This file is indexed.

/usr/share/doc/glibc-doc/html/libc_22.html is in glibc-doc 2.15-0ubuntu10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- This file documents the GNU C library.

This is Edition 0.13, last updated 2011-07-19,
of The GNU C Library Reference Manual, for version
2.14 (Ubuntu EGLIBC 2.15-0ubuntu10) .

Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2001, 2002,
2003, 2007, 2008, 2010, 2011 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Free Software Needs Free Documentation"
and "GNU Lesser General Public License", the Front-Cover texts being
"A GNU Manual", and with the Back-Cover Texts as in (a) below.  A
copy of the license is included in the section entitled "GNU Free
Documentation License".

(a) The FSF's Back-Cover Text is: "You have the freedom to
copy and modify this GNU manual.  Buying copies from the FSF
supports it in developing GNU and promoting software freedom."
 -->
<!-- Created on April 20, 2012 by texi2html 1.82
texi2html was written by: 
            Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people.
Send bugs and suggestions to <texi2html-bug@nongnu.org>
-->
<head>
<title>The GNU C Library: 22. Resource Usage And Limitation</title>

<meta name="description" content="The GNU C Library: 22. Resource Usage And Limitation">
<meta name="keywords" content="The GNU C Library: 22. Resource Usage And Limitation">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.82">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.roman {font-family:serif; font-weight:normal;}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Resource-Usage-And-Limitation"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="libc_21.html#Sleeping" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Resource-Usage" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc_21.html#Date-and-Time" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Resource-Usage-And-Limitation-1"></a>
<h1 class="chapter">22. Resource Usage And Limitation</h1>
<p>This chapter describes functions for examining how much of various kinds of
resources (CPU time, memory, etc.) a process has used and getting and setting
limits on future usage.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Resource-Usage">22.1 Resource Usage</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">		Measuring various resources used.
</td></tr>
<tr><td align="left" valign="top"><a href="#Limits-on-Resources">22.2 Limiting Resource Usage</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">		Specifying limits on resource usage.
</td></tr>
<tr><td align="left" valign="top"><a href="#Priority">22.3 Process CPU Priority And Scheduling</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">			Reading or setting process run priority.
</td></tr>
<tr><td align="left" valign="top"><a href="#Memory-Resources">22.4 Querying memory available resources</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Processor-Resources">22.5 Learn about the processors available</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
</table>


<hr size="6">
<a name="Resource-Usage"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Limits-on-Resources" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Resource-Usage-1"></a>
<h2 class="section">22.1 Resource Usage</h2>

<a name="index-sys_002fresource_002eh"></a>
<p>The function <code>getrusage</code> and the data type <code>struct rusage</code>
are used to examine the resource usage of a process.  They are declared
in &lsquo;<tt>sys/resource.h</tt>&rsquo;.
</p>
<dl>
<dt><a name="index-getrusage"></a><u>Function:</u> int <b>getrusage</b><i> (int <var>processes</var>, struct rusage *<var>rusage</var>)</i></dt>
<dd><p>This function reports resource usage totals for processes specified by
<var>processes</var>, storing the information in <code>*<var>rusage</var></code>.
</p>
<p>In most systems, <var>processes</var> has only two valid values:
</p>
<dl compact="compact">
<dt> <code>RUSAGE_SELF</code></dt>
<dd><p>Just the current process.
</p>
</dd>
<dt> <code>RUSAGE_CHILDREN</code></dt>
<dd><p>All child processes (direct and indirect) that have already terminated.
</p></dd>
</dl>

<p>In the GNU system, you can also inquire about a particular child process
by specifying its process ID.
</p>
<p>The return value of <code>getrusage</code> is zero for success, and <code>-1</code>
for failure.
</p>
<dl compact="compact">
<dt> <code>EINVAL</code></dt>
<dd><p>The argument <var>processes</var> is not valid.
</p></dd>
</dl>
</dd></dl>

<p>One way of getting resource usage for a particular child process is with
the function <code>wait4</code>, which returns totals for a child when it
terminates.  See section <a href="libc_26.html#BSD-Wait-Functions">BSD Process Wait Functions</a>.
</p>
<dl>
<dt><a name="index-struct-rusage"></a><u>Data Type:</u> <b>struct rusage</b></dt>
<dd><p>This data type stores various resource usage statistics.  It has the
following members, and possibly others:
</p>
<dl compact="compact">
<dt> <code>struct timeval ru_utime</code></dt>
<dd><p>Time spent executing user instructions.
</p>
</dd>
<dt> <code>struct timeval ru_stime</code></dt>
<dd><p>Time spent in operating system code on behalf of <var>processes</var>.
</p>
</dd>
<dt> <code>long int ru_maxrss</code></dt>
<dd><p>The maximum resident set size used, in kilobytes.  That is, the maximum
number of kilobytes of physical memory that <var>processes</var> used
simultaneously.
</p>
</dd>
<dt> <code>long int ru_ixrss</code></dt>
<dd><p>An integral value expressed in kilobytes times ticks of execution, which
indicates the amount of memory used by text that was shared with other
processes.
</p>
</dd>
<dt> <code>long int ru_idrss</code></dt>
<dd><p>An integral value expressed the same way, which is the amount of
unshared memory used for data.
</p>
</dd>
<dt> <code>long int ru_isrss</code></dt>
<dd><p>An integral value expressed the same way, which is the amount of
unshared memory used for stack space.
</p>
</dd>
<dt> <code>long int ru_minflt</code></dt>
<dd><p>The number of page faults which were serviced without requiring any I/O.
</p>
</dd>
<dt> <code>long int ru_majflt</code></dt>
<dd><p>The number of page faults which were serviced by doing I/O.
</p>
</dd>
<dt> <code>long int ru_nswap</code></dt>
<dd><p>The number of times <var>processes</var> was swapped entirely out of main memory.
</p>
</dd>
<dt> <code>long int ru_inblock</code></dt>
<dd><p>The number of times the file system had to read from the disk on behalf
of <var>processes</var>.
</p>
</dd>
<dt> <code>long int ru_oublock</code></dt>
<dd><p>The number of times the file system had to write to the disk on behalf
of <var>processes</var>.
</p>
</dd>
<dt> <code>long int ru_msgsnd</code></dt>
<dd><p>Number of IPC messages sent.
</p>
</dd>
<dt> <code>long int ru_msgrcv</code></dt>
<dd><p>Number of IPC messages received.
</p>
</dd>
<dt> <code>long int ru_nsignals</code></dt>
<dd><p>Number of signals received.
</p>
</dd>
<dt> <code>long int ru_nvcsw</code></dt>
<dd><p>The number of times <var>processes</var> voluntarily invoked a context switch
(usually to wait for some service).
</p>
</dd>
<dt> <code>long int ru_nivcsw</code></dt>
<dd><p>The number of times an involuntary context switch took place (because
a time slice expired, or another process of higher priority was
scheduled).
</p></dd>
</dl>
</dd></dl>

<p><code>vtimes</code> is a historical function that does some of what
<code>getrusage</code> does.  <code>getrusage</code> is a better choice.
</p>
<p><code>vtimes</code> and its <code>vtimes</code> data structure are declared in
&lsquo;<tt>sys/vtimes.h</tt>&rsquo;.
<a name="index-sys_002fvtimes_002eh"></a>
</p>
<dl>
<dt><a name="index-vtimes"></a><u>Function:</u> int <b>vtimes</b><i> (struct vtimes <var>current</var>, struct vtimes <var>child</var>)</i></dt>
<dd>
<p><code>vtimes</code> reports resource usage totals for a process.
</p>
<p>If <var>current</var> is non-null, <code>vtimes</code> stores resource usage totals for
the invoking process alone in the structure to which it points.  If
<var>child</var> is non-null, <code>vtimes</code> stores resource usage totals for all
past children (which have terminated) of the invoking process in the structure
to which it points.
</p>
<dl>
<dt><a name="index-struct-vtimes"></a><u>Data Type:</u> <b>struct vtimes</b></dt>
<dd><p>This data type contains information about the resource usage of a process.
Each member corresponds to a member of the <code>struct rusage</code> data type
described above.
</p>
<dl compact="compact">
<dt> <code>vm_utime</code></dt>
<dd><p>User CPU time.  Analogous to <code>ru_utime</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_stime</code></dt>
<dd><p>System CPU time.  Analogous to <code>ru_stime</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_idsrss</code></dt>
<dd><p>Data and stack memory.  The sum of the values that would be reported as
<code>ru_idrss</code> and <code>ru_isrss</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_ixrss</code></dt>
<dd><p>Shared memory.  Analogous to <code>ru_ixrss</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_maxrss</code></dt>
<dd><p>Maximent resident set size.  Analogous to <code>ru_maxrss</code> in
<code>struct rusage</code>
</p></dd>
<dt> <code>vm_majflt</code></dt>
<dd><p>Major page faults.  Analogous to <code>ru_majflt</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_minflt</code></dt>
<dd><p>Minor page faults.  Analogous to <code>ru_minflt</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_nswap</code></dt>
<dd><p>Swap count.  Analogous to <code>ru_nswap</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_inblk</code></dt>
<dd><p>Disk reads.  Analogous to <code>ru_inblk</code> in <code>struct rusage</code>
</p></dd>
<dt> <code>vm_oublk</code></dt>
<dd><p>Disk writes.  Analogous to <code>ru_oublk</code> in <code>struct rusage</code>
</p></dd>
</dl>
</dd></dl>


<p>The return value is zero if the function succeeds; <code>-1</code> otherwise.
</p>


</dd></dl>
<p>An additional historical function for examining resource usage,
<code>vtimes</code>, is supported but not documented here.  It is declared in
&lsquo;<tt>sys/vtimes.h</tt>&rsquo;.
</p>
<hr size="6">
<a name="Limits-on-Resources"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Resource-Usage" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Priority" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Limiting-Resource-Usage"></a>
<h2 class="section">22.2 Limiting Resource Usage</h2>
<a name="index-resource-limits"></a>
<a name="index-limits-on-resource-usage"></a>
<a name="index-usage-limits"></a>

<p>You can specify limits for the resource usage of a process.  When the
process tries to exceed a limit, it may get a signal, or the system call
by which it tried to do so may fail, depending on the resource.  Each
process initially inherits its limit values from its parent, but it can
subsequently change them.
</p>
<p>There are two per-process limits associated with a resource:
<a name="index-limit"></a>
</p>
<dl compact="compact">
<dt> <em>current limit</em></dt>
<dd><p>The current limit is the value the system will not allow usage to
exceed.  It is also called the &ldquo;soft limit&rdquo; because the process being
limited can generally raise the current limit at will.
<a name="index-current-limit"></a>
<a name="index-soft-limit"></a>
</p>
</dd>
<dt> <em>maximum limit</em></dt>
<dd><p>The maximum limit is the maximum value to which a process is allowed to
set its current limit.  It is also called the &ldquo;hard limit&rdquo; because
there is no way for a process to get around it.  A process may lower
its own maximum limit, but only the superuser may increase a maximum
limit.
<a name="index-maximum-limit"></a>
<a name="index-hard-limit"></a>
</p></dd>
</dl>

<a name="index-sys_002fresource_002eh-1"></a>
<p>The symbols for use with <code>getrlimit</code>, <code>setrlimit</code>,
<code>getrlimit64</code>, and <code>setrlimit64</code> are defined in
&lsquo;<tt>sys/resource.h</tt>&rsquo;.
</p>
<dl>
<dt><a name="index-getrlimit"></a><u>Function:</u> int <b>getrlimit</b><i> (int <var>resource</var>, struct rlimit *<var>rlp</var>)</i></dt>
<dd><p>Read the current and maximum limits for the resource <var>resource</var>
and store them in <code>*<var>rlp</var></code>.
</p>
<p>The return value is <code>0</code> on success and <code>-1</code> on failure.  The
only possible <code>errno</code> error condition is <code>EFAULT</code>.
</p>
<p>When the sources are compiled with <code>_FILE_OFFSET_BITS == 64</code> on a
32-bit system this function is in fact <code>getrlimit64</code>.  Thus, the
LFS interface transparently replaces the old interface.
</p></dd></dl>

<dl>
<dt><a name="index-getrlimit64"></a><u>Function:</u> int <b>getrlimit64</b><i> (int <var>resource</var>, struct rlimit64 *<var>rlp</var>)</i></dt>
<dd><p>This function is similar to <code>getrlimit</code> but its second parameter is
a pointer to a variable of type <code>struct rlimit64</code>, which allows it
to read values which wouldn&rsquo;t fit in the member of a <code>struct
rlimit</code>.
</p>
<p>If the sources are compiled with <code>_FILE_OFFSET_BITS == 64</code> on a
32-bit machine, this function is available under the name
<code>getrlimit</code> and so transparently replaces the old interface.
</p></dd></dl>

<dl>
<dt><a name="index-setrlimit"></a><u>Function:</u> int <b>setrlimit</b><i> (int <var>resource</var>, const struct rlimit *<var>rlp</var>)</i></dt>
<dd><p>Store the current and maximum limits for the resource <var>resource</var>
in <code>*<var>rlp</var></code>.
</p>
<p>The return value is <code>0</code> on success and <code>-1</code> on failure.  The
following <code>errno</code> error condition is possible:
</p>
<dl compact="compact">
<dt> <code>EPERM</code></dt>
<dd><ul>
<li>
The process tried to raise a current limit beyond the maximum limit.

</li><li>
The process tried to raise a maximum limit, but is not superuser.
</li></ul>
</dd>
</dl>

<p>When the sources are compiled with <code>_FILE_OFFSET_BITS == 64</code> on a
32-bit system this function is in fact <code>setrlimit64</code>.  Thus, the
LFS interface transparently replaces the old interface.
</p></dd></dl>

<dl>
<dt><a name="index-setrlimit64"></a><u>Function:</u> int <b>setrlimit64</b><i> (int <var>resource</var>, const struct rlimit64 *<var>rlp</var>)</i></dt>
<dd><p>This function is similar to <code>setrlimit</code> but its second parameter is
a pointer to a variable of type <code>struct rlimit64</code> which allows it
to set values which wouldn&rsquo;t fit in the member of a <code>struct
rlimit</code>.
</p>
<p>If the sources are compiled with <code>_FILE_OFFSET_BITS == 64</code> on a
32-bit machine this function is available under the name
<code>setrlimit</code> and so transparently replaces the old interface.
</p></dd></dl>

<dl>
<dt><a name="index-struct-rlimit"></a><u>Data Type:</u> <b>struct rlimit</b></dt>
<dd><p>This structure is used with <code>getrlimit</code> to receive limit values,
and with <code>setrlimit</code> to specify limit values for a particular process
and resource.  It has two fields:
</p>
<dl compact="compact">
<dt> <code>rlim_t rlim_cur</code></dt>
<dd><p>The current limit
</p>
</dd>
<dt> <code>rlim_t rlim_max</code></dt>
<dd><p>The maximum limit.
</p></dd>
</dl>

<p>For <code>getrlimit</code>, the structure is an output; it receives the current
values.  For <code>setrlimit</code>, it specifies the new values.
</p></dd></dl>

<p>For the LFS functions a similar type is defined in &lsquo;<tt>sys/resource.h</tt>&rsquo;.
</p>
<dl>
<dt><a name="index-struct-rlimit64"></a><u>Data Type:</u> <b>struct rlimit64</b></dt>
<dd><p>This structure is analogous to the <code>rlimit</code> structure above, but
its components have wider ranges.  It has two fields:
</p>
<dl compact="compact">
<dt> <code>rlim64_t rlim_cur</code></dt>
<dd><p>This is analogous to <code>rlimit.rlim_cur</code>, but with a different type.
</p>
</dd>
<dt> <code>rlim64_t rlim_max</code></dt>
<dd><p>This is analogous to <code>rlimit.rlim_max</code>, but with a different type.
</p></dd>
</dl>

</dd></dl>

<p>Here is a list of resources for which you can specify a limit.  Memory
and file sizes are measured in bytes.
</p>
<dl compact="compact">
<dt> <code>RLIMIT_CPU</code></dt>
<dd><a name="index-RLIMIT_005fCPU"></a>
<p>The maximum amount of CPU time the process can use.  If it runs for
longer than this, it gets a signal: <code>SIGXCPU</code>.  The value is
measured in seconds.  See section <a href="libc_24.html#Operation-Error-Signals">Operation Error Signals</a>.
</p>
</dd>
<dt> <code>RLIMIT_FSIZE</code></dt>
<dd><a name="index-RLIMIT_005fFSIZE"></a>
<p>The maximum size of file the process can create.  Trying to write a
larger file causes a signal: <code>SIGXFSZ</code>.  See section <a href="libc_24.html#Operation-Error-Signals">Operation Error Signals</a>.
</p>
</dd>
<dt> <code>RLIMIT_DATA</code></dt>
<dd><a name="index-RLIMIT_005fDATA"></a>
<p>The maximum size of data memory for the process.  If the process tries
to allocate data memory beyond this amount, the allocation function
fails.
</p>
</dd>
<dt> <code>RLIMIT_STACK</code></dt>
<dd><a name="index-RLIMIT_005fSTACK"></a>
<p>The maximum stack size for the process.  If the process tries to extend
its stack past this size, it gets a <code>SIGSEGV</code> signal.
See section <a href="libc_24.html#Program-Error-Signals">Program Error Signals</a>.
</p>
</dd>
<dt> <code>RLIMIT_CORE</code></dt>
<dd><a name="index-RLIMIT_005fCORE"></a>
<p>The maximum size core file that this process can create.  If the process
terminates and would dump a core file larger than this, then no core
file is created.  So setting this limit to zero prevents core files from
ever being created.
</p>
</dd>
<dt> <code>RLIMIT_RSS</code></dt>
<dd><a name="index-RLIMIT_005fRSS"></a>
<p>The maximum amount of physical memory that this process should get.
This parameter is a guide for the system&rsquo;s scheduler and memory
allocator; the system may give the process more memory when there is a
surplus.
</p>
</dd>
<dt> <code>RLIMIT_MEMLOCK</code></dt>
<dd><p>The maximum amount of memory that can be locked into physical memory (so
it will never be paged out).
</p>
</dd>
<dt> <code>RLIMIT_NPROC</code></dt>
<dd><p>The maximum number of processes that can be created with the same user ID.
If you have reached the limit for your user ID, <code>fork</code> will fail
with <code>EAGAIN</code>.  See section <a href="libc_26.html#Creating-a-Process">Creating a Process</a>.
</p>
</dd>
<dt> <code>RLIMIT_NOFILE</code></dt>
<dd><a name="index-RLIMIT_005fNOFILE"></a>
</dd>
<dt> <code>RLIMIT_OFILE</code></dt>
<dd><a name="index-RLIMIT_005fOFILE"></a>
<p>The maximum number of files that the process can open.  If it tries to
open more files than this, its open attempt fails with <code>errno</code>
<code>EMFILE</code>.  See section <a href="libc_2.html#Error-Codes">Error Codes</a>.  Not all systems support this limit;
GNU does, and 4.4 BSD does.
</p>
</dd>
<dt> <code>RLIMIT_AS</code></dt>
<dd><a name="index-RLIMIT_005fAS"></a>
<p>The maximum size of total memory that this process should get.  If the
process tries to allocate more memory beyond this amount with, for
example, <code>brk</code>, <code>malloc</code>, <code>mmap</code> or <code>sbrk</code>, the
allocation function fails.
</p>
</dd>
<dt> <code>RLIM_NLIMITS</code></dt>
<dd><a name="index-RLIM_005fNLIMITS"></a>
<p>The number of different resource limits.  Any valid <var>resource</var>
operand must be less than <code>RLIM_NLIMITS</code>.
</p></dd>
</dl>

<dl>
<dt><a name="index-RLIM_005fINFINITY"></a><u>Constant:</u> int <b>RLIM_INFINITY</b></dt>
<dd><p>This constant stands for a value of &ldquo;infinity&rdquo; when supplied as
the limit value in <code>setrlimit</code>.
</p></dd></dl>


<p>The following are historical functions to do some of what the functions
above do.  The functions above are better choices.
</p>
<p><code>ulimit</code> and the command symbols are declared in &lsquo;<tt>ulimit.h</tt>&rsquo;.
<a name="index-ulimit_002eh"></a>
</p>
<dl>
<dt><a name="index-ulimit"></a><u>Function:</u> int <b>ulimit</b><i> (int <var>cmd</var>, ...)</i></dt>
<dd>
<p><code>ulimit</code> gets the current limit or sets the current and maximum
limit for a particular resource for the calling process according to the
command <var>cmd</var>.a
</p>
<p>If you are getting a limit, the command argument is the only argument.
If you are setting a limit, there is a second argument:
<code>long int</code> <var>limit</var> which is the value to which you are setting
the limit.
</p>
<p>The <var>cmd</var> values and the operations they specify are:
</p><dl compact="compact">
<dt> <code>GETFSIZE</code></dt>
<dd><p>Get the current limit on the size of a file, in units of 512 bytes.
</p>
</dd>
<dt> <code>SETFSIZE</code></dt>
<dd><p>Set the current and maximum limit on the size of a file to <var>limit</var> *
512 bytes.
</p>
</dd>
</dl>

<p>There are also some other <var>cmd</var> values that may do things on some
systems, but they are not supported.
</p>
<p>Only the superuser may increase a maximum limit.
</p>
<p>When you successfully get a limit, the return value of <code>ulimit</code> is
that limit, which is never negative.  When you successfully set a limit,
the return value is zero.  When the function fails, the return value is
<code>-1</code> and <code>errno</code> is set according to the reason:
</p>
<dl compact="compact">
<dt> <code>EPERM</code></dt>
<dd><p>A process tried to increase a maximum limit, but is not superuser.
</p></dd>
</dl>


</dd></dl>

<p><code>vlimit</code> and its resource symbols are declared in &lsquo;<tt>sys/vlimit.h</tt>&rsquo;.
<a name="index-sys_002fvlimit_002eh"></a>
</p>
<dl>
<dt><a name="index-vlimit"></a><u>Function:</u> int <b>vlimit</b><i> (int <var>resource</var>, int <var>limit</var>)</i></dt>
<dd>
<p><code>vlimit</code> sets the current limit for a resource for a process.
</p>
<p><var>resource</var> identifies the resource:
</p>
<dl compact="compact">
<dt> <code>LIM_CPU</code></dt>
<dd><p>Maximum CPU time.  Same as <code>RLIMIT_CPU</code> for <code>setrlimit</code>.
</p></dd>
<dt> <code>LIM_FSIZE</code></dt>
<dd><p>Maximum file size.  Same as <code>RLIMIT_FSIZE</code> for <code>setrlimit</code>.
</p></dd>
<dt> <code>LIM_DATA</code></dt>
<dd><p>Maximum data memory.  Same as <code>RLIMIT_DATA</code> for <code>setrlimit</code>.
</p></dd>
<dt> <code>LIM_STACK</code></dt>
<dd><p>Maximum stack size.  Same as <code>RLIMIT_STACK</code> for <code>setrlimit</code>.
</p></dd>
<dt> <code>LIM_CORE</code></dt>
<dd><p>Maximum core file size.  Same as <code>RLIMIT_COR</code> for <code>setrlimit</code>.
</p></dd>
<dt> <code>LIM_MAXRSS</code></dt>
<dd><p>Maximum physical memory.  Same as <code>RLIMIT_RSS</code> for <code>setrlimit</code>.
</p></dd>
</dl>

<p>The return value is zero for success, and <code>-1</code> with <code>errno</code> set
accordingly for failure:
</p>
<dl compact="compact">
<dt> <code>EPERM</code></dt>
<dd><p>The process tried to set its current limit beyond its maximum limit.
</p></dd>
</dl>

</dd></dl>

<hr size="6">
<a name="Priority"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Limits-on-Resources" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Absolute-Priority" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Process-CPU-Priority-And-Scheduling"></a>
<h2 class="section">22.3 Process CPU Priority And Scheduling</h2>
<a name="index-process-priority"></a>
<a name="index-cpu-priority"></a>
<a name="index-priority-of-a-process"></a>

<p>When multiple processes simultaneously require CPU time, the system&rsquo;s
scheduling policy and process CPU priorities determine which processes
get it.  This section describes how that determination is made and
GNU C library functions to control it.
</p>
<p>It is common to refer to CPU scheduling simply as scheduling and a
process&rsquo; CPU priority simply as the process&rsquo; priority, with the CPU
resource being implied.  Bear in mind, though, that CPU time is not the
only resource a process uses or that processes contend for.  In some
cases, it is not even particularly important.  Giving a process a high
&ldquo;priority&rdquo; may have very little effect on how fast a process runs with
respect to other processes.  The priorities discussed in this section
apply only to CPU time.
</p>
<p>CPU scheduling is a complex issue and different systems do it in wildly
different ways.  New ideas continually develop and find their way into
the intricacies of the various systems&rsquo; scheduling algorithms.  This
section discusses the general concepts, some specifics of systems
that commonly use the GNU C library, and some standards.
</p>
<p>For simplicity, we talk about CPU contention as if there is only one CPU
in the system.  But all the same principles apply when a processor has
multiple CPUs, and knowing that the number of processes that can run at
any one time is equal to the number of CPUs, you can easily extrapolate
the information.
</p>
<p>The functions described in this section are all defined by the POSIX.1
and POSIX.1b standards (the <code>sched&hellip;</code> functions are POSIX.1b).
However, POSIX does not define any semantics for the values that these
functions get and set.  In this chapter, the semantics are based on the
Linux kernel&rsquo;s implementation of the POSIX standard.  As you will see,
the Linux implementation is quite the inverse of what the authors of the
POSIX syntax had in mind.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Absolute-Priority">22.3.1 Absolute Priority</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">               The first tier of priority.  Posix
</td></tr>
<tr><td align="left" valign="top"><a href="#Realtime-Scheduling">22.3.2 Realtime Scheduling</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">             Scheduling among the process nobility
</td></tr>
<tr><td align="left" valign="top"><a href="#Basic-Scheduling-Functions">22.3.3 Basic Scheduling Functions</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">      Get/set scheduling policy, priority
</td></tr>
<tr><td align="left" valign="top"><a href="#Traditional-Scheduling">22.3.4 Traditional Scheduling</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">          Scheduling among the vulgar masses
</td></tr>
<tr><td align="left" valign="top"><a href="#CPU-Affinity">22.3.5 Limiting execution to certain CPUs</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
</table>



<hr size="6">
<a name="Absolute-Priority"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Priority" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Using-Absolute-Priority" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Priority" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Absolute-Priority-1"></a>
<h3 class="subsection">22.3.1 Absolute Priority</h3>
<a name="index-absolute-priority"></a>
<a name="index-priority_002c-absolute"></a>

<p>Every process has an absolute priority, and it is represented by a number.
The higher the number, the higher the absolute priority.
</p>
<a name="index-realtime-CPU-scheduling"></a>
<p>On systems of the past, and most systems today, all processes have
absolute priority 0 and this section is irrelevant.  In that case,
See section <a href="#Traditional-Scheduling">Traditional Scheduling</a>.  Absolute priorities were invented to
accommodate realtime systems, in which it is vital that certain processes
be able to respond to external events happening in real time, which
means they cannot wait around while some other process that <em>wants
to</em>, but doesn&rsquo;t <em>need to</em> run occupies the CPU.
</p>
<a name="index-ready-to-run"></a>
<a name="index-preemptive-scheduling"></a>
<p>When two processes are in contention to use the CPU at any instant, the
one with the higher absolute priority always gets it.  This is true even if the
process with the lower priority is already using the CPU (i.e., the
scheduling is preemptive).  Of course, we&rsquo;re only talking about
processes that are running or &ldquo;ready to run,&rdquo; which means they are
ready to execute instructions right now.  When a process blocks to wait
for something like I/O, its absolute priority is irrelevant.
</p>
<a name="index-runnable-process"></a>
<p><strong>NB:</strong>  The term &ldquo;runnable&rdquo; is a synonym for &ldquo;ready to run.&rdquo;
</p>
<p>When two processes are running or ready to run and both have the same
absolute priority, it&rsquo;s more interesting.  In that case, who gets the
CPU is determined by the scheduling policy.  If the processes have
absolute priority 0, the traditional scheduling policy described in
<a href="#Traditional-Scheduling">Traditional Scheduling</a> applies.  Otherwise, the policies described
in <a href="#Realtime-Scheduling">Realtime Scheduling</a> apply.
</p>
<p>You normally give an absolute priority above 0 only to a process that
can be trusted not to hog the CPU.  Such processes are designed to block
(or terminate) after relatively short CPU runs.
</p>
<p>A process begins life with the same absolute priority as its parent
process.  Functions described in <a href="#Basic-Scheduling-Functions">Basic Scheduling Functions</a> can
change it.
</p>
<p>Only a privileged process can change a process&rsquo; absolute priority to
something other than <code>0</code>.  Only a privileged process or the
target process&rsquo; owner can change its absolute priority at all.
</p>
<p>POSIX requires absolute priority values used with the realtime
scheduling policies to be consecutive with a range of at least 32.  On
Linux, they are 1 through 99.  The functions
<code>sched_get_priority_max</code> and <code>sched_set_priority_min</code> portably
tell you what the range is on a particular system.
</p>

<hr size="6">
<a name="Using-Absolute-Priority"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Absolute-Priority" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Realtime-Scheduling" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Absolute-Priority" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h4 class="subsubsection">22.3.1.1 Using Absolute Priority</h4>

<p>One thing you must keep in mind when designing real time applications is
that having higher absolute priority than any other process doesn&rsquo;t
guarantee the process can run continuously.  Two things that can wreck a
good CPU run are interrupts and page faults.
</p>
<p>Interrupt handlers live in that limbo between processes.  The CPU is
executing instructions, but they aren&rsquo;t part of any process.  An
interrupt will stop even the highest priority process.  So you must
allow for slight delays and make sure that no device in the system has
an interrupt handler that could cause too long a delay between
instructions for your process.
</p>
<p>Similarly, a page fault causes what looks like a straightforward
sequence of instructions to take a long time.  The fact that other
processes get to run while the page faults in is of no consequence,
because as soon as the I/O is complete, the high priority process will
kick them out and run again, but the wait for the I/O itself could be a
problem.  To neutralize this threat, use <code>mlock</code> or
<code>mlockall</code>.
</p>
<p>There are a few ramifications of the absoluteness of this priority on a
single-CPU system that you need to keep in mind when you choose to set a
priority and also when you&rsquo;re working on a program that runs with high
absolute priority.  Consider a process that has higher absolute priority
than any other process in the system and due to a bug in its program, it
gets into an infinite loop.  It will never cede the CPU.  You can&rsquo;t run
a command to kill it because your command would need to get the CPU in
order to run.  The errant program is in complete control.  It controls
the vertical, it controls the horizontal.
</p>
<p>There are two ways to avoid this: 1) keep a shell running somewhere with
a higher absolute priority.  2) keep a controlling terminal attached to
the high priority process group.  All the priority in the world won&rsquo;t
stop an interrupt handler from running and delivering a signal to the
process if you hit Control-C.
</p>
<p>Some systems use absolute priority as a means of allocating a fixed
percentage of CPU time to a process.  To do this, a super high priority
privileged process constantly monitors the process&rsquo; CPU usage and raises
its absolute priority when the process isn&rsquo;t getting its entitled share
and lowers it when the process is exceeding it.
</p>
<p><strong>NB:</strong>  The absolute priority is sometimes called the &ldquo;static
priority.&rdquo;  We don&rsquo;t use that term in this manual because it misses the
most important feature of the absolute priority:  its absoluteness.
</p>

<hr size="6">
<a name="Realtime-Scheduling"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Using-Absolute-Priority" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Basic-Scheduling-Functions" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Priority" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Realtime-Scheduling-1"></a>
<h3 class="subsection">22.3.2 Realtime Scheduling</h3>
<a name="index-realtime-scheduling"></a>

<p>Whenever two processes with the same absolute priority are ready to run,
the kernel has a decision to make, because only one can run at a time.
If the processes have absolute priority 0, the kernel makes this decision
as described in <a href="#Traditional-Scheduling">Traditional Scheduling</a>.  Otherwise, the decision
is as described in this section.
</p>
<p>If two processes are ready to run but have different absolute priorities,
the decision is much simpler, and is described in <a href="#Absolute-Priority">Absolute Priority</a>.
</p>
<p>Each process has a scheduling policy.  For processes with absolute
priority other than zero, there are two available:
</p>
<ol>
<li>
First Come First Served
</li><li>
Round Robin
</li></ol>

<p>The most sensible case is where all the processes with a certain
absolute priority have the same scheduling policy.  We&rsquo;ll discuss that
first.
</p>
<p>In Round Robin, processes share the CPU, each one running for a small
quantum of time (&ldquo;time slice&rdquo;) and then yielding to another in a
circular fashion.  Of course, only processes that are ready to run and
have the same absolute priority are in this circle.
</p>
<p>In First Come First Served, the process that has been waiting the
longest to run gets the CPU, and it keeps it until it voluntarily
relinquishes the CPU, runs out of things to do (blocks), or gets
preempted by a higher priority process.
</p>
<p>First Come First Served, along with maximal absolute priority and
careful control of interrupts and page faults, is the one to use when a
process absolutely, positively has to run at full CPU speed or not at
all.
</p>
<p>Judicious use of <code>sched_yield</code> function invocations by processes
with First Come First Served scheduling policy forms a good compromise
between Round Robin and First Come First Served.
</p>
<p>To understand how scheduling works when processes of different scheduling
policies occupy the same absolute priority, you have to know the nitty
gritty details of how processes enter and exit the ready to run list:
</p>
<p>In both cases, the ready to run list is organized as a true queue, where
a process gets pushed onto the tail when it becomes ready to run and is
popped off the head when the scheduler decides to run it.  Note that
ready to run and running are two mutually exclusive states.  When the
scheduler runs a process, that process is no longer ready to run and no
longer in the ready to run list.  When the process stops running, it
may go back to being ready to run again.
</p>
<p>The only difference between a process that is assigned the Round Robin
scheduling policy and a process that is assigned First Come First Serve
is that in the former case, the process is automatically booted off the
CPU after a certain amount of time.  When that happens, the process goes
back to being ready to run, which means it enters the queue at the tail.
The time quantum we&rsquo;re talking about is small.  Really small.  This is
not your father&rsquo;s timesharing.  For example, with the Linux kernel, the
round robin time slice is a thousand times shorter than its typical
time slice for traditional scheduling.
</p>
<p>A process begins life with the same scheduling policy as its parent process.
Functions described in <a href="#Basic-Scheduling-Functions">Basic Scheduling Functions</a> can change it.
</p>
<p>Only a privileged process can set the scheduling policy of a process
that has absolute priority higher than 0.
</p>
<hr size="6">
<a name="Basic-Scheduling-Functions"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Realtime-Scheduling" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Traditional-Scheduling" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Priority" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Basic-Scheduling-Functions-1"></a>
<h3 class="subsection">22.3.3 Basic Scheduling Functions</h3>

<p>This section describes functions in the GNU C library for setting the
absolute priority and scheduling policy of a process.
</p>
<p><strong>Portability Note:</strong>  On systems that have the functions in this
section, the macro _POSIX_PRIORITY_SCHEDULING is defined in
&lsquo;<tt>&lt;unistd.h&gt;</tt>&rsquo;.
</p>
<p>For the case that the scheduling policy is traditional scheduling, more
functions to fine tune the scheduling are in <a href="#Traditional-Scheduling">Traditional Scheduling</a>.
</p>
<p>Don&rsquo;t try to make too much out of the naming and structure of these
functions.  They don&rsquo;t match the concepts described in this manual
because the functions are as defined by POSIX.1b, but the implementation
on systems that use the GNU C library is the inverse of what the POSIX
structure contemplates.  The POSIX scheme assumes that the primary
scheduling parameter is the scheduling policy and that the priority
value, if any, is a parameter of the scheduling policy.  In the
implementation, though, the priority value is king and the scheduling
policy, if anything, only fine tunes the effect of that priority.
</p>
<p>The symbols in this section are declared by including file &lsquo;<tt>sched.h</tt>&rsquo;.
</p>
<dl>
<dt><a name="index-struct-sched_005fparam"></a><u>Data Type:</u> <b>struct sched_param</b></dt>
<dd><p>This structure describes an absolute priority.
</p><dl compact="compact">
<dt> <code>int sched_priority</code></dt>
<dd><p>absolute priority value
</p></dd>
</dl>
</dd></dl>

<dl>
<dt><a name="index-sched_005fsetscheduler"></a><u>Function:</u> int <b>sched_setscheduler</b><i> (pid_t <var>pid</var>, int <var>policy</var>, const struct sched_param *<var>param</var>)</i></dt>
<dd>
<p>This function sets both the absolute priority and the scheduling policy
for a process.
</p>
<p>It assigns the absolute priority value given by <var>param</var> and the
scheduling policy <var>policy</var> to the process with Process ID <var>pid</var>,
or the calling process if <var>pid</var> is zero.  If <var>policy</var> is
negative, <code>sched_setscheduler</code> keeps the existing scheduling policy.
</p>
<p>The following macros represent the valid values for <var>policy</var>:
</p>
<dl compact="compact">
<dt> <code>SCHED_OTHER</code></dt>
<dd><p>Traditional Scheduling
</p></dd>
<dt> <code>SCHED_FIFO</code></dt>
<dd><p>First In First Out
</p></dd>
<dt> <code>SCHED_RR</code></dt>
<dd><p>Round Robin
</p></dd>
</dl>


<p>On success, the return value is <code>0</code>.  Otherwise, it is <code>-1</code>
and <code>ERRNO</code> is set accordingly.  The <code>errno</code> values specific
to this function are:
</p>
<dl compact="compact">
<dt> <code>EPERM</code></dt>
<dd><ul>
<li>
The calling process does not have <code>CAP_SYS_NICE</code> permission and
<var>policy</var> is not <code>SCHED_OTHER</code> (or it&rsquo;s negative and the
existing policy is not <code>SCHED_OTHER</code>.

</li><li>
The calling process does not have <code>CAP_SYS_NICE</code> permission and its
owner is not the target process&rsquo; owner.  I.e., the effective uid of the
calling process is neither the effective nor the real uid of process
<var>pid</var>.
</li></ul>

</dd>
<dt> <code>ESRCH</code></dt>
<dd><p>There is no process with pid <var>pid</var> and <var>pid</var> is not zero.
</p>
</dd>
<dt> <code>EINVAL</code></dt>
<dd><ul>
<li>
<var>policy</var> does not identify an existing scheduling policy.

</li><li>
The absolute priority value identified by *<var>param</var> is outside the
valid range for the scheduling policy <var>policy</var> (or the existing
scheduling policy if <var>policy</var> is negative) or <var>param</var> is
null.  <code>sched_get_priority_max</code> and <code>sched_get_priority_min</code>
tell you what the valid range is.

</li><li>
<var>pid</var> is negative.
</li></ul>
</dd>
</dl>

</dd></dl>


<dl>
<dt><a name="index-sched_005fgetscheduler"></a><u>Function:</u> int <b>sched_getscheduler</b><i> (pid_t <var>pid</var>)</i></dt>
<dd>
<p>This function returns the scheduling policy assigned to the process with
Process ID (pid) <var>pid</var>, or the calling process if <var>pid</var> is zero.
</p>
<p>The return value is the scheduling policy.  See
<code>sched_setscheduler</code> for the possible values.
</p>
<p>If the function fails, the return value is instead <code>-1</code> and
<code>errno</code> is set accordingly.
</p>
<p>The <code>errno</code> values specific to this function are:
</p>
<dl compact="compact">
<dt> <code>ESRCH</code></dt>
<dd><p>There is no process with pid <var>pid</var> and it is not zero.
</p>
</dd>
<dt> <code>EINVAL</code></dt>
<dd><p><var>pid</var> is negative.
</p>
</dd>
</dl>

<p>Note that this function is not an exact mate to <code>sched_setscheduler</code>
because while that function sets the scheduling policy and the absolute
priority, this function gets only the scheduling policy.  To get the
absolute priority, use <code>sched_getparam</code>.
</p>
</dd></dl>


<dl>
<dt><a name="index-sched_005fsetparam"></a><u>Function:</u> int <b>sched_setparam</b><i> (pid_t <var>pid</var>, const struct sched_param *<var>param</var>)</i></dt>
<dd>
<p>This function sets a process&rsquo; absolute priority.
</p>
<p>It is functionally identical to <code>sched_setscheduler</code> with
<var>policy</var> = <code>-1</code>.
</p>

</dd></dl>

<dl>
<dt><a name="index-sched_005fgetparam"></a><u>Function:</u> int <b>sched_getparam</b><i> (pid_t <var>pid</var>, const struct sched_param *<var>param</var>)</i></dt>
<dd>
<p>This function returns a process&rsquo; absolute priority.
</p>
<p><var>pid</var> is the Process ID (pid) of the process whose absolute priority
you want to know.
</p>
<p><var>param</var> is a pointer to a structure in which the function stores the
absolute priority of the process.
</p>
<p>On success, the return value is <code>0</code>.  Otherwise, it is <code>-1</code>
and <code>ERRNO</code> is set accordingly.  The <code>errno</code> values specific
to this function are:
</p>
<dl compact="compact">
<dt> <code>ESRCH</code></dt>
<dd><p>There is no process with pid <var>pid</var> and it is not zero.
</p>
</dd>
<dt> <code>EINVAL</code></dt>
<dd><p><var>pid</var> is negative.
</p>
</dd>
</dl>

</dd></dl>


<dl>
<dt><a name="index-sched_005fget_005fpriority_005fmin"></a><u>Function:</u> int <b>sched_get_priority_min</b><i> (int *<var>policy</var>);</i></dt>
<dd>
<p>This function returns the lowest absolute priority value that is
allowable for a process with scheduling policy <var>policy</var>.
</p>
<p>On Linux, it is 0 for SCHED_OTHER and 1 for everything else.
</p>
<p>On success, the return value is <code>0</code>.  Otherwise, it is <code>-1</code>
and <code>ERRNO</code> is set accordingly.  The <code>errno</code> values specific
to this function are:
</p>
<dl compact="compact">
<dt> <code>EINVAL</code></dt>
<dd><p><var>policy</var> does not identify an existing scheduling policy.
</p></dd>
</dl>

</dd></dl>

<dl>
<dt><a name="index-sched_005fget_005fpriority_005fmax"></a><u>Function:</u> int <b>sched_get_priority_max</b><i> (int *<var>policy</var>);</i></dt>
<dd>
<p>This function returns the highest absolute priority value that is
allowable for a process that with scheduling policy <var>policy</var>.
</p>
<p>On Linux, it is 0 for SCHED_OTHER and 99 for everything else.
</p>
<p>On success, the return value is <code>0</code>.  Otherwise, it is <code>-1</code>
and <code>ERRNO</code> is set accordingly.  The <code>errno</code> values specific
to this function are:
</p>
<dl compact="compact">
<dt> <code>EINVAL</code></dt>
<dd><p><var>policy</var> does not identify an existing scheduling policy.
</p></dd>
</dl>

</dd></dl>

<dl>
<dt><a name="index-sched_005frr_005fget_005finterval"></a><u>Function:</u> int <b>sched_rr_get_interval</b><i> (pid_t <var>pid</var>, struct timespec *<var>interval</var>)</i></dt>
<dd>
<p>This function returns the length of the quantum (time slice) used with
the Round Robin scheduling policy, if it is used, for the process with
Process ID <var>pid</var>.
</p>
<p>It returns the length of time as <var>interval</var>.
</p>
<p>With a Linux kernel, the round robin time slice is always 150
microseconds, and <var>pid</var> need not even be a real pid.
</p>
<p>The return value is <code>0</code> on success and in the pathological case
that it fails, the return value is <code>-1</code> and <code>errno</code> is set
accordingly.  There is nothing specific that can go wrong with this
function, so there are no specific <code>errno</code> values.
</p>
</dd></dl>

<dl>
<dt><a name="index-sched_005fyield"></a><u>Function:</u> int <b>sched_yield</b><i> (void)</i></dt>
<dd>
<p>This function voluntarily gives up the process&rsquo; claim on the CPU.
</p>
<p>Technically, <code>sched_yield</code> causes the calling process to be made
immediately ready to run (as opposed to running, which is what it was
before).  This means that if it has absolute priority higher than 0, it
gets pushed onto the tail of the queue of processes that share its
absolute priority and are ready to run, and it will run again when its
turn next arrives.  If its absolute priority is 0, it is more
complicated, but still has the effect of yielding the CPU to other
processes.
</p>
<p>If there are no other processes that share the calling process&rsquo; absolute
priority, this function doesn&rsquo;t have any effect.
</p>
<p>To the extent that the containing program is oblivious to what other
processes in the system are doing and how fast it executes, this
function appears as a no-op.
</p>
<p>The return value is <code>0</code> on success and in the pathological case
that it fails, the return value is <code>-1</code> and <code>errno</code> is set
accordingly.  There is nothing specific that can go wrong with this
function, so there are no specific <code>errno</code> values.
</p>
</dd></dl>

<hr size="6">
<a name="Traditional-Scheduling"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Basic-Scheduling-Functions" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Traditional-Scheduling-Intro" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Priority" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Traditional-Scheduling-1"></a>
<h3 class="subsection">22.3.4 Traditional Scheduling</h3>
<a name="index-scheduling_002c-traditional"></a>

<p>This section is about the scheduling among processes whose absolute
priority is 0.  When the system hands out the scraps of CPU time that
are left over after the processes with higher absolute priority have
taken all they want, the scheduling described herein determines who
among the great unwashed processes gets them.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Traditional-Scheduling-Intro">22.3.4.1 Introduction To Traditional Scheduling</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#Traditional-Scheduling-Functions">22.3.4.2 Functions For Traditional Scheduling</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr size="6">
<a name="Traditional-Scheduling-Intro"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Traditional-Scheduling" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Traditional-Scheduling-Functions" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Traditional-Scheduling" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Introduction-To-Traditional-Scheduling"></a>
<h4 class="subsubsection">22.3.4.1 Introduction To Traditional Scheduling</h4>

<p>Long before there was absolute priority (See <a href="#Absolute-Priority">Absolute Priority</a>),
Unix systems were scheduling the CPU using this system.  When Posix came
in like the Romans and imposed absolute priorities to accommodate the
needs of realtime processing, it left the indigenous Absolute Priority
Zero processes to govern themselves by their own familiar scheduling
policy.
</p>
<p>Indeed, absolute priorities higher than zero are not available on many
systems today and are not typically used when they are, being intended
mainly for computers that do realtime processing.  So this section
describes the only scheduling many programmers need to be concerned
about.
</p>
<p>But just to be clear about the scope of this scheduling: Any time a
process with a absolute priority of 0 and a process with an absolute
priority higher than 0 are ready to run at the same time, the one with
absolute priority 0 does not run.  If it&rsquo;s already running when the
higher priority ready-to-run process comes into existence, it stops
immediately.
</p>
<p>In addition to its absolute priority of zero, every process has another
priority, which we will refer to as &quot;dynamic priority&quot; because it changes
over time.  The dynamic priority is meaningless for processes with
an absolute priority higher than zero.
</p>
<p>The dynamic priority sometimes determines who gets the next turn on the
CPU.  Sometimes it determines how long turns last.  Sometimes it
determines whether a process can kick another off the CPU.
</p>
<p>In Linux, the value is a combination of these things, but mostly it is
just determines the length of the time slice.  The higher a process&rsquo;
dynamic priority, the longer a shot it gets on the CPU when it gets one.
If it doesn&rsquo;t use up its time slice before giving up the CPU to do
something like wait for I/O, it is favored for getting the CPU back when
it&rsquo;s ready for it, to finish out its time slice.  Other than that,
selection of processes for new time slices is basically round robin.
But the scheduler does throw a bone to the low priority processes: A
process&rsquo; dynamic priority rises every time it is snubbed in the
scheduling process.  In Linux, even the fat kid gets to play.
</p>
<p>The fluctuation of a process&rsquo; dynamic priority is regulated by another
value: The &ldquo;nice&rdquo; value.  The nice value is an integer, usually in the
range -20 to 20, and represents an upper limit on a process&rsquo; dynamic
priority.  The higher the nice number, the lower that limit.
</p>
<p>On a typical Linux system, for example, a process with a nice value of
20 can get only 10 milliseconds on the CPU at a time, whereas a process
with a nice value of -20 can achieve a high enough priority to get 400
milliseconds.
</p>
<p>The idea of the nice value is deferential courtesy.  In the beginning,
in the Unix garden of Eden, all processes shared equally in the bounty
of the computer system.  But not all processes really need the same
share of CPU time, so the nice value gave a courteous process the
ability to refuse its equal share of CPU time that others might prosper.
Hence, the higher a process&rsquo; nice value, the nicer the process is.
(Then a snake came along and offered some process a negative nice value
and the system became the crass resource allocation system we know
today).
</p>
<p>Dynamic priorities tend upward and downward with an objective of
smoothing out allocation of CPU time and giving quick response time to
infrequent requests.  But they never exceed their nice limits, so on a
heavily loaded CPU, the nice value effectively determines how fast a
process runs.
</p>
<p>In keeping with the socialistic heritage of Unix process priority, a
process begins life with the same nice value as its parent process and
can raise it at will.  A process can also raise the nice value of any
other process owned by the same user (or effective user).  But only a
privileged process can lower its nice value.  A privileged process can
also raise or lower another process&rsquo; nice value.
</p>
<p>GNU C Library functions for getting and setting nice values are described in
See section <a href="#Traditional-Scheduling-Functions">Functions For Traditional Scheduling</a>.
</p>
<hr size="6">
<a name="Traditional-Scheduling-Functions"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Traditional-Scheduling-Intro" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#CPU-Affinity" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Traditional-Scheduling" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Functions-For-Traditional-Scheduling"></a>
<h4 class="subsubsection">22.3.4.2 Functions For Traditional Scheduling</h4>

<a name="index-sys_002fresource_002eh-2"></a>
<p>This section describes how you can read and set the nice value of a
process.  All these symbols are declared in &lsquo;<tt>sys/resource.h</tt>&rsquo;.
</p>
<p>The function and macro names are defined by POSIX, and refer to
&quot;priority,&quot; but the functions actually have to do with nice values, as
the terms are used both in the manual and POSIX.
</p>
<p>The range of valid nice values depends on the kernel, but typically it
runs from <code>-20</code> to <code>20</code>.  A lower nice value corresponds to
higher priority for the process.  These constants describe the range of
priority values:
</p>
<dl compact="compact">
<dt> <code>PRIO_MIN</code>
<a name="index-PRIO_005fMIN"></a>
</dt>
<dd><p>The lowest valid nice value.
</p>
</dd>
<dt> <code>PRIO_MAX</code>
<a name="index-PRIO_005fMAX"></a>
</dt>
<dd><p>The highest valid nice value.
</p></dd>
</dl>

<dl>
<dt><a name="index-getpriority"></a><u>Function:</u> int <b>getpriority</b><i> (int <var>class</var>, int <var>id</var>)</i></dt>
<dd><p>Return the nice value of a set of processes; <var>class</var> and <var>id</var>
specify which ones (see below).  If the processes specified do not all
have the same nice value, this returns the lowest value that any of them
has.
</p>
<p>On success, the return value is <code>0</code>.  Otherwise, it is <code>-1</code>
and <code>ERRNO</code> is set accordingly.  The <code>errno</code> values specific
to this function are:
</p>
<dl compact="compact">
<dt> <code>ESRCH</code></dt>
<dd><p>The combination of <var>class</var> and <var>id</var> does not match any existing
process.
</p>
</dd>
<dt> <code>EINVAL</code></dt>
<dd><p>The value of <var>class</var> is not valid.
</p></dd>
</dl>

<p>If the return value is <code>-1</code>, it could indicate failure, or it could
be the nice value.  The only way to make certain is to set <code>errno =
0</code> before calling <code>getpriority</code>, then use <code>errno != 0</code>
afterward as the criterion for failure.
</p></dd></dl>

<dl>
<dt><a name="index-setpriority"></a><u>Function:</u> int <b>setpriority</b><i> (int <var>class</var>, int <var>id</var>, int <var>niceval</var>)</i></dt>
<dd><p>Set the nice value of a set of processes to <var>niceval</var>; <var>class</var>
and <var>id</var> specify which ones (see below).
</p>
<p>The return value is <code>0</code> on success, and <code>-1</code> on
failure.  The following <code>errno</code> error condition are possible for
this function:
</p>
<dl compact="compact">
<dt> <code>ESRCH</code></dt>
<dd><p>The combination of <var>class</var> and <var>id</var> does not match any existing
process.
</p>
</dd>
<dt> <code>EINVAL</code></dt>
<dd><p>The value of <var>class</var> is not valid.
</p>
</dd>
<dt> <code>EPERM</code></dt>
<dd><p>The call would set the nice value of a process which is owned by a different
user than the calling process (i.e., the target process&rsquo; real or effective
uid does not match the calling process&rsquo; effective uid) and the calling
process does not have <code>CAP_SYS_NICE</code> permission.
</p>
</dd>
<dt> <code>EACCES</code></dt>
<dd><p>The call would lower the process&rsquo; nice value and the process does not have
<code>CAP_SYS_NICE</code> permission.
</p></dd>
</dl>

</dd></dl>

<p>The arguments <var>class</var> and <var>id</var> together specify a set of
processes in which you are interested.  These are the possible values of
<var>class</var>:
</p>
<dl compact="compact">
<dt> <code>PRIO_PROCESS</code>
<a name="index-PRIO_005fPROCESS"></a>
</dt>
<dd><p>One particular process.  The argument <var>id</var> is a process ID (pid).
</p>
</dd>
<dt> <code>PRIO_PGRP</code>
<a name="index-PRIO_005fPGRP"></a>
</dt>
<dd><p>All the processes in a particular process group.  The argument <var>id</var> is
a process group ID (pgid).
</p>
</dd>
<dt> <code>PRIO_USER</code>
<a name="index-PRIO_005fUSER"></a>
</dt>
<dd><p>All the processes owned by a particular user (i.e., whose real uid
indicates the user).  The argument <var>id</var> is a user ID (uid).
</p></dd>
</dl>

<p>If the argument <var>id</var> is 0, it stands for the calling process, its
process group, or its owner (real uid), according to <var>class</var>.
</p>
<dl>
<dt><a name="index-nice"></a><u>Function:</u> int <b>nice</b><i> (int <var>increment</var>)</i></dt>
<dd><p>Increment the nice value of the calling process by <var>increment</var>.
The return value is the new nice value on success, and <code>-1</code> on
failure.  In the case of failure, <code>errno</code> will be set to the
same values as for <code>setpriority</code>.
</p>

<p>Here is an equivalent definition of <code>nice</code>:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">int
nice (int increment)
{
  int result, old = getpriority (PRIO_PROCESS, 0);
  result = setpriority (PRIO_PROCESS, 0, old + increment);
  if (result != -1)
      return old + increment;
  else
      return -1;
}
</pre></td></tr></table>
</dd></dl>


<hr size="6">
<a name="CPU-Affinity"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Traditional-Scheduling-Functions" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Memory-Resources" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Priority" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Limiting-execution-to-certain-CPUs"></a>
<h3 class="subsection">22.3.5 Limiting execution to certain CPUs</h3>

<p>On a multi-processor system the operating system usually distributes
the different processes which are runnable on all available CPUs in a
way which allows the system to work most efficiently.  Which processes
and threads run can be to some extend be control with the scheduling
functionality described in the last sections.  But which CPU finally
executes which process or thread is not covered.
</p>
<p>There are a number of reasons why a program might want to have control
over this aspect of the system as well:
</p>
<ul>
<li>
One thread or process is responsible for absolutely critical work
which under no circumstances must be interrupted or hindered from
making process by other process or threads using CPU resources.  In
this case the special process would be confined to a CPU which no
other process or thread is allowed to use.

</li><li>
The access to certain resources (RAM, I/O ports) has different costs
from different CPUs.  This is the case in NUMA (Non-Uniform Memory
Architecture) machines.  Preferably memory should be accessed locally
but this requirement is usually not visible to the scheduler.
Therefore forcing a process or thread to the CPUs which have local
access to the mostly used memory helps to significantly boost the
performance.

</li><li>
In controlled runtimes resource allocation and book-keeping work (for
instance garbage collection) is performance local to processors.  This
can help to reduce locking costs if the resources do not have to be
protected from concurrent accesses from different processors.
</li></ul>

<p>The POSIX standard up to this date is of not much help to solve this
problem.  The Linux kernel provides a set of interfaces to allow
specifying <em>affinity sets</em> for a process.  The scheduler will
schedule the thread or process on CPUs specified by the affinity
masks.  The interfaces which the GNU C library define follow to some
extend the Linux kernel interface.
</p>
<dl>
<dt><a name="index-cpu_005fset_005ft"></a><u>Data Type:</u> <b>cpu_set_t</b></dt>
<dd><p>This data set is a bitset where each bit represents a CPU.  How the
system&rsquo;s CPUs are mapped to bits in the bitset is system dependent.
The data type has a fixed size; in the unlikely case that the number
of bits are not sufficient to describe the CPUs of the system a
different interface has to be used.
</p>
<p>This type is a GNU extension and is defined in &lsquo;<tt>sched.h</tt>&rsquo;.
</p></dd></dl>

<p>To manipulate the bitset, to set and reset bits, a number of macros is
defined.  Some of the macros take a CPU number as a parameter.  Here
it is important to never exceed the size of the bitset.  The following
macro specifies the number of bits in the <code>cpu_set_t</code> bitset.
</p>
<dl>
<dt><a name="index-CPU_005fSETSIZE"></a><u>Macro:</u> int <b>CPU_SETSIZE</b></dt>
<dd><p>The value of this macro is the maximum number of CPUs which can be
handled with a <code>cpu_set_t</code> object.
</p></dd></dl>

<p>The type <code>cpu_set_t</code> should be considered opaque; all
manipulation should happen via the next four macros.
</p>
<dl>
<dt><a name="index-CPU_005fZERO"></a><u>Macro:</u> void <b>CPU_ZERO</b><i> (cpu_set_t *<var>set</var>)</i></dt>
<dd><p>This macro initializes the CPU set <var>set</var> to be the empty set.
</p>
<p>This macro is a GNU extension and is defined in &lsquo;<tt>sched.h</tt>&rsquo;.
</p></dd></dl>

<dl>
<dt><a name="index-CPU_005fSET"></a><u>Macro:</u> void <b>CPU_SET</b><i> (int <var>cpu</var>, cpu_set_t *<var>set</var>)</i></dt>
<dd><p>This macro adds <var>cpu</var> to the CPU set <var>set</var>.
</p>
<p>The <var>cpu</var> parameter must not have side effects since it is
evaluated more than once.
</p>
<p>This macro is a GNU extension and is defined in &lsquo;<tt>sched.h</tt>&rsquo;.
</p></dd></dl>

<dl>
<dt><a name="index-CPU_005fCLR"></a><u>Macro:</u> void <b>CPU_CLR</b><i> (int <var>cpu</var>, cpu_set_t *<var>set</var>)</i></dt>
<dd><p>This macro removes <var>cpu</var> from the CPU set <var>set</var>.
</p>
<p>The <var>cpu</var> parameter must not have side effects since it is
evaluated more than once.
</p>
<p>This macro is a GNU extension and is defined in &lsquo;<tt>sched.h</tt>&rsquo;.
</p></dd></dl>

<dl>
<dt><a name="index-CPU_005fISSET"></a><u>Macro:</u> int <b>CPU_ISSET</b><i> (int <var>cpu</var>, const cpu_set_t *<var>set</var>)</i></dt>
<dd><p>This macro returns a nonzero value (true) if <var>cpu</var> is a member
of the CPU set <var>set</var>, and zero (false) otherwise.
</p>
<p>The <var>cpu</var> parameter must not have side effects since it is
evaluated more than once.
</p>
<p>This macro is a GNU extension and is defined in &lsquo;<tt>sched.h</tt>&rsquo;.
</p></dd></dl>


<p>CPU bitsets can be constructed from scratch or the currently installed
affinity mask can be retrieved from the system.
</p>
<dl>
<dt><a name="index-sched_005fgetaffinity"></a><u>Function:</u> int <b>sched_getaffinity</b><i> (pid_t <var>pid</var>, size_t <var>cpusetsize</var>, cpu_set_t *<var>cpuset</var>)</i></dt>
<dd>
<p>This functions stores the CPU affinity mask for the process or thread
with the ID <var>pid</var> in the <var>cpusetsize</var> bytes long bitmap
pointed to by <var>cpuset</var>.  If successful, the function always
initializes all bits in the <code>cpu_set_t</code> object and returns zero.
</p>
<p>If <var>pid</var> does not correspond to a process or thread on the system
the or the function fails for some other reason, it returns <code>-1</code>
and <code>errno</code> is set to represent the error condition.
</p>
<dl compact="compact">
<dt> <code>ESRCH</code></dt>
<dd><p>No process or thread with the given ID found.
</p>
</dd>
<dt> <code>EFAULT</code></dt>
<dd><p>The pointer <var>cpuset</var> is does not point to a valid object.
</p></dd>
</dl>

<p>This function is a GNU extension and is declared in &lsquo;<tt>sched.h</tt>&rsquo;.
</p></dd></dl>

<p>Note that it is not portably possible to use this information to
retrieve the information for different POSIX threads.  A separate
interface must be provided for that.
</p>
<dl>
<dt><a name="index-sched_005fsetaffinity"></a><u>Function:</u> int <b>sched_setaffinity</b><i> (pid_t <var>pid</var>, size_t <var>cpusetsize</var>, const cpu_set_t *<var>cpuset</var>)</i></dt>
<dd>
<p>This function installs the <var>cpusetsize</var> bytes long affinity mask
pointed to by <var>cpuset</var> for the process or thread with the ID <var>pid</var>.
If successful the function returns zero and the scheduler will in future
take the affinity information into account.
</p>
<p>If the function fails it will return <code>-1</code> and <code>errno</code> is set
to the error code:
</p>
<dl compact="compact">
<dt> <code>ESRCH</code></dt>
<dd><p>No process or thread with the given ID found.
</p>
</dd>
<dt> <code>EFAULT</code></dt>
<dd><p>The pointer <var>cpuset</var> is does not point to a valid object.
</p>
</dd>
<dt> <code>EINVAL</code></dt>
<dd><p>The bitset is not valid.  This might mean that the affinity set might
not leave a processor for the process or thread to run on.
</p></dd>
</dl>

<p>This function is a GNU extension and is declared in &lsquo;<tt>sched.h</tt>&rsquo;.
</p></dd></dl>


<hr size="6">
<a name="Memory-Resources"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#CPU-Affinity" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Memory-Subsystem" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Querying-memory-available-resources"></a>
<h2 class="section">22.4 Querying memory available resources</h2>

<p>The amount of memory available in the system and the way it is organized
determines oftentimes the way programs can and have to work.  For
functions like <code>mmap</code> it is necessary to know about the size of
individual memory pages and knowing how much memory is available enables
a program to select appropriate sizes for, say, caches.  Before we get
into these details a few words about memory subsystems in traditional
Unix systems will be given.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Memory-Subsystem">22.4.1 Overview about traditional Unix memory handling</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Query-Memory-Parameters">22.4.2 How to get information about the memory subsystem?</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
</table>

<hr size="6">
<a name="Memory-Subsystem"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Memory-Resources" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Query-Memory-Parameters" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Memory-Resources" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Overview-about-traditional-Unix-memory-handling"></a>
<h3 class="subsection">22.4.1 Overview about traditional Unix memory handling</h3>

<a name="index-address-space"></a>
<a name="index-physical-memory"></a>
<a name="index-physical-address"></a>
<p>Unix systems normally provide processes virtual address spaces.  This
means that the addresses of the memory regions do not have to correspond
directly to the addresses of the actual physical memory which stores the
data.  An extra level of indirection is introduced which translates
virtual addresses into physical addresses.  This is normally done by the
hardware of the processor.
</p>
<a name="index-shared-memory"></a>
<p>Using a virtual address space has several advantage.  The most important
is process isolation.  The different processes running on the system
cannot interfere directly with each other.  No process can write into
the address space of another process (except when shared memory is used
but then it is wanted and controlled).
</p>
<p>Another advantage of virtual memory is that the address space the
processes see can actually be larger than the physical memory available.
The physical memory can be extended by storage on an external media
where the content of currently unused memory regions is stored.  The
address translation can then intercept accesses to these memory regions
and make memory content available again by loading the data back into
memory.  This concept makes it necessary that programs which have to use
lots of memory know the difference between available virtual address
space and available physical memory.  If the working set of virtual
memory of all the processes is larger than the available physical memory
the system will slow down dramatically due to constant swapping of
memory content from the memory to the storage media and back.  This is
called &ldquo;thrashing&rdquo;.
<a name="index-thrashing"></a>
</p>
<a name="index-memory-page"></a>
<a name="index-page_002c-memory"></a>
<p>A final aspect of virtual memory which is important and follows from
what is said in the last paragraph is the granularity of the virtual
address space handling.  When we said that the virtual address handling
stores memory content externally it cannot do this on a byte-by-byte
basis.  The administrative overhead does not allow this (leaving alone
the processor hardware).  Instead several thousand bytes are handled
together and form a <em>page</em>.  The size of each page is always a power
of two byte.  The smallest page size in use today is 4096, with 8192,
16384, and 65536 being other popular sizes.
</p>
<hr size="6">
<a name="Query-Memory-Parameters"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Memory-Subsystem" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Processor-Resources" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Memory-Resources" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="How-to-get-information-about-the-memory-subsystem_003f"></a>
<h3 class="subsection">22.4.2 How to get information about the memory subsystem?</h3>

<p>The page size of the virtual memory the process sees is essential to
know in several situations.  Some programming interface (e.g.,
<code>mmap</code>, see section <a href="libc_13.html#Memory_002dmapped-I_002fO">Memory-mapped I/O</a>) require the user to provide
information adjusted to the page size.  In the case of <code>mmap</code> is it
necessary to provide a length argument which is a multiple of the page
size.  Another place where the knowledge about the page size is useful
is in memory allocation.  If one allocates pieces of memory in larger
chunks which are then subdivided by the application code it is useful to
adjust the size of the larger blocks to the page size.  If the total
memory requirement for the block is close (but not larger) to a multiple
of the page size the kernel&rsquo;s memory handling can work more effectively
since it only has to allocate memory pages which are fully used.  (To do
this optimization it is necessary to know a bit about the memory
allocator which will require a bit of memory itself for each block and
this overhead must not push the total size over the page size multiple.
</p>
<p>The page size traditionally was a compile time constant.  But recent
development of processors changed this.  Processors now support
different page sizes and they can possibly even vary among different
processes on the same system.  Therefore the system should be queried at
runtime about the current page size and no assumptions (except about it
being a power of two) should be made.
</p>
<a name="index-_005fSC_005fPAGESIZE-1"></a>
<p>The correct interface to query about the page size is <code>sysconf</code>
(see section <a href="libc_31.html#Sysconf-Definition">Definition of <code>sysconf</code></a>) with the parameter <code>_SC_PAGESIZE</code>.
There is a much older interface available, too.
</p>
<dl>
<dt><a name="index-getpagesize"></a><u>Function:</u> int <b>getpagesize</b><i> (void)</i></dt>
<dd><p>The <code>getpagesize</code> function returns the page size of the process.
This value is fixed for the runtime of the process but can vary in
different runs of the application.
</p>
<p>The function is declared in &lsquo;<tt>unistd.h</tt>&rsquo;.
</p></dd></dl>

<p>Widely available on System V derived systems is a method to get
information about the physical memory the system has.  The call
</p>
<a name="index-_005fSC_005fPHYS_005fPAGES"></a>
<a name="index-sysconf"></a>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">  sysconf (_SC_PHYS_PAGES)
</pre></td></tr></table>

<p>returns the total number of pages of physical the system has.
This does not mean all this memory is available.  This information can
be found using
</p>
<a name="index-_005fSC_005fAVPHYS_005fPAGES"></a>
<a name="index-sysconf-1"></a>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">  sysconf (_SC_AVPHYS_PAGES)
</pre></td></tr></table>

<p>These two values help to optimize applications.  The value returned for
<code>_SC_AVPHYS_PAGES</code> is the amount of memory the application can use
without hindering any other process (given that no other process
increases its memory usage).  The value returned for
<code>_SC_PHYS_PAGES</code> is more or less a hard limit for the working set.
If all applications together constantly use more than that amount of
memory the system is in trouble.
</p>
<p>The GNU C library provides in addition to these already described way to
get this information two functions.  They are declared in the file
&lsquo;<tt>sys/sysinfo.h</tt>&rsquo;.  Programmers should prefer to use the
<code>sysconf</code> method described above.
</p>
<dl>
<dt><a name="index-get_005fphys_005fpages"></a><u>Function:</u> long int <b>get_phys_pages</b><i> (void)</i></dt>
<dd><p>The <code>get_phys_pages</code> function returns the total number of pages of
physical the system has.  To get the amount of memory this number has to
be multiplied by the page size.
</p>
<p>This function is a GNU extension.
</p></dd></dl>

<dl>
<dt><a name="index-get_005favphys_005fpages"></a><u>Function:</u> long int <b>get_avphys_pages</b><i> (void)</i></dt>
<dd><p>The <code>get_phys_pages</code> function returns the number of available pages of
physical the system has.  To get the amount of memory this number has to
be multiplied by the page size.
</p>
<p>This function is a GNU extension.
</p></dd></dl>

<hr size="6">
<a name="Processor-Resources"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Query-Memory-Parameters" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Learn-about-the-processors-available"></a>
<h2 class="section">22.5 Learn about the processors available</h2>

<p>The use of threads or processes with shared memory allows an application
to take advantage of all the processing power a system can provide.  If
the task can be parallelized the optimal way to write an application is
to have at any time as many processes running as there are processors.
To determine the number of processors available to the system one can
run
</p>
<a name="index-_005fSC_005fNPROCESSORS_005fCONF"></a>
<a name="index-sysconf-2"></a>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">  sysconf (_SC_NPROCESSORS_CONF)
</pre></td></tr></table>

<p>which returns the number of processors the operating system configured.
But it might be possible for the operating system to disable individual
processors and so the call
</p>
<a name="index-_005fSC_005fNPROCESSORS_005fONLN"></a>
<a name="index-sysconf-3"></a>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">  sysconf (_SC_NPROCESSORS_ONLN)
</pre></td></tr></table>

<p>returns the number of processors which are currently online (i.e.,
available).
</p>
<p>For these two pieces of information the GNU C library also provides
functions to get the information directly.  The functions are declared
in &lsquo;<tt>sys/sysinfo.h</tt>&rsquo;.
</p>
<dl>
<dt><a name="index-get_005fnprocs_005fconf"></a><u>Function:</u> int <b>get_nprocs_conf</b><i> (void)</i></dt>
<dd><p>The <code>get_nprocs_conf</code> function returns the number of processors the
operating system configured.
</p>
<p>This function is a GNU extension.
</p></dd></dl>

<dl>
<dt><a name="index-get_005fnprocs"></a><u>Function:</u> int <b>get_nprocs</b><i> (void)</i></dt>
<dd><p>The <code>get_nprocs</code> function returns the number of available processors.
</p>
<p>This function is a GNU extension.
</p></dd></dl>

<a name="index-load-average"></a>
<p>Before starting more threads it should be checked whether the processors
are not already overused.  Unix systems calculate something called the
<em>load average</em>.  This is a number indicating how many processes were
running.  This number is average over different periods of times
(normally 1, 5, and 15 minutes).
</p>
<dl>
<dt><a name="index-getloadavg"></a><u>Function:</u> int <b>getloadavg</b><i> (double <var>loadavg</var>[], int <var>nelem</var>)</i></dt>
<dd><p>This function gets the 1, 5 and 15 minute load averages of the
system. The values are placed in <var>loadavg</var>.  <code>getloadavg</code> will
place at most <var>nelem</var> elements into the array but never more than
three elements.  The return value is the number of elements written to
<var>loadavg</var>, or -1 on error.
</p>
<p>This function is declared in &lsquo;<tt>stdlib.h</tt>&rsquo;.
</p></dd></dl>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Resource-Usage-And-Limitation" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="libc_23.html#Non_002dLocal-Exits" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>root</em> on <em>April 20, 2012</em> using <a href="http://www.nongnu.org/texi2html/"><em>texi2html 1.82</em></a>.
 </font>
 <br>

</p>
</body>
</html>