group using GAP:
 \bprog
 ? G = qfauto([2,1;1,2])
 %1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
 ? s = qfautoexport(G)
 %2 = "Group([[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]])"
 ? extern("echo \"Order("s");\" | gap -q")
 %3 = 12
 @eprog

Function: qfbclassno
Class: basic
Section: number_theoretical
C-Name: qfbclassno0
Prototype: GD0,L,
Help: qfbclassno(D,{flag=0}): class number of discriminant D using Shanks's
 method by default. If (optional) flag is set to 1, use Euler products.
Doc: ordinary class number of the quadratic order of discriminant $D$, for
 ``small'' values of $D$.
 
 \item if  $D > 0$ or $\fl = 1$, use a $O(|D|^{1/2})$
 algorithm (compute $L(1,\chi_D)$ with the approximate functional equation).
 This is slower than \tet{quadclassunit} as soon as $|D| \approx 10^2$ or
 so and is not meant to be used for large $D$.
 
 \item if $D < 0$ and $\fl = 0$ (or omitted), use a $O(|D|^{1/4})$
 algorithm (Shanks's baby-step/giant-step method). It should
 be faster than \tet{quadclassunit} for small values of $D$, say
 $|D| < 10^{18}$.
 
 \misctitle{Important warning} In the latter case, this function only
 implements part of \idx{Shanks}'s method (which allows to speed it up
 considerably). It gives unconditionnally correct results for $|D| < 2\cdot
 10^{10}$, but may give incorrect results for larger values if the class
 group has many cyclic factors. We thus recommend to double-check results
 using the function \kbd{quadclassunit}, which is about 2 to 3 times slower in
 the above range, assuming GRH. We currently have no counter-examples but
 they should exist: we'd appreciate a bug report if you find one.
 
 \misctitle{Warning} Contrary to what its name implies, this routine does not
 compute the number of classes of binary primitive forms of discriminant $D$,
 which is equal to the \emph{narrow} class number. The two notions are the same
 when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
 > 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
 ordinary class number. This is a problem which we cannot fix for backward
 compatibility reasons. Use the following routine if you are only interested
 in the number of classes of forms:
 \bprog
 QFBclassno(D) =
 qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
 @eprog\noindent
 Here are a few examples:
 \bprog
 ? qfbclassno(400000028)
 time = 3,140 ms.
 %1 = 1
 ? quadclassunit(400000028).no
 time = 20 ms. \\@com{ much faster}
 %2 = 1
 ? qfbclassno(-400000028)
 time = 0 ms.
 %3 = 7253 \\@com{ correct, and fast enough}
 ? quadclassunit(-400000028).no
 time = 0 ms.
 %4 = 7253
 @eprog\noindent
 See also \kbd{qfbhclassno}.
Variant: The following functions are also available:
 
 \fun{GEN}{classno}{GEN D} ($\fl = 0$)
 
 \fun{GEN}{classno2}{GEN D} ($\fl = 1$).
 
 \noindent Finally
 
 \fun{GEN}{hclassno}{GEN D} computes the class number of an imaginary
 quadratic field by counting reduced forms, an $O(|D|)$ algorithm.

Function: qfbcompraw
Class: basic
Section: number_theoretical
C-Name: qfbcompraw
Prototype: GG
Help: qfbcompraw(x,y): Gaussian composition without reduction of the binary
 quadratic forms x and y.
Doc: \idx{composition} of the binary quadratic forms $x$ and $y$, without
 \idx{reduction} of the result. This is useful e.g.~to compute a generating
 element of an ideal. The result is undefined if $x$ and $y$ do not have the
 same discriminant.

Function: qfbhclassno
Class: basic
Section: number_theoretical
C-Name: hclassno
Prototype: G
Help: qfbhclassno(x): Hurwitz-Kronecker class number of x>0.
Doc: \idx{Hurwitz class number} of $x$, where
 $x$ is non-negative and congruent to 0 or 3 modulo 4. For $x > 5\cdot
 10^5$, we assume the GRH, and use \kbd{quadclassunit} with default
 parameters.

Function: qfbil
Class: basic
Section: linear_algebra
C-Name: qfbil
Prototype: GGDG
Help: qfbil(x,y,{q}): this function is obsolete, use qfeval.
Doc: this function is obsolete, use \kbd{qfeval}.
Obsolete: 2016-08-08

Function: qfbnucomp
Class: basic
Section: number_theoretical
C-Name: nucomp
Prototype: GGG
Help: qfbnucomp(x,y,L): composite of primitive positive definite quadratic
 forms x and y using nucomp and nudupl, where L=[|D/4|^(1/4)] is precomputed.
Doc: \idx{composition} of the primitive positive
 definite binary quadratic forms $x$ and $y$ (type \typ{QFI}) using the NUCOMP
 and NUDUPL algorithms of \idx{Shanks}, \`a la Atkin. $L$ is any positive
 constant, but for optimal speed, one should take $L=|D/4|^{1/4}$, i.e.
 \kbd{sqrtnint(abs(D)>>2,4)}, where $D$ is the common discriminant of $x$ and
 $y$. When $x$ and $y$ do not have the same discriminant, the result is
 undefined.
 
 The current implementation is slower than the generic routine for small $D$,
 and becomes faster when $D$ has about $45$ bits.
Variant: Also available is \fun{GEN}{nudupl}{GEN x, GEN L} when $x=y$.

Function: qfbnupow
Class: basic
Section: number_theoretical
C-Name: nupow
Prototype: GGDG
Help: qfbnupow(x,n,{L}): n-th power of primitive positive definite quadratic
 form x using nucomp and nudupl.
Doc: $n$-th power of the primitive positive definite
 binary quadratic form $x$ using \idx{Shanks}'s NUCOMP and NUDUPL algorithms;
 if set, $L$ should be equal to \kbd{sqrtnint(abs(D)>>2,4)}, where $D < 0$ is
 the discriminant of $x$.
 
 The current implementation is slower than the generic routine for small
 discriminant $D$, and becomes faster for $D \approx 2^{45}$.

Function: qfbpowraw
Class: basic
Section: number_theoretical
C-Name: qfbpowraw
Prototype: GL
Help: qfbpowraw(x,n): n-th power without reduction of the binary quadratic
 form x.
Doc: $n$-th power of the binary quadratic form
 $x$, computed without doing any \idx{reduction} (i.e.~using \kbd{qfbcompraw}).
 Here $n$ must be non-negative and $n<2^{31}$.

Function: qfbprimeform
Class: basic
Section: number_theoretical
C-Name: primeform
Prototype: GGp
Help: qfbprimeform(x,p): returns the prime form of discriminant x, whose
 first coefficient is p.
Doc: prime binary quadratic form of discriminant
 $x$ whose first coefficient is $p$, where $|p|$ is a prime number.
 By abuse of notation,
 $p = \pm 1$ is also valid and returns the unit form. Returns an
 error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$.
 (Negative definite \typ{QFI} are not implemented.) In the case where $x>0$,
 the ``distance'' component of the form is set equal to zero according to the
 current precision.

Function: qfbred
Class: basic
Section: number_theoretical
C-Name: qfbred0
Prototype: GD0,L,DGDGDG
Help: qfbred(x,{flag=0},{d},{isd},{sd}): reduction of the binary
 quadratic form x. All other args. are optional. The arguments d, isd and
 sd, if
 present, supply the values of the discriminant, floor(sqrt(d)) and sqrt(d)
 respectively. If d<0, its value is not used and all references to Shanks's
 distance hereafter are meaningless. flag can be any of 0: default, uses
 Shanks's distance function d; 1: use d, do a single reduction step; 2: do
 not use d; 3: do not use d, single reduction step.
Doc: reduces the binary quadratic form $x$ (updating Shanks's distance function
 if $x$ is indefinite). The binary digits of $\fl$ are toggles meaning
 
 \quad 1: perform a single \idx{reduction} step
 
 \quad 2: don't update \idx{Shanks}'s distance
 
 The arguments $d$, \var{isd}, \var{sd}, if present, supply the values of the
 discriminant, $\floor{\sqrt{d}}$, and $\sqrt{d}$ respectively
 (no checking is done of these facts). If $d<0$ these values are useless,
 and all references to Shanks's distance are irrelevant.
Variant: Also available are
 
 \fun{GEN}{redimag}{GEN x} (for definite $x$),
 
 \noindent and for indefinite forms:
 
 \fun{GEN}{redreal}{GEN x}
 
 \fun{GEN}{rhoreal}{GEN x} (= \kbd{qfbred(x,1)}),
 
 \fun{GEN}{redrealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,2,,isd)}),
 
 \fun{GEN}{rhorealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,3,,isd)}).

Function: qfbredsl2
Class: basic
Section: number_theoretical
C-Name: qfbredsl2
Prototype: GDG
Help: qfbredsl2(x,{data}): reduction of the binary quadratic form x, return
 [y,g] where y is reduced and g in Sl(2,Z) is such that g.x = y; data, if
 present, must be equal to [D, sqrtint(D)], where D > 0 is the discriminant
 of x.
Doc: 
 reduction of the (real or imaginary) binary quadratic form $x$, return
 $[y,g]$ where $y$ is reduced and $g$ in $\text{SL}(2,\Z)$ is such that
  $g \cdot x = y$; \var{data}, if
 present, must be equal to $[D, \kbd{sqrtint}(D)]$, where $D > 0$ is the
 discriminant of $x$. In case $x$ is \typ{QFR}, the distance component is
 unaffected.

Function: qfbsolve
Class: basic
Section: number_theoretical
C-Name: qfbsolve
Prototype: GG
Help: qfbsolve(Q,p): return [x,y] so that Q(x,y)=p where Q is a binary
 quadratic form and p a prime number, or 0 if there is no solution.
Doc: Solve the equation $Q(x,y)=p$ over the integers,
 where $Q$ is a binary quadratic form and $p$ a prime number.
 
 Return $[x,y]$ as a two-components vector, or zero if there is no solution.
 Note that this function returns only one solution and not all the solutions.
 
 Let $D = \disc Q$. The algorithm used runs in probabilistic polynomial time
 in $p$ (through the computation of a square root of $D$ modulo $p$); it is
 polynomial time in $D$ if $Q$ is imaginary, but exponential time if $Q$ is
 real (through the computation of a full cycle of reduced forms). In the
 latter case, note that \tet{bnfisprincipal} provides a solution in heuristic
 subexponential time in $D$ assuming the GRH.

Function: qfeval
Class: basic
Section: linear_algebra
C-Name: qfeval0
Prototype: DGGDG
Help: qfeval({q},x,{y}): evaluate the binary quadratic form q (symmetric matrix)
 at x; if y is present, evaluate the polar form at (x,y);
 if q omitted, use the standard Euclidean form.
Doc: evaluate the binary quadratic form $q$ (given by a symmetric matrix)
 at the vector $x$; if $y$ is present, evaluate the polar form at $(x,y)$;
 if $q$ omitted, use the standard Euclidean scalar product, corresponding to
 the identity matrix.
 
 Roughly equivalent to \kbd{x\til * q * y}, but a little faster and
 more convenient (does not distinguish between column and row vectors):
 \bprog
 ? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];
 ? qfeval(q,x,y)
 %2 = 23
 ? for(i=1,10^6, qfeval(q,x,y))
 time = 661ms
 ? for(i=1,10^6, x~*q*y)
 time = 697ms
 @eprog\noindent The speedup is noticeable for the quadratic form,
 compared to \kbd{x\til * q * x}, since we save almost half the
 operations:
 \bprog
 ? for(i=1,10^6, qfeval(q,x))
 time = 487ms
 @eprog\noindent The special case $q = \text{Id}$ is handled faster if we
 omit $q$ altogether:
 \bprog
 ? qfeval(,x,y)
 %1 = 2
 ? q = matid(#x);
 ? for(i=1,10^6, qfeval(q,x,y))
 time = 529 ms.
 ? for(i=1,10^6, qfeval(,x,y))
 time = 228 ms.
 ? for(i=1,10^6, x~*y)
 time = 274 ms.
 @eprog
 
 We also allow \typ{MAT}s of compatible dimensions for $x$,
 and return \kbd{x\til * q * x} in this case as well:
 \bprog
 ? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \\ Gram matrix
 %5 =
 [66  78  90]
 
 [78  93 108]
 
 [90 108 126]
 
 ? q = [1,2,3;2,2,-1;3,-1,9];
 ? for(i=1,10^6, qfeval(q,M))
 time = 2,008 ms.
 ? for(i=1,10^6, M~*q*M)
 time = 2,368 ms.
 
 ? for(i=1,10^6, qfeval(,M))
 time = 1,053 ms.
 ? for(i=1,10^6, M~*M)
 time = 1,171 ms.
 @eprog
 
 If $q$ is a \typ{QFI} or \typ{QFR}, it is implicitly converted to the
 attached symmetric \typ{MAT}. This is done more
 efficiently than by direct conversion, since we avoid introducing a
 denominator $2$ and rational arithmetic:
 \bprog
 ? q = Qfb(2,3,4); x = [2,3];
 ? qfeval(q, x)
 %2 = 62
 ? Q = Mat(q)
 %3 =
  [  2 3/2]
 
  [3/2   4]
 ? qfeval(Q, x)
 %4 = 62
 ? for (i=1, 10^6, qfeval(q,x))
 time = 758 ms.
 ? for (i=1, 10^6, qfeval(Q,x))
 time = 1,110 ms.
 @eprog
 Finally, when $x$ is a \typ{MAT} with \emph{integral} coefficients, we allow
 a \typ{QFI} or \typ{QFR} for $q$ and return the binary
 quadratic form $q \circ M$. Again, the conversion to \typ{MAT} is less
 efficient in this case:
 \bprog
 ? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];
 ? qfeval(q, x)
 %2 = Qfb(47, 134, 96)
 ? qfeval(Q,x)
 %3 =
 [47 67]
 
 [67 96]
 ? for (i=1, 10^6, qfeval(q,x))
 time = 701 ms.
 ? for (i=1, 10^6, qfeval(Q,x))
 time = 1,639 ms.
 @eprog

Function: qfgaussred
Class: basic
Section: linear_algebra
C-Name: qfgaussred
Prototype: G
Help: qfgaussred(q): square reduction of the (symmetric) matrix q (returns a
 square matrix whose i-th diagonal term is the coefficient of the i-th square
 in which the coefficient of the i-th variable is 1).
Doc: 
 \idx{decomposition into squares} of the
 quadratic form represented by the symmetric matrix $q$. The result is a
 matrix whose diagonal entries are the coefficients of the squares, and the
 off-diagonal entries on each line represent the bilinear forms. More
 precisely, if $(a_{ij})$ denotes the output, one has
 $$ q(x) = \sum_i a_{ii} (x_i + \sum_{j \neq i} a_{ij} x_j)^2 $$
 \bprog
 ? qfgaussred([0,1;1,0])
 %1 =
 [1/2 1]
 
 [-1 -1/2]
 @eprog\noindent This means that $2xy = (1/2)(x+y)^2 - (1/2)(x-y)^2$.
 Singular matrices are supported, in which case some diagonal coefficients
 will vanish:
 \bprog
 ? qfgaussred([1,1;1,1])
 %1 =
 [1 1]
 
 [1 0]
 @eprog\noindent This means that $x^2 + 2xy + y^2 = (x+y)^2$.
Variant: \fun{GEN}{qfgaussred_positive}{GEN q} assumes that $q$ is
  positive definite and is a little faster; returns \kbd{NULL} if a vector
  with negative norm occurs (non positive matrix or too many rounding errors).

Function: qfisom
Class: basic
Section: linear_algebra
C-Name: qfisom0
Prototype: GGDG
Help: qfisom(G,H,{fl}): find an isomorphism between the integral positive
 definite quadratic forms G and H if it exists. G can also be given by a
 qfisominit structure which is preferable if several forms need to be compared
 to G.
Doc: 
 $G$, $H$ being square and symmetric matrices with integer entries representing
 positive definite quadratic forms, return an invertible matrix $S$ such that
 $G={^t}S\*H\*S$. This defines a isomorphism between the corresponding lattices.
 Since this requires computing the minimal vectors, the computations can
 become very lengthy as the dimension grows.
 See \kbd{qfisominit} for the meaning of \var{fl}.
 
 $G$ can also be given by an \kbd{qfisominit} structure which is preferable if
 several forms $H$ need to be compared to $G$.
 
 This function implements an algorithm of Plesken and Souvignier, following
 Souvignier's implementation.
Variant: Also available is \fun{GEN}{qfisom}{GEN G, GEN H, GEN fl}
 where $G$ is a vector of \kbd{zm}, and $H$ is a \kbd{zm}.

Function: qfisominit
Class: basic
Section: linear_algebra
C-Name: qfisominit0
Prototype: GDGDG
Help: qfisominit(G,{fl},{m}): G being a square and symmetric matrix representing an
 integral positive definite quadratic form, this function returns a structure
 allowing to compute isomorphisms between G and other quadratic form faster.
Doc: 
 $G$ being a square and symmetric matrix with integer entries representing a
 positive definite quadratic form, return an \kbd{isom} structure allowing to
 compute isomorphisms between $G$ and other quadratic forms faster.
 
 The interface of this function is experimental and will likely change in future
 release.
 
 If present, the optional parameter \var{fl} must be a \typ{VEC} with two
 components. It allows to specify the invariants used, which can make the
 computation faster or slower. The components are
 
 \item \kbd{fl[1]} Depth of scalar product combination to use.
 
 \item \kbd{fl[2]} Maximum level of Bacher polynomials to use.
 
 If present, $m$ must be the set of vectors of norm up to the maximal of the
 diagonal entry of $G$, either as a matrix or as given by \kbd{qfminim}.
 Otherwise this function computes the minimal vectors so it become very
 lengthy as the dimension of $G$ grows.
Variant: Also available is
 \fun{GEN}{qfisominit}{GEN F, GEN fl}
 where $F$ is a vector of \kbd{zm}.

Function: qfjacobi
Class: basic
Section: linear_algebra
C-Name: jacobi
Prototype: Gp
Help: qfjacobi(A): eigenvalues and orthogonal matrix of eigenvectors of the
 real symmetric matrix A.
Doc: apply Jacobi's eigenvalue algorithm to the real symmetric matrix $A$.
 This returns $[L, V]$, where
 
 \item $L$ is the vector of (real) eigenvalues of $A$, sorted in increasing
 order,
 
 \item $V$ is the corresponding orthogonal matrix of eigenvectors of $A$.
 
 \bprog
 ? \p19
 ? A = [1,2;2,1]; mateigen(A)
 %1 =
 [-1 1]
 
 [ 1 1]
 ? [L, H] = qfjacobi(A);
 ? L
 %3 = [-1.000000000000000000, 3.000000000000000000]~
 ? H
 %4 =
 [ 0.7071067811865475245 0.7071067811865475244]
 
 [-0.7071067811865475244 0.7071067811865475245]
 ? norml2( (A-L[1])*H[,1] )       \\ approximate eigenvector
 %5 = 9.403954806578300064 E-38
 ? norml2(H*H~ - 1)
 %6 = 2.350988701644575016 E-38   \\ close to orthogonal
 @eprog

Function: qflll
Class: basic
Section: linear_algebra
C-Name: qflll0
Prototype: GD0,L,
Help: qflll(x,{flag=0}): LLL reduction of the vectors forming the matrix x
 (gives the unimodular transformation matrix T such that x*T is LLL-reduced). flag is
 optional, and can be 0: default, 1: assumes x is integral, 2: assumes x is
 integral, returns a partially reduced basis,
 4: assumes x is integral, returns [K,T] where K is the integer kernel of x
 and T the LLL reduced image, 5: same as 4 but x may have polynomial
 coefficients, 8: same as 0 but x may have polynomial coefficients.
Description: 
 (vec, ?0):vec       lll($1)
 (vec, 1):vec        lllint($1)
 (vec, 2):vec        lllintpartial($1)
 (vec, 4):vec        lllkerim($1)
 (vec, 5):vec        lllkerimgen($1)
 (vec, 8):vec        lllgen($1)
 (vec, #small):vec   $"Bad flag in qflll"
 (vec, small):vec    qflll0($1, $2)
Doc: \idx{LLL} algorithm applied to the
 \emph{columns} of the matrix $x$. The columns of $x$ may be linearly
 dependent. The result is a unimodular transformation matrix $T$ such that $x
 \cdot T$ is an LLL-reduced basis of the lattice generated by the column
 vectors of $x$. Note that if $x$ is not of maximal rank $T$ will not be
 square. The LLL parameters are $(0.51,0.99)$, meaning that the Gram-Schmidt
 coefficients for the final basis satisfy $\mu_{i,j} \leq |0.51|$, and the
 Lov\'{a}sz's constant is $0.99$.
 
 If $\fl=0$ (default), assume that $x$ has either exact (integral or
 rational) or real floating point entries. The matrix is rescaled, converted
 to integers and the behavior is then as in $\fl = 1$.
 
 If $\fl=1$, assume that $x$ is integral. Computations involving Gram-Schmidt
 vectors are approximate, with precision varying as needed (Lehmer's trick,
 as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
 and Stehl\'e's code (\kbd{fplll-1.3}).
 
 If $\fl=2$, $x$ should be an integer matrix whose columns are linearly
 independent. Returns a partially reduced basis for $x$, using an unpublished
 algorithm by Peter Montgomery: a basis is said to be \emph{partially reduced}
 if $|v_i \pm v_j| \geq |v_i|$ for any two distinct basis vectors $v_i, \,
 v_j$.
 
 This is faster than $\fl=1$, esp. when one row is huge compared
 to the other rows (knapsack-style), and should quickly produce relatively
 short vectors. The resulting basis is \emph{not} LLL-reduced in general.
 If LLL reduction is eventually desired, avoid this partial reduction:
 applying LLL to the partially reduced matrix is significantly \emph{slower}
 than starting from a knapsack-type lattice.
 
 If $\fl=4$, as $\fl=1$, returning a vector $[K, T]$ of matrices: the
 columns of $K$ represent a basis of the integer kernel of $x$
 (not LLL-reduced in general) and $T$ is the transformation
 matrix such that $x\cdot T$ is an LLL-reduced $\Z$-basis of the image
 of the matrix $x$.
 
 If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.
 
 If $\fl=8$, same as case $0$, but $x$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lll}{GEN x} ($\fl=0$),
 \fun{GEN}{lllint}{GEN x} ($\fl=1$), and \fun{GEN}{lllkerim}{GEN x} ($\fl=4$).

Function: qflllgram
Class: basic
Section: linear_algebra
C-Name: qflllgram0
Prototype: GD0,L,
Help: qflllgram(G,{flag=0}): LLL reduction of the lattice whose gram matrix
 is G (gives the unimodular transformation matrix). flag is optional and can
 be 0: default,1: assumes x is integral, 4: assumes x is integral,
 returns [K,T],  where K is the integer kernel of x
 and T the LLL reduced image, 5: same as 4 but x may have polynomial
 coefficients, 8: same as 0 but x may have polynomial coefficients.
Doc: same as \kbd{qflll}, except that the
 matrix $G = \kbd{x\til * x}$ is the Gram matrix of some lattice vectors $x$,
 and not the coordinates of the vectors themselves. In particular, $G$ must
 now be a square symmetric real matrix, corresponding to a positive
 quadratic form (not necessarily definite: $x$ needs not have maximal rank).
 The result is a unimodular
 transformation matrix $T$ such that $x \cdot T$ is an LLL-reduced basis of
 the lattice generated by the column vectors of $x$. See \tet{qflll} for
 further details about the LLL implementation.
 
 If $\fl=0$ (default), assume that $G$ has either exact (integral or
 rational) or real floating point entries. The matrix is rescaled, converted
 to integers and the behavior is then as in $\fl = 1$.
 
 If $\fl=1$, assume that $G$ is integral. Computations involving Gram-Schmidt
 vectors are approximate, with precision varying as needed (Lehmer's trick,
 as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
 and Stehl\'e's code (\kbd{fplll-1.3}).
 
 $\fl=4$: $G$ has integer entries, gives the kernel and reduced image of $x$.
 
 $\fl=5$: same as $4$, but $G$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lllgram}{GEN G} ($\fl=0$),
 \fun{GEN}{lllgramint}{GEN G} ($\fl=1$), and \fun{GEN}{lllgramkerim}{GEN G}
 ($\fl=4$).

Function: qfminim
Class: basic
Section: linear_algebra
C-Name: qfminim0
Prototype: GDGDGD0,L,p
Help: qfminim(x,{b},{m},{flag=0}): x being a square and symmetric
 matrix representing a positive definite quadratic form, this function
 deals with the vectors of x whose norm is less than or equal to b,
 enumerated using the Fincke-Pohst algorithm, storing at most m vectors (no
 limit if m is omitted). The function searches for
 the minimal non-zero vectors if b is omitted. The precise behavior
 depends on flag. 0: returns at most 2m vectors (unless m omitted), returns
 [N,M,mat] where N is the number of vectors enumerated, M the maximum norm among
 these, and mat lists half the vectors (the other half is given by -mat). 1:
 ignores m and returns the first vector whose norm is less than b. 2: as 0
 but uses a more robust, slower implementation, valid for non integral
 quadratic forms.
Doc: $x$ being a square and symmetric matrix representing a positive definite
 quadratic form, this function deals with the vectors of $x$ whose norm is
 less than or equal to $b$, enumerated using the Fincke-Pohst algorithm,
 storing at most $m$ vectors (no limit if $m$ is omitted). The function
 searches for the minimal non-zero vectors if $b$ is omitted. The behavior is
 undefined if $x$ is not positive definite (a ``precision too low'' error is
 most likely, although more precise error messages are possible). The precise
 behavior depends on $\fl$.
 
 If $\fl=0$ (default), returns at most $2m$ vectors. The result is a
 three-component vector, the first component being the number of vectors
 enumerated (which may be larger than $2m$), the second being the maximum
 norm found, and the last vector
 is a matrix whose columns are found vectors, only one being given for each
 pair $\pm v$ (at most $m$ such pairs, unless $m$ was omitted). The vectors
 are returned in no particular order.
 
 If $\fl=1$, ignores $m$ and returns $[N,v]$, where $v$ is a non-zero vector
 of length $N \leq b$, or $[]$ if no non-zero vector has length $\leq b$.
 If no explicit $b$ is provided, return a vector of smallish norm
 (smallest vector in an LLL-reduced basis).
 
 In these two cases, $x$ must have \emph{integral} entries. The
 implementation uses low precision floating point computations for maximal
 speed, which gives incorrect result when $x$ has large entries. (The
 condition is checked in the code and the routine raises an error if
 large rounding errors occur.) A more robust, but much slower,
 implementation is chosen if the following flag is used:
 
 If $\fl=2$, $x$ can have non integral real entries. In this case, if $b$
 is omitted, the ``minimal'' vectors only have approximately the same norm.
 If $b$ is omitted, $m$ is an upper bound for the number of vectors that
 will be stored and returned, but all minimal vectors are nevertheless
 enumerated. If $m$ is omitted, all vectors found are stored and returned;
 note that this may be a huge vector!
 
 \bprog
 ? x = matid(2);
 ? qfminim(x)  \\@com 4 minimal vectors of norm 1: $\pm[0,1]$, $\pm[1,0]$
 %2 = [4, 1, [0, 1; 1, 0]]
 ? { x =
 [4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
  2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
  0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
  0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
  0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
 -2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
  0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
  0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
  0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
  0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
  0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
  1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
 -1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
  0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
  1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
  0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
 -1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
  0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
  0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
  0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
 -2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
 ? qfminim(x,,0)  \\ the Leech lattice has 196560 minimal vectors of norm 4
 time = 648 ms.
 %4 = [196560, 4, [;]]
 ? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
 time = 18,161 ms.
 %5 = [196560, 4.000061035156250000, [;]]
 @eprog\noindent\sidx{Leech lattice}\sidx{minimal vector}
 In the last example, we store 0 vectors to limit memory use. All minimal
 vectors are nevertheless enumerated. Provided \kbd{parisize} is about 50MB,
 \kbd{qfminim(x)} succeeds in 2.5 seconds.
Variant: Also available are
 \fun{GEN}{minim}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=0$),
 \fun{GEN}{minim2}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=1$).
 \fun{GEN}{minim_raw}{GEN x, GEN b = NULL, GEN m = NULL} (do not perform LLL
 reduction on x and return \kbd{NULL} on accuracy error).

Function: qfnorm
Class: basic
Section: linear_algebra
C-Name: qfnorm
Prototype: GDG
Help: qfnorm(x,{q}): this function is obsolete, use qfeval.
Doc: this function is obsolete, use \kbd{qfeval}.
Obsolete: 2016-08-08

Function: qforbits
Class: basic
Section: linear_algebra
C-Name: qforbits
Prototype: GG
Help: qforbits(G,V): return the orbits of V under the action of the group
 of linear transformation generated by the set G, which must stabilize V.
Doc: return the orbits of $V$ under the action of the group
 of linear transformation generated by the set $G$.
 It is assumed that $G$ contains minus identity, and only one vector
 in $\{v, -v\}$ should be given.
 If $G$ does not stabilize $V$, the function return $0$.
 
 In the example below, we compute representatives and lengths of the orbits of
 the vectors of norm $\leq 3$ under the automorphisms of the lattice $A_1^6$.
 \bprog
 ?  Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);
 ?  apply(x->[x[1],#x],qforbits(G,V))
 %2 = [[[0,0,0,0,0,1]~,6],[[0,0,0,0,1,-1]~,30],[[0,0,0,1,-1,-1]~,80]]
 @eprog

Function: qfparam
Class: basic
Section: linear_algebra
C-Name: qfparam
Prototype: GGD0,L,
Help: qfparam(G, sol, {flag = 0}):
 coefficients of binary quadratic forms that parametrize the
 solutions of the ternary quadratic form G, using the particular
 solution sol.
Doc: coefficients of binary quadratic forms that parametrize the
 solutions of the ternary quadratic form $G$, using the particular
 solution~\var{sol}.
 \fl is optional and can be 1, 2, or 3, in which case the \fl-th form is
 reduced. The default is \fl=0 (no reduction).
 \bprog
 ? G = [1,0,0;0,1,0;0,0,-34];
 ? M = qfparam(G, qfsolve(G))
 %2 =
 [ 3 -10 -3]
 
 [-5  -6  5]
 
 [ 1   0  1]
 @eprog
 Indeed, the solutions can be parametrized as
 $$(3x^2 - 10xy - 3y^2)^2  + (-5x^2 - 6xy + 5y^2)^2 -34(x^2 + y^2)^2 = 0.$$
 \bprog
 ? v = y^2 * M*[1,x/y,(x/y)^2]~
 %3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
 ? v~*G*v
 %4 = 0
 @eprog

Function: qfperfection
Class: basic
Section: linear_algebra
C-Name: perf
Prototype: G
Help: qfperfection(G): rank of matrix of xx~ for x minimal vectors of a gram
 matrix G.
Doc: 
 $G$ being a square and symmetric matrix with
 integer entries representing a positive definite quadratic form, outputs the
 perfection rank of the form. That is, gives the rank of the family of the $s$
 symmetric matrices $v_iv_i^t$, where $s$ is half the number of minimal
 vectors and the $v_i$ ($1\le i\le s$) are the minimal vectors.
 
 Since this requires computing the minimal vectors, the computations can
 become very lengthy as the dimension of $x$ grows.

Function: qfrep
Class: basic
Section: linear_algebra
C-Name: qfrep0
Prototype: GGD0,L,
Help: qfrep(q,B,{flag=0}): vector of (half) the number of vectors of norms
 from 1 to B for the integral and definite quadratic form q. If flag is 1,
 count vectors of even norm from 1 to 2B.
Doc: 
 $q$ being a square and symmetric matrix with integer entries representing a
 positive definite quadratic form, count the vectors representing successive
 integers.
 
 \item If $\fl = 0$, count all vectors. Outputs the vector whose $i$-th
 entry, $1 \leq i \leq B$ is half the number of vectors $v$ such that $q(v)=i$.
 
 \item If $\fl = 1$, count vectors of even norm. Outputs the vector
 whose $i$-th entry, $1 \leq i \leq B$ is half the number of vectors such
 that $q(v) = 2i$.
 
 \bprog
 ? q = [2, 1; 1, 3];
 ? qfrep(q, 5)
 %2 = Vecsmall([0, 1, 2, 0, 0]) \\ 1 vector of norm 2, 2 of norm 3, etc.
 ? qfrep(q, 5, 1)
 %3 = Vecsmall([1, 0, 0, 1, 0]) \\ 1 vector of norm 2, 0 of norm 4, etc.
 @eprog\noindent
 This routine uses a naive algorithm based on \tet{qfminim}, and
 will fail if any entry becomes larger than $2^{31}$ (or $2^{63}$).

Function: qfsign
Class: basic
Section: linear_algebra
C-Name: qfsign
Prototype: G
Help: qfsign(x): signature of the symmetric matrix x.
Doc: 
 returns $[p,m]$ the signature of the quadratic form represented by the
 symmetric matrix $x$. Namely, $p$ (resp.~$m$) is the number of positive
 (resp.~negative) eigenvalues of $x$. The result is computed using Gaussian
 reduction.

Function: qfsolve
Class: basic
Section: linear_algebra
C-Name: qfsolve
Prototype: G
Help: qfsolve(G): solve over Q the quadratic equation X^t G X = 0, where
 G is a symmetric matrix.
Doc: Given a square symmetric matrix $G$ of dimension $n \geq 1$, solve over
 $\Q$ the quadratic equation $X^tGX = 0$. The matrix $G$ must have rational
 coefficients. The solution might be a single non-zero vector (vectorv) or a
 matrix (whose columns generate a totally isotropic subspace).
 
 If no solution exists, returns an integer, that can be a prime $p$ such that
 there is no local solution at $p$, or $-1$ if there is no real solution,
 or $-2$ if $n = 2$ and $-\det G$ is positive but not a square (which implies
 there is a real solution, but no local solution at some $p$ dividing $\det G$).
 \bprog
 ? G = [1,0,0;0,1,0;0,0,-34];
 ? qfsolve(G)
 %1 = [-3, -5, 1]~
 ? qfsolve([1,0; 0,2])
 %2 = -1   \\ no real solution
 ? qfsolve([1,0,0;0,3,0; 0,0,-2])
 %3 = 3    \\ no solution in Q_3
 ? qfsolve([1,0; 0,-2])
 %4 = -2   \\ no solution, n = 2
 @eprog

Function: quadclassunit
Class: basic
Section: number_theoretical
C-Name: quadclassunit0
Prototype: GD0,L,DGp
Help: quadclassunit(D,{flag=0},{tech=[]}): compute the structure of the
 class group and the regulator of the quadratic field of discriminant D.
 See manual for the optional technical parameters.
Doc: \idx{Buchmann-McCurley}'s sub-exponential algorithm for computing the
 class group of a quadratic order of discriminant $D$.
 
 This function should be used instead of \tet{qfbclassno} or \tet{quadregula}
 when $D<-10^{25}$, $D>10^{10}$, or when the \emph{structure} is wanted. It
 is a special case of \tet{bnfinit}, which is slower, but more robust.
 
 The result is a vector $v$ whose components should be accessed using member
 functions:
 
 \item \kbd{$v$.no}: the class number
 
 \item \kbd{$v$.cyc}: a vector giving the structure of the class group as a
 product of cyclic groups;
 
 \item \kbd{$v$.gen}: a vector giving generators of those cyclic groups (as
 binary quadratic forms).
 
 \item \kbd{$v$.reg}: the regulator, computed to an accuracy which is the
 maximum of an internal accuracy determined by the program and the current
 default (note that once the regulator is known to a small accuracy it is
 trivial to compute it to very high accuracy, see the tutorial).
 
 The $\fl$ is obsolete and should be left alone. In older versions,
 it supposedly computed the narrow class group when $D>0$, but this did not
 work at all; use the general function \tet{bnfnarrow}.
 
 Optional parameter \var{tech} is a row vector of the form $[c_1, c_2]$,
 where $c_1 \leq c_2$ are non-negative real numbers which control the execution
 time and the stack size, see \ref{se:GRHbnf}. The parameter is used as a
 threshold to balance the relation finding phase against the final linear
 algebra. Increasing the default $c_1$ means that relations are easier
 to find, but more relations are needed and the linear algebra will be
 harder. The default value for $c_1$ is $0$ and means that it is taken equal
 to $c_2$. The parameter $c_2$ is mostly obsolete and should not be changed,
 but we still document it for completeness: we compute a tentative class
 group by generators and relations using a factorbase of prime ideals
 $\leq c_1 (\log |D|)^2$, then prove that ideals of norm
 $\leq c_2 (\log |D|)^2$ do
 not generate a larger group. By default an optimal $c_2$ is chosen, so that
 the result is provably correct under the GRH --- a famous result of Bach
 states that $c_2 = 6$ is fine, but it is possible to improve on this
 algorithmically. You may provide a smaller $c_2$, it will be ignored
 (we use the provably correct
 one); you may provide a larger $c_2$ than the default value, which results
 in longer computing times for equally correct outputs (under GRH).
Variant: If you really need to experiment with the \var{tech} parameter, it is
 usually more convenient to use
 \fun{GEN}{Buchquad}{GEN D, double c1, double c2, long prec}

Function: quaddisc
Class: basic
Section: number_theoretical
C-Name: quaddisc
Prototype: G
Help: quaddisc(x): discriminant of the quadratic field Q(sqrt(x)).
Doc: discriminant of the \'etale algebra $\Q(\sqrt{x})$, where $x\in\Q^*$.
 This is the same as \kbd{coredisc}$(d)$ where $d$ is the integer square-free
 part of $x$, so x=$d f^2$ with $f\in \Q^*$ and $d\in\Z$.
 This returns $0$ for $x = 0$, $1$ for $x$ square and the discriminant of the
 quadratic field $\Q(\sqrt{x})$ otherwise.
 \bprog
 ? quaddisc(7)
 %1 = 28
 ? quaddisc(-7)
 %2 = -7
 @eprog

Function: quadgen
Class: basic
Section: number_theoretical
C-Name: quadgen
Prototype: G
Help: quadgen(D): standard generator of quadratic order of discriminant D.
Doc: creates the quadratic
 number\sidx{omega} $\omega=(a+\sqrt{D})/2$ where $a=0$ if $D\equiv0\mod4$,
 $a=1$ if $D\equiv1\mod4$, so that $(1,\omega)$ is an integral basis for the
 quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or
 1 modulo 4, which is not a square.

Function: quadhilbert
Class: basic
Section: number_theoretical
C-Name: quadhilbert
Prototype: Gp
Help: quadhilbert(D): relative equation for the Hilbert class field
 of the quadratic field of discriminant D (which can also be a bnf).
Doc: relative equation defining the
 \idx{Hilbert class field} of the quadratic field of discriminant $D$.
 
 If $D < 0$, uses complex multiplication (\idx{Schertz}'s variant).
 
 If $D > 0$ \idx{Stark units} are used and (in rare cases) a
 vector of extensions may be returned whose compositum is the requested class
 field. See \kbd{bnrstark} for details.

Function: quadpoly
Class: basic
Section: number_theoretical
C-Name: quadpoly0
Prototype: GDn
Help: quadpoly(D,{v='x}): quadratic polynomial corresponding to the
 discriminant D, in variable v.
Doc: creates the ``canonical'' quadratic
 polynomial (in the variable $v$) corresponding to the discriminant $D$,
 i.e.~the minimal polynomial of $\kbd{quadgen}(D)$. $D$ must be an integer
 congruent to 0 or 1 modulo 4, which is not a square.

Function: quadray
Class: basic
Section: number_theoretical
C-Name: quadray
Prototype: GGp
Help: quadray(D,f): relative equation for the ray class field of
 conductor f for the quadratic field of discriminant D (which can also be a
 bnf).
Doc: relative equation for the ray
 class field of conductor $f$ for the quadratic field of discriminant $D$
 using analytic methods. A \kbd{bnf} for $x^2 - D$ is also accepted in place
 of $D$.
 
 For $D < 0$, uses the $\sigma$ function and Schertz's method.
 
 For $D>0$, uses Stark's conjecture, and a vector of relative equations may be
 returned. See \tet{bnrstark} for more details.

Function: quadregulator
Class: basic
Section: number_theoretical
C-Name: quadregulator
Prototype: Gp
Help: quadregulator(x): regulator of the real quadratic field of
 discriminant x.
Doc: regulator of the quadratic field of positive discriminant $x$. Returns
 an error if $x$ is not a discriminant (fundamental or not) or if $x$ is a
 square. See also \kbd{quadclassunit} if $x$ is large.

Function: quadunit
Class: basic
Section: number_theoretical
C-Name: quadunit
Prototype: G
Help: quadunit(D): fundamental unit of the quadratic field of discriminant D
 where D must be positive.
Doc: fundamental unit\sidx{fundamental units} of the
 real quadratic field $\Q(\sqrt D)$ where  $D$ is the positive discriminant
 of the field. If $D$ is not a fundamental discriminant, this probably gives
 the fundamental unit of the corresponding order. $D$ must be an integer
 congruent to 0 or 1 modulo 4, which is not a square; the result is a
 quadratic number (see \secref{se:quadgen}).

Function: quit
Class: gp
Section: programming/specific
C-Name: gp_quit
Prototype: vD0,L,
Help: quit({status = 0}): quit, return to the system with exit status
 'status'.
Doc: exits \kbd{gp} and return to the system with exit status
 \kbd{status}, a small integer. A non-zero exit status normally indicates
 abnormal termination. (Note: the system actually sees only
 \kbd{status} mod $256$, see your man pages for \kbd{exit(3)} or \kbd{wait(2)}).

Function: ramanujantau
Class: basic
Section: number_theoretical
C-Name: ramanujantau
Prototype: G
Help: ramanujantau(n): compute the value of Ramanujan's tau function at n,
 assuming the GRH. Algorithm in O(n^{1/2+eps}).
Doc: compute the value of Ramanujan's tau function at an individual $n$,
 assuming the truth of the GRH (to compute quickly class numbers of imaginary
 quadratic fields using \tet{quadclassunit}).
 Algorithm in $\tilde{O}(n^{1/2})$ using $O(\log n)$ space. If all values up
 to $N$ are required, then
 $$\sum \tau(n)q^n = q \prod_{n\geq 1} (1-q^n)^{24}$$
 will produce them in time $\tilde{O}(N)$, against $\tilde{O}(N^{3/2})$ for
 individual calls to \kbd{ramanujantau}; of course the space complexity then
 becomes $\tilde{O}(N)$.
 \bprog
 ? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
 ? N = 10^4; v = tauvec(N);
 time = 26 ms.
 ? ramanujantau(N)
 %3 = -482606811957501440000
 ? w = vector(N, n, ramanujantau(n)); \\ much slower !
 time = 13,190 ms.
 ? v == w
 %4 = 1
 @eprog

Function: random
Class: basic
Section: conversions
C-Name: genrand
Prototype: DG
Help: random({N=2^31}): random object, depending on the type of N.
 Integer between 0 and N-1 (t_INT), int mod N (t_INTMOD), element in a finite
 field (t_FFELT), point on an elliptic curve (ellinit mod p or over a finite
 field).
Description: 
 (?int):int    genrand($1)
 (gen):gen     genrand($1)
Doc: 
 returns a random element in various natural sets depending on the
 argument $N$.
 
 \item \typ{INT}: returns an integer
 uniformly distributed between $0$ and $N-1$. Omitting the argument
 is equivalent to \kbd{random(2\pow31)}.
 
 \item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
 $N$ (whose mantissa has the same number of significant words).
 
 \item \typ{INTMOD}: returns a random intmod for the same modulus.
 
 \item \typ{FFELT}: returns a random element in the same finite field.
 
 \item \typ{VEC} of length $2$, $N = [a,b]$: returns an integer uniformly
 distributed between $a$ and $b$.
 
 \item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
 (coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
 ``random'' $k$-rational \emph{affine} point on the curve. More precisely
 if the curve has a single point (at infinity!) we return it; otherwise
 we return an affine point by drawing an abscissa uniformly at
 random until \tet{ellordinate} succeeds. Note that this is definitely not a
 uniform distribution over $E(k)$, but it should be good enough for
 applications.
 
 \item \typ{POL} return a random polynomial of degree at most the degree of $N$.
 The coefficients are drawn by applying \kbd{random} to the leading
 coefficient of $N$.
 
 \bprog
 ? random(10)
 %1 = 9
 ? random(Mod(0,7))
 %2 = Mod(1, 7)
 ? a = ffgen(ffinit(3,7), 'a); random(a)
 %3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
 ? E = ellinit([3,7]*Mod(1,109)); random(E)
 %4 = [Mod(103, 109), Mod(10, 109)]
 ? E = ellinit([1,7]*a^0); random(E)
 %5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
 ? random(Mod(1,7)*x^4)
 %6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
 
 @eprog
 These variants all depend on a single internal generator, and are
 independent from your operating system's random number generators.
 A random seed may be obtained via \tet{getrand}, and reset
 using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
 the exact same values will be generated. The same seed is used at each
 startup, reseed the generator yourself if this is a problem. Note that
 internal functions also call the random number generator; adding such a
 function call in the middle of your code will change the numbers produced.
 
 \misctitle{Technical note}
 Up to
 version 2.4 included, the internal generator produced pseudo-random numbers
 by means of linear congruences, which were not well distributed in arithmetic
 progressions. We now
 use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
 \url{http://wwwmaths.anu.edu.au/~brent/random.html}. The generator has period
 $2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
 Simard, but is not suitable for cryptographic purposes: one can reconstruct
 the state vector from a small sample of consecutive values, thus predicting
 the entire sequence.
Variant: 
  Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.

Function: randomprime
Class: basic
Section: number_theoretical
C-Name: randomprime
Prototype: DG
Help: randomprime({N = 2^31}): returns a strong pseudo prime in [2, N-1].
Doc: returns a strong pseudo prime (see \tet{ispseudoprime}) in $[2,N-1]$.
 A \typ{VEC} $N = [a,b]$ is also allowed, with $a \leq b$ in which case a
 pseudo prime $a \leq p \leq b$ is returned; if no prime exists in the
 interval, the function will run into an infinite loop. If the upper bound
 is less than $2^{64}$ the pseudo prime returned is a proven prime.

Function: read
Class: basic
Section: programming/specific
C-Name: gp_read_file
Prototype: D"",s,
Help: read({filename}): read from the input file filename. If filename is
 omitted, reread last input file, be it from read() or \r.
Description: 
 (str):gen      gp_read_file($1)
Doc: reads in the file
 \var{filename} (subject to string expansion). If \var{filename} is
 omitted, re-reads the last file that was fed into \kbd{gp}. The return
 value is the result of the last expression evaluated.
 
 If a GP \tet{binary file} is read using this command (see
 \secref{se:writebin}), the file is loaded and the last object in the file
 is returned.
 
 In case the file you read in contains an \tet{allocatemem} statement (to be
 generally avoided), you should leave \kbd{read} instructions by themselves,
 and not part of larger instruction sequences.

Function: readstr
Class: basic
Section: programming/specific
C-Name: readstr
Prototype: D"",s,
Help: readstr({filename}): returns the vector of GP strings containing
 the lines in filename.
Doc: Reads in the file \var{filename} and return a vector of GP strings,
 each component containing one line from the file. If \var{filename} is
 omitted, re-reads the last file that was fed into \kbd{gp}.

Function: readvec
Class: basic
Section: programming/specific
C-Name: gp_readvec_file
Prototype: D"",s,
Help: readvec({filename}): create a vector whose components are the evaluation
 of all the expressions found in the input file filename.
Description: 
 (str):gen      gp_readvec_file($1)
Doc: reads in the file
 \var{filename} (subject to string expansion). If \var{filename} is
 omitted, re-reads the last file that was fed into \kbd{gp}. The return
 value is a vector whose components are the evaluation of all sequences
 of instructions contained in the file. For instance, if \var{file} contains
 \bprog
 1
 2
 3
 @eprog\noindent
 then we will get:
 \bprog
 ? \r a
 %1 = 1
 %2 = 2
 %3 = 3
 ? read(a)
 %4 = 3
 ? readvec(a)
 %5 = [1, 2, 3]
 @eprog
 In general a sequence is just a single line, but as usual braces and
 \kbd{\bs} may be used to enter multiline sequences.
Variant: The underlying library function
 \fun{GEN}{gp_readvec_stream}{FILE *f} is usually more flexible.

Function: real
Class: basic
Section: conversions
C-Name: greal
Prototype: G
Help: real(x): real part of x.
Doc: real part of $x$. In the case where $x$ is a quadratic number, this is the
 coefficient of $1$ in the ``canonical'' integral basis $(1,\omega)$.

Function: removeprimes
Class: basic
Section: number_theoretical
C-Name: removeprimes
Prototype: DG
Help: removeprimes({x=[]}): remove primes in the vector x from the prime table.
 x can also be a single integer. List the current extra primes if x is omitted.
Doc: removes the primes listed in $x$ from
 the prime number table. In particular \kbd{removeprimes(addprimes())} empties
 the extra prime table. $x$ can also be a single integer. List the current
 extra primes if $x$ is omitted.

Function: return
Class: basic
Section: programming/control
C-Name: return0
Prototype: DG
Help: return({x=0}): return from current subroutine with result x.
Doc: returns from current subroutine, with
 result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
 result, like \kbd{print}).

Function: rnfalgtobasis
Class: basic
Section: number_fields
C-Name: rnfalgtobasis
Prototype: GG
Help: rnfalgtobasis(rnf,x): relative version of nfalgtobasis, where rnf is a
 relative numberfield.
Doc: expresses $x$ on the relative
 integral basis. Here, $\var{rnf}$ is a relative number field extension $L/K$
 as output by \kbd{rnfinit}, and $x$ an element of $L$ in absolute form, i.e.
 expressed as a polynomial or polmod with polmod coefficients, \emph{not} on
 the relative integral basis.

Function: rnfbasis
Class: basic
Section: number_fields
C-Name: rnfbasis
Prototype: GG
Help: rnfbasis(bnf,M): given a projective Z_K-module M as output by
 rnfpseudobasis or rnfsteinitz, gives either a basis of M if it is free, or an
 n+1-element generating set.
Doc: let $K$ the field represented by
 \var{bnf}, as output by \kbd{bnfinit}. $M$ is a projective $\Z_K$-module
 of rank $n$ ($M\otimes K$ is an $n$-dimensional $K$-vector space), given by a
 pseudo-basis of size $n$. The routine returns either a true $\Z_K$-basis of
 $M$ (of size $n$) if it exists, or an $n+1$-element generating set of $M$ if
 not.
 
 It is allowed to use an irreducible polynomial $P$ in $K[X]$ instead of $M$,
 in which case, $M$ is defined as the ring of integers of $K[X]/(P)$, viewed
 as a $\Z_K$-module.

Function: rnfbasistoalg
Class: basic
Section: number_fields
C-Name: rnfbasistoalg
Prototype: GG
Help: rnfbasistoalg(rnf,x): relative version of nfbasistoalg, where rnf is a
 relative numberfield.
Doc: computes the representation of $x$
 as a polmod with polmods coefficients. Here, $\var{rnf}$ is a relative number
 field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an element of
 $L$ expressed on the relative integral basis.

Function: rnfcharpoly
Class: basic
Section: number_fields
C-Name: rnfcharpoly
Prototype: GGGDn
Help: rnfcharpoly(nf,T,a,{var='x}): characteristic polynomial of a
 over nf, where a belongs to the algebra defined by T over nf. Returns a
 polynomial in variable var (x by default).
Doc: characteristic polynomial of
 $a$ over $\var{nf}$, where $a$ belongs to the algebra defined by $T$ over
 $\var{nf}$, i.e.~$\var{nf}[X]/(T)$. Returns a polynomial in variable $v$
 ($x$ by default).
 \bprog
 ? nf = nfinit(y^2+1);
 ? rnfcharpoly(nf, x^2+y*x+1, x+y)
 %2 = x^2 + Mod(-y, y^2 + 1)*x + 1
 @eprog

Function: rnfconductor
Class: basic
Section: number_fields
C-Name: rnfconductor
Prototype: GG
Help: rnfconductor(bnf,pol): conductor of the Abelian extension
 of bnf defined by pol. The result is [conductor,bnr,subgroup],
 where conductor is the conductor itself, bnr the attached bnr
 structure, and subgroup the HNF defining the norm
 group (Artin or Takagi group) on the given generators bnr.gen.
Doc: given $\var{bnf}$
 as output by \kbd{bnfinit}, and \var{pol} a relative polynomial defining an
 \idx{Abelian extension}, computes the class field theory conductor of this
 Abelian extension. The result is a 3-component vector
 $[\var{conductor},\var{bnr},\var{subgroup}]$, where \var{conductor} is
 the conductor of the extension given as a 2-component row vector
 $[f_0,f_\infty]$, \var{bnr} is the attached \kbd{bnr} structure
 and \var{subgroup} is a matrix in HNF defining the subgroup of the ray class
 group on \kbd{bnr.gen}.

Function: rnfdedekind
Class: basic
Section: number_fields
C-Name: rnfdedekind
Prototype: GGDGD0,L,
Help: rnfdedekind(nf,pol,{pr},{flag=0}): relative Dedekind criterion over the
 number field K, represented by nf, applied to the order O_K[X]/(P),
 modulo the prime ideal pr (at all primes if pr omitted, in which case
 flag is automatically set to 1).
 P is assumed to be monic, irreducible, in O_K[X].
 Returns [max,basis,v], where basis is a pseudo-basis of the
 enlarged order, max is 1 iff this order is pr-maximal, and v is the
 valuation at pr of the order discriminant. If flag is set, just return 1 if
 the order is maximal, and 0 if not.
Doc: given a number field $K$ coded by $\var{nf}$ and a monic
 polynomial $P\in \Z_K[X]$, irreducible over $K$ and thus defining a relative
 extension $L$ of $K$, applies \idx{Dedekind}'s criterion to the order
 $\Z_K[X]/(P)$, at the prime ideal \var{pr}. It is possible to set \var{pr}
 to a vector of prime ideals (test maximality at all primes in the vector),
 or to omit altogether, in which case maximality at \emph{all} primes is tested;
 in this situation \fl\ is automatically set to $1$.
 
 The default historic behavior (\fl\ is 0 or omitted and \var{pr} is a
 single prime ideal) is not so useful since
 \kbd{rnfpseudobasis} gives more information and is generally not that
 much slower. It returns a 3-component vector $[\var{max}, \var{basis}, v]$:
 
 \item \var{basis} is a pseudo-basis of an enlarged order $O$ produced by
 Dedekind's criterion, containing the original order $\Z_K[X]/(P)$
 with index a power of \var{pr}. Possibly equal to the original order.
 
 \item \var{max} is a flag equal to 1 if the enlarged order $O$
 could be proven to be \var{pr}-maximal and to 0 otherwise; it may still be
 maximal in the latter case if \var{pr} is ramified in $L$,
 
 \item $v$ is the valuation at \var{pr} of the order discriminant.
 
 If \fl\ is non-zero, on the other hand, we just return $1$ if the order
 $\Z_K[X]/(P)$ is \var{pr}-maximal (resp.~maximal at all relevant primes, as
 described above), and $0$ if not. This is much faster than the default,
 since the enlarged order is not computed.
 \bprog
 ? nf = nfinit(y^2-3); P = x^3 - 2*y;
 ? pr3 = idealprimedec(nf,3)[1];
 ? rnfdedekind(nf, P, pr3)
 %3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
 ? rnfdedekind(nf, P, pr3, 1)
 %4 = 1
 @eprog\noindent In this example, \kbd{pr3} is the ramified ideal above $3$,
 and the order generated by the cube roots of $y$ is already
 \kbd{pr3}-maximal. The order-discriminant has valuation $8$. On the other
 hand, the order is not maximal at the prime above 2:
 \bprog
 ? pr2 = idealprimedec(nf,2)[1];
 ? rnfdedekind(nf, P, pr2, 1)
 %6 = 0
 ? rnfdedekind(nf, P, pr2)
 %7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
      [1, 1/2; 0, 1/2]]], 2]
 @eprog
 The enlarged order is not proven to be \kbd{pr2}-maximal yet. In fact, it
 is; it is in fact the maximal order:
 \bprog
 ? B = rnfpseudobasis(nf, P)
 %8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
      [162, 0; 0, 162], -1]
 ? idealval(nf,B[3], pr2)
 %9 = 2
 @eprog\noindent
 It is possible to use this routine with non-monic
 $P = \sum_{i\leq n} a_i X^i \in \Z_K[X]$ if $\fl = 1$;
 in this case, we test maximality of Dedekind's order generated by
 $$1, a_n \alpha, a_n\alpha^2 + a_{n-1}\alpha, \dots,
 a_n\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \cdots + a_1\alpha.$$
 The routine will fail if $P$ is $0$ on the projective line over the residue
 field $\Z_K/\kbd{pr}$ (FIXME).

Function: rnfdet
Class: basic
Section: number_fields
C-Name: rnfdet
Prototype: GG
Help: rnfdet(nf,M): given a pseudo-matrix M, compute its determinant.
Doc: given a pseudo-matrix $M$ over the maximal
 order of $\var{nf}$, computes its determinant.

Function: rnfdisc
Class: basic
Section: number_fields
C-Name: rnfdiscf
Prototype: GG
Help: rnfdisc(nf,pol): given a pol with coefficients in nf, gives a
 2-component vector [D,d], where D is the relative ideal discriminant, and d
 is the relative discriminant in nf^*/nf*^2.
Doc: given a number field $\var{nf}$ as
 output by \kbd{nfinit} and a polynomial \var{pol} with coefficients in
 $\var{nf}$ defining a relative extension $L$ of $\var{nf}$, computes the
 relative discriminant of $L$. This is a two-element row vector $[D,d]$, where
 $D$ is the relative ideal discriminant and $d$ is the relative discriminant
 considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of
 $\var{nf}$ \emph{must} be of lower priority than that of \var{pol}, see
 \secref{se:priority}.

Function: rnfeltabstorel
Class: basic
Section: number_fields
C-Name: rnfeltabstorel
Prototype: GG
Help: rnfeltabstorel(rnf,x): transforms the element x from absolute to
 relative representation.
Doc: Let $\var{rnf}$ be a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an
 element of $L$ expressed as a polynomial modulo the absolute equation
 \kbd{\var{rnf}.pol}, or in terms of the absolute $\Z$-basis for $\Z_L$
 if \var{rnf} contains one (as in \kbd{rnfinit(nf,pol,1)}, or after
 a call to \kbd{nfinit(rnf)}).
 Computes $x$ as an element of the relative extension
 $L/K$ as a polmod with polmod coefficients.
 \bprog
 ? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
 ? L.polabs
 %2 = x^4 + 1
 ? rnfeltabstorel(L, Mod(x, L.polabs))
 %3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
 ? rnfeltabstorel(L, 1/3)
 %4 = 1/3
 ? rnfeltabstorel(L, Mod(x, x^2-y))
 %5 = Mod(x, x^2 + Mod(-y, y^2 + 1))
 
 ? rnfeltabstorel(L, [0,0,0,1]~) \\ Z_L not initialized yet
  ***   at top-level: rnfeltabstorel(L,[0,
  ***                 ^--------------------
  *** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
 ? nfinit(L); \\ initialize now
 ? rnfeltabstorel(L, [0,0,0,1]~)
 %6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))
 @eprog

Function: rnfeltdown
Class: basic
Section: number_fields
C-Name: rnfeltdown0
Prototype: GGD0,L,
Help: rnfeltdown(rnf,x,{flag=0}): expresses x on the base field if possible;
 returns an error otherwise.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
 $L$ expressed as a polynomial or polmod with polmod coefficients (or as a
 \typ{COL} on \kbd{nfinit(rnf).zk}), computes
 $x$ as an element of $K$ as a \typ{POLMOD} if $\fl = 0$ and as a \typ{COL}
 otherwise. If $x$ is not in $K$, a domain error occurs.
 \bprog
 ? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
 ? L.pol
 %2 = x^4 + 1
 ? rnfeltdown(L, Mod(x^2, L.pol))
 %3 = Mod(y, y^2 + 1)
 ? rnfeltdown(L, Mod(x^2, L.pol), 1)
 %4 = [0, 1]~
 ? rnfeltdown(L, Mod(y, x^2-y))
 %5 = Mod(y, y^2 + 1)
 ? rnfeltdown(L, Mod(y,K.pol))
 %6 = Mod(y, y^2 + 1)
 ? rnfeltdown(L, Mod(x, L.pol))
  ***   at top-level: rnfeltdown(L,Mod(x,x
  ***                 ^--------------------
  *** rnfeltdown: domain error in rnfeltdown: element not in the base field
 ? rnfeltdown(L, Mod(y, x^2-y), 1) \\ as a t_COL
 %7 = [0, 1]~
 ? rnfeltdown(L, [0,1,0,0]~) \\ not allowed without absolute nf struct
   *** rnfeltdown: incorrect type in rnfeltdown (t_COL).
 ? nfinit(L); \\ add absolute nf structure to L
 ? rnfeltdown(L, [0,1,0,0]~) \\ now OK
 %8 = Mod(y, y^2 + 1)
 @eprog\noindent If we had started with
 \kbd{L = rnfinit(K, x\pow2-y, 1)}, then the final would have worked directly.
Variant: Also available is
 \fun{GEN}{rnfeltdown}{GEN rnf, GEN x} ($\fl = 0$).

Function: rnfeltnorm
Class: basic
Section: number_fields
C-Name: rnfeltnorm
Prototype: GG
Help: rnfeltnorm(rnf,x): returns the relative norm N_{L/K}(x), as an element
 of K.
Doc: $\var{rnf}$ being a relative number field extension $L/K$ as output by
 \kbd{rnfinit} and $x$ being an element of $L$, returns the relative norm
 $N_{L/K}(x)$ as an element of $K$.
 \bprog
 ? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
 ? rnfeltnorm(L, Mod(x, L.pol))
 %2 = Mod(x, x^2 + Mod(-y, y^2 + 1))
 ? rnfeltnorm(L, 2)
 %3 = 4
 ? rnfeltnorm(L, Mod(x, x^2-y))
 @eprog

Function: rnfeltreltoabs
Class: basic
Section: number_fields
C-Name: rnfeltreltoabs
Prototype: GG
Help: rnfeltreltoabs(rnf,x): transforms the element x from relative to
 absolute representation.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
 element of $L$ expressed as a polynomial or polmod with polmod
 coefficients, computes $x$ as an element of the absolute extension $L/\Q$ as
 a polynomial modulo the absolute equation \kbd{\var{rnf}.pol}.
 \bprog
 ? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
 ? L.pol
 %2 = x^4 + 1
 ? rnfeltreltoabs(L, Mod(x, L.pol))
 %3 = Mod(x, x^4 + 1)
 ? rnfeltreltoabs(L, Mod(y, x^2-y))
 %4 = Mod(x^2, x^4 + 1)
 ? rnfeltreltoabs(L, Mod(y,K.pol))
 %5 = Mod(x^2, x^4 + 1)
 @eprog

Function: rnfelttrace
Class: basic
Section: number_fields
C-Name: rnfelttrace
Prototype: GG
Help: rnfelttrace(rnf,x): returns the relative trace Tr_{L/K}(x), as an element
 of K.
Doc: $\var{rnf}$ being a relative number field extension $L/K$ as output by
 \kbd{rnfinit} and $x$ being an element of $L$, returns the relative trace
 $Tr_{L/K}(x)$ as an element of $K$.
 \bprog
 ? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
 ? rnfelttrace(L, Mod(x, L.pol))
 %2 = 0
 ? rnfelttrace(L, 2)
 %3 = 4
 ? rnfelttrace(L, Mod(x, x^2-y))
 @eprog

Function: rnfeltup
Class: basic
Section: number_fields
C-Name: rnfeltup0
Prototype: GGD0,L,
Help: rnfeltup(rnf,x,{flag=0}): expresses x (belonging to the base field) on
 the relative field. As a t_POLMOD if flag = 0 and as a t_COL on the absolute
 field integer basis if flag = 1.
Doc: $\var{rnf}$ being a relative number field extension $L/K$ as output by
 \kbd{rnfinit} and $x$ being an element of $K$, computes $x$ as an element of
 the absolute extension $L/\Q$. As a \typ{POLMOD} modulo \kbd{\var{rnf}.pol}
 if $\fl = 0$ and as a \typ{COL} on the absolute field integer basis if
 $\fl = 1$.
 \bprog
 ? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
 ? L.pol
 %2 = x^4 + 1
 ? rnfeltup(L, Mod(y, K.pol))
 %3 = Mod(x^2, x^4 + 1)
 ? rnfeltup(L, y)
 %4 = Mod(x^2, x^4 + 1)
 ? rnfeltup(L, [1,2]~) \\ in terms of K.zk
 %5 = Mod(2*x^2 + 1, x^4 + 1)
 ? rnfeltup(L, y, 1) \\ in terms of nfinit(L).zk
 %6 = [0, 1, 0, 0]~
 ? rnfeltup(L, [1,2]~, 1)
 %7 = [1, 2, 0, 0]~
 @eprog

Function: rnfequation
Class: basic
Section: number_fields
C-Name: rnfequation0
Prototype: GGD0,L,
Help: rnfequation(nf,pol,{flag=0}): given a pol with coefficients in nf,
 gives an absolute equation z of the number field defined by pol. flag is
 optional, and can be 0: default, or non-zero, gives [z,al,k], where
 z defines the absolute equation L/Q as in the default behavior,
 al expresses as an element of L a root of the polynomial
 defining the base field nf, and k is a small integer such that
 t = b + k al is a root of z, for b a root of pol.
Doc: given a number field
 $\var{nf}$ as output by \kbd{nfinit} (or simply a polynomial) and a
 polynomial \var{pol} with coefficients in $\var{nf}$ defining a relative
 extension $L$ of $\var{nf}$, computes an absolute equation of $L$ over
 $\Q$.
 
 The main variable of $\var{nf}$ \emph{must} be of lower priority than that
 of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
 not check whether the relative equation is irreducible over $\var{nf}$, but
 only if it is squarefree. If it is reducible but squarefree, the result will
 be the absolute equation of the \'etale algebra defined by \var{pol}. If
 \var{pol} is not squarefree, raise an \kbd{e\_DOMAIN} exception.
 \bprog
 ? rnfequation(y^2+1, x^2 - y)
 %1 = x^4 + 1
 ? T = y^3-2; rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))
 %2 = x^6 + 108  \\ Galois closure of Q(2^(1/3))
 @eprog
 
 If $\fl$ is non-zero, outputs a 3-component row vector $[z,a,k]$, where
 
 \item $z$ is the absolute equation of $L$ over $\Q$, as in the default
 behavior,
 
 \item $a$ expresses as a \typ{POLMOD} modulo $z$ a root $\alpha$ of the
 polynomial defining the base field $\var{nf}$,
 
 \item $k$ is a small integer such that $\theta = \beta+k\alpha$
 is a root of $z$, where $\beta$ is a root of $\var{pol}$.
 \bprog
 ? T = y^3-2; pol = x^2 +x*y + y^2;
 ? [z,a,k] = rnfequation(T, pol, 1);
 ? z
 %3 = x^6 + 108
 ? subst(T, y, a)
 %4 = 0
 ? alpha= Mod(y, T);
 ? beta = Mod(x*Mod(1,T), pol);
 ? subst(z, x, beta + k*alpha)
 %7 = 0
 @eprog
Variant: Also available are
 \fun{GEN}{rnfequation}{GEN nf, GEN pol} ($\fl = 0$) and
 \fun{GEN}{rnfequation2}{GEN nf, GEN pol} ($\fl = 1$).

Function: rnfhnfbasis
Class: basic
Section: number_fields
C-Name: rnfhnfbasis
Prototype: GG
Help: rnfhnfbasis(bnf,x): given an order x as output by rnfpseudobasis,
 gives either a true HNF basis of the order if it exists, zero otherwise.
Doc: given $\var{bnf}$ as output by
 \kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
 defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
 such an extension, gives either a true $\var{bnf}$-basis of $L$ in upper
 triangular Hermite normal form, if it exists, and returns $0$ otherwise.

Function: rnfidealabstorel
Class: basic
Section: number_fields
C-Name: rnfidealabstorel
Prototype: GG
Help: rnfidealabstorel(rnf,x): transforms the ideal x from absolute to
 relative representation.
Doc: let $\var{rnf}$ be a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ be an ideal of
 the absolute extension $L/\Q$ given by a $\Z$-basis of elements of $L$.
 Returns the relative pseudo-matrix in HNF giving the ideal $x$ considered as
 an ideal of the relative extension $L/K$, i.e.~as a $\Z_K$-module.
 
 The reason why the input does not use the customary HNF in terms of a fixed
 $\Z$-basis for $\Z_L$ is precisely that no such basis has been explicitly
 specified. On the other hand, if you already computed an (absolute) \kbd{nf}
 structure \kbd{Labs} attached to $L$, and $m$ is in HNF, defining
 an (absolute) ideal with respect to the $\Z$-basis \kbd{Labs.zk}, then
 \kbd{Labs.zk * m} is a suitable $\Z$-basis for the ideal, and
 \bprog
   rnfidealabstorel(rnf, Labs.zk * m)
 @eprog\noindent converts $m$ to a relative ideal.
 \bprog
 ? K = nfinit(y^2+1); L = rnfinit(K, x^2-y); Labs = nfinit(L);
 ? m = idealhnf(Labs, 17, x^3+2);
 ? B = rnfidealabstorel(L, Labs.zk * m)
 %3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]  \\ pseudo-basis for m as Z_K-module
 ? A = rnfidealreltoabs(L, B)
 %4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2]   \\ Z-basis for m in Q[x]/(L.pol)
 ? mathnf(matalgtobasis(Labs, A))
 %5 =
 [17 8 4 2]
 
 [ 0 1 0 0]
 
 [ 0 0 1 0]
 
 [ 0 0 0 1]
 ? % == m
 %6 = 1
 @eprog

Function: rnfidealdown
Class: basic
Section: number_fields
C-Name: rnfidealdown
Prototype: GG
Help: rnfidealdown(rnf,x): finds the intersection of the ideal x with the
 base field.
Doc: let $\var{rnf}$ be a relative number
 field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
 $L$, given either in relative form or by a $\Z$-basis of elements of $L$
 (see \secref{se:rnfidealabstorel}). This function returns the ideal of $K$
 below $x$, i.e.~the intersection of $x$ with $K$.

Function: rnfidealfactor
Class: basic
Section: number_fields
C-Name: rnfidealfactor
Prototype: GG
Help: rnfidealfactor(rnf,x): factorization of the ideal x into
 prime ideals in the number field nfinit(rnf).
Doc: factors into prime ideal powers the
 ideal $x$ in the attached absolute number field $L = \kbd{nfinit}(\var{rnf})$.
 The output format is similar to the \kbd{factor} function, and the prime
 ideals are represented in the form output by the \kbd{idealprimedec}
 function for $L$.
 \bprog
 ? rnf = rnfinit(nfinit(y^2+1), x^2-y+1);
 ? rnfidealfactor(rnf, y+1)  \\ P_2^2
 %2 =
 [[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 2]
 
 ? rnfidealfactor(rnf, x) \\ P_2
 %3 =
 [[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 1]
 
 ? L = nfinit(rnf);
 ? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));
 ? idealfactor(L, id) == rnfidealfactor(rnf, id)
 %6 = 1
 @eprog\noindent Note that ideals of the base field $K$ must be explicitly
 lifted to $L$ via \kbd{rnfidealup} before they can be factored.

Function: rnfidealhnf
Class: basic
Section: number_fields
C-Name: rnfidealhnf
Prototype: GG
Help: rnfidealhnf(rnf,x): relative version of idealhnf, where rnf is a
 relative numberfield.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a relative
 ideal (which can be, as in the absolute case, of many different types,
 including of course elements), computes the HNF pseudo-matrix attached to
 $x$, viewed as a $\Z_K$-module.

Function: rnfidealmul
Class: basic
Section: number_fields
C-Name: rnfidealmul
Prototype: GGG
Help: rnfidealmul(rnf,x,y): relative version of idealmul, where rnf is a
 relative numberfield.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ and $y$ being ideals
 of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal
 product, again as a relative ideal.

Function: rnfidealnormabs
Class: basic
Section: number_fields
C-Name: rnfidealnormabs
Prototype: GG
Help: rnfidealnormabs(rnf,x): absolute norm of the ideal x.
Doc: let $\var{rnf}$ be a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
 relative ideal (which can be, as in the absolute case, of many different
 types, including of course elements). This function computes the norm of the
 $x$ considered as an ideal of the absolute extension $L/\Q$. This is
 identical to
 \bprog
    idealnorm(rnf, rnfidealnormrel(rnf,x))
 @eprog\noindent but faster.

Function: rnfidealnormrel
Class: basic
Section: number_fields
C-Name: rnfidealnormrel
Prototype: GG
Help: rnfidealnormrel(rnf,x): relative norm of the ideal x.
Doc: let $\var{rnf}$ be a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
 relative ideal (which can be, as in the absolute case, of many different
 types, including of course elements). This function computes the relative
 norm of $x$ as an ideal of $K$ in HNF.

Function: rnfidealprimedec
Class: basic
Section: number_fields
C-Name: rnfidealprimedec
Prototype: GG
Help: rnfidealprimedec(rnf,pr): prime ideal decomposition of the maximal
 ideal pr of K in L/K; pr is also allowed to be a prime number p, in which
 case we return a pair of vectors [SK,SL], where SK contains the primes of K
 above p and SL[i] is the vector of primes of L above SK[i].
Doc: let \var{rnf} be a relative number
 field extension $L/K$ as output by \kbd{rnfinit}, and \kbd{pr} a maximal
 ideal of $K$ (\kbd{prid}), this function completes the \var{rnf}
 with a \var{nf} structure attached to $L$ (see \secref{se:rnfinit})
 and returns the prime ideal decomposition of \kbd{pr} in $L/K$.
 \bprog
 ? K = nfinit(y^2+1); rnf = rnfinit(K, x^3+y+1);
 ? P = idealprimedec(K, 2)[1];
 ? S = rnfidealprimedec(rnf, P);
 ? #S
 %4 = 1
 @eprog
 The argument \kbd{pr} is also allowed to be a prime number $p$, in which
 case we return a pair of vectors \kbd{[SK,SL]}, where \kbd{SK} contains
 the primes of $K$ above $p$ and \kbd{SL}$[i]$ is the vector of primes of $L$
 above \kbd{SK}$[i]$.
 \bprog
 ? [SK,SL] = rnfidealprimedec(rnf, 5);
 ? [#SK, vector(#SL,i,#SL[i])]
 %6 = [2, [2, 2]]
 @eprog

Function: rnfidealreltoabs
Class: basic
Section: number_fields
C-Name: rnfidealreltoabs0
Prototype: GGD0,L,
Help: rnfidealreltoabs(rnf,x,{flag=0}): transforms the ideal x from relative to
 absolute representation. As a vector of t_POLMODs if flag = 0 and as an ideal
 in HNF in the absolute field if flag = 1.
Doc: Let $\var{rnf}$ be a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
 relative ideal, given as a $\Z_K$-module by a pseudo matrix $[A,I]$.
 This function returns the ideal $x$ as an absolute ideal of $L/\Q$.
 If $\fl = 0$, the result is given by a vector of \typ{POLMOD}s modulo
 \kbd{rnf.pol} forming a $\Z$-basis; if $\fl = 1$, it is given in HNF in terms
 of the fixed $\Z$-basis for $\Z_L$, see \secref{se:rnfinit}.
 \bprog
 ? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
 ? P = idealprimedec(K,2)[1];
 ? P = rnfidealup(rnf, P)
 %3 = [2, x^2 + 1, 2*x, x^3 + x]
 ? Prel = rnfidealhnf(rnf, P)
 %4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]
 ? rnfidealreltoabs(rnf,Prel)
 %5 = [2, x^2 + 1, 2*x, x^3 + x]
 ? rnfidealreltoabs(rnf,Prel,1)
 %6 =
 [2 1 0 0]
 
 [0 1 0 0]
 
 [0 0 2 1]
 
 [0 0 0 1]
 @eprog
 The reason why we do not return by default ($\fl = 0$) the customary HNF in
 terms of a fixed $\Z$-basis for $\Z_L$ is precisely because
 a \var{rnf} does not contain such a basis by default. Completing the
 structure so that it contains a \var{nf} structure for $L$ is polynomial
 time but costly when the absolute degree is large, thus it is not done by
 default. Note that setting $\fl = 1$ will complete the \var{rnf}.
Variant: Also available is
 \fun{GEN}{rnfidealreltoabs}{GEN rnf, GEN x} ($\fl = 0$).

Function: rnfidealtwoelt
Class: basic
Section: number_fields
C-Name: rnfidealtwoelement
Prototype: GG
Help: rnfidealtwoelt(rnf,x): relative version of idealtwoelt, where rnf
 is a relative numberfield.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
 ideal of the relative extension $L/K$ given by a pseudo-matrix, gives a
 vector of two generators of $x$ over $\Z_L$ expressed as polmods with polmod
 coefficients.

Function: rnfidealup
Class: basic
Section: number_fields
C-Name: rnfidealup0
Prototype: GGD0,L,
Help: rnfidealup(rnf,x,{flag=0}): lifts the ideal x (of the base field) to the
 relative field. As a vector of t_POLMODs if flag = 0 and as an ideal in HNF
 in the absolute field if flag = 1.
Doc: let $\var{rnf}$ be a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an ideal of
 $K$. This function returns the ideal $x\Z_L$ as an absolute ideal of $L/\Q$,
 in the form of a $\Z$-basis. If $\fl = 0$, the result is given by a vector of
 polynomials (modulo \kbd{rnf.pol}); if $\fl = 1$, it is given in HNF in terms
 of the fixed $\Z$-basis for $\Z_L$, see \secref{se:rnfinit}.
 \bprog
 ? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
 ? P = idealprimedec(K,2)[1];
 ? rnfidealup(rnf, P)
 %3 = [2, x^2 + 1, 2*x, x^3 + x]
 ? rnfidealup(rnf, P,1)
 %4 =
 [2 1 0 0]
 
 [0 1 0 0]
 
 [0 0 2 1]
 
 [0 0 0 1]
 @eprog
 The reason why we do not return by default ($\fl = 0$) the customary HNF in
 terms of a fixed $\Z$-basis for $\Z_L$ is precisely because
 a \var{rnf} does not contain such a basis by default. Completing the
 structure so that it contains a \var{nf} structure for $L$ is polynomial
 time but costly when the absolute degree is large, thus it is not done by
 default. Note that setting $\fl = 1$ will complete the \var{rnf}.
Variant: Also available is
  \fun{GEN}{rnfidealup}{GEN rnf, GEN x} ($\fl = 0$).

Function: rnfinit
Class: basic
Section: number_fields
C-Name: rnfinit0
Prototype: GGD0,L,
Help: rnfinit(nf,pol,{flag=0}): pol being an irreducible polynomial
 defined over the number field nf, initializes a vector of data necessary for
 working in relative number fields (rnf functions). See manual for technical
 details.
Doc: $\var{nf}$ being a number field in \kbd{nfinit}
 format considered as base field, and \var{pol} a polynomial defining a relative
 extension over $\var{nf}$, this computes data to work in the
 relative extension. The main variable of \var{pol} must be of higher priority
 (see \secref{se:priority}) than that of $\var{nf}$, and the coefficients of
 \var{pol} must be in $\var{nf}$.
 
 The result is a row vector, whose components are technical. In the following
 description, we let $K$ be the base field defined by $\var{nf}$ and $L/K$
 the extension attached to the \var{rnf}. Furthermore, we let
 $m = [K:\Q]$ the degree of the base field, $n = [L:K]$ the relative degree,
 $r_1$ and $r_2$ the number of real and complex places of $K$. Access to this
 information via \emph{member functions} is preferred since the specific
 data organization specified below will change in the future.
 
 If $\fl = 1$, add an \var{nf} structure attached to $L$ to \var{rnf}.
 This is likely to be very expensive if the absolute degree $mn$ is large,
 but fixes an integer basis for $\Z_L$ as a $\Z$-module and allows to input
 and output elements of $L$ in absolute form: as \typ{COL} for elements,
 as \typ{MAT} in HNF for ideals, as \kbd{prid} for prime ideals. Without such
 a call, elements of $L$ are represented as \typ{POLMOD}, etc.
 Note that a subsequent \kbd{nfinit}$(\var{rnf})$ will also explicitly
 add such a component, and so will the following functions \kbd{rnfidealmul},
 \kbd{rnfidealtwoelt}, \kbd{rnfidealprimedec}, \kbd{rnfidealup} (with flag 1)
 and \kbd{rnfidealreltoabs} (with flag 1). The absolute \var{nf} structure
 attached to $L$ can be recovered using \kbd{nfinit(rnf)}.
 
 $\var{rnf}[1]$(\kbd{rnf.pol}) contains the relative polynomial \var{pol}.
 
 $\var{rnf}[2]$ contains the integer basis $[A,d]$ of $K$, as
 (integral) elements of $L/\Q$. More precisely, $A$ is a vector of
 polynomial with integer coefficients, $d$ is a denominator, and the integer
 basis is given by $A/d$.
 
 $\var{rnf}[3]$ (\kbd{rnf.disc}) is a two-component row vector
 $[\goth{d}(L/K),s]$ where $\goth{d}(L/K)$ is the relative ideal discriminant
 of $L/K$ and $s$ is the discriminant of $L/K$ viewed as an element of
 $K^*/(K^*)^2$, in other words it is the output of \kbd{rnfdisc}.
 
 $\var{rnf}[4]$(\kbd{rnf.index}) is the ideal index $\goth{f}$, i.e.~such
 that $d(pol)\Z_K=\goth{f}^2\goth{d}(L/K)$.
 
 $\var{rnf}[5]$ is currently unused.
 
 $\var{rnf}[6]$ is currently unused.
 
 $\var{rnf}[7]$ (\kbd{rnf.zk}) is the pseudo-basis $(A,I)$ for the maximal
 order $\Z_L$ as a $\Z_K$-module: $A$ is the relative integral pseudo basis
 expressed as polynomials (in the variable of $pol$) with polmod coefficients
 in $\var{nf}$, and the second component $I$ is the ideal list of the
 pseudobasis in HNF.
 
 $\var{rnf}[8]$ is the inverse matrix of the integral basis matrix, with
 coefficients polmods in $\var{nf}$.
 
 $\var{rnf}[9]$ is currently unused.
 
 $\var{rnf}[10]$ (\kbd{rnf.nf}) is $\var{nf}$.
 
 $\var{rnf}[11]$ is an extension of \kbd{rnfequation(K, pol, 1)}. Namely, a
 vector $[P, a, k, \kbd{K.pol}, \kbd{pol}]$ describing the \emph{absolute}
 extension
 $L/\Q$: $P$ is an absolute equation, more conveniently obtained
 as \kbd{rnf.polabs}; $a$ expresses the generator $\alpha = y \mod \kbd{K.pol}$
 of the number field $K$ as an element of $L$, i.e.~a polynomial modulo the
 absolute equation $P$;
 
 $k$ is a small integer such that, if $\beta$ is an abstract root of \var{pol}
 and $\alpha$ the generator of $K$ given above, then $P(\beta + k\alpha) = 0$.
 
 \misctitle{Caveat} Be careful if $k\neq0$ when dealing simultaneously with
 absolute and relative quantities since $L = \Q(\beta + k\alpha) =
 K(\alpha)$, and the generator chosen for the absolute extension is not the
 same as for the relative one. If this happens, one can of course go on
 working, but we advise to change the relative polynomial so that its root
 becomes $\beta + k \alpha$. Typical GP instructions would be
 \bprog
   [P,a,k] = rnfequation(K, pol, 1);
   if (k, pol = subst(pol, x, x - k*Mod(y, K.pol)));
   L = rnfinit(K, pol);
 @eprog
 
 $\var{rnf}[12]$ is by default unused and set equal to 0. This field is used
 to store further information about the field as it becomes available (which
 is rarely needed, hence would be too expensive to compute during the initial
 \kbd{rnfinit} call).
Variant: Also available is
 \fun{GEN}{rnfinit}{GEN nf,GEN pol} ($\fl = 0$).

Function: rnfisabelian
Class: basic
Section: number_fields
C-Name: rnfisabelian
Prototype: lGG
Help: rnfisabelian(nf,T): T being a relative polynomial with coefficients
 in nf, return 1 if it defines an abelian extension, and 0 otherwise.
Doc: $T$ being a relative polynomial with coefficients
 in \var{nf}, return 1 if it defines an abelian extension, and 0 otherwise.
 \bprog
 ? K = nfinit(y^2 + 23);
 ? rnfisabelian(K, x^3 - 3*x - y)
 %2 = 1
 @eprog

Function: rnfisfree
Class: basic
Section: number_fields
C-Name: rnfisfree
Prototype: lGG
Help: rnfisfree(bnf,x): given an order x as output by rnfpseudobasis or
 rnfsteinitz, outputs true (1) or false (0) according to whether the order is
 free or not.
Doc: given $\var{bnf}$ as output by
 \kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
 defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
 such an extension, returns true (1) if $L/\var{bnf}$ is free, false (0) if
 not.

Function: rnfislocalcyclo
Class: basic
Section: number_fields
C-Name: rnfislocalcyclo
Prototype: lG
Help: rnfislocalcyclo(rnf): true(1) if the l-extension attached to rnf
 is locally cyclotomic (locally contained in the Z_l extension of K_v at
 all places v | l), false(0) if not.
Doc: Let \var{rnf} a a relative number field extension $L/K$ as output
 by \kbd{rnfinit} whole degree $[L:K]$ is a power of a prime $\ell$.
 Return $1$ if the $\ell$-extension is locally cyclotomic (locally contained in
 the cyclotomic $\Z_\ell$-extension of $K_v$ at all places $v | \ell$), and
 $0$ if not.
 \bprog
 ? K = nfinit(y^2 + y + 1);
 ? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
 ? rnfislocalcyclo(L)
 %3 = 1
 \\ we expect 3-adic continuity by Krasner's lemma
 ? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
 %5 = [0, 1, 1, 1, 1]
 @eprog

Function: rnfisnorm
Class: basic
Section: number_fields
C-Name: rnfisnorm
Prototype: GGD0,L,
Help: rnfisnorm(T,a,{flag=0}): T is as output by rnfisnorminit applied to
 L/K. Tries to tell whether a is a norm from L/K. Returns a vector [x,q]
 where a=Norm(x)*q. Looks for a solution which is a S-integer, with S a list
 of places in K containing the ramified primes, generators of the class group
 of ext, as well as those primes dividing a. If L/K is Galois, omit flag,
 otherwise it is used to add more places to S: all the places above the
 primes p <= flag (resp. p | flag) if flag > 0 (resp. flag < 0). The answer
 is guaranteed (i.e a is a norm iff q=1) if L/K is Galois or, under GRH, if S
 contains all primes less than 12.log(disc(M))^2, where M is the normal
 closure of L/K.
Doc: similar to
 \kbd{bnfisnorm} but in the relative case. $T$ is as output by
 \tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
 whether the element $a$ in $K$ is the norm of some $x$ in the extension
 $L/K$.
 
 The output is a vector $[x,q]$, where $a = \Norm(x)*q$. The
 algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
 of places of $K$ containing at least the ramified primes, the generators of
 the class group of $L$, as well as those primes dividing $a$. If $L/K$ is
 Galois, then this is enough; otherwise, $\fl$ is used to add more primes to
 $S$: all the places above the primes $p \leq \fl$ (resp.~$p|\fl$) if $\fl>0$
 (resp.~$\fl<0$).
 
 The answer is guaranteed (i.e.~$a$ is a norm iff $q = 1$) if the field is
 Galois, or, under \idx{GRH}, if $S$ contains all primes less than
 $12\log^2\left|\disc(M)\right|$, where $M$ is the normal
 closure of $L/K$.
 
 If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
 \idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
 $\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
 Example:
 
 \bprog
 bnf = bnfinit(y^3 + y^2 - 2*y - 1);
 p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
 T = rnfisnorminit(bnf, p);
 rnfisnorm(T, 17)
 @eprog\noindent
 checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
 \Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +
 \alpha^2 + 2\alpha + 1 = 0$ (it is).

Function: rnfisnorminit
Class: basic
Section: number_fields
C-Name: rnfisnorminit
Prototype: GGD2,L,
Help: rnfisnorminit(pol,polrel,{flag=2}): let K be defined by a root of pol,
 L/K the extension defined by polrel. Compute technical data needed by
 rnfisnorm to solve norm equations Nx = a, for x in L, and a in K. If flag=0,
 do not care whether L/K is Galois or not; if flag = 1, assume L/K is Galois;
 if flag = 2, determine whether L/K is Galois.
Doc: let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined
 by the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
 or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
 polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
 by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
 in $K$.
 
 If $\fl = 0$, do not care whether $L/K$ is Galois or not.
 
 If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
 \tet{rnfisnorm}.
 
 If $\fl = 2$, let the routine determine whether $L/K$ is Galois.

Function: rnfkummer
Class: basic
Section: number_fields
C-Name: rnfkummer
Prototype: GDGD0,L,p
Help: rnfkummer(bnr,{subgp},{d=0}): bnr being as output by bnrinit,
 finds a relative equation for the class field corresponding to the module in
 bnr and the given congruence subgroup (the ray class field if subgp is
 omitted). d can be zero (default), or positive, and in this case the
 output is the list of all relative equations of degree d for the given bnr,
 with the same conductor as (bnr, subgp).
Doc: \var{bnr}
 being as output by \kbd{bnrinit}, finds a relative equation for the
 class field corresponding to the module in \var{bnr} and the given
 congruence subgroup (the full ray class field if \var{subgp} is omitted).
 If $d$ is positive, outputs the list of all relative equations of
 degree $d$ contained in the ray class field defined by \var{bnr}, with
 the \emph{same} conductor as $(\var{bnr}, \var{subgp})$.
 
 \misctitle{Warning} This routine only works for subgroups of prime index. It
 uses Kummer theory, adjoining necessary roots of unity (it needs to compute a
 tough \kbd{bnfinit} here), and finds a generator via Hecke's characterization
 of ramification in Kummer extensions of prime degree. If your extension does
 not have prime degree, for the time being, you have to split it by hand as a
 tower / compositum of such extensions.

Function: rnflllgram
Class: basic
Section: number_fields
C-Name: rnflllgram
Prototype: GGGp
Help: rnflllgram(nf,pol,order): given a pol with coefficients in nf and an
 order as output by rnfpseudobasis or similar, gives [[neworder],U], where
 neworder is a reduced order and U is the unimodular transformation matrix.
Doc: given a polynomial
 \var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
 a suborder \var{order} of $L$ (of maximal rank), as output by
 \kbd{rnfpseudobasis}$(\var{nf},\var{pol})$ or similar, gives
 $[[\var{neworder}],U]$, where \var{neworder} is a reduced order and $U$ is
 the unimodular transformation matrix.

Function: rnfnormgroup
Class: basic
Section: number_fields
C-Name: rnfnormgroup
Prototype: GG
Help: rnfnormgroup(bnr,pol): norm group (or Artin or Takagi group)
 corresponding to the Abelian extension of bnr.bnf defined by pol, where
 the module corresponding to bnr is assumed to be a multiple of the
 conductor. The result is the HNF defining the norm group on the
 generators in bnr.gen.
Doc: 
 \var{bnr} being a big ray
 class field as output by \kbd{bnrinit} and \var{pol} a relative polynomial
 defining an \idx{Abelian extension}, computes the norm group (alias Artin
 or Takagi group) corresponding to the Abelian extension of
 $\var{bnf}=$\kbd{bnr.bnf}
 defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
 to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
 bnr). The result is the HNF defining the norm group on the given generators
 of \kbd{bnr.gen}. Note that neither the fact that \var{pol} defines an
 Abelian extension nor the fact that the module is a multiple of the conductor
 is checked. The result is undefined if the assumption is not correct,
 but the function will return the empty matrix \kbd{[;]} if it detects a
 problem; it may also not detect the problem and return a wrong result.

Function: rnfpolred
Class: basic
Section: number_fields
C-Name: rnfpolred
Prototype: GGp
Help: rnfpolred(nf,pol): given a pol with coefficients in nf, finds a list
 of relative polynomials defining some subfields, hopefully simpler.
Doc: This function is obsolete: use \tet{rnfpolredbest} instead.
 Relative version of \kbd{polred}. Given a monic polynomial \var{pol} with
 coefficients in $\var{nf}$, finds a list of relative polynomials defining some
 subfields, hopefully simpler and containing the original field. In the present
 version \vers, this is slower and less efficient than \kbd{rnfpolredbest}.
 
 \misctitle{Remark} this function is based on an incomplete reduction
 theory of lattices over number fields, implemented by \kbd{rnflllgram}, which
 deserves to be improved.
Obsolete: 2013-12-28

Function: rnfpolredabs
Class: basic
Section: number_fields
C-Name: rnfpolredabs
Prototype: GGD0,L,
Help: rnfpolredabs(nf,pol,{flag=0}): given a pol with coefficients in nf,
 finds a relative simpler polynomial defining the same field. Binary digits
 of flag mean: 1: return also the element whose characteristic polynomial is
 the given polynomial, 2: return an absolute polynomial, 16: partial
 reduction.
Doc: This function is obsolete: use \tet{rnfpolredbest} instead.
 Relative version of \kbd{polredabs}. Given a monic polynomial \var{pol}
 with coefficients in $\var{nf}$, finds a simpler relative polynomial defining
 the same field. The binary digits of $\fl$ mean
 
 The binary digits of $\fl$ correspond to $1$: add information to convert
 elements to the new representation, $2$: absolute polynomial, instead of
 relative, $16$: possibly use a suborder of the maximal order. More precisely:
 
 0: default, return $P$
 
 1: returns $[P,a]$ where $P$ is the default output and $a$,
 a \typ{POLMOD} modulo $P$, is a root of \var{pol}.
 
 2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
 Same as but faster than
 \bprog
   rnfequation(nf, rnfpolredabs(nf,pol))
 @eprog
 
 3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
 as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
 and \var{pol} respectively.
 
 16: possibly use a suborder of the maximal order. This is slower than the
 default when the relative discriminant is smooth, and much faster otherwise.
 See \secref{se:polredabs}.
 
 \misctitle{Warning} In the present implementation, \kbd{rnfpolredabs}
 produces smaller polynomials than \kbd{rnfpolred} and is usually
 faster, but its complexity is still exponential in the absolute degree.
 The function \tet{rnfpolredbest} runs in polynomial time, and  tends  to
 return polynomials with smaller discriminants.
Obsolete: 2013-12-28

Function: rnfpolredbest
Class: basic
Section: number_fields
C-Name: rnfpolredbest
Prototype: GGD0,L,
Help: rnfpolredbest(nf,pol,{flag=0}): given a pol with coefficients in nf,
 finds a relative polynomial P defining the same field, hopefully simpler
 than pol; flag
 can be 0: default, 1: return [P,a], where a is a root of pol
 2: return an absolute polynomial Pabs, 3:
 return [Pabs, a,b], where a is a root of nf.pol and b is a root of pol.
Doc: relative version of \kbd{polredbest}. Given a monic polynomial \var{pol}
 with coefficients in $\var{nf}$, finds a simpler relative polynomial $P$
 defining the same field. As opposed to \tet{rnfpolredabs} this function does
 not return a \emph{smallest} (canonical) polynomial with respect to some
 measure, but it does run in polynomial time.
 
 The binary digits of $\fl$ correspond to $1$: add information to convert
 elements to the new representation, $2$: absolute polynomial, instead of
 relative. More precisely:
 
 0: default, return $P$
 
 1: returns $[P,a]$ where $P$ is the default output and $a$,
 a \typ{POLMOD} modulo $P$, is a root of \var{pol}.
 
 2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
 Same as but faster than
 \bprog
   rnfequation(nf, rnfpolredbest(nf,pol))
 @eprog
 
 3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
 as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
 and \var{pol} respectively.
 
 \bprog
 ? K = nfinit(y^3-2); pol = x^2 +x*y + y^2;
 ? [P, a] = rnfpolredbest(K,pol,1);
 ? P
 %3 = x^2 - x + Mod(y - 1, y^3 - 2)
 ? a
 %4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),
          x^2 - x + Mod(y-1,y^3-2))
 ? subst(K.pol,y,a)
 %5 = 0
 ? [Pabs, a, b] = rnfpolredbest(K,pol,3);
 ? Pabs
 %7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1
 ? a
 %8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)
 ? b
 %9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)
 ? subst(K.pol,y,a)
 %10 = 0
 ? substvec(pol,[x,y],[a,b])
 %11 = 0
 @eprog

Function: rnfpseudobasis
Class: basic
Section: number_fields
C-Name: rnfpseudobasis
Prototype: GG
Help: rnfpseudobasis(nf,pol): given a pol with coefficients in nf, gives a
 4-component vector [A,I,D,d] where [A,I] is a pseudo basis of the maximal
 order in HNF on the power basis, D is the relative ideal discriminant, and d
 is the relative discriminant in nf^*/nf*^2.
Doc: given a number field
 $\var{nf}$ as output by \kbd{nfinit} and a polynomial \var{pol} with
 coefficients in $\var{nf}$ defining a relative extension $L$ of $\var{nf}$,
 computes a pseudo-basis $(A,I)$ for the maximal order $\Z_L$ viewed as a
 $\Z_K$-module, and the relative discriminant of $L$. This is output as a
 four-element row vector $[A,I,D,d]$, where $D$ is the relative ideal
 discriminant and $d$ is the relative discriminant considered as an element of
 $\var{nf}^*/{\var{nf}^*}^2$.

Function: rnfsteinitz
Class: basic
Section: number_fields
C-Name: rnfsteinitz
Prototype: GG
Help: rnfsteinitz(nf,x): given an order x as output by rnfpseudobasis,
 gives [A,I,D,d] where (A,I) is a pseudo basis where all the ideals except
 perhaps the last are trivial.
Doc: given a number field $\var{nf}$ as
 output by \kbd{nfinit} and either a polynomial $x$ with coefficients in
 $\var{nf}$ defining a relative extension $L$ of $\var{nf}$, or a pseudo-basis
 $x$ of such an extension as output for example by \kbd{rnfpseudobasis},
 computes another pseudo-basis $(A,I)$ (not in HNF in general) such that all
 the ideals of $I$ except perhaps the last one are equal to the ring of
 integers of $\var{nf}$, and outputs the four-component row vector $[A,I,D,d]$
 as in \kbd{rnfpseudobasis}. The name of this function comes from the fact
 that the ideal class of the last ideal of $I$, which is well defined, is the
 \idx{Steinitz class} of the $\Z_K$-module $\Z_L$ (its image in $SK_0(\Z_K)$).

Function: round
Class: basic
Section: conversions
C-Name: round0
Prototype: GD&
Help: round(x,{&e}): take the nearest integer to all the coefficients of x.
 If e is present, do not take into account loss of integer part precision,
 and set e = error estimate in bits.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             roundr($1)
 (mp):int               mpround($1)
 (mp, &small):int       grndtoi($1, &$2)
 (mp, &int):int         round0($1, &$2)
 (gen):gen              ground($1)
 (gen, &small):gen      grndtoi($1, &$2)
 (gen, &int):gen        round0($1, &$2)
Doc: If $x$ is in $\R$, rounds $x$ to the nearest integer (rounding to
 $+\infty$ in case of ties), then and sets $e$ to the number of error bits,
 that is the binary exponent of the difference between the original and the
 rounded value (the ``fractional part''). If the exponent of $x$ is too large
 compared to its precision (i.e.~$e>0$), the result is undefined and an error
 occurs if $e$ was not given.
 
 \misctitle{Important remark} Contrary to the other truncation functions,
 this function operates on every coefficient at every level of a PARI object.
 For example
 $$\text{truncate}\left(\dfrac{2.4*X^2-1.7}{X}\right)=2.4*X,$$
 whereas
 $$\text{round}\left(\dfrac{2.4*X^2-1.7}{X}\right)=\dfrac{2*X^2-2}{X}.$$
 An important use of \kbd{round} is to get exact results after an approximate
 computation, when theory tells you that the coefficients must be integers.
Variant: Also available are \fun{GEN}{grndtoi}{GEN x, long *e} and
 \fun{GEN}{ground}{GEN x}.

Function: select
Class: basic
Section: programming/specific
C-Name: select0
Prototype: GGD0,L,
Help: select(f, A, {flag = 0}): selects elements of A according to the selection
 function f. If flag is 1, return the indices of those elements (indirect
 selection).
Wrapper: (bG)
Description: 
  (gen,gen):gen    genselect(${1 cookie}, ${1 wrapper}, $2)
  (gen,gen,0):gen  genselect(${1 cookie}, ${1 wrapper}, $2)
  (gen,gen,1):vecsmall  genindexselect(${1 cookie}, ${1 wrapper}, $2)
Doc: We first describe the default behavior, when $\fl$ is 0 or omitted.
 Given a vector or list \kbd{A} and a \typ{CLOSURE} \kbd{f}, \kbd{select}
 returns the elements $x$ of \kbd{A} such that $f(x)$ is non-zero. In other
 words, \kbd{f} is seen as a selection function returning a boolean value.
 \bprog
 ? select(x->isprime(x), vector(50,i,i^2+1))
 %1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
 ? select(x->(x<100), %)
 %2 = [2, 5, 17, 37]
 @eprog\noindent returns the primes of the form $i^2+1$ for some $i\leq 50$,
 then the elements less than 100 in the preceding result. The \kbd{select}
 function also applies to a matrix \kbd{A}, seen as a vector of columns, i.e. it
 selects columns instead of entries, and returns the matrix whose columns are
 the selected ones.
 
 \misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{LIST} or \typ{MAT},
 the alternative set-notations
 \bprog
 [g(x) | x <- v, f(x)]
 [x | x <- v, f(x)]
 [g(x) | x <- v]
 @eprog\noindent
 are available as shortcuts for
 \bprog
 apply(g, select(f, Vec(v)))
 select(f, Vec(v))
 apply(g, Vec(v))
 @eprog\noindent respectively:
 \bprog
 ? [ x | x <- vector(50,i,i^2+1), isprime(x) ]
 %1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
 @eprog
 
 \noindent If $\fl = 1$, this function returns instead the \emph{indices} of
 the selected elements, and not the elements themselves (indirect selection):
 \bprog
 ? V = vector(50,i,i^2+1);
 ? select(x->isprime(x), V, 1)
 %2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
 ? vecextract(V, %)
 %3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
 @eprog\noindent
 The following function lists the elements in $(\Z/N\Z)^*$:
 \bprog
 ? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])
 @eprog
 
 \noindent Finally
 \bprog
 ? select(x->x, M)
 @eprog\noindent selects the non-0 entries in \kbd{M}. If the latter is a
 \typ{MAT}, we extract the matrix of non-0 columns. Note that \emph{removing}
 entries instead of selecting them just involves replacing the selection
 function \kbd{f} with its negation:
 \bprog
 ? select(x->!isprime(x), vector(50,i,i^2+1))
 @eprog
 
 \synt{genselect}{void *E, long (*fun)(void*,GEN), GEN a}. Also available
 is \fun{GEN}{genindexselect}{void *E, long (*fun)(void*, GEN), GEN a},
 corresponding to $\fl = 1$.

Function: self
Class: basic
Section: programming/specific
C-Name: pari_self
Prototype: m
Help: self(): return the calling function or closure. Useful for defining
 anonymous recursive functions.
Doc: return the calling function or closure as a \typ{CLOSURE} object.
 This is useful for defining anonymous recursive functions.
 \bprog
 ? (n->if(n==0,1,n*self()(n-1)))(5)
 %1 = 120
 @eprog

Function: seralgdep
Class: basic
Section: linear_algebra
C-Name: seralgdep
Prototype: GLL
Help: seralgdep(s,p,r): find a linear relation between powers (1,s, ..., s^p)
 of the series s, with polynomial coefficients of degree <= r.
Doc: \sidx{algebraic dependence} finds a linear relation between powers $(1,s,
 \dots, s^p)$ of the series $s$, with polynomial coefficients of degree
 $\leq r$. In case no relation is found, return $0$.
 \bprog
 ? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);
 ? seralgdep(s, 2, 2)
 %2 = -x^2 + (8*y^2 + 20*y + 1)
 ? subst(%, x, s)
 %3 = O(y^6)
 ? seralgdep(s, 1, 3)
 %4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
 ? seralgdep(s, 1, 2)
 %5 = 0
 @eprog\noindent The series main variable must not be $x$, so as to be able
 to express the result as a polynomial in $x$.

Function: serconvol
Class: basic
Section: polynomials
C-Name: convol
Prototype: GG
Help: serconvol(x,y): convolution (or Hadamard product) of two power series.
Doc: convolution (or \idx{Hadamard product}) of the
 two power series $x$ and $y$; in other words if $x=\sum a_k*X^k$ and $y=\sum
 b_k*X^k$ then $\kbd{serconvol}(x,y)=\sum a_k*b_k*X^k$.

Function: serlaplace
Class: basic
Section: polynomials
C-Name: laplace
Prototype: G
Help: serlaplace(x): replaces the power series sum of a_n*x^n/n! by sum of
 a_n*x^n. For the reverse operation, use serconvol(x,exp(X)).
Doc: $x$ must be a power series with non-negative
 exponents or a polynomial. If $x=\sum (a_k/k!)*X^k$ then the result is $\sum
 a_k*X^k$.

Function: serprec
Class: basic
Section: conversions
C-Name: gpserprec
Prototype: Gn
Help: serprec(x,v):
 return the absolute precision x with respect to power series in the variable v.
Doc: returns the absolute precision of $x$ with respect to power series
 in the variable $v$; this is the
 minimum precision of the components of $x$. The result is \tet{+oo} if $x$
 is an exact object (as a series in $v$):
 \bprog
 ? serprec(x + O(y^2), y)
 %1 = 2
 ? serprec(x + 2, x)
 %2 = +oo
 ? serprec(2 + x + O(x^2), y)
 %3 = +oo
 @eprog
Variant: Also available is \fun{long}{serprec}{GEN x, GEN p}, which returns
 \tet{LONG_MAX} if $x = 0$ and the series precision as a \kbd{long} integer.

Function: serreverse
Class: basic
Section: polynomials
C-Name: serreverse
Prototype: G
Help: serreverse(s): reversion of the power series s.
Doc: reverse power series of $s$, i.e. the series $t$ such that $t(s) = x$;
 $s$ must be a power series whose valuation is exactly equal to one.
 \bprog
 ? \ps 8
 ? t = serreverse(tan(x))
 %2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)
 ? tan(t)
 %3 = x + O(x^8)
 @eprog

Function: setbinop
Class: basic
Section: linear_algebra
C-Name: setbinop
Prototype: GGDG
Help: setbinop(f,X,{Y}): the set {f(x,y), x in X, y in Y}. If Y is omitted,
 assume that X = Y and that f is symmetric.
Doc: the set whose elements are the f(x,y), where x,y run through X,Y.
 respectively. If $Y$ is omitted, assume that $X = Y$ and that $f$ is symmetric:
 $f(x,y) = f(y,x)$ for all $x,y$ in $X$.
 \bprog
 ? X = [1,2,3]; Y = [2,3,4];
 ? setbinop((x,y)->x+y, X,Y) \\ set X + Y
 %2 = [3, 4, 5, 6, 7]
 ? setbinop((x,y)->x-y, X,Y) \\ set X - Y
 %3 = [-3, -2, -1, 0, 1]
 ? setbinop((x,y)->x+y, X)   \\ set 2X = X + X
 %2 = [2, 3, 4, 5, 6]
 @eprog

Function: setintersect
Class: basic
Section: linear_algebra
C-Name: setintersect
Prototype: GG
Help: setintersect(x,y): intersection of the sets x and y.
Description: 
 (vec, vec):vec        setintersect($1, $2)
Doc: intersection of the two sets $x$ and $y$ (see \kbd{setisset}).
 If $x$ or $y$ is not a set, the result is undefined.

Function: setisset
Class: basic
Section: linear_algebra
C-Name: setisset
Prototype: lG
Help: setisset(x): true(1) if x is a set (row vector with strictly
 increasing entries), false(0) if not.
Doc: 
 returns true (1) if $x$ is a set, false (0) if
 not. In PARI, a set is a row vector whose entries are strictly
 increasing with respect to a (somewhat arbitrary) universal comparison
 function. To convert any object into a set (this is most useful for
 vectors, of course), use the function \kbd{Set}.
 \bprog
 ? a = [3, 1, 1, 2];
 ? setisset(a)
 %2 = 0
 ? Set(a)
 %3 = [1, 2, 3]
 @eprog

Function: setminus
Class: basic
Section: linear_algebra
C-Name: setminus
Prototype: GG
Help: setminus(x,y): set of elements of x not belonging to y.
Description: 
 (vec, vec):vec        setminus($1, $2)
Doc: difference of the two sets $x$ and $y$ (see \kbd{setisset}),
 i.e.~set of elements of $x$ which do not belong to $y$.
 If $x$ or $y$ is not a set, the result is undefined.

Function: setrand
Class: basic
Section: programming/specific
C-Name: setrand
Prototype: vG
Help: setrand(n): reset the seed of the random number generator to n.
Doc: reseeds the random number generator using the seed $n$. No value is
 returned. The seed is either a technical array output by \kbd{getrand}, or a
 small positive integer, used to generate deterministically a suitable state
 array. For instance, running a randomized computation starting by
 \kbd{setrand(1)} twice will generate the exact same output.

Function: setsearch
Class: basic
Section: linear_algebra
C-Name: setsearch
Prototype: lGGD0,L,
Help: setsearch(S,x,{flag=0}): determines whether x belongs to the set (or
 sorted list) S.
 If flag is 0 or omitted, returns 0 if it does not, otherwise returns the index
 j such that x==S[j]. If flag is non-zero, return 0 if x belongs to S,
 otherwise the index j where it should be inserted.
Doc: determines whether $x$ belongs to the set $S$ (see \kbd{setisset}).
 
 We first describe the default behaviour, when $\fl$ is zero or omitted. If $x$
 belongs to the set $S$, returns the index $j$ such that $S[j]=x$, otherwise
 returns 0.
 \bprog
 ? T = [7,2,3,5]; S = Set(T);
 ? setsearch(S, 2)
 %2 = 1
 ? setsearch(S, 4)      \\ not found
 %3 = 0
 ? setsearch(T, 7)      \\ search in a randomly sorted vector
 %4 = 0 \\ WRONG !
 @eprog\noindent
 If $S$ is not a set, we also allow sorted lists with
 respect to the \tet{cmp} sorting function, without repeated entries,
 as per \tet{listsort}$(L,1)$; otherwise the result is undefined.
 \bprog
 ? L = List([1,4,2,3,2]); setsearch(L, 4)
 %1 = 0 \\ WRONG !
 ? listsort(L, 1); L    \\ sort L first
 %2 = List([1, 2, 3, 4])
 ? setsearch(L, 4)
 %3 = 4                 \\ now correct
 @eprog\noindent
 If $\fl$ is non-zero, this function returns the index $j$ where $x$ should be
 inserted, and $0$ if it already belongs to $S$. This is meant to be used for
 dynamically growing (sorted) lists, in conjunction with \kbd{listinsert}.
 \bprog
 ? L = List([1,5,2,3,2]); listsort(L,1); L
 %1 = List([1,2,3,5])
 ? j = setsearch(L, 4, 1)  \\ 4 should have been inserted at index j
 %2 = 4
 ? listinsert(L, 4, j); L
 %3 = List([1, 2, 3, 4, 5])
 @eprog

Function: setunion
Class: basic
Section: linear_algebra
C-Name: setunion
Prototype: GG
Help: setunion(x,y): union of the sets x and y.
Description: 
 (vec, vec):vec        setunion($1, $2)
Doc: union of the two sets $x$ and $y$ (see \kbd{setisset}).
 If $x$ or $y$ is not a set, the result is undefined.

Function: shift
Class: basic
Section: operators
C-Name: gshift
Prototype: GL
Help: shift(x,n): shift x left n bits if n>=0, right -n bits if
 n<0.
Doc: shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$
 bits if $n<0$. May be abbreviated as $x$ \kbd{<<} $n$ or $x$ \kbd{>>} $(-n)$.
 A left shift by $n$ corresponds to multiplication by $2^n$. A right shift of an
 integer $x$ by $|n|$ corresponds to a Euclidean division of $x$ by $2^{|n|}$
 with a remainder of the same sign as $x$, hence is not the same (in general) as
 $x \kbd{\bs} 2^n$.

Function: shiftmul
Class: basic
Section: operators
C-Name: gmul2n
Prototype: GL
Help: shiftmul(x,n): multiply x by 2^n (n>=0 or n<0).
Doc: multiplies $x$ by $2^n$. The difference with
 \kbd{shift} is that when $n<0$, ordinary division takes place, hence for
 example if $x$ is an integer the result may be a fraction, while for shifts
 Euclidean division takes place when $n<0$ hence if $x$ is an integer the result
 is still an integer.

Function: sigma
Class: basic
Section: number_theoretical
C-Name: sumdivk
Prototype: GD1,L,
Help: sigma(x,{k=1}): sum of the k-th powers of the divisors of x. k is
 optional and if omitted is assumed to be equal to 1.
Description: 
 (gen, ?1):int           sumdiv($1)
 (gen, 0):int            numdiv($1)
Doc: sum of the $k^{\text{th}}$ powers of the positive divisors of $|x|$. $x$
 and $k$ must be of type integer.
Variant: Also available is \fun{GEN}{sumdiv}{GEN n}, for $k = 1$.

Function: sign
Class: basic
Section: operators
C-Name: gsigne
Prototype: iG
Help: sign(x): sign of x, of type integer, real or fraction.
Description: 
 (mp):small          signe($1)
 (gen):small        gsigne($1)
Doc: \idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
 type integer, real or fraction; \typ{QUAD} with positive discriminants and
 \typ{INFINITY} are also supported.

Function: simplify
Class: basic
Section: conversions
C-Name: simplify
Prototype: G
Help: simplify(x): simplify the object x as much as possible.
Doc: 
 this function simplifies $x$ as much as it can. Specifically, a complex or
 quadratic number whose imaginary part is the integer 0 (i.e.~not \kbd{Mod(0,2)}
 or \kbd{0.E-28}) is converted to its real part, and a polynomial of degree $0$
 is converted to its constant term. Simplifications occur recursively.
 
 This function is especially useful before using arithmetic functions,
 which expect integer arguments:
 \bprog
 ? x = 2 + y - y
 %1 = 2
 ? isprime(x)
   ***   at top-level: isprime(x)
   ***                 ^----------
   *** isprime: not an integer argument in an arithmetic function
 ? type(x)
 %2 = "t_POL"
 ? type(simplify(x))
 %3 = "t_INT"
 @eprog
 Note that GP results are simplified as above before they are stored in the
 history. (Unless you disable automatic simplification with \b{y}, that is.)
 In particular
 \bprog
 ? type(%1)
 %4 = "t_INT"
 @eprog

Function: sin
Class: basic
Section: transcendental
C-Name: gsin
Prototype: Gp
Help: sin(x): sine of x.
Doc: sine of $x$.

Function: sinc
Class: basic
Section: transcendental
C-Name: gsinc
Prototype: Gp
Help: sinc(x): sinc function of x.
Doc: cardinal sine of $x$, i.e. $\sin(x)/x$ if $x\neq 0$, $1$ otherwise.
 Note that this function also allows to compute
 $$(1-\cos(x)) / x^2 = \kbd{sinc}(x/2)^2 / 2$$
 accurately near $x = 0$.

Function: sinh
Class: basic
Section: transcendental
C-Name: gsinh
Prototype: Gp
Help: sinh(x): hyperbolic sine of x.
Doc: hyperbolic sine of $x$.

Function: sizebyte
Class: basic
Section: conversions
C-Name: gsizebyte
Prototype: lG
Help: sizebyte(x): number of bytes occupied by the complete tree of the
 object x.
Doc: outputs the total number of bytes occupied by the tree representing the
 PARI object $x$.
Variant: Also available is \fun{long}{gsizeword}{GEN x} returning a
 number of \emph{words}.

Function: sizedigit
Class: basic
Section: conversions
C-Name: sizedigit
Prototype: lG
Help: sizedigit(x): rough upper bound for the number of decimal digits
 of (the components of) $x$. DEPRECATED.
Doc: 
 This function is DEPRECATED, essentially meaningless, and provided for
 backwards compatibility only. Don't use it!
 
 outputs a quick upper bound for the number of decimal digits of (the
 components of) $x$, off by at most $1$. More precisely, for a positive
 integer $x$, it computes (approximately) the ceiling of
 $$\kbd{floor}(1 + \log_2 x) \log_{10}2,$$
 
 To count the number of decimal digits of a positive integer $x$, use
 \kbd{\#digits(x)}. To estimate (recursively) the size of $x$, use
 \kbd{normlp(x)}.
Obsolete: 2015-01-13

Function: solve
Class: basic
Section: sums
C-Name: zbrent0
Prototype: V=GGEp
Help: solve(X=a,b,expr): real root of expression expr (X between a and b),
 where expr(a)*expr(b)<=0.
Wrapper: (,,G)
Description: 
  (gen,gen,gen):gen:prec zbrent(${3 cookie}, ${3 wrapper}, $1, $2, $prec)
Doc: find a real root of expression
 \var{expr} between $a$ and $b$, under the condition
 $\var{expr}(X=a) * \var{expr}(X=b) \le 0$. (You will get an error message
 \kbd{roots must be bracketed in solve} if this does not hold.)
 This routine uses Brent's method and can fail miserably if \var{expr} is
 not defined in the whole of $[a,b]$ (try \kbd{solve(x=1, 2, tan(x))}).
 
 \synt{zbrent}{void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec}.

Function: solvestep
Class: basic
Section: sums
C-Name: solvestep0
Prototype: V=GGGED0,L,p
Help: solvestep(X=a,b,step,expr,{flag=0}): find zeros of a function in the real
 interval [a,b] by naive interval splitting.
Wrapper: (,,,G)
Description: 
  (gen,gen,gen,gen, ?0$):gen:prec solvestep(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, $prec)
Doc: find zeros of a continuous function in the real interval $[a,b]$ by naive
 interval splitting. This function is heuristic and may or may not find the
 intended zeros. Binary digits of \fl\ mean
 
 \item 1: return as soon as one zero is found, otherwise return all
 zeros found;
 
 \item 2: refine the splitting until at least one zero is found
 (may loop indefinitely if there are no zeros);
 
 \item 4: do a multiplicative search (we must have $a > 0$ and $\var{step} >
 1$), otherwise an additive search; \var{step} is the multiplicative or
 additive step.
 
 \item 8: refine the splitting until at least one zero is very close to an
 integer.
 
 \bprog
 ? solvestep(X=0,10,1,sin(X^2),1)
 %1 = 1.7724538509055160272981674833411451828
 ? solvestep(X=1,12,2,besselj(4,X),4)
 %2 = [7.588342434..., 11.064709488...]
 @eprog\noindent
 
 \synt{solvestep}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, GEN step,long flag,long prec}.

Function: sqr
Class: basic
Section: transcendental
C-Name: gsqr
Prototype: G
Help: sqr(x): square of x. NOT identical to x*x.
Description: 
 (int):int        sqri($1)
 (mp):mp          gsqr($1)
 (gen):gen        gsqr($1)
Doc: square of $x$. This operation is not completely
 straightforward, i.e.~identical to $x * x$, since it can usually be
 computed more efficiently (roughly one-half of the elementary
 multiplications can be saved). Also, squaring a $2$-adic number increases
 its precision. For example,
 \bprog
 ? (1 + O(2^4))^2
 %1 = 1 + O(2^5)
 ? (1 + O(2^4)) * (1 + O(2^4))
 %2 = 1 + O(2^4)
 @eprog\noindent
 Note that this function is also called whenever one multiplies two objects
 which are known to be \emph{identical}, e.g.~they are the value of the same
 variable, or we are computing a power.
 \bprog
 ? x = (1 + O(2^4)); x * x
 %3 = 1 + O(2^5)
 ? (1 + O(2^4))^4
 %4 = 1 + O(2^6)
 @eprog\noindent
 (note the difference between \kbd{\%2} and \kbd{\%3} above).

Function: sqrt
Class: basic
Section: transcendental
C-Name: gsqrt
Prototype: Gp
Help: sqrt(x): square root of x.
Description: 
 (real):gen           sqrtr($1)
 (gen):gen:prec       gsqrt($1, $prec)
Doc: principal branch of the square root of $x$, defined as $\sqrt{x} =
 \exp(\log x / 2)$. In particular, we have
 $\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/2, \pi/2]$, and if $x\in \R$ and $x<0$,
 then the result is complex with positive imaginary part.
 
 Intmod a prime $p$, \typ{PADIC} and \typ{FFELT} are allowed as arguments. In
 the first 2 cases (\typ{INTMOD}, \typ{PADIC}), the square root (if it
 exists) which is returned is the one whose first $p$-adic digit is in the
 interval $[0,p/2]$. For other arguments, the result is undefined.
Variant: For a \typ{PADIC} $x$, the function
 \fun{GEN}{Qp_sqrt}{GEN x} is also available.

Function: sqrtint
Class: basic
Section: number_theoretical
C-Name: sqrtint
Prototype: G
Help: sqrtint(x): integer square root of x, where x is a non-negative integer.
Description: 
 (gen):int sqrtint($1)
Doc: returns the integer square root of $x$, i.e. the largest integer $y$
 such that $y^2 \leq x$, where $x$ a non-negative integer.
 \bprog
 ? N = 120938191237; sqrtint(N)
 %1 = 347761
 ? sqrt(N)
 %2 = 347761.68741970412747602130964414095216
 @eprog

Function: sqrtn
Class: basic
Section: transcendental
C-Name: gsqrtn
Prototype: GGD&p
Help: sqrtn(x,n,{&z}): nth-root of x, n must be integer. If present, z is
 set to a suitable root of unity to recover all solutions. If it was not
 possible, z is set to zero.
Doc: principal branch of the $n$th root of $x$,
 i.e.~such that $\text{Arg}(\text{sqrtn}(x))\in{} ]-\pi/n, \pi/n]$. Intmod
 a prime and $p$-adics are allowed as arguments.
 
 If $z$ is present, it is set to a suitable root of unity allowing to
 recover all the other roots. If it was not possible, z is
 set to zero. In the case this argument is present and no $n$th root exist,
 $0$ is returned instead of raising an error.
 \bprog
 ? sqrtn(Mod(2,7), 2)
 %1 = Mod(3, 7)
 ? sqrtn(Mod(2,7), 2, &z); z
 %2 = Mod(6, 7)
 ? sqrtn(Mod(2,7), 3)
   ***   at top-level: sqrtn(Mod(2,7),3)
   ***                 ^-----------------
   *** sqrtn: nth-root does not exist in gsqrtn.
 ? sqrtn(Mod(2,7), 3,  &z)
 %2 = 0
 ? z
 %3 = 0
 @eprog
 
 The following script computes all roots in all possible cases:
 \bprog
 sqrtnall(x,n)=
 { my(V,r,z,r2);
   r = sqrtn(x,n, &z);
   if (!z, error("Impossible case in sqrtn"));
   if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
     r2 = r*z; n = 1;
     while (r2!=r, r2*=z;n++));
   V = vector(n); V[1] = r;
   for(i=2, n, V[i] = V[i-1]*z);
   V
 }
 addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
 @eprog\noindent
Variant: If $x$ is a \typ{PADIC}, the function
 \fun{GEN}{Qp_sqrtn}{GEN x, GEN n, GEN *z} is also available.

Function: sqrtnint
Class: basic
Section: number_theoretical
C-Name: sqrtnint
Prototype: GL
Help: sqrtnint(x,n): integer n-th root of x, where x is non-negative integer.
Description: 
 (gen,small):int sqrtnint($1, $2)
Doc: returns the integer $n$-th root of $x$, i.e. the largest integer $y$ such
 that $y^n \leq x$, where $x$ is a non-negative integer.
 \bprog
 ? N = 120938191237; sqrtnint(N, 5)
 %1 = 164
 ? N^(1/5)
 %2 = 164.63140849829660842958614676939677391
 @eprog\noindent The special case $n = 2$ is \tet{sqrtint}

Function: stirling
Class: basic
Section: number_theoretical
C-Name: stirling
Prototype: LLD1,L,
Help: stirling(n,k,{flag=1}): if flag=1 (default) return the Stirling number
 of the first kind s(n,k), if flag=2, return the Stirling number of the second
 kind S(n,k).
Doc: \idx{Stirling number} of the first kind $s(n,k)$ ($\fl=1$, default) or
 of the second kind $S(n,k)$ (\fl=2), where $n$, $k$ are non-negative
 integers. The former is $(-1)^{n-k}$ times the
 number of permutations of $n$ symbols with exactly $k$ cycles; the latter is
 the number of ways of partitioning a set of $n$ elements into $k$ non-empty
 subsets. Note that if all $s(n,k)$ are needed, it is much faster to compute
 $$\sum_k s(n,k) x^k = x(x-1)\dots(x-n+1).$$
 Similarly, if a large number of $S(n,k)$ are needed for the same $k$,
 one should use
 $$\sum_n S(n,k) x^n = \dfrac{x^k}{(1-x)\dots(1-kx)}.$$
 (Should be implemented using a divide and conquer product.) Here are
 simple variants for $n$ fixed:
 \bprog
 /* list of s(n,k), k = 1..n */
 vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )
 
 /* list of S(n,k), k = 1..n */
 vecstirling2(n) =
 { my(Q = x^(n-1), t);
   vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]));
 }
 @eprog
Variant: Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
 ($\fl=1$) and \fun{GEN}{stirling2}{ulong n, ulong k} ($\fl=2$).

Function: subgrouplist
Class: basic
Section: number_fields
C-Name: subgrouplist0
Prototype: GDGD0,L,
Help: subgrouplist(bnr,{bound},{flag=0}): bnr being as output by bnrinit or
 a list of cyclic components of a finite Abelian group G, outputs the list of
 subgroups of G (of index bounded by bound, if not omitted), given as HNF
 left divisors of the SNF matrix corresponding to G. If flag=0 (default) and
 bnr is as output by bnrinit, gives only the subgroups for which the modulus
 is the conductor.
Doc: \var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components
 of a finite Abelian group $G$, outputs the list of subgroups of $G$. Subgroups
 are given as HNF left divisors of the SNF matrix corresponding to $G$.
 
 If $\fl=0$ (default) and \var{bnr} is as output by \kbd{bnrinit}, gives
 only the subgroups whose modulus is the conductor. Otherwise, the modulus is
 not taken into account.
 
 If \var{bound} is present, and is a positive integer, restrict the output to
 subgroups of index less than \var{bound}. If \var{bound} is a vector
 containing a single positive integer $B$, then only subgroups of index
 exactly equal to $B$ are computed. For instance
 \bprog
 ? subgrouplist([6,2])
 %1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
 [1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
 ? subgrouplist([6,2],3)    \\@com index less than 3
 %2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
 ? subgrouplist([6,2],[3])  \\@com index 3
 %3 = [[3, 0; 0, 1]]
 ? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
 ? L = subgrouplist(bnr, [8]);
 @eprog\noindent
 In the last example, $L$ corresponds to the 24 subfields of
 $\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
 we see there are a total of $43$ subgroups of degree $8$).
 \bprog
 ? vector(#L, i, galoissubcyclo(bnr, L[i]))
 @eprog\noindent
 will produce their equations. (For a general base field, you would
 have to rely on \tet{bnrstark}, or \tet{rnfkummer}.)

Function: subst
Class: basic
Section: polynomials
C-Name: gsubst
Prototype: GnG
Help: subst(x,y,z): in expression x, replace the variable y by the
 expression z.
Doc: replace the simple variable $y$ by the argument $z$ in the ``polynomial''
 expression $x$. Every type is allowed for $x$, but if it is not a genuine
 polynomial (or power series, or rational function), the substitution will be
 done as if the scalar components were polynomials of degree zero. In
 particular, beware that:
 
 \bprog
 ? subst(1, x, [1,2; 3,4])
 %1 =
 [1 0]
 
 [0 1]
 
 ? subst(1, x, Mat([0,1]))
   ***   at top-level: subst(1,x,Mat([0,1])
   ***                 ^--------------------
   *** subst: forbidden substitution by a non square matrix.
 @eprog\noindent
 If $x$ is a power series, $z$ must be either a polynomial, a power
 series, or a rational function. Finally, if $x$ is a vector,
 matrix or list, the substitution is applied to each individual entry.
 
 Use the function \kbd{substvec} to replace several variables at once,
 or the function \kbd{substpol} to replace a polynomial expression.

Function: substpol
Class: basic
Section: polynomials
C-Name: gsubstpol
Prototype: GGG
Help: substpol(x,y,z): in expression x, replace the polynomial y by the
 expression z, using remainder decomposition of x.
Doc: replace the ``variable'' $y$ by the argument $z$ in the ``polynomial''
 expression $x$. Every type is allowed for $x$, but the same behavior
 as \kbd{subst} above apply.
 
 The difference with \kbd{subst} is that $y$ is allowed to be any polynomial
 here. The substitution is done moding out all components of $x$
 (recursively) by $y - t$, where $t$ is a new free variable of lowest
 priority. Then substituting $t$ by $z$ in the resulting expression. For
 instance
 \bprog
 ? substpol(x^4 + x^2 + 1, x^2, y)
 %1 = y^2 + y + 1
 ? substpol(x^4 + x^2 + 1, x^3, y)
 %2 = x^2 + y*x + 1
 ? substpol(x^4 + x^2 + 1, (x+1)^2, y)
 %3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
 @eprog
Variant: Further, \fun{GEN}{gdeflate}{GEN T, long v, long d} attempts to
 write $T(x)$ in the form $t(x^d)$, where $x=$\kbd{pol\_x}$(v)$, and returns
 \kbd{NULL} if the substitution fails (for instance in the example \kbd{\%2}
 above).

Function: substvec
Class: basic
Section: polynomials
C-Name: gsubstvec
Prototype: GGG
Help: substvec(x,v,w): in expression x, make a best effort to replace the
 variables v1,...,vn by the expression w1,...,wn.
Doc: $v$ being a vector of monomials of degree 1 (variables),
 $w$ a vector of expressions of the same length, replace in the expression
 $x$ all occurrences of $v_i$ by $w_i$. The substitutions are done
 simultaneously; more precisely, the $v_i$ are first replaced by new
 variables in $x$, then these are replaced by the $w_i$:
 
 \bprog
 ? substvec([x,y], [x,y], [y,x])
 %1 = [y, x]
 ? substvec([x,y], [x,y], [y,x+y])
 %2 = [y, x + y]     \\ not [y, 2*y]
 @eprog

Function: sum
Class: basic
Section: sums
C-Name: somme
Prototype: V=GGEDG
Help: sum(X=a,b,expr,{x=0}): x plus the sum (X goes from a to b) of
 expression expr.
Doc: sum of expression \var{expr},
 initialized at $x$, the formal parameter going from $a$ to $b$. As for
 \kbd{prod}, the initialization parameter $x$ may be given to force the type
 of the operations being performed.
 
 \noindent As an extreme example, compare
 
 \bprog
 ? sum(i=1, 10^4, 1/i); \\@com rational number: denominator has $4345$ digits.
 time = 236 ms.
 ? sum(i=1, 5000, 1/i, 0.)
 time = 8 ms.
 %2 = 9.787606036044382264178477904
 @eprog
 
 \synt{somme}{GEN a, GEN b, char *expr, GEN x}.

Function: sumalt
Class: basic
Section: sums
C-Name: sumalt0
Prototype: V=GED0,L,p
Help: sumalt(X=a,expr,{flag=0}): Cohen-Villegas-Zagier's acceleration of
 alternating series expr, X starting at a. flag is optional, and can be 0:
 default, or 1: uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description: 
  (gen,gen,?0):gen:prec sumalt(${2 cookie}, ${2 wrapper}, $1, $prec)
  (gen,gen,1):gen:prec sumalt2(${2 cookie}, ${2 wrapper}, $1, $prec)
Doc: numerical summation of the series \var{expr}, which should be an
 \idx{alternating series} $(-1)^k a_k$, the formal variable $X$ starting at
 $a$. Use an algorithm of Cohen, Villegas and Zagier (\emph{Experiment. Math.}
 {\bf 9} (2000), no.~1, 3--12).
 
 If $\fl=0$, assuming that the $a_k$ are the moments of a positive
 measure on $[0,1]$, the relative error is $O(3+\sqrt8)^{-n}$ after using
 $a_k$ for $k\leq n$. If \kbd{realprecision} is $p$, we thus set
 $n = \log(10)p/\log(3+\sqrt8)\approx 1.3 p$; besides the time needed to
 compute the $a_k$, $k\leq n$, the algorithm overhead is negligible: time
 $O(p^2)$ and space $O(p)$.
 
 If $\fl=1$, use a variant with more complicated polynomials, see
 \tet{polzagier}. If the $a_k$ are the moments of $w(x)dx$ where $w$
 (or only $xw(x^2)$) is a smooth function extending analytically to the whole
 complex plane, convergence is in $O(14.4^{-n})$. If $xw(x^2)$ extends
 analytically to a smaller region, we still have exponential convergence,
 with worse constants. Usually faster when the computation of $a_k$ is
 expensive. If \kbd{realprecision} is $p$, we thus set
 $n = \log(10)p/\log(14.4)\approx 0.86 p$; besides the time needed to
 compute the $a_k$, $k\leq n$, the algorithm overhead is \emph{not}
 negligible: time $O(p^3)$ and space $O(p^2)$. Thus, even if the analytic
 conditions for rigorous use are met, this variant is only worthwile if the
 $a_k$ are hard to compute, at least $O(p^2)$ individually on average:
 otherwise we gain a small constant factor (1.5, say) in the number of
 needed $a_k$ at the expense of a large overhead.
 
 The conditions for rigorous use are hard to check but the routine is best used
 heuristically: even divergent alternating series can sometimes be summed by
 this method, as well as series which are not exactly alternating (see for
 example \secref{se:user_defined}). It should be used to try and guess the
 value of an infinite sum. (However, see the example at the end of
 \secref{se:userfundef}.)
 
 If the series already converges geometrically,
 \tet{suminf} is often a better choice:
 \bprog
 ? \p28
 ? sumalt(i = 1, -(-1)^i / i)  - log(2)
 time = 0 ms.
 %1 = -2.524354897 E-29
 ? suminf(i = 1, -(-1)^i / i)   \\@com Had to hit \kbd{C-C}
   ***   at top-level: suminf(i=1,-(-1)^i/i)
   ***                                ^------
   *** suminf: user interrupt after 10min, 20,100 ms.
 ? \p1000
 ? sumalt(i = 1, -(-1)^i / i)  - log(2)
 time = 90 ms.
 %2 = 4.459597722 E-1002
 
 ? sumalt(i = 0, (-1)^i / i!) - exp(-1)
 time = 670 ms.
 %3 = -4.03698781490633483156497361352190615794353338591897830587 E-944
 ? suminf(i = 0, (-1)^i / i!) - exp(-1)
 time = 110 ms.
 %4 = -8.39147638 E-1000   \\ @com faster and more accurate
 @eprog
 
 \synt{sumalt}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
 available is \tet{sumalt2} with the same arguments ($\fl = 1$).

Function: sumdedekind
Class: basic
Section: number_theoretical
C-Name: sumdedekind
Prototype: GG
Help: sumdedekind(h,k): Dedekind sum attached to h,k.
Doc: returns the \idx{Dedekind sum} attached to the integers $h$ and $k$,
  corresponding to a fast implementation of
  \bprog
   s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
  @eprog

Function: sumdigits
Class: basic
Section: number_theoretical
C-Name: sumdigits0
Prototype: GDG
Help: sumdigits(n,{B=10}): sum of digits in the integer n, when written in
 base B.
Doc: sum of digits in the integer $n$, when written in base $B > 1$.
 \bprog
 ? sumdigits(123456789)
 %1 = 45
 ? sumdigits(123456789, 2)
 %1 = 16
 @eprog\noindent Note that the sum of bits in $n$ is also returned by
 \tet{hammingweight}. This function is much faster than
 \kbd{vecsum(digits(n,B))} when $B$ is $10$ or a power of $2$, and only
 slightly faster in other cases.
Variant: Also available is \fun{GEN}{sumdigits}{GEN n}, for $B = 10$.

Function: sumdiv
Class: basic
Section: sums
C-Name: sumdivexpr
Prototype: GVE
Help: sumdiv(n,X,expr): sum of expression expr, X running over the divisors
 of n.
Doc: sum of expression \var{expr} over the positive divisors of $n$.
 This function is a trivial wrapper essentially equivalent to
 \bprog
   D = divisors(n);
   for (i = 1, #D, X = D[i]; eval(expr))
 @eprog\noindent (except that \kbd{X} is lexically scoped to the \kbd{sumdiv}
 loop). If \var{expr} is a multiplicative function, use \tet{sumdivmult}.
 %\syn{NO}

Function: sumdivmult
Class: basic
Section: sums
C-Name: sumdivmultexpr
Prototype: GVE
Help: sumdivmult(n,d,expr): sum of multiplicative function expr,
 d running over the divisors of n.
Doc: sum of \emph{multiplicative} expression \var{expr} over the positive
 divisors $d$ of $n$. Assume that \var{expr} evaluates to $f(d)$
 where $f$ is multiplicative: $f(1) = 1$ and $f(ab) = f(a)f(b)$ for coprime
 $a$ and $b$.
 %\syn{NO}

Function: sumformal
Class: basic
Section: polynomials
C-Name: sumformal
Prototype: GDn
Help: sumformal(f,{v}): formal sum of f with respect to v, or to the
 main variable of f if v is omitted.
Doc: \idx{formal sum} of the polynomial expression $f$ with respect to the
 main variable if $v$ is omitted, with respect to the variable $v$ otherwise;
 it is assumed that the base ring has characteristic zero. In other words,
 considering $f$ as a polynomial function in the variable $v$,
 returns $F$, a polynomial in $v$ vanishing at $0$, such that $F(b) - F(a)
 = sum_{v = a+1}^b f(v)$:
 \bprog
 ? sumformal(n)  \\ 1 + ... + n
 %1 = 1/2*n^2 + 1/2*n
 ? f(n) = n^3+n^2+1;
 ? F = sumformal(f(n))  \\ f(1) + ... + f(n)
 %3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n
 ? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)
 %4 = 1
 ? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)
 %5 = 1
 ? sumformal(x^2 + x*y + y^2, y)
 %6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)
 ? x^2 * y + x * sumformal(y) + sumformal(y^2) == %
 %7 = 1
 @eprog

Function: suminf
Class: basic
Section: sums
C-Name: suminf0
Prototype: V=GEp
Help: suminf(X=a,expr): infinite sum (X goes from a to infinity) of real or
 complex expression expr.
Wrapper: (,G)
Description: 
  (gen,gen):gen:prec suminf(${2 cookie}, ${2 wrapper}, $1, $prec)
Doc: \idx{infinite sum} of expression
 \var{expr}, the formal parameter $X$ starting at $a$. The evaluation stops
 when the relative error of the expression is less than the default precision
 for 3 consecutive evaluations. The expressions must always evaluate to a
 complex number.
 
 If the series converges slowly, make sure \kbd{realprecision} is low (even 28
 digits may be too much). In this case, if the series is alternating or the
 terms have a constant sign, \tet{sumalt} and \tet{sumpos} should be used
 instead.
 
 \bprog
 ? \p28
 ? suminf(i = 1, -(-1)^i / i)   \\@com Had to hit \kbd{C-C}
   ***   at top-level: suminf(i=1,-(-1)^i/i)
   ***                                ^------
   *** suminf: user interrupt after 10min, 20,100 ms.
 ? sumalt(i = 1, -(-1)^i / i) - log(2)
 time = 0 ms.
 %1 = -2.524354897 E-29
 @eprog
 
 \synt{suminf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}.

Function: sumnum
Class: basic
Section: sums
C-Name: sumnum0
Prototype: V=GEDGp
Help: sumnum(n=a,f,{tab}): numerical summation of f(n) from
 n = a to +infinity using Euler-MacLaurin summation. Assume that f
 corresponds to a series with positive terms and is a C^oo function; a
 must be an integer, and tab, if given, is the output of sumnuminit.
Wrapper: (,G)
Description: 
  (gen,gen,?gen):gen:prec sumnum(${2 cookie}, ${2 wrapper}, $1, $3, $prec)
Doc: Numerical summation of $f(n)$ at high accuracy using Euler-MacLaurin,
 the variable $n$ taking values from $a$ to $+\infty$, where $f$ is assumed to
 have positive values and is a $C^\infty$ function; \kbd{a} must be an integer
 and \kbd{tab}, if given, is the output of \kbd{sumnuminit}. The latter
 precomputes abcissas and weights, speeding up the computation; it also allows
 to specify the behaviour at infinity via \kbd{sumnuminit([+oo, asymp])}.
 \bprog
 ? \p500
 ? z3 = zeta(3);
 ? sumpos(n = 1, n^-3) - z3
 time = 2,332 ms.
 %2 = 2.438468843 E-501
 ? sumnum(n = 1, n^-3) - z3 \\ here slower than sumpos
 time = 2,752 ms.
 %3 = 0.E-500
 @eprog
 
 \misctitle{Complexity}
 The function $f$ will be evaluated at $O(D \log D)$ real arguments,
 where $D \approx \kbd{realprecision} \cdot \log(10)$. The routine is geared
 towards slowly decreasing functions: if $f$ decreases exponentially fast,
 then one of \kbd{suminf} or \kbd{sumpos} should be preferred.
 If $f$ satisfies the stronger hypotheses required for Monien summation,
 i.e. if $f(1/z)$ is holomorphic in a complex neighbourhood of $[0,1]$,
 then \tet{sumnummonien} will be faster since it only requires $O(D/\log D)$
 evaluations:
 \bprog
 ? sumnummonien(n = 1, 1/n^3) - z3
 time = 1,985 ms.
 %3 = 0.E-500
 @eprog\noindent The \kbd{tab} argument precomputes technical data
 not depending on the expression being summed and valid for a given accuracy,
 speeding up immensely later calls:
 \bprog
 ? tab = sumnuminit();
 time = 2,709 ms.
 ? sumnum(n = 1, 1/n^3, tab) - z3 \\ now much faster than sumpos
 time = 40 ms.
 %5 = 0.E-500
 
 ? tabmon = sumnummonieninit(); \\ Monien summation allows precomputations too
 time = 1,781 ms.
 ? sumnummonien(n = 1, 1/n^3, tabmon) - z3
 time = 2 ms.
 %7 = 0.E-500
 @eprog\noindent The speedup due to precomputations becomes less impressive
 when the function $f$ is expensive to evaluate, though:
 \bprog
 ? sumnum(n = 1, lngamma(1+1/n)/n, tab);
 time = 14,180 ms.
 
 ? sumnummonien(n = 1, lngamma(1+1/n)/n, tabmon); \\ fewer evaluations
 time = 717 ms.
 @eprog
 
 \misctitle{Behaviour at infinity}
 By default, \kbd{sumnum} assumes that \var{expr} decreases slowly at infinity,
 but at least like $O(n^{-2})$. If the function decreases like $n^{\alpha}$
 for some $-2 < \alpha < -1$, then it must be indicated via
 \bprog
   tab = sumnuminit([+oo, alpha]); /* alpha < 0 slow decrease */
 @eprog\noindent otherwise loss of accuracy is expected.
 If the functions decreases quickly, like $\exp(-\alpha n)$ for some
 $\alpha > 0$, then it must be indicated via
 \bprog
   tab = sumnuminit([+oo, alpha]); /* alpha  > 0 exponential decrease */
 @eprog\noindent otherwise exponent overflow will occur.
 \bprog
 ? sumnum(n=1,2^-n)
  ***   at top-level: sumnum(n=1,2^-n)
  ***                             ^----
  *** _^_: overflow in expo().
 ? tab = sumnuminit([+oo,log(2)]); sumnum(n=1,2^-n, tab)
 %1 = 1.000[...]
 @eprog
 
 As a shortcut, one can also input
 \bprog
   sumnum(n = [a, asymp], f)
 @eprog\noindent instead of
 \bprog
   tab = sumnuminit(asymp);
   sumnum(n = a, f, tab)
 @eprog
 
 \misctitle{Further examples}
 \bprog
 ? \p200
 ? sumnum(n = 1, n^(-2)) - zeta(2) \\ accurate, fast
 time = 200 ms.
 %1 = -2.376364457868949779 E-212
 ? sumpos(n = 1, n^(-2)) - zeta(2)  \\ even faster
 time = 96 ms.
 %2 = 0.E-211
 ? sumpos(n=1,n^(-4/3)) - zeta(4/3)   \\ now much slower
 time = 13,045 ms.
 %3 = -9.980730723049589073 E-210
 ? sumnum(n=1,n^(-4/3)) - zeta(4/3)  \\ fast but inaccurate
 time = 365 ms.
 %4 = -9.85[...]E-85
 ? sumnum(n=[1,-4/3],n^(-4/3)) - zeta(4/3) \\ with decrease rate, now accurate
 time = 416 ms.
 %5 = -4.134874156691972616 E-210
 
 ? tab = sumnuminit([+oo,-4/3]);
 time = 196 ms.
 ? sumnum(n=1, n^(-4/3), tab) - zeta(4/3) \\ faster with precomputations
 time = 216 ms.
 %5 = -4.134874156691972616 E-210
 ? sumnum(n=1,-log(n)*n^(-4/3), tab) - zeta'(4/3)
 time = 321 ms.
 %7 = 7.224147951921607329 E-210
 @eprog
 
 Note that in the case of slow decrease ($\alpha < 0$), the exact
 decrease rate must be indicated, while in the case of exponential decrease,
 a rough value will do. In fact, for exponentially decreasing functions,
 \kbd{sumnum} is given for completeness and comparison purposes only: one
 of \kbd{suminf} or \kbd{sumpos} should always be preferred.
 \bprog
 ? sumnum(n=[1, 1], 2^-n) \\ pretend we decrease as exp(-n)
 time = 240 ms.
 %8 = 1.000[...] \\ perfect
 ? sumpos(n=1, 2^-n)
 %9 = 1.000[...] \\ perfect and instantaneous
 @eprog
 
 \synt{sumnum}{(void *E, GEN (*eval)(void*, GEN), GEN a, GEN tab, long prec)}
 where an omitted \var{tab} is coded as \kbd{NULL}.

Function: sumnuminit
Class: basic
Section: sums
C-Name: sumnuminit
Prototype: DGp
Help: sumnuminit({asymp}): initialize tables for Euler-MacLaurin delta
 summation of a series with positive terms.
Doc: initialize tables for Euler--MacLaurin delta summation of a series with
 positive terms. If given, \kbd{asymp} is of the form $[\kbd{+oo}, \alpha]$,
 as in \tet{intnum} and indicates the decrease rate at infinity of functions
 to be summed. A positive
 $\alpha > 0$ encodes an exponential decrease of type $\exp(-\alpha n)$ and
 a negative $-2 < \alpha < -1$ encodes a slow polynomial decrease of type
 $n^{\alpha}$.
 \bprog
 ? \p200
 ? sumnum(n=1, n^-2);
 time = 200 ms.
 ? tab = sumnuminit();
 time = 188 ms.
 ? sumnum(n=1, n^-2, tab); \\ faster
 time = 8 ms.
 
 ? tab = sumnuminit([+oo, log(2)]); \\ decrease like 2^-n
 time = 200 ms.
 ? sumnum(n=1, 2^-n, tab)
 time = 44 ms.
 
 ? tab = sumnuminit([+oo, -4/3]); \\ decrease like n^(-4/3)
 time = 200 ms.
 ? sumnum(n=1, n^(-4/3), tab);
 time = 221 ms.
 @eprog

Function: sumnummonien
Class: basic
Section: sums
C-Name: sumnummonien0
Prototype: V=GEDGp
Help: sumnummonien(n=a,f,{tab}): numerical summation from
 n = a to +infinity using Monien summation.
Wrapper: (,G)
Description: 
  (gen,gen,?gen):gen:prec sumnummonien(${2 cookie}, ${2 wrapper}, $1, $3, $prec)
Doc: numerical summation $\sum_{n\geq a} f(n)$ at high accuracy, the variable
 $n$ taking values from the integer $a$ to $+\infty$ using Monien summation,
 which assumes that $f(1/z)$ has a complex analytic continuation in a (complex)
 neighbourhood of the segment $[0,1]$.
 
 The function $f$ is evaluated at $O(D / \log D)$ real arguments,
 where $D \approx \kbd{realprecision} \cdot \log(10)$.
 By default, assume that $f(n) = O(n^{-2})$ and has a non-zero asymptotic
 expansion
 $$f(n) = \sum_{i\geq 2} a_i n^{-i}$$
 at infinity. To handle more complicated behaviours and allow time-saving
 precomputations (for a given \kbd{realprecision}), see \kbd{sumnummonieninit}.

Function: sumnummonieninit
Class: basic
Section: sums
C-Name: sumnummonieninit
Prototype: DGDGDGp
Help: sumnummonieninit({asymp},{w},{n0 = 1}): initialize tables for Monien summation of a series with positive terms.
Doc: initialize tables for Monien summation of a series $\sum_{n\geq n_0}
 f(n)$ where $f(1/z)$ has a complex analytic continuation in a (complex)
 neighbourhood of the segment $[0,1]$.
 
 By default, assume that $f(n) = O(n^{-2})$ and has a non-zero asymptotic
 expansion
 $$f(n) = \sum_{i\geq 2} a_i / n^i$$
 at infinity. Note that the sum starts at $i = 2$! The argument \kbd{asymp}
 allows to specify different expansions:
 
 \item a real number $\alpha > 1$ means
  $$f(n) = \sum_{i\geq 1} a_i / n^{\alpha i}$$
 (Now the summation starts at $1$.)
 
 \item a vector $[\alpha,\beta]$ of reals, where we must have $\alpha > 0$
 and $\alpha + \beta > 1$ to ensure convergence, means that
  $$f(n) = \sum_{i\geq 1} a_i / n^{\alpha i + \beta}$$
 Note that $\kbd{asymp} = [\alpha, \alpha]$ is equivalent to
 $\kbd{asymp}=\alpha$.
 
 \bprog
 ? \p57
 ? s = sumnum(n = 1, sin(1/sqrt(n)) / n); \\ reference point
 
 ? \p38
 ? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s
 %2 = -0.001[...] \\ completely wrong
 
 ? t = sumnummonieninit([1,1/2]);  \\ f(n) = sum_i 1 / n^(i/2+1)
 ? sumnummonien(n = 1, sin(1/sqrt(n)) / n, t) - s
 %3 = 0.E-37 \\ now correct
 @eprog\noindent (As a matter of fact, in the above summation, the
 result given by \kbd{sumnum} at \kbd{\bs p38} is slighly incorrect,
 so we had to increase the accuracy to \kbd{\bs p57}.)
 
 The argument $w$ is used to sum expressions of the form
 $$ \sum_{n\geq n_0} f(n) w(n),$$
 for varying $f$ \emph{as above}, and fixed weight function $w$, where we
 further assume that the auxiliary sums
 $$g_w(m) = \sum_{n\geq n_0} w(n) / n^{\alpha m + \beta} $$
 converge for all $m\geq 1$. Note that for non-negative integers $k$,
 and weight $w(n) = (\log n)^k$, the function $g_w(m) = \zeta^{(k)}(\alpha m +
 \beta)$ has a simple expression; for general weights, $g_w$ is
 computed using \kbd{sumnum}. The following variants are available
 
 \item an integer $k \geq 0$, to code $w(n) = (\log n)^k$;
 only the cases $k = 0,1$ are presently implemented; due to a poor
 implementation of $\zeta$ derivatives, it is not currently worth it
 to exploit the special shape of $g_w$ when $k > 0$;
 
 \item a \typ{CLOSURE} computing the values $w(n)$, where we
 assume that $w(n) = O(n^\epsilon)$ for all $\epsilon > 0$;
 
 \item a vector $[w, \kbd{fast}]$, where $w$ is a closure as above
 and \kbd{fast} is a scalar;
 we assume that $w(n) = O(n^{\kbd{fast}+\epsilon})$; note that
 $\kbd{w} = [w, 0]$ is equivalent to $\kbd{w} = w$.
 
 \item a vector $[w, \kbd{oo}]$, where $w$ is a closure as above;
 we assume that $w(n)$ decreases exponentially. Note that in this case,
 \kbd{sumnummonien} is provided for completeness and comparison purposes only:
 one of \kbd{suminf} or \kbd{sumpos} should be preferred in practice.
 
 The cases where $w$ is a closure or $w(n) = \log n$ are the only ones where
 $n_0$ is taken into account and stored in the result. The subsequent call to
 \kbd{sumnummonien} \emph{must} use the same value.
 
 \bprog
 ? \p300
 ? sumnummonien(n = 1, n^-2*log(n)) + zeta'(2)
 time = 536 ms.
 %1 = -1.323[...]E-6 \\ completely wrong, f does not satisfy hypotheses !
 ? tab = sumnummonieninit(, 1); \\ codes w(n) = log(n)
 time = 18,316 ms.
 ? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
 time = 44 ms.
 %3 = -5.562684646268003458 E-309  \\ now perfect
 
 ? tab = sumnummonieninit(, n->log(n)); \\ generic, about as fast
 time = 18,693 ms.
 ? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
 time = 40 ms.
 %5 = -5.562684646268003458 E-309  \\ identical result
 @eprog

Function: sumpos
Class: basic
Section: sums
C-Name: sumpos0
Prototype: V=GED0,L,p
Help: sumpos(X=a,expr,{flag=0}): sum of positive (or negative) series expr,
 the formal
 variable X starting at a. flag is optional, and can be 0: default, or 1:
 uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description: 
  (gen,gen,?0):gen:prec sumpos(${2 cookie}, ${2 wrapper}, $1, $prec)
  (gen,gen,1):gen:prec sumpos2(${2 cookie}, ${2 wrapper}, $1, $prec)
Doc: numerical summation of the series \var{expr}, which must be a series of
 terms having the same sign, the formal variable $X$ starting at $a$. The
 algorithm used is Van Wijngaarden's trick for converting such a series into
 an alternating one, then we use \tet{sumalt}. For regular functions, the
 function \kbd{sumnum} is in general much faster once the initializations
 have been made using \kbd{sumnuminit}.
 
 The routine is heuristic and assumes that \var{expr} is more or less a
 decreasing function of $X$. In particular, the result will be completely
 wrong if \var{expr} is 0 too often. We do not check either that all terms
 have the same sign. As \tet{sumalt}, this function should be used to
 try and guess the value of an infinite sum.
 
 If $\fl=1$, use \kbd{sumalt}$(,1)$ instead of \kbd{sumalt}$(,0)$, see
 \secref{se:sumalt}. Requiring more stringent analytic properties for
 rigorous use, but allowing to compute fewer series terms.
 
 To reach accuracy $10^{-p}$, both algorithms require $O(p^2)$ space;
 furthermore, assuming the terms decrease polynomially (in $O(n^{-C})$), both
 need to compute $O(p^2)$ terms. The \kbd{sumpos}$(,1)$ variant has a smaller
 implied constant (roughly 1.5 times smaller). Since the \kbd{sumalt}$(,1)$
 overhead is now small compared to the time needed to compute series terms,
 this last variant should be about 1.5 faster. On the other hand, the
 achieved accuracy may be much worse: as for \tet{sumalt}, since
 conditions for rigorous use are hard to check, the routine is best used
 heuristically.
 
 \synt{sumpos}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
 available is \tet{sumpos2} with the same arguments ($\fl = 1$).

Function: system
Class: basic
Section: programming/specific
C-Name: gpsystem
Prototype: vs
Help: system(str): str being a string, execute the system command str.
Doc: \var{str} is a string representing a system command. This command is
 executed, its output written to the standard output (this won't get into your
 logfile), and control returns to the PARI system. This simply calls the C
 \kbd{system} command.

Function: tan
Class: basic
Section: transcendental
C-Name: gtan
Prototype: Gp
Help: tan(x): tangent of x.
Doc: tangent of $x$.

Function: tanh
Class: basic
Section: transcendental
C-Name: gtanh
Prototype: Gp
Help: tanh(x): hyperbolic tangent of x.
Doc: hyperbolic tangent of $x$.

Function: taylor
Class: basic
Section: polynomials
C-Name: tayl
Prototype: GnDP
Help: taylor(x,t,{d=seriesprecision}): taylor expansion of x with respect to
 t, adding O(t^d) to all components of x.
Doc: Taylor expansion around $0$ of $x$ with respect to
 the simple variable $t$. $x$ can be of any reasonable type, for example a
 rational function. Contrary to \tet{Ser}, which takes the valuation into
 account, this function adds $O(t^d)$ to all components of $x$.
 \bprog
 ? taylor(x/(1+y), y, 5)
 %1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
 ? Ser(x/(1+y), y, 5)
  ***   at top-level: Ser(x/(1+y),y,5)
  ***                 ^----------------
  *** Ser: main variable must have higher priority in gtoser.
 @eprog

Function: teichmuller
Class: basic
Section: transcendental
C-Name: teichmuller
Prototype: GDG
Help: teichmuller(x,{tab}): teichmuller character of p-adic number x. If
 x = [p,n], return the lifts of all teichmuller(i + O(p^n)) for
 i = 1, ..., p-1. Such a vector can be fed back to teichmuller, as the
 optional argument tab, to speed up later computations.
Doc: Teichm\"uller character of the $p$-adic number $x$, i.e. the unique
 $(p-1)$-th root of unity congruent to $x / p^{v_p(x)}$ modulo $p$.
 If $x$ is of the form $[p,n]$, for a prime $p$ and integer $n$,
 return the lifts to $\Z$ of the images of $i + O(p^n)$ for
 $i = 1, \dots, p-1$, i.e. all roots of $1$ ordered  by residue class modulo
 $p$. Such a vector can be fed back to \kbd{teichmuller}, as the
 optional argument \kbd{tab}, to speed up later computations.
 
 \bprog
 ? z = teichmuller(2 + O(101^5))
 %1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
 ? z^100
 %2 = 1 + O(101^5)
 ? T = teichmuller([101, 5]);
 ? teichmuller(2 + O(101^5), T)
 %4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
 @eprog\noindent As a rule of thumb, if more than
 $$p \,/\, 2(\log_2(p) + \kbd{hammingweight}(p))$$
 values of \kbd{teichmuller} are to be computed, then it is worthwile to
 initialize:
 \bprog
 ? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous
 ? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
 time = 60 ms.
 ? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))
 time = 1,293 ms.
 ? 1 + 2*(log(p)/log(2) + hammingweight(p))
 %8 = 22.316[...]
 @eprog\noindent Here the precompuation induces a speedup by a factor
 $1293/ 60 \approx 21.5$.
 
 \misctitle{Caveat}
 If the accuracy of \kbd{tab} (the argument $n$ above) is lower than the
 precision of $x$, the \emph{former} is used, i.e. the cached value is not
 refined to higher accuracy. It the accuracy of \kbd{tab} is larger, then
 the precision of $x$ is used:
 \bprog
 ? Tlow = teichmuller([101, 2]); \\ lower accuracy !
 ? teichmuller(2 + O(101^5), Tlow)
 %10 = 2 + 83*101 + O(101^5)  \\ no longer a root of 1
 
 ? Thigh = teichmuller([101, 10]); \\ higher accuracy
 ? teichmuller(2 + O(101^5), Thigh)
 %12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
 @eprog
Variant: 
 Also available are the functions \fun{GEN}{teich}{GEN x} (\kbd{tab} is
 \kbd{NULL}) as well as
 \fun{GEN}{teichmullerinit}{long p, long n}.

Function: theta
Class: basic
Section: transcendental
C-Name: theta
Prototype: GGp
Help: theta(q,z): Jacobi sine theta-function.
Doc: Jacobi sine theta-function
 $$ \theta_1(z, q) = 2q^{1/4} \sum_{n\geq 0} (-1)^n q^{n(n+1)} \sin((2n+1)z).$$

Function: thetanullk
Class: basic
Section: transcendental
C-Name: thetanullk
Prototype: GLp
Help: thetanullk(q,k): k-th derivative at z=0 of theta(q,z).
Doc: $k$-th derivative at $z=0$ of $\kbd{theta}(q,z)$.
Variant: 
 \fun{GEN}{vecthetanullk}{GEN q, long k, long prec} returns the vector
 of all $\dfrac{d^i\theta}{dz^i}(q,0)$ for all odd $i = 1, 3, \dots, 2k-1$.
 \fun{GEN}{vecthetanullk_tau}{GEN tau, long k, long prec} returns
 \kbd{vecthetanullk\_tau} at $q = \exp(2i\pi \kbd{tau})$.

Function: thue
Class: basic
Section: polynomials
C-Name: thue
Prototype: GGDG
Help: thue(tnf,a,{sol}): solve the equation P(x,y)=a, where tnf was created
 with thueinit(P), and sol, if present, contains the solutions of Norm(x)=a
 modulo units in the number field defined by P. If tnf was computed without
 assuming GRH (flag 1 in thueinit), the result is unconditional. If tnf is a
 polynomial, compute thue(thueinit(P,0), a).
Doc: returns all solutions of the equation
 $P(x,y)=a$ in integers $x$ and $y$, where \var{tnf} was created with
 $\kbd{thueinit}(P)$. If present, \var{sol} must contain the solutions of
 $\Norm(x)=a$ modulo units of positive norm in the number field
 defined by $P$ (as computed by \kbd{bnfisintnorm}). If there are infinitely
 many solutions, an error is issued.
 
 It is allowed to input directly the polynomial $P$ instead of a \var{tnf},
 in which case, the function first performs \kbd{thueinit(P,0)}. This is
 very wasteful if more than one value of $a$ is required.
 
 If \var{tnf} was computed without assuming GRH (flag $1$ in \tet{thueinit}),
 then the result is unconditional. Otherwise, it depends in principle of the
 truth of the GRH, but may still be unconditionally correct in some
 favorable cases. The result is conditional on the GRH if
 $a\neq \pm 1$ and, $P$ has a single irreducible rational factor, whose
 attached tentative class number $h$ and regulator $R$ (as computed
 assuming the GRH) satisfy
 
 \item $h > 1$,
 
 \item $R/0.2 > 1.5$.
 
 Here's how to solve the Thue equation $x^{13} - 5y^{13} = - 4$:
 \bprog
 ? tnf = thueinit(x^13 - 5);
 ? thue(tnf, -4)
 %1 = [[1, 1]]
 @eprog\noindent In this case, one checks that \kbd{bnfinit(x\pow13 -5).no}
 is $1$. Hence, the only solution is $(x,y) = (1,1)$, and the result is
 unconditional. On the other hand:
 \bprog
 ? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
 ? thue(tnf, -15)
 %2 = [[1, 1]]  \\ a priori conditional on the GRH.
 ? K = bnfinit(P); K.no
 %3 = 3
 ? K.reg
 %4 = 2.8682185139262873674706034475498755834
 @eprog
 This time the result is conditional. All results computed using this
 particular \var{tnf} are likewise conditional, \emph{except} for a right-hand
 side of $\pm 1$.
 The above result is in fact correct, so we did not just disprove the GRH:
 \bprog
 ? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
 ? thue(tnf, -15)
 %4 = [[1, 1]]
 @eprog
 Note that reducible or non-monic polynomials are allowed:
 \bprog
 ? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
 ? thue(tnf, 128)
 %2 = [[-1, 0], [1, 0]]
 @eprog\noindent Reducible polynomials are in fact much easier to handle.

Function: thueinit
Class: basic
Section: polynomials
C-Name: thueinit
Prototype: GD0,L,p
Help: thueinit(P,{flag=0}): initialize the tnf corresponding to P, that will
 be used to solve Thue equations P(x,y) = some-integer. If flag is non-zero,
 certify the result unconditionaly. Otherwise, assume GRH (much faster of
 course).
Doc: initializes the \var{tnf} corresponding to $P$, a non-constant
 univariate polynomial with integer coefficients.
 The result is meant to be used in conjunction with \tet{thue} to solve Thue
 equations $P(X / Y)Y^{\deg P} = a$, where $a$ is an integer. Accordingly,
 $P$ must either have at least two distinct irreducible factors over $\Q$,
 or have one irreducible factor $T$ with degree $>2$ or two conjugate
 complex roots: under these (necessary and sufficient) conditions, the
 equation has finitely many integer solutions.
 \bprog
 ? S = thueinit(t^2+1);
 ? thue(S, 5)
 %2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]
 ? S = thueinit(t+1);
  ***   at top-level: thueinit(t+1)
  ***                 ^-------------
  *** thueinit: domain error in thueinit: P = t + 1
 @eprog\noindent The hardest case is when $\deg P > 2$ and $P$ is irreducible
 with at least one real root. The routine then uses Bilu-Hanrot's algorithm.
 
 If $\fl$ is non-zero, certify results unconditionally. Otherwise, assume
 \idx{GRH}, this being much faster of course. In the latter case, the result
 may still be unconditionally correct, see \tet{thue}. For instance in most
 cases where $P$ is reducible (not a pure power of an irreducible), \emph{or}
 conditional computed class groups are trivial \emph{or} the right hand side
 is $\pm1$, then results are unconditional.
 
 \misctitle{Note} The general philosophy is to disprove the existence of large
 solutions then to enumerate bounded solutions naively. The implementation
 will overflow when there exist huge solutions and the equation has degree
 $> 2$ (the quadratic imaginary case is special, since we can use
 \kbd{bnfisintnorm}):
 \bprog
 ? thue(t^3+2, 10^30)
  ***   at top-level: L=thue(t^3+2,10^30)
  ***                   ^-----------------
  *** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.
 ? thue(x^2+2, 10^30)  \\ quadratic case much easier
 %1 = [[-1000000000000000, 0], [1000000000000000, 0]]
 @eprog
 
 \misctitle{Note} It is sometimes possible to circumvent the above, and in any
 case obtain an important speed-up, if you can write $P = Q(x^d)$ for some $d >
 1$ and $Q$ still satisfying the \kbd{thueinit} hypotheses. You can then solve
 the equation attached to $Q$ then eliminate all solutions $(x,y)$ such that
 either $x$ or $y$ is not a $d$-th power.
 \bprog
 ? thue(x^4+1, 10^40); \\ stopped after 10 hours
 ? filter(L,d) =
     my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];
 ? L = thue(x^2+1, 10^40);
 ? filter(L, 2)
 %4 = [[0, 10000000000], [10000000000, 0]]
 @eprog\noindent The last 2 commands use less than 20ms.

Function: trace
Class: basic
Section: linear_algebra
C-Name: gtrace
Prototype: G
Help: trace(x): trace of x.
Doc: this applies to quite general $x$. If $x$ is not a
 matrix, it is equal to the sum of $x$ and its conjugate, except for polmods
 where it is the trace as an algebraic number.
 
 For $x$ a square matrix, it is the ordinary trace. If $x$ is a
 non-square matrix (but not a vector), an error occurs.

Function: trap
Class: basic
Section: programming/specific
C-Name: trap0
Prototype: DrDEDE
Help: trap({e}, {rec}, seq): this function is obsolete, use "iferr".
 Try to execute seq, trapping runtime error e (all of them if e omitted);
 sequence rec is executed if the error occurs and is the result of the command.
Wrapper: (,_,_)
Description: 
 (?str,?closure,?closure):gen trap0($1, $2, $3)
Doc: This function is obsolete, use \tet{iferr}, which has a nicer and much
 more powerful interface. For compatibility's sake we now describe the
 \emph{obsolete} function \tet{trap}.
 
 This function tries to
 evaluate \var{seq}, trapping runtime error $e$, that is effectively preventing
 it from aborting computations in the usual way; the recovery sequence
 \var{rec} is executed if the error occurs and the evaluation of \var{rec}
 becomes the result of the command. If $e$ is omitted, all exceptions are
 trapped. See \secref{se:errorrec} for an introduction to error recovery
 under \kbd{gp}.
 
 \bprog
 ? \\@com trap division by 0
 ? inv(x) = trap (e_INV, INFINITY, 1/x)
 ? inv(2)
 %1 = 1/2
 ? inv(0)
 %2 = INFINITY
 @eprog\noindent
 Note that \var{seq} is effectively evaluated up to the point that produced
 the error, and the recovery sequence is evaluated starting from that same
 context, it does not "undo" whatever happened in the other branch (restore
 the evaluation context):
 \bprog
 ? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
 %1 = 0
 @eprog
 
 \misctitle{Note} The interface is currently not adequate for trapping
 individual exceptions. In the current version \vers, the following keywords
 are recognized, but the name list will be expanded and changed in the
 future (all library mode errors can be trapped: it's a matter of defining
 the keywords to \kbd{gp}):
 
 \kbd{e\_ALARM}: alarm time-out
 
 \kbd{e\_ARCH}: not available on this architecture or operating system
 
 \kbd{e\_STACK}: the PARI stack overflows
 
 \kbd{e\_INV}: impossible inverse
 
 \kbd{e\_IMPL}: not yet implemented
 
 \kbd{e\_OVERFLOW}: all forms of arithmetic overflow, including length
 or exponent overflow (when a larger value is supplied than the
 implementation can handle).
 
 \kbd{e\_SYNTAX}: syntax error
 
 \kbd{e\_MISC}: miscellaneous error
 
 \kbd{e\_TYPE}: wrong type
 
 \kbd{e\_USER}: user error (from the \kbd{error} function)
Obsolete: 2012-01-17

Function: truncate
Class: basic
Section: conversions
C-Name: trunc0
Prototype: GD&
Help: truncate(x,{&e}): truncation of x; when x is a power series,take away
 the O(X^). If e is present, do not take into account loss of integer part
 precision, and set e = error estimate in bits.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             truncr($1)
 (mp):int               mptrunc($1)
 (mp, &small):int       gcvtoi($1, &$2)
 (mp, &int):int         trunc0($1, &$2)
 (gen):gen              gtrunc($1)
 (gen, &small):gen      gcvtoi($1, &$2)
 (gen, &int):gen        trunc0($1, &$2)
Doc: truncates $x$ and sets $e$ to the number of
 error bits. When $x$ is in $\R$, this means that the part after the decimal
 point is chopped away, $e$ is the binary exponent of the difference between
 the original and the truncated value (the ``fractional part''). If the
 exponent of $x$ is too large compared to its precision (i.e.~$e>0$), the
 result is undefined and an error occurs if $e$ was not given. The function
 applies componentwise on vector / matrices; $e$ is then the maximal number of
 error bits. If $x$ is a rational function, the result is the ``integer part''
 (Euclidean quotient of numerator by denominator) and $e$ is not set.
 
 Note a very special use of \kbd{truncate}: when applied to a power series, it
 transforms it into a polynomial or a rational function with denominator
 a power of $X$, by chopping away the $O(X^k)$. Similarly, when applied to
 a $p$-adic number, it transforms it into an integer or a rational number
 by chopping away the $O(p^k)$.
Variant: The following functions are also available: \fun{GEN}{gtrunc}{GEN x}
 and \fun{GEN}{gcvtoi}{GEN x, long *e}.

Function: type
Class: basic
Section: programming/specific
C-Name: type0
Prototype: G
Help: type(x): return the type of the GEN x.
Description: 
 (gen):typ              typ($1)
Doc: this is useful only under \kbd{gp}. Returns the internal type name of
 the PARI object $x$ as a  string. Check out existing type names with the
 metacommand \b{t}. For example \kbd{type(1)} will return "\typ{INT}".
Variant: The macro \kbd{typ} is usually simpler to use since it returns a
 \kbd{long} that can easily be matched with the symbols \typ{*}. The name
 \kbd{type} was avoided since it is a reserved identifier for some compilers.

Function: unclone
Class: gp2c
Description: 
 (small):void   (void)0 /*unclone*/
 (gen):void     gunclone($1)

Function: uninline
Class: basic
Section: programming/specific
Help: uninline(): forget all inline variables [EXPERIMENTAL].
Doc: (Experimental) Exit the scope of all current \kbd{inline} variables.

Function: until
Class: basic
Section: programming/control
C-Name: untilpari
Prototype: vEI
Help: until(a,seq): evaluate the expression sequence seq until a is nonzero.
Doc: evaluates \var{seq} until $a$ is not
 equal to 0 (i.e.~until $a$ is true). If $a$ is initially not equal to 0,
 \var{seq} is evaluated once (more generally, the condition on $a$ is tested
 \emph{after} execution of the \var{seq}, not before as in \kbd{while}).

Function: valuation
Class: basic
Section: conversions
C-Name: gpvaluation
Prototype: GG
Help: valuation(x,p): valuation of x with respect to p.
Doc: 
 computes the highest
 exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an
 integer, an intmod whose modulus is divisible by $p$, a fraction, a
 $q$-adic number with $q=p$, or a polynomial or power series in which case the
 valuation is the minimum of the valuation of the coefficients.
 
 If $p$ is of type polynomial, $x$ must be of type polynomial or rational
 function, and also a power series if $x$ is a monomial. Finally, the
 valuation of a vector, complex or quadratic number is the minimum of the
 component valuations.
 
 If $x=0$, the result is \kbd{+oo} if $x$ is an exact object. If $x$ is a
 $p$-adic numbers or power series, the result is the exponent of the zero.
 Any other type combinations gives an error.
Variant: Also available is
 \fun{long}{gvaluation}{GEN x, GEN p}, which returns \tet{LONG_MAX} if $x = 0$
 and the valuation as a \kbd{long} integer.

Function: varhigher
Class: basic
Section: conversions
C-Name: varhigher
Prototype: sDn
Help: varhigher(name,{v}): return a variable 'name' whose priority is
 higher than the priority of v (of all existing variables if v is omitted).
Doc: return a variable \emph{name} whose priority is higher
 than the priority of $v$ (of all existing variables if $v$ is omitted).
 This is a counterpart to \tet{varlower}.
 \bprog
 ? Pol([x,x], t)
  ***   at top-level: Pol([x,x],t)
  ***                 ^------------
  *** Pol: incorrect priority in gtopoly: variable x <= t
 ? t = varhigher("t", x);
 ? Pol([x,x], t)
 %3 = x*t + x
 @eprog\noindent This routine is useful since new GP variables directly
 created by the interpreter always have lower priority than existing
 GP variables. When some basic objects already exist in a variable
 that is incompatible with some function requirement, you can now
 create a new variable with a suitable priority instead of changing variables
 in existing objects:
 \bprog
 ? K = nfinit(x^2+1);
 ? rnfequation(K,y^2-2)
  ***   at top-level: rnfequation(K,y^2-2)
  ***                 ^--------------------
  *** rnfequation: incorrect priority in rnfequation: variable y >= x
 ? y = varhigher("y", x);
 ? rnfequation(K, y^2-2)
 %3 = y^4 - 2*y^2 + 9
 @eprog\noindent
 \misctitle{Caution 1}
 The \emph{name} is an arbitrary character string, only used for display
 purposes and need not be related to the GP variable holding the result, nor
 to be a valid variable name. In particular the \emph{name} can
 not be used to retrieve the variable, it is not even present in the parser's
 hash tables.
 \bprog
 ? x = varhigher("#");
 ? x^2
 %2 = #^2
 @eprog
 \misctitle{Caution 2} There are a limited number of variables and if no
 existing variable with the given display name has the requested
 priority, the call to \kbd{varhigher} uses up one such slot. Do not create
 new variables in this way unless it's absolutely necessary,
 reuse existing names instead and choose sensible priority requirements:
 if you only need a variable with higher priority than $x$, state so
 rather than creating a new variable with highest priority.
 \bprog
 \\ quickly use up all variables
 ? n = 0; while(1,varhigher("tmp"); n++)
  ***   at top-level: n=0;while(1,varhigher("tmp");n++)
  ***                             ^-------------------
  *** varhigher: no more variables available.
  ***   Break loop: type 'break' to go back to GP prompt
 break> n
 65510
 \\ infinite loop: here we reuse the same 'tmp'
 ? n = 0; while(1,varhigher("tmp", x); n++)
 @eprog

Function: variable
Class: basic
Section: conversions
C-Name: gpolvar
Prototype: DG
Help: variable({x}): main variable of object x. Gives p for p-adic x, 0
 if no variable can be attached to x. Returns the list of user variables if
 x is omitted.
Description: 
 (pol):var:parens:copy        $var:1
 (gen):gen        gpolvar($1)
Doc: 
 gives the main variable of the object $x$ (the variable with the highest
 priority used in $x$), and $p$ if $x$ is a $p$-adic number. Return $0$ if
 $x$ has no variable attached to it.
 \bprog
 ? variable(x^2 + y)
 %1 = x
 ? variable(1 + O(5^2))
 %2 = 5
 ? variable([x,y,z,t])
 %3 = x
 ? variable(1)
 %4 = 0
 @eprog\noindent The construction
 \bprog
    if (!variable(x),...)
 @eprog\noindent can be used to test whether a variable is attached to $x$.
 
 If $x$ is omitted, returns the list of user variables known to the
 interpreter, by order of decreasing priority. (Highest priority is initially
 $x$, which come first until \tet{varhigher} is used.) If \kbd{varhigher}
 or \kbd{varlower} are used, it is quite possible to end up with different
 variables (with different priorities) printed in the same way: they
 will then appear multiple times in the output:
 \bprog
 ? varhigher("y");
 ? varlower("y");
 ? variable()
 %4 = [y, x, y]
 @eprog\noindent Using \kbd{v = variable()} then \kbd{v[1]}, \kbd{v[2]},
 etc.~allows to recover and use existing variables.
Variant: However, in library mode, this function should not be used for $x$
 non-\kbd{NULL}, since \tet{gvar} is more appropriate. Instead, for
 $x$ a $p$-adic (type \typ{PADIC}), $p$ is $gel(x,2)$; otherwise, use
 \fun{long}{gvar}{GEN x} which returns the variable number of $x$ if
 it exists, \kbd{NO\_VARIABLE} otherwise, which satisfies the property
 $\kbd{varncmp}(\kbd{NO\_VARIABLE}, v) > 0$ for all valid variable number
 $v$, i.e. it has lower priority than any variable.

Function: variables
Class: basic
Section: conversions
C-Name: variables_vec
Prototype: DG
Help: variables({x}): all variables occuring in object x, sorted by
 decreasing priority. Returns the list of user variables if x is omitted.
Doc: 
 returns the list of all variables occuring in object $x$ (all user
 variables known to the interpreter if $x$ is omitted), sorted by
 decreasing priority.
 \bprog
 ? variables([x^2 + y*z + O(t), a+x])
 %1 = [x, y, z, t, a]
 @eprog\noindent The construction
 \bprog
    if (!variables(x),...)
 @eprog\noindent can be used to test whether a variable is attached to $x$.
 
 If \kbd{varhigher} or \kbd{varlower} are used, it is quite possible to end up
 with different variables (with different priorities) printed in the same
 way: they will then appear multiple times in the output:
 \bprog
 ? y1 = varhigher("y");
 ? y2 = varlower("y");
 ? variables(y*y1*y2)
 %4 = [y, y, y]
 @eprog
Variant: 
 Also available is \fun{GEN}{variables_vecsmall}{GEN x} which returns
 the (sorted) variable numbers instead of the attached monomials of degree 1.

Function: varlower
Class: basic
Section: conversions
C-Name: varlower
Prototype: sDn
Help: varlower(name,{v}): return a variable 'name' whose priority is lower
 than the priority of v (of all existing variables if v is omitted.
Doc: return a variable \emph{name} whose priority is lower
 than the priority of $v$ (of all existing variables if $v$ is omitted).
 This is a counterpart to \tet{varhigher}.
 
 New GP variables directly created by the interpreter always
 have lower priority than existing GP variables, but it is not easy
 to check whether an identifier is currently unused, so that the
 corresponding variable has the expected priority when it's created!
 Thus, depending on the session history, the same command may fail or succeed:
 \bprog
 ? t; z;  \\ now t > z
 ? rnfequation(t^2+1,z^2-t)
  ***   at top-level: rnfequation(t^2+1,z^
  ***                 ^--------------------
  *** rnfequation: incorrect priority in rnfequation: variable t >= t
 @eprog\noindent Restart and retry:
 \bprog
 ? z; t;  \\ now z > t
 ? rnfequation(t^2+1,z^2-t)
 %2 = z^4 + 1
 @eprog\noindent It is quite annoying for package authors, when trying to
 define a base ring, to notice that the package may fail for some users
 depending on their session history. The safe way to do this is as follows:
 \bprog
 ? z; t;  \\ In new session: now z > t
 ...
 ? t = varlower("t", 'z);
 ? rnfequation(t^2+1,z^2-2)
 %2 = z^4 - 2*z^2 + 9
 ? variable()
 %3 = [x, y, z, t]
 @eprog
 \bprog
 ? t; z;  \\ In new session: now t > z
 ...
 ? t = varlower("t", 'z); \\ create a new variable, still printed "t"
 ? rnfequation(t^2+1,z^2-2)
 %2 = z^4 - 2*z^2 + 9
 ? variable()
 %3 = [x, y, t, z, t]
 @eprog\noindent Now both constructions succeed. Note that in the
 first case, \kbd{varlower} is essentially a no-op, the existing variable $t$
 has correct priority. While in the second case, two different variables are
 displayed as \kbd{t}, one with higher priority than $z$ (created in the first
  line) and another one with lower priority (created by \kbd{varlower}).
 
 \misctitle{Caution 1}
 The \emph{name} is an arbitrary character string, only used for display
 purposes and need not be related to the GP variable holding the result, nor
 to be a valid variable name. In particular the \emph{name} can
 not be used to retrieve the variable, it is not even present in the parser's
 hash tables.
 \bprog
 ? x = varlower("#");
 ? x^2
 %2 = #^2
 @eprog
 \misctitle{Caution 2} There are a limited number of variables and if no
 existing variable with the given display name has the requested
 priority, the call to \kbd{varlower} uses up one such slot. Do not create
 new variables in this way unless it's absolutely necessary,
 reuse existing names instead and choose sensible priority requirements:
 if you only need a variable with higher priority than $x$, state so
 rather than creating a new variable with highest priority.
 \bprog
 \\ quickly use up all variables
 ? n = 0; while(1,varlower("x"); n++)
  ***   at top-level: n=0;while(1,varlower("x");n++)
  ***                             ^-------------------
  *** varlower: no more variables available.
  ***   Break loop: type 'break' to go back to GP prompt
 break> n
 65510
 \\ infinite loop: here we reuse the same 'tmp'
 ? n = 0; while(1,varlower("tmp", x); n++)
 @eprog

Function: vecextract
Class: basic
Section: linear_algebra
C-Name: extract0
Prototype: GGDG
Help: vecextract(x,y,{z}): extraction of the components of the matrix or
 vector x according to y and z. If z is omitted, y represents columns, otherwise
 y corresponds to rows and z to columns. y and z can be vectors (of indices),
 strings (indicating ranges as in "1..10") or masks (integers whose binary
 representation indicates the indices to extract, from left to right 1, 2, 4,
 8, etc.).
Description: 
 (vec,gen,?gen):vec  extract0($1, $2, $3)
Doc: extraction of components of the vector or matrix $x$ according to $y$.
 In case $x$ is a matrix, its components are the \emph{columns} of $x$. The
 parameter $y$ is a component specifier, which is either an integer, a string
 describing a range, or a vector.
 
 If $y$ is an integer, it is considered as a mask: the binary bits of $y$ are
 read from right to left, but correspond to taking the components from left to
 right. For example, if $y=13=(1101)_2$ then the components 1,3 and 4 are
 extracted.
 
 If $y$ is a vector (\typ{VEC}, \typ{COL} or \typ{VECSMALL}), which must have
 integer entries, these entries correspond to the component numbers to be
 extracted, in the order specified.
 
 If $y$ is a string, it can be
 
 \item a single (non-zero) index giving a component number (a negative
 index means we start counting from the end).
 
 \item a range of the form \kbd{"$a$..$b$"}, where $a$ and $b$ are
 indexes as above. Any of $a$ and $b$ can be omitted; in this case, we take
 as default values $a = 1$ and $b = -1$, i.e.~ the first and last components
 respectively. We then extract all components in the interval $[a,b]$, in
 reverse order if $b < a$.
 
 In addition, if the first character in the string is \kbd{\pow}, the
 complement of the given set of indices is taken.
 
 If $z$ is not omitted, $x$ must be a matrix. $y$ is then the \emph{row}
 specifier, and $z$ the \emph{column} specifier, where the component specifier
 is as explained above.
 
 \bprog
 ? v = [a, b, c, d, e];
 ? vecextract(v, 5)         \\@com mask
 %1 = [a, c]
 ? vecextract(v, [4, 2, 1]) \\@com component list
 %2 = [d, b, a]
 ? vecextract(v, "2..4")    \\@com interval
 %3 = [b, c, d]
 ? vecextract(v, "-1..-3")  \\@com interval + reverse order
 %4 = [e, d, c]
 ? vecextract(v, "^2")      \\@com complement
 %5 = [a, c, d, e]
 ? vecextract(matid(3), "2..", "..")
 %6 =
 [0 1 0]
 
 [0 0 1]
 @eprog
 The range notations \kbd{v[i..j]} and \kbd{v[\pow i]} (for \typ{VEC} or
 \typ{COL}) and \kbd{M[i..j, k..l]} and friends (for \typ{MAT}) implement a
 subset of the above, in a simpler and \emph{faster} way, hence should be
 preferred in most common situations. The following features are not
 implemented in the range notation:
 
 \item reverse order,
 
 \item omitting either $a$ or $b$ in \kbd{$a$..$b$}.

Function: vecmax
Class: basic
Section: operators
C-Name: vecmax0
Prototype: GD&
Help: vecmax(x,{&v}): largest entry in the vector/matrix x. If v
 is present, set it to the index of a largest entry (indirect max).
Description: 
  (gen):gen            vecmax($1)
  (gen, &gen):gen      vecmax0($1, &$2)
Doc: if $x$ is a vector or a matrix, returns the largest entry of $x$,
 otherwise returns a copy of $x$. Error if $x$ is empty.
 
 If $v$ is given, set it to the index of a largest entry (indirect maximum),
 when $x$ is a vector. If $x$ is a matrix, set $v$ to coordinates $[i,j]$
 such that $x[i,j]$ is a largest entry. This flag is ignored if $x$ is not a
 vector or matrix.
 
 \bprog
 ? vecmax([10, 20, -30, 40])
 %1 = 40
 ? vecmax([10, 20, -30, 40], &v); v
 %2 = 4
 ? vecmax([10, 20; -30, 40], &v); v
 %3 = [2, 2]
 @eprog
Variant: When $v$ is not needed, the function \fun{GEN}{vecmax}{GEN x} is
 also available.

Function: vecmin
Class: basic
Section: operators
C-Name: vecmin0
Prototype: GD&
Help: vecmin(x,{&v}): smallest entry in the vector/matrix x. If v is
 present, set it to the index of a smallest
 entry (indirect min).
Description: 
  (gen):gen            vecmin($1)
  (gen, &gen):gen      vecmin0($1, &$2)
Doc: if $x$ is a vector or a matrix, returns the smallest entry of $x$,
 otherwise returns a copy of $x$. Error if $x$ is empty.
 
 If $v$ is given, set it to the index of a smallest entry (indirect minimum),
 when $x$ is a vector. If $x$ is a matrix, set $v$ to coordinates $[i,j]$ such
 that $x[i,j]$ is a smallest entry. This is ignored if $x$ is not a vector or
 matrix.
 
 \bprog
 ? vecmin([10, 20, -30, 40])
 %1 = -30
 ? vecmin([10, 20, -30, 40], &v); v
 %2 = 3
 ? vecmin([10, 20; -30, 40], &v); v
 %3 = [2, 1]
 @eprog
Variant: When $v$ is not needed, the function \fun{GEN}{vecmin}{GEN x} is also
 available.

Function: vecsearch
Class: basic
Section: linear_algebra
C-Name: vecsearch
Prototype: lGGDG
Help: vecsearch(v,x,{cmpf}): determines whether x belongs to the sorted
 vector v. If the comparison function cmpf is explicitly given, assume
 that v was sorted according to vecsort(, cmpf).
Doc: determines whether $x$ belongs to the sorted vector or list $v$: return
 the (positive) index where $x$ was found, or $0$ if it does not belong to
 $v$.
 
 If the comparison function cmpf is omitted, we assume that $v$ is sorted in
 increasing order, according to the standard comparison function \kbd{lex},
 thereby restricting the possible types for $x$ and the elements of $v$
 (integers, fractions, reals, and vectors of such).
 
 If \kbd{cmpf} is present, it is understood as a comparison function and we
 assume that $v$ is sorted according to it, see \tet{vecsort} for how to
 encode comparison functions.
 \bprog
 ? v = [1,3,4,5,7];
 ? vecsearch(v, 3)
 %2 = 2
 ? vecsearch(v, 6)
 %3 = 0 \\ not in the list
 ? vecsearch([7,6,5], 5) \\ unsorted vector: result undefined
 %4 = 0
 @eprog
 
 By abuse of notation, $x$ is also allowed to be a matrix, seen as a vector
 of its columns; again by abuse of notation, a \typ{VEC} is considered
 as part of the matrix, if its transpose is one of the matrix columns.
 \bprog
 ? v = vecsort([3,0,2; 1,0,2]) \\ sort matrix columns according to lex order
 %1 =
 [0 2 3]
 
 [0 2 1]
 ? vecsearch(v, [3,1]~)
 %2 = 3
 ? vecsearch(v, [3,1])  \\ can search for x or x~
 %3 = 3
 ? vecsearch(v, [1,2])
 %4 = 0 \\ not in the list
 @eprog\noindent

Function: vecsort
Class: basic
Section: linear_algebra
C-Name: vecsort0
Prototype: GDGD0,L,
Help: vecsort(x,{cmpf},{flag=0}): sorts the vector of vectors (or matrix) x in
 ascending order, according to the comparison function cmpf, if not omitted.
 (If cmpf is an integer, sort according to the value of the k-th component
 of each entry.) Binary digits of flag (if present) mean: 1: indirect sorting,
 return the permutation instead of the permuted vector, 4: use descending
 instead of ascending order, 8: remove duplicate entries.
Description: 
 (vecsmall,?gen):vecsmall       vecsort0($1, $2, 0)
 (vecsmall,?gen,small):vecsmall vecsort0($1, $2, $3)
 (vec, , ?0):vec                sort($1)
 (vec, , 1):vecsmall            indexsort($1)
 (vec, , 2):vec                 lexsort($1)
 (vec, gen):vec                 vecsort0($1, $2, 0)
 (vec, ?gen, 1):vecsmall        vecsort0($1, $2, 1)
 (vec, ?gen, 3):vecsmall        vecsort0($1, $2, 3)
 (vec, ?gen, 5):vecsmall        vecsort0($1, $2, 5)
 (vec, ?gen, 7):vecsmall        vecsort0($1, $2, 7)
 (vec, ?gen, 9):vecsmall        vecsort0($1, $2, 9)
 (vec, ?gen, 11):vecsmall       vecsort0($1, $2, 11)
 (vec, ?gen, 13):vecsmall       vecsort0($1, $2, 13)
 (vec, ?gen, 15):vecsmall       vecsort0($1, $2, 15)
 (vec, ?gen, #small):vec        vecsort0($1, $2, $3)
 (vec, ?gen, small):gen         vecsort0($1, $2, $3)
Doc: sorts the vector $x$ in ascending order, using a mergesort method.
 $x$ must be a list, vector or matrix (seen as a vector of its columns).
 Note that mergesort is stable, hence the initial ordering of ``equal''
 entries (with respect to the sorting criterion) is not changed.
 
 If \kbd{cmpf} is omitted, we use the standard comparison function
 \kbd{lex}, thereby restricting the possible types for the elements of $x$
 (integers, fractions or reals and vectors of those). If \kbd{cmpf} is
 present, it is understood as a comparison function and we sort according to
 it. The following possibilities exist:
 
 \item an integer $k$: sort according to the value of the $k$-th
 subcomponents of the components of~$x$.
 
 \item a vector: sort lexicographically according to the components listed in
 the vector. For example, if $\kbd{cmpf}=\kbd{[2,1,3]}$, sort with respect to
 the second component, and when these are equal, with respect to the first,
 and when these are equal, with respect to the third.
 
 \item a comparison function (\typ{CLOSURE}), with two arguments $x$ and $y$,
 and returning an integer which is $<0$, $>0$ or $=0$ if $x<y$, $x>y$ or
 $x=y$ respectively. The \tet{sign} function is very useful in this context:
 \bprog
 ? vecsort([3,0,2; 1,0,2]) \\ sort columns according to lex order
 %1 =
 [0 2 3]
 
 [0 2 1]
 ? vecsort(v, (x,y)->sign(y-x))            \\@com reverse sort
 ? vecsort(v, (x,y)->sign(abs(x)-abs(y)))  \\@com sort by increasing absolute value
 ? cmpf(x,y) = my(dx = poldisc(x), dy = poldisc(y)); sign(abs(dx) - abs(dy))
 ? vecsort([x^2+1, x^3-2, x^4+5*x+1], cmpf)
 @eprog\noindent
 The last example used the named \kbd{cmpf} instead of an anonymous function,
 and sorts polynomials with respect to the absolute value of their
 discriminant. A more efficient approach would use precomputations to ensure
 a given discriminant is computed only once:
 \bprog
 ? DISC = vector(#v, i, abs(poldisc(v[i])));
 ? perm = vecsort(vector(#v,i,i), (x,y)->sign(DISC[x]-DISC[y]))
 ? vecextract(v, perm)
 @eprog\noindent Similar ideas apply whenever we sort according to the values
 of a function which is expensive to compute.
 
 \noindent The binary digits of \fl\ mean:
 
 \item 1: indirect sorting of the vector $x$, i.e.~if $x$ is an
 $n$-component vector, returns a permutation of $[1,2,\dots,n]$ which
 applied to the components of $x$ sorts $x$ in increasing order.
 For example, \kbd{vecextract(x, vecsort(x,,1))} is equivalent to
 \kbd{vecsort(x)}.
 
 \item 4: use descending instead of ascending order.
 
 \item 8: remove ``duplicate'' entries with respect to the sorting function
 (keep the first occurring entry).  For example:
 \bprog
   ? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8)   \\@com make everything compare equal
   %1 = [3.141592653589793238462643383]
   ? vecsort([[2,3],[0,1],[0,3]], 2, 8)
   %2 = [[0, 1], [2, 3]]
 @eprog

Function: vecsum
Class: basic
Section: linear_algebra
C-Name: vecsum
Prototype: G
Help: vecsum(v): return the sum of the components of the vector v.
Doc: return the sum of the components of the vector $v$. Return $0$ on an
 empty vector.
 \bprog
 ? vecsum([1,2,3])
 %1 = 6
 ? vecsum([])
 %2 = 0
 @eprog

Function: vector
Class: basic
Section: linear_algebra
C-Name: vecteur
Prototype: GDVDE
Help: vector(n,{X},{expr=0}): row vector with n components of expression
 expr (X ranges from 1 to n). By default, fill with 0s.
Doc: creates a row vector (type
 \typ{VEC}) with $n$ components whose components are the expression
 \var{expr} evaluated at the integer points between 1 and $n$. If one of the
 last two arguments is omitted, fill the vector with zeroes.
 \bprog
 ? vector(3,i, 5*i)
 %1 = [5, 10, 15]
 ? vector(3)
 %2 = [0, 0, 0]
 @eprog
 
 The variable $X$ is lexically scoped to each evaluation of \var{expr}.  Any
 change to $X$ within \var{expr} does not affect subsequent evaluations, it
 still runs 1 to $n$.  A local change allows for example different indexing:
 \bprog
 vector(10, i, i=i-1; f(i)) \\ i = 0, ..., 9
 vector(10, i, i=2*i; f(i)) \\ i = 2, 4, ..., 20
 @eprog\noindent
 This per-element scope for $X$ differs from \kbd{for} loop evaluations,
 as the following example shows:
 \bprog
 n = 3
 v = vector(n); vector(n, i, i++)            ----> [2, 3, 4]
 v = vector(n); for (i = 1, n, v[i] = i++)   ----> [2, 0, 4]
 @eprog\noindent
 %\syn{NO}

Function: vectorsmall
Class: basic
Section: linear_algebra
C-Name: vecteursmall
Prototype: GDVDE
Help: vectorsmall(n,{X},{expr=0}): VECSMALL with n components of expression
 expr (X ranges from 1 to n) which must be small integers. By default, fill
 with 0s.
Doc: creates a row vector of small integers (type
 \typ{VECSMALL}) with $n$ components whose components are the expression
 \var{expr} evaluated at the integer points between 1 and $n$. If one of the
 last two arguments is omitted, fill the vector with zeroes.
 %\syn{NO}

Function: vectorv
Class: basic
Section: linear_algebra
C-Name: vvecteur
Prototype: GDVDE
Help: vectorv(n,{X},{expr=0}): column vector with n components of expression
 expr (X ranges from 1 to n). By default, fill with 0s.
Doc: as \tet{vector}, but returns a column vector (type \typ{COL}).
 %\syn{NO}

Function: version
Class: basic
Section: programming/specific
C-Name: pari_version
Prototype: 
Help: version(): returns the PARI version as [major,minor,patch] or [major,minor,patch,VCSversion].
Doc: returns the current version number as a \typ{VEC} with three integer
 components (major version number, minor version number and patchlevel);
 if your sources were obtained through our version control system, this will
 be followed by further more precise arguments, including
 e.g.~a~\kbd{git} \emph{commit hash}.
 
 This function is present in all versions of PARI following releases 2.3.4
 (stable) and 2.4.3 (testing).
 
 Unless you are working with multiple development versions, you probably only
 care about the 3 first numeric components. In any case, the \kbd{lex} function
 offers a clever way to check against a particular version number, since it will
 compare each successive vector entry, numerically or as strings, and will not
 mind if the vectors it compares have different lengths:
 \bprog
    if (lex(version(), [2,3,5]) >= 0,
      \\ code to be executed if we are running 2.3.5 or more recent.
    ,
      \\ compatibility code
    );
 @eprog\noindent On a number of different machines, \kbd{version()} could return either of
 \bprog
  %1 = [2, 3, 4]    \\ released version, stable branch
  %1 = [2, 4, 3]    \\ released version, testing branch
  %1 = [2, 6, 1, 15174, ""505ab9b"] \\ development
 @eprog
 
 In particular, if you are only working with released versions, the first
 line of the gp introductory message can be emulated by
 \bprog
    [M,m,p] = version();
    printf("GP/PARI CALCULATOR Version %s.%s.%s", M,m,p);
  @eprog\noindent If you \emph{are} working with many development versions of
  PARI/GP, the 4th and/or 5th components can be profitably included in the
  name of your logfiles, for instance.
 
  \misctitle{Technical note} For development versions obtained via \kbd{git},
  the 4th and 5th components are liable to change eventually, but we document
  their current meaning for completeness. The 4th component counts the number
  of reachable commits in the branch (analogous to \kbd{svn}'s revision
  number), and the 5th is the \kbd{git} commit hash. In particular, \kbd{lex}
  comparison still orders correctly development versions with respect to each
  others or to released versions (provided we stay within a given branch,
  e.g. \kbd{master})!

Function: warning
Class: basic
Section: programming/specific
C-Name: warning0
Prototype: vs*
Help: warning({str}*): display warning message str.
Description: 
 (?gen,...):void  pari_warn(warnuser, "${2 format_string}"${2 format_args})
Doc: outputs the message ``user warning''
 and the argument list (each of them interpreted as a string).
 If colors are enabled, this warning will be in a different color,
 making it easy to distinguish.
 \bprog
 warning(n, " is very large, this might take a while.")
 @eprog
 % \syn{NO}

Function: weber
Class: basic
Section: transcendental
C-Name: weber0
Prototype: GD0,L,p
Help: weber(x,{flag=0}): one of Weber's f function of x. flag is optional,
 and can be 0: default, function f(x)=exp(-i*Pi/24)*eta((x+1)/2)/eta(x),
 1: function f1(x)=eta(x/2)/eta(x)
 2: function f2(x)=sqrt(2)*eta(2*x)/eta(x). Note that
 j = (f^24-16)^3/f^24 = (f1^24+16)^3/f1^24 = (f2^24+16)^3/f2^24.
Doc: one of Weber's three $f$ functions.
 If $\fl=0$, returns
 $$f(x)=\exp(-i\pi/24)\cdot\eta((x+1)/2)\,/\,\eta(x) \quad\hbox{such that}\quad
 j=(f^{24}-16)^3/f^{24}\,,$$
 where $j$ is the elliptic $j$-invariant  (see the function \kbd{ellj}).
 If $\fl=1$, returns
 $$f_1(x)=\eta(x/2)\,/\,\eta(x)\quad\hbox{such that}\quad
 j=(f_1^{24}+16)^3/f_1^{24}\,.$$
 Finally, if $\fl=2$, returns
 $$f_2(x)=\sqrt{2}\eta(2x)\,/\,\eta(x)\quad\hbox{such that}\quad
 j=(f_2^{24}+16)^3/f_2^{24}.$$
 Note the identities $f^8=f_1^8+f_2^8$ and $ff_1f_2=\sqrt2$.
Variant: Also available are \fun{GEN}{weberf}{GEN x, long prec},
 \fun{GEN}{weberf1}{GEN x, long prec} and \fun{GEN}{weberf2}{GEN x, long prec}.

Function: whatnow
Class: gp
Section: programming/specific
C-Name: whatnow0
Prototype: vr
Help: whatnow(key): if key was present in GP version 1.39.15, gives
 the new function name.
Description: 
 (str):void             whatnow($1, 0)
Doc: if keyword \var{key} is the name of a function that was present in GP
 version 1.39.15, outputs the new function name and syntax, if it
 changed at all. Functions that where introduced since then, then modified
 are also recognized.
 \bprog
 ? whatnow("mu")
 New syntax: mu(n) ===> moebius(n)
 
 moebius(x): Moebius function of x.
 
 ? whatnow("sin")
 This function did not change
 @eprog When a function was removed and the underlying functionality
 is not available under a compatible interface, no equivalent is mentioned:
 \bprog
 ? whatnow("buchfu")
 This function no longer exists
 @eprog\noindent (The closest equivalent would be to set \kbd{K = bnfinit(T)}
 then access \kbd{K.fu}.)

Function: while
Class: basic
Section: programming/control
C-Name: whilepari
Prototype: vEI
Help: while(a,seq): while a is nonzero evaluate the expression sequence seq.
 Otherwise 0.
Doc: while $a$ is non-zero, evaluates the expression sequence \var{seq}. The
 test is made \emph{before} evaluating the $seq$, hence in particular if $a$
 is initially equal to zero the \var{seq} will not be evaluated at all.

Function: write
Class: basic
Section: programming/specific
C-Name: write0
Prototype: vss*
Help: write(filename,{str}*): appends the remaining arguments (same output as
 print) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments, and appends a
 newline (same output as \kbd{print}).
 %\syn{NO}

Function: write1
Class: basic
Section: programming/specific
C-Name: write1
Prototype: vss*
Help: write1(filename,{str}*): appends the remaining arguments (same output as
 print1) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments without a
 trailing newline (same output as \kbd{print1}).
 %\syn{NO}

Function: writebin
Class: basic
Section: programming/specific
C-Name: gpwritebin
Prototype: vsDG
Help: writebin(filename,{x}): write x as a binary object to file filename.
 If x is omitted, write all session variables.
Doc: writes (appends) to
 \var{filename} the object $x$ in binary format. This format is not human
 readable, but contains the exact internal structure of $x$, and is much
 faster to save/load than a string expression, as would be produced by
 \tet{write}. The binary file format includes a magic number, so that such a
 file can be recognized and correctly input by the regular \tet{read} or \b{r}
 function. If saved objects refer to polynomial variables that are not
 defined in the new session, they will be displayed as \kbd{t$n$} for some
 integer $n$ (the attached variable number).
 Installed functions and history objects can not be saved via this function.
 
 If $x$ is omitted, saves all user variables from the session, together with
 their names. Reading such a ``named object'' back in a \kbd{gp} session will set
 the corresponding user variable to the saved value. E.g after
 \bprog
 x = 1; writebin("log")
 @eprog\noindent
 reading \kbd{log} into a clean session will set \kbd{x} to $1$.
 The relative variables priorities (see \secref{se:priority}) of new variables
 set in this way remain the same (preset variables retain their former
 priority, but are set to the new value). In particular, reading such a
 session log into a clean session will restore all variables exactly as they
 were in the original one.
 
 Just as a regular input file, a binary file can be compressed
 using \tet{gzip}, provided the file name has the standard \kbd{.gz}
 extension.\sidx{binary file}
 
 In the present implementation, the binary files are architecture dependent
 and compatibility with future versions of \kbd{gp} is not guaranteed. Hence
 binary files should not be used for long term storage (also, they are
 larger and harder to compress than text files).

Function: writetex
Class: basic
Section: programming/specific
C-Name: writetex
Prototype: vss*
Help: writetex(filename,{str}*): appends the remaining arguments (same format as
 print) to filename, in TeX format.
Doc: as \kbd{write}, in \TeX\ format.
 %\syn{NO}

Function: zeta
Class: basic
Section: transcendental
C-Name: gzeta
Prototype: Gp
Help: zeta(s): Riemann zeta function at s with s a complex or a p-adic number.
Doc: For $s$ a complex number, Riemann's zeta
 function \sidx{Riemann zeta-function} $\zeta(s)=\sum_{n\ge1}n^{-s}$,
 computed using the \idx{Euler-Maclaurin} summation formula, except
 when $s$ is of type integer, in which case it is computed using
 Bernoulli numbers\sidx{Bernoulli numbers} for $s\le0$ or $s>0$ and
 even, and using modular forms for $s>0$ and odd.
 
 For $s$ a $p$-adic number, Kubota-Leopoldt zeta function at $s$, that
 is the unique continuous $p$-adic function on the $p$-adic integers
 that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative
 integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if
 $p$ is odd (resp. $p = 2$).

Function: zetamult
Class: basic
Section: transcendental
C-Name: zetamult
Prototype: Gp
Help: zetamult(s): multiple zeta value at integral s = [s1,...,sd].
Doc: For $s$ a vector of positive integers such that $s[1] \geq 2$,
 returns the multiple zeta value (MZV)
 $$\zeta(s_1,\dots, s_k) = \sum_{n_1>\dots>n_k>0} n_1^{-s_1}\dots n_k^{-s_k}.$$
 \bprog
 ? zetamult([2,1]) - zeta(3) \\ Euler's identity
 %1 = 0.E-38
 @eprog

Function: zncharinduce
Class: basic
Section: number_theoretical
C-Name: zncharinduce
Prototype: GGG
Help: zncharinduce(G, chi, N): let G be idealstar(,q), let chi
 be a Dirichlet character mod q and let N be a multiple of q. Return
 the character modulo N induced by chi.
Doc: Let $G$ be attached to $(\Z/q\Z)^*$ (as per \kbd{G = idealstar(,q)})
 and let \kbd{chi} be a Dirichlet character on $(\Z/q\Z)^*$, given by
 
 \item a \typ{VEC}: a standard character on \kbd{bid.gen},
 
 \item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
 Conrey logarithm;
 see \secref{se:dirichletchar} or \kbd{??character}.
 
 Let $N$ be a multiple of $q$, return the character modulo $N$ induced by
 \kbd{chi}. As usual for arithmetic functions, the new modulus $N$ can be
 given as a \typ{INT}, via a factorization matrix or a pair
 \kbd{[N, factor(N)]}, or by \kbd{idealstar(,N)}.
 
 \bprog
 ? G = idealstar(,4);
 ? chi = znconreylog(G,1); \\ trivial character mod 4
 ? zncharinduce(G, chi, 80)  \\ now mod 80
 %3 = [0, 0, 0]~
 ? zncharinduce(G, 1, 80)  \\ same using directly Conrey label
 %4 = [0, 0, 0]~
 ? G2 = idealstar(,80);
 ? zncharinduce(G, 1, G2)  \\ same
 %4 = [0, 0, 0]~
 
 ? chi = zncharinduce(G, 3, G2)  \\ induce the non-trivial character mod 4
 %5 = [1, 0, 0]~
 ? znconreyconductor(G2, chi, &chi0)
 %6 = [4, Mat([2, 2])]
 ? chi0
 %7 = [1]~
 @eprog\noindent Here is a larger example:
 \bprog
 ? G = idealstar(,126000);
 ? label = 1009;
 ? chi = znconreylog(G, label)
 %3 = [0, 0, 0, 14, 0]~
 ? N0 = znconreyconductor(G, label, &chi0)
 %4 = [125, Mat([5, 3])]
 ? chi0 \\ primitive character mod 5^3 attached to chi
 %5 = [14]~
 ? G0 = idealstar(,N0);
 ? zncharinduce(G0, chi0, G) \\ induce back
 %7 = [0, 0, 0, 14, 0]~
 ? znconreyexp(G, %)
 %8 = 1009
 @eprog

Function: zncharisodd
Class: basic
Section: number_theoretical
C-Name: zncharisodd
Prototype: lGG
Help: zncharisodd(G, chi): let G be idealstar(,N), let chi
 be a Dirichlet character mod N, return 1 if and only if chi(-1) = -1
 and 0 otherwise.
Doc: Let $G$ be attached to $(\Z/N\Z)^*$ (as per \kbd{G = idealstar(,N)})
 and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^*$, given by
 
 \item a \typ{VEC}: a standard character on \kbd{bid.gen},
 
 \item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
 Conrey logarithm;
 see \secref{se:dirichletchar} or \kbd{??character}.
 
 Return $1$ if and only if \kbd{chi}$(-1) = -1$ and $0$ otherwise.
 
 \bprog
 ? G = idealstar(,8);
 ? zncharisodd(G, 1)  \\ trivial character
 %2 = 0
 ? zncharisodd(G, 3)
 %3 = 1
 ? chareval(G, 3, -1)
 %4 = 1/2
 @eprog

Function: znchartokronecker
Class: basic
Section: number_theoretical
C-Name: znchartokronecker
Prototype: GGD0,L,
Help: znchartokronecker(G, chi, {flag=0}): let G be idealstar(,N), let chi
 be a Dirichlet character mod N, return the discriminant D if chi is
 real equal to the Kronecker symbol (D/.) and 0 otherwise. If flag
 is set, return the fundamental discriminant attached to the corresponding
 primitive character.
Doc: Let $G$ be attached to $(\Z/N\Z)^*$ (as per \kbd{G = idealstar(,N)})
 and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^*$, given by
 
 \item a \typ{VEC}: a standard character on \kbd{bid.gen},
 
 \item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
 Conrey logarithm;
 see \secref{se:dirichletchar} or \kbd{??character}.
 
 If $\fl = 0$, return the discriminant $D$ if \kbd{chi} is real equal to the
 Kronecker symbol $(D/.)$ and $0$ otherwise. The discriminant $D$ is
 fundamental if and only if \kbd{chi} is primitive.
 
 If $\fl = 1$, return the fundamental discriminant attached to the
 corresponding primitive character.
 
 \bprog
 ? G = idealstar(,8); CHARS = [1,3,5,7]; \\ Conrey labels
 ? apply(t->znchartokronecker(G,t), CHARS)
 %2 = [4, -8, 8, -4]
 ? apply(t->znchartokronecker(G,t,1), CHARS)
 %3 = [1, -8, 8, -4]
 @eprog

Function: znconreychar
Class: basic
Section: number_theoretical
C-Name: znconreychar
Prototype: GG
Help: znconreychar(bid,m): Dirichlet character attached to m in (Z/qZ)*
 in Conrey's notation, where bid is idealstar(,q).
Doc: Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
 \kbd{bid = idealstar(,q)}), this function returns the Dirichlet character
 attached to $m \in (\Z/q\Z)^*$ via Conrey's logarithm, which
 establishes a ``canonical'' bijection between $(\Z/q\Z)^*$ and its dual.
 
 Let $q = \prod_p p^{e_p}$ be the factorization of $q$ into distinct primes.
 For all odd  $p$ with $e_p > 0$, let $g_p$ be the element in $(\Z/q\Z)^*$
 which is
 
 \item congruent to $1$ mod $q/p^{e_p}$,
 
 \item congruent mod $p^{e_p}$ to the smallest integer whose order
 is $\phi(p^{e_p})$.
 
 For $p = 2$, we let $g_4$ (if $2^{e_2} \geq 4$) and $g_8$ (if furthermore
 ($2^{e_2} \geq 8$) be the elements in $(\Z/q\Z)^*$ which
 are
 
 \item congruent to $1$ mod $q/2^{e_2}$,
 
 \item $g_4 = -1 \mod 2^{e_2}$,
 
 \item $g_8 = 5 \mod 2^{e_2}$.
 
 Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2}\geq 2$) are
 independent
 generators of $(\Z/q\Z)^*$, i.e. every $m$ in $(\Z/q\Z)^*$ can be written
 uniquely as $\prod_p g_p^{m_p}$, where $m_p$ is defined modulo the order
 $o_p$ of $g_p$
 and $p \in S_q$, the set of prime divisors of $q$ together with $4$
 if $4 \mid q$ and $8$ if $8 \mid q$. Note that the $g_p$ are in general
 \emph{not} SNF
 generators as produced by \kbd{znstar} or \kbd{idealstar} whenever
 $\omega(q) \geq 2$, although their number is the same. They however allow
 to handle the finite abelian group $(\Z/q\Z)^*$ in a fast and elegant
 way. (Which unfortunately does not generalize to ray class groups or Hecke
 characters.)
 
 The Conrey logarithm of $m$ is the vector $(m_p)_{p\in S_q}$, obtained
 via \tet{znconreylog}. The Conrey character $\chi_q(m,\cdot)$  attached to
 $m$ mod $q$ maps
 each $g_p$, $p\in S_q$ to $e(m_p / o_p)$, where $e(x) = \exp(2i\pi x)$.
 This function returns the Conrey character expressed in the standard PARI
 way in terms of the SNF generators \kbd{bid.gen}.
 
 \misctitle{Note} It is useless to include the generators
 in the \var{bid}, except for debugging purposes: they are well defined from
 elementary matrix operations and Chinese remaindering, their explicit value
 as elements in $(\Z/q\Z)^*$ is never used.
 
 \bprog
 ? G = idealstar(,8,2); /*add generators for debugging:*/
 ? G.cyc
 %2 = [2, 2]  \\ Z/2 x Z/2
 ? G.gen
 %3 = [7, 3]
 ? znconreychar(G,1)  \\ 1 is always the trivial character
 %4 = [0, 0]
 ? znconreychar(G,2)  \\ 2 is not coprime to 8 !!!
   ***   at top-level: znconreychar(G,2)
   ***                 ^-----------------
   *** znconreychar: elements not coprime in Zideallog:
     2
     8
   ***   Break loop: type 'break' to go back to GP prompt
 break>
 
 ? znconreychar(G,3)
 %5 = [0, 1]
 ? znconreychar(G,5)
 %6 = [1, 1]
 ? znconreychar(G,7)
 %7 = [1, 0]
 @eprog\noindent We indeed get all 4 characters of $(\Z/8\Z)^*$.
 
 For convenience, we allow to input the \emph{Conrey logarithm} of $m$
 instead of $m$:
 \bprog
 ? G = idealstar(,55);
 ? znconreychar(G,7)
 %2 = [7, 0]
 ? znconreychar(G, znconreylog(G,7))
 %3 = [7, 0]
 @eprog

Function: znconreyconductor
Class: basic
Section: number_theoretical
C-Name: znconreyconductor
Prototype: GGD&
Help: znconreyconductor(bid,chi, {&chi0}): let bid be idealstar(,q) and chi
 be a Dirichlet character on (Z/qZ)* given by its Conrey logarithm. Return
 the conductor of chi, and set chi0 to (the Conrey logarithm of) the
 attached primitive character. If chi0 != chi, return the conductor
 and its factorization.
Doc: Let \var{bid} be attached to $(\Z/q\Z)^*$ (as per
 \kbd{bid = idealstar(,q)}) and \kbd{chi} be a Dirichlet character on
 $(\Z/q\Z)^*$, given by
 
 \item a \typ{VEC}: a standard character on \kbd{bid.gen},
 
 \item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
 Conrey logarithm;
 see \secref{se:dirichletchar} or \kbd{??character}.
 
 Return the conductor of \kbd{chi}, as the \typ{INT} \kbd{bid.mod}
 if \kbd{chi} is primitive, and as a pair \kbd{[N, faN]} (with \kbd{faN} the
 factorization of $N$) otherwise.
 
 If \kbd{chi0} is present, set it to the Conrey logarithm of the attached
 primitive character.
 
 \bprog
 ? G = idealstar(,126000);
 ? znconreyconductor(G,11)   \\ primitive
 %2 = 126000
 ? znconreyconductor(G,1)    \\ trivial character, not primitive!
 %3 = [1, matrix(0,2)]
 ? N0 = znconreyconductor(G,1009, &chi0) \\ character mod 5^3
 %4 = [125, Mat([5, 3])]
 ? chi0
 %5 = [14]~
 ? G0 = idealstar(,N0);      \\ format [N,factor(N)] accepted
 ? znconreyexp(G0, chi0)
 %7 = 9
 ? znconreyconductor(G0, chi0) \\ now primitive, as expected
 %8 = 125
 @eprog\noindent The group \kbd{G0} is not computed as part of
 \kbd{znconreyconductor} because it needs to be computed only once per
 conductor, not once per character.

Function: znconreyexp
Class: basic
Section: number_theoretical
C-Name: znconreyexp
Prototype: GG
Help: znconreyexp(bid, chi): Conrey exponential attached to bid =
 idealstar(,q). Returns the element m in (Z/qZ)^* attached to the character
 chi on bid: znconreylog(bid, m) = chi.
Doc: Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
 \kbd{bid = idealstar(,q)}), this function returns the Conrey exponential of
 the character \var{chi}: it returns the integer
 $m \in (\Z/q\Z)^*$ such that \kbd{znconreylog(\var{bid}, $m$)} is \var{chi}.
 
 The character \var{chi} is given either as a
 
 \item \typ{VEC}: in terms of the generators \kbd{\var{bid}.gen};
 
 \item \typ{COL}: a Conrey logarithm.
 
 \bprog
 ? G = idealstar(,126000)
 ? znconreylog(G,1)
 %2 = [0, 0, 0, 0, 0]~
 ? znconreyexp(G,%)
 %3 = 1
 ? G.cyc \\ SNF generators
 %4 = [300, 12, 2, 2, 2]
 ? chi = [100, 1, 0, 1, 0]; \\ some random character on SNF generators
 ? znconreylog(G, chi)  \\ in terms of Conrey generators
 %6 = [0, 3, 3, 0, 2]~
 ? znconreyexp(G, %)  \\ apply to a Conrey log
 %7 = 18251
 ? znconreyexp(G, chi) \\ ... or a char on SNF generators
 %8 = 18251
 ? znconreychar(G,%)
 %9 = [100, 1, 0, 1, 0]
 @eprog

Function: znconreylog
Class: basic
Section: number_theoretical
C-Name: znconreylog
Prototype: GG
Help: znconreylog(bid,m): Conrey logarithm attached to m in (Z/qZ)*,
 where bid is idealstar(,q).
Doc: Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
 \kbd{bid = idealstar(,q)}), this function returns the Conrey logarithm of
 $m \in (\Z/q\Z)^*$.
 
 Let $q = \prod_p p^{e_p}$ be the factorization of $q$ into distinct primes,
 where we assume $e_2 = 0$ or $e_2 \geq 2$. (If $e_2 = 1$, we can ignore $2$
 from the factorization, as if we replaced $q$ by $q/2$, since $(\Z/q\Z)^*
 \sim (\Z/(q/2)\Z)^*$.)
 
 For all odd  $p$ with $e_p > 0$, let $g_p$ be the element in $(\Z/q\Z)^*$
 which is
 
 \item congruent to $1$ mod $q/p^{e_p}$,
 
 \item congruent mod $p^{e_p}$ to the smallest integer whose order
 is $\phi(p^{e_p})$ for $p$ odd,
 
 For $p = 2$, we let $g_4$ (if $2^{e_2} \geq 4$) and $g_8$ (if furthermore
 ($2^{e_2} \geq 8$) be the elements in $(\Z/q\Z)^*$ which
 are
 
 \item congruent to $1$ mod $q/2^{e_2}$,
 
 \item $g_4 = -1 \mod 2^{e_2}$,
 
 \item $g_8 = 5 \mod 2^{e_2}$.
 
 Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2}\geq 2$) are
 independent
 generators of $\Z/q\Z^*$, i.e. every $m$ in $(\Z/q\Z)^*$ can be written
 uniquely as $\prod_p g_p^{m_p}$, where $m_p$ is defined modulo the
 order $o_p$ of $g_p$
 and $p \in S_q$, the set of prime divisors of $q$ together with $4$
 if $4 \mid q$ and $8$ if $8 \mid q$.
 Note that the $g_p$ are in general \emph{not} SNF
 generators as produced by \kbd{znstar} or \kbd{idealstar} whenever
 $\omega(q) \geq 2$, although their number is the same. They however allow
 to handle the finite abelian group $(\Z/q\Z)^*$ in a fast and elegant
 way. (Which unfortunately does not generalize to ray class groups or Hecke
 characters.)
 
 The Conrey logarithm of $m$ is the vector $(m_p)_{p\in S_q}$. The inverse
 function \tet{znconreyexp} recovers the Conrey label $m$ from a character.
 
 \bprog
 ? G = idealstar(,126000);
 ? znconreylog(G,1)
 %2 = [0, 0, 0, 0, 0]~
 ? znconreyexp(G, %)
 %3 = 1
 ? znconreylog(G,2)  \\ 2 is not coprime to modulus !!!
   ***   at top-level: znconreylog(G,2)
   ***                 ^-----------------
   *** znconreylog: elements not coprime in Zideallog:
     2
     126000
   ***   Break loop: type 'break' to go back to GP prompt
 break>
 ? znconreylog(G,11) \\ wrt. Conrey generators
 %4 = [0, 3, 1, 76, 4]~
 ? log11 = ideallog(,11,G)   \\ wrt. SNF generators
 %5 = [178, 3, -75, 1, 0]~
 @eprog\noindent
 
 For convenience, we allow to input the ordinary discrete log of $m$,
 $\kbd{ideallog(,m,bid)}$, which allows to convert discrete logs
 from \kbd{bid.gen} generators to Conrey generators.
 \bprog
 ? znconreylog(G, log11)
 %7 = [0, 3, 1, 76, 4]~
 @eprog\noindent We also allow a character (\typ{VEC}) on \kbd{bid.gen} and
 return its representation on the Conrey generators.
 \bprog
 ? G.cyc
 %8 = [300, 12, 2, 2, 2]
 ? chi = [10,1,0,1,1];
 ? znconreylog(G, chi)
 %10 = [1, 3, 3, 10, 2]~
 ? n = znconreyexp(G, chi)
 %11 = 84149
 ? znconreychar(G, n)
 %12 = [10, 1, 0, 1, 1]
 @eprog

Function: zncoppersmith
Class: basic
Section: number_theoretical
C-Name: zncoppersmith
Prototype: GGGDG
Help: zncoppersmith(P, N, X, {B=N}): finds all integers x
 with |x| <= X such that  gcd(N, P(x)) >= B. X should be smaller than
 exp((log B)^2 / (deg(P) log N)).
Doc: $N$ being an integer and $P\in \Z[X]$, finds all integers $x$ with
 $|x| \leq X$ such that
 $$\gcd(N, P(x)) \geq B,$$
 using \idx{Coppersmith}'s algorithm (a famous application of the \idx{LLL}
 algorithm). $X$ must be smaller than $\exp(\log^2 B / (\deg(P) \log N))$:
 for $B = N$, this means $X < N^{1/\deg(P)}$. Some $x$ larger than $X$ may
 be returned if you are very lucky. The smaller $B$ (or the larger $X$), the
 slower the routine will be. The strength of Coppersmith method is the
 ability to find roots modulo a general \emph{composite} $N$: if $N$ is a prime
 or a prime power, \tet{polrootsmod} or \tet{polrootspadic} will be much
 faster.
 
 We shall now present two simple applications. The first one is
 finding non-trivial factors of $N$, given some partial information on the
 factors; in that case $B$ must obviously be smaller than the largest
 non-trivial divisor of $N$.
 \bprog
 setrand(1); \\ to make the example reproducible
 interval = [10^30, 10^31];
 p = randomprime(interval);
 q = randomprime(interval); N = p*q;
 p0 = p % 10^20; \\ assume we know 1) p > 10^29, 2) the last 19 digits of p
 L = zncoppersmith(10^19*x + p0, N, 10^12, 10^29)
 
 \\ result in 10ms.
 %6 = [738281386540]
 ? gcd(L[1] * 10^19 + p0, N) == p
 %7 = 1
 @eprog\noindent and we recovered $p$, faster than by trying all
 possibilities $ < 10^{12}$.
 
 The second application is an attack on RSA with low exponent, when the
 message $x$ is short and the padding $P$ is known to the attacker. We use
 the same RSA modulus $N$ as in the first example:
 \bprog
 setrand(1);
 P = random(N);    \\ known padding
 e = 3;            \\ small public encryption exponent
 X = floor(N^0.3); \\ N^(1/e - epsilon)
 x0 = random(X);   \\ unknown short message
 C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
 zncoppersmith((P + x)^3 - C, N, X)
 
 \\ result in 244ms.
 %14 = [2679982004001230401]
 
 ? %[1] == x0
 %15 = 1
 @eprog\noindent
 We guessed an integer of the order of $10^{18}$, almost instantly.

Function: znlog
Class: basic
Section: number_theoretical
C-Name: znlog0
Prototype: GGDG
Help: znlog(x,g,{o}): return the discrete logarithm of x in
 (Z/nZ)* in base g. If present, o represents the multiplicative
 order of g. Return [] if no solution exist.
Doc: This functions allows two distinct modes of operation depending
 on $g$:
 
 \item if $g$ is the output of \tet{znstar} (with initialization),
 we compute the discrete logarithm of $x$ with respect to the generators
 contained in the structure. See \tet{ideallog} for details.
 
 \item else $g$ is an explicit element in $(\Z/N\Z)^*$, we compute the
 discrete logarithm of $x$ in $(\Z/N\Z)^*$ in base $g$. The rest of this
 entry describes the latter possibility.
 
 The result is $[]$ when $x$ is not a power of $g$, though the function may
 also enter an infinite loop in this case.
 
 If present, $o$ represents the multiplicative order of $g$, see
 \secref{se:DLfun}; the preferred format for this parameter is
 \kbd{[ord, factor(ord)]}, where \kbd{ord} is the order of $g$.
 This provides a definite speedup when the discrete log problem is simple:
 \bprog
 ? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];
 ? for(i=1,10^4, znlog(i, g, o))
 time = 205 ms.
 ? for(i=1,10^4, znlog(i, g))
 time = 244 ms. \\ a little slower
 @eprog
 
 The result is undefined if $g$ is not invertible mod $N$ or if the supplied
 order is incorrect.
 
 This function uses
 
 \item a combination of generic discrete log algorithms (see below).
 
 \item in $(\Z/N\Z)^*$ when $N$ is prime: a linear sieve index calculus
 method, suitable for $N < 10^{50}$, say, is used for large prime divisors of
 the order.
 
 The generic discrete log algorithms are:
 
 \item Pohlig-Hellman algorithm, to reduce to groups of prime order $q$,
 where $q | p-1$ and $p$ is an odd prime divisor of $N$,
 
 \item Shanks baby-step/giant-step ($q < 2^{32}$ is small),
 
 \item Pollard rho method ($q > 2^{32}$).
 
 The latter two algorithms require $O(\sqrt{q})$ operations in the group on
 average, hence will not be able to treat cases where $q > 10^{30}$, say.
 In addition, Pollard rho is not able to handle the case where there are no
 solutions: it will enter an infinite loop.
 \bprog
 ? g = znprimroot(101)
 %1 = Mod(2,101)
 ? znlog(5, g)
 %2 = 24
 ? g^24
 %3 = Mod(5, 101)
 
 ? G = znprimroot(2 * 101^10)
 %4 = Mod(110462212541120451003, 220924425082240902002)
 ? znlog(5, G)
 %5 = 76210072736547066624
 ? G^% == 5
 %6 = 1
 ? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)
 %7 = 110
 ? znlog(6, Mod(2,3))  \\ no solution
 %8 = []
 @eprog\noindent For convenience, $g$ is also allowed to be a $p$-adic number:
 \bprog
 ? g = 3+O(5^10); znlog(2, g)
 %1 = 1015243
 ? g^%
 %2 = 2 + O(5^10)
 @eprog
Variant: The function
 \fun{GEN}{znlog}{GEN x, GEN g, GEN o} is also available

Function: znorder
Class: basic
Section: number_theoretical
C-Name: znorder
Prototype: GDG
Help: znorder(x,{o}): order of the integermod x in (Z/nZ)*.
 Optional o represents a multiple of the order of the element.
Description: 
 (gen):int             order($1)
 (gen,):int            order($1)
 (gen,int):int         znorder($1, $2)
Doc: $x$ must be an integer mod $n$, and the
 result is the order of $x$ in the multiplicative group $(\Z/n\Z)^*$. Returns
 an error if $x$ is not invertible.
 The parameter o, if present, represents a non-zero
 multiple of the order of $x$, see \secref{se:DLfun}; the preferred format for
 this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord = eulerphi(n)}
 is the cardinality of the group.
Variant: Also available is \fun{GEN}{order}{GEN x}.

Function: znprimroot
Class: basic
Section: number_theoretical
C-Name: znprimroot
Prototype: G
Help: znprimroot(n): returns a primitive root of n when it exists.
Doc: returns a primitive root (generator) of $(\Z/n\Z)^*$, whenever this
 latter group is cyclic ($n = 4$ or $n = 2p^k$ or $n = p^k$, where $p$ is an
 odd prime and $k \geq 0$). If the group is not cyclic, the result is
 undefined. If $n$ is a prime power, then the smallest positive primitive
 root is returned. This may not be true for $n = 2p^k$, $p$ odd.
 
 Note that this function requires factoring $p-1$ for $p$ as above,
 in order to determine the exact order of elements in
 $(\Z/n\Z)^*$: this is likely to be costly if $p$ is large.

Function: znstar
Class: basic
Section: number_theoretical
C-Name: znstar0
Prototype: GD0,L,
Help: znstar(n,{flag=0}): 3-component vector v = [no,cyc,gen], giving the
 structure of the abelian group (Z/nZ)^*;
 no is the order (i.e. eulerphi(n)), cyc is a vector of cyclic components,
 and gen is a vector giving the corresponding generators.
Doc: gives the structure of the multiplicative group $(\Z/n\Z)^*$.
 The output $G$ depends on the value of \fl:
 
 \item $\fl = 0$ (default), an abelian group structure $[h,d,g]$,
 where $h = \phi(n)$ is the order (\kbd{G.no}), $d$ (\kbd{G.cyc})
 is a $k$-component row-vector $d$ of integers $d_i$ such that $d_i>1$,
 $d_i \mid d_{i-1}$ for $i \ge 2$ and
 $$ (\Z/n\Z)^* \simeq \prod_{i=1}^k (\Z/d_i\Z), $$
 and $g$ (\kbd{G.gen}) is a $k$-component row vector giving generators of
 the image of the cyclic groups $\Z/d_i\Z$.
 
 \item $\fl = 1$ the result is a \kbd{bid} structure without generators
 (which are well defined but not explicitly computed, which saves time);
 this allows computing discrite logarithms using \tet{znlog} (also in the
 non-cyclic case!).
 
 \item $\fl = 2$ same as $\fl = 1$ with generators.
 
 \bprog
 ? G = znstar(40)
 %1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]
 ? G.no   \\ eulerphi(40)
 %2 = 16
 ? G.cyc  \\ cycle structure
 %3 = [4, 2, 2]
 ? G.gen  \\ generators for the cyclic components
 %4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]
 ? apply(znorder, G.gen)
 %5 = [4, 2, 2]
 @eprog\noindent According to the above definitions, \kbd{znstar(0)} is
 \kbd{[2, [2], [-1]]}, corresponding to $\Z^*$.
Variant: Instead the above hardcoded numerical flags, one should rather use
 \fun{GEN}{ZNstar}{GEN N, long flag}, where \kbd{flag} is
 an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
 (return a full \kbd{bid}, not a group), possibly $0$. This offers
 one more combination: no gen and no init.