/usr/share/acl2-6.5/books/ccg/ccg.lisp is in acl2-books-source 6.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 | #|$ACL2s-Preamble$;
(begin-book t :ttags ((:ccg)));$ACL2s-Preamble$|#
(in-package "ACL2")
(defttag :ccg)
; load in the expander book.
(include-book "misc/expander" :dir :system)
; load in Peter's hacker stuff. we use at least three things from this:
; - add several keys to the acl2-defaults-table
; - make raw Lisp definitions from an acl2 book, i.e. defstruct-raw,
; defmacro-raw, and defun-raw
; - bridge raw lisp and ACL2 so that we can access the raw Lisp code
;
(include-book "hacking/hacker" :dir :system)
(progn+all-ttags-allowed
(include-book "hacking/all" :dir :system :ttags :all))
(subsume-ttags-since-defttag)
(defdoc CCG
":Doc-Section CCG
a powerful automated termination prover for ACL2~/~/
In order to see how the CCG analysis works, consider the following
definition of Ackermann's function from exercise 6.15 in the ACL2 textbook:
~bv[]
(defun ack (x y)
(if (zp x)
1
(if (zp y)
(if (equal x 1) 2 (+ x 2))
(ack (ack (1- x) y) (1- y)))))
~ev[]
ACL2 cannot automatically prove the termination of ~c[ack] using its
measure-based termination proof. In order to admit the function, the user
must supply a measure. An example measure is
~c[(make-ord 1 (1+ (acl2-count y)) (acl2-count x))], which is equivalent to the ordinal
~c[w * (1+ (acl2-count y)) + (acl2-count x)], where ~c[w] is the first infinite
ordinal.
The CCG analysis, on the other hand, automatically proves termination as
follows. Note that there are two recursive calls. These calls, along with
their rulers (i.e. the conditions under which the recursive call is reached)
are called ~em[calling contexts], or sometimes just ~em[contexts] (for more
on rulers, see ~il[ruler-extenders]). For
~c[ack], these are:
~bv[]
1. (ack (1- x) y) with ruler ((not (zp x)) (not (zp y))).
2. (ack (ack (1- x) y) (1- y)) with ruler ((not (zp x)) (not (zp y))).
~ev[]
These calling contexts are used to build a ~em[calling context graph (CCG)],
from which our analysis derives its name. This graph has an edge from
context ~c[c1] to context ~c[c2] when it is possible that execution can move
from context ~c[c1] to context ~c[c2] in one ``step'' (i.e. without visiting
any other contexts). For our example, we get the complete graph, with edges
from each context to both contexts.
The analysis next attempts to guess ~em[calling context measures (CCMs)], or
just ~em[measures], for each function. These are similar to ACL2 measures,
in that they are ACL2 terms that must provably be able to evaluate to an
ordinal value (unlike ACL2 measures, CCG currently ignores the current
well-founded relation setting). However, functions may have multiple CCMs,
instead of one, like ACL2, and the CCG analysis has some more sophisticated
heuristics for guessing appropriate measures. However, there is a mechanism
for supplying measures to the CCG analysis if you need to ~pl[CCG-XARGS]. In
our example, the CCG analysis will guess the measures ~c[(acl2-count x)],
~c[(acl2-count y)], and ~c[(+ (acl2-count x) (acl2-count y))]. This last one
turns out to be unimportant for the termination proof. However, note that
the first two of these measures are components of the ordinal measure that
we gave ACL2 to prove termination earlier. As one might guess, these are
important for the success of our CCG analysis.
Like ACL2's measure analysis, we are concerned with what happens to these
values when a recursive call is made. However, we are concerned not just
with decreasing measures, but also non-increasing measures. Thus, we
construct ~em[Calling Context Measure Functions (CCMFs)], which tell us how
one measure compares to another across recursive calls.
In our example, note that when the recursive call of the context 1 is made,
the new value of ~c[(acl2-count x)] is less than the original value of
~c[(acl2-count x)]. More formally, we can prove the following:
~bv[]
(implies (and (not (zp x))
(not (zp y)))
(o< (acl2-count (1- x))
(acl2-count x)))
~ev[]
For those of you that are familiar with measure-based termination proofs in
ACL2, this should look familiar, as it has the same structure as such a
termination proof. However, we also note the following trivial observation:
~bv[]
(implies (and (not (zp x))
(not (zp y)))
(o<= (acl2-count y)
(acl2-count y)))
~ev[]
That is, ~c[y] stays the same across this recursive call. For the other
context, we similarly note that ~c[(acl2-count y)] is decreasing. However,
we can say nothing about the value of ~c[(acl2-count x)]. The CCG algorithm
does this analysis using queries to the theorem prover that are carefully
restricted to limit prover time.
Finally, the CCG analysis uses this local information to do a global
analysis of what happens to values. This analysis asks the question, for
every infinite path through our CCG, ~c[c_1], ~c[c_2], ~c[c_3], ..., is
there a natural number ~c[N] such that there is an infinite sequence of
measures ~c[m_N], ~c[m_(N+1)], ~c[m_(N+2)], ... such that each ~c[m_i] is a
measure for the context ~c[c_i] (i.e. a measure for the function containing
~c[ci]), we have proven that the ~c[m_(i+1)] is never larger than ~c[m_i],
and for infinitely many ~c[i], it is the case that we have proven that
~c[m_i] is always larger than ~c[m_(i+)]. That's a bit of a mouthful, but
what we are essentially saying is that, for every possible infinite sequence
of recursions it is the case that after some finite number of steps, we can
start picking out measures such that they never increase and infinitely
often they decrease. Since these measures return ordinal values, we then
know that there can be no infinite recursions, and we are done.
For our example, consider two kinds of infinite paths through our CCG: those
that visit context 2 infinitely often, and those that don't. In the first
case, we know that ~c[(acl2-count y)] is never increasing, since a visit to
context 1 does not change the value of ~c[y], and a visit to context 2
decreases the value of ~c[(acl2-count y)]. Furthermore, since we visit
context 2 infinitely often, we know that ~c[(acl2-count y)] is infinitely
decreasing along this path. Therefore, we have met the criteria for proving
no such path is a valid computation. In the case in which we do not visit
context 2 infinitely often, there must be a value ~c[N] such that we do not
visit context 2 any more after the ~c[N]th context in the path. After this,
we must only visit context 1, which always decreases the value of
~c[(acl2-count x)]. Therefore, no such path can be a valid
computation. Since all infinite paths through our CCG either visit context 2
infinitely often or not, we have proven termination. This analysis of the
local data in the global context is done automatically by a decision
procedure.
That is a brief overview of the CCG analysis. Note that, can it prove many
functions terminating that ACL2 cannot. It also does so using simpler
measures. In the ~c[ack] example, we did not require any infinite ordinal
measures to prove termination using CCG. Intuitively, CCG is in a way
putting together the measures for you so you don't have to think about the
ordinal structure. Thus, even when the CCG analysis to prove termination, it
is often easier to give it multiple simple measures and allow it to put
together the global termination argument than to give ACL2 the entire
measure so it can prove that it decreases every single step.
To find out more about interacting and controlling the CCG analysis, see the
topics included in this section.")
; BEGIN public configuration interface
; add :termination-method key to acl2-defaults-table
;
; add-acl2-defaults-table-key is provided by my hacker stuff. -Peter
(add-acl2-defaults-table-key :termination-method
(member-eq val '(:measure :ccg)))
(defdoc set-termination-method
":Doc-Section CCG
Set the default means of proving termination.~/
~bv[]
Examples:
(set-termination-method :ccg)
(set-termination-method :measure)
~ev[]
Introduced by the CCG analysis book, this macro sets the default
means by which ACL2 will prove termination. Note: This is an event!
It does not print the usual event summary but nevertheless changes
the ACL2 logical ~il[world] and is so recorded.~/
~bv[] General Form:
(set-termination-method tm)
~ev[]
where ~c[tm] is ~c[:CCG] or ~c[:MEASURE]. The default is ~c[:MEASURE] (chosen
to assure compatibility with books created without CCG). The recommended
setting is ~c[:CCG]. This macro is equivalent to
~c[(table acl2-defaults-table :termination-method 'tm)], and hence is ~ilc[local] to
any ~il[books] and ~ilc[encapsulate] ~il[events] in which it occurs;
~pl[acl2-defaults-table].
When the termination-method is set to ~c[:CCG], a termination proof is
attempted using the the hierarchical CCG algorithm ~url[CCG-hierarchy].
When the termination-method is set to ~c[:MEASURE], ACL2 attempts to
prove termination using its default measure-based method. Thus, in
this setting, ACL2's behavior is identical to that when the CCG book
is not included at all.
To see what the current termination method setting is, use
~ilc[get-termination-method].~/")
(defun get-termination-method (wrld)
":Doc-Section CCG
Returns the current default termination method.~/
~bv[]
Examples:
(get-termination-method (w state))
~ev[]
This will return the termination-method as specified by the current world. ~/
~bv[]
General Form:
(get-termination-method wrld)
~ev[]
where ~c[wrld] is a ~il[world]. For information on the settings and
their meaning, ~pl[set-termination-method].~/"
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(let ((entry (assoc :termination-method (table-alist 'acl2-defaults-table wrld))))
(or (and entry (cdr entry)) :measure)))
(verify-guards get-termination-method)
(defmacro hlevel-proof-technique (hlevel)
`(car ,hlevel))
(defmacro hlevel-ccm-comparison-scheme (hlevel)
`(cadr ,hlevel))
(defmacro hlevel-ccmfs-per-nodep (hlevel)
`(caddr ,hlevel))
(defmacro make-hlevel (pt ccm-cs cpn)
`(list ,pt ,ccm-cs ,cpn))
(defun proof-techniquep (pt)
; checks whether pt is a valid "proof technique" as described in the
; documentation for the set-ccg-hierarchy. That is, this function returns true
; if pt is :built-in-clauses or of the form (:induction-depth n) for some
; natural number n.
(declare (xargs :guard t))
(or (and (keywordp pt)
(eq pt :built-in-clauses))
(and (consp pt)
(keywordp (car pt))
(eq (car pt) :induction-depth)
(consp (cdr pt))
(natp (cadr pt))
(null (cddr pt)))))
(defun hlevelp (hlevel)
(declare (xargs :guard t))
; returns non-nil if hlevel is a valid level of a CCG hierarchy. That is,
; the result is non-nil if it is of the form (:measure pt) or (pt ccm-cs cpn)
; where pt satisfies proof-techniquep, ccm-cs is one of :EQUAL, :ALL, :SOME, or
; :NONE, and cpn is a boolean.
(and (consp hlevel)
(or (and (keywordp (car hlevel))
(eq (car hlevel) :measure)
(consp (cdr hlevel))
(proof-techniquep (cadr hlevel))
(null (cddr hlevel)))
(and (proof-techniquep (car hlevel))
(consp (cdr hlevel))
(member-eq (cadr hlevel) '(:EQUAL :ALL :SOME :NONE))
(consp (cddr hlevel))
(booleanp (caddr hlevel))
(null (cdddr hlevel))))))
(defun hlevel-listp (lst)
(declare (xargs :guard t))
; returns non-nil iff lst is a true-list of elements satisfying hlevelp.
(if (consp lst)
(and (hlevelp (car lst))
(hlevel-listp (cdr lst)))
(null lst)))
(defun non-empty-hlevel-listp (lst)
(declare (xargs :guard t))
(and (consp lst)
(hlevel-listp lst)))
(defun hlevel< (hlevel0 hlevel1)
; a non-transitive comparison function for arguments that are non-measure
; levels of a CCG hierarchy. The definition is designed to return t if the CCG
; analysis, using the techniques described in hlevel1 could possibly further
; refine an annotated CCG that had already been refined using the techniques
; described in hlevel0. That is, hlevel< returns t if hlevel0 does *not*
; subsume hlevel1.
(declare (xargs :guard (and (hlevelp hlevel0)
(not (equal (car hlevel0)
:measure))
(hlevelp hlevel1)
(not (equal (car hlevel1)
:measure)))))
(let ((pt0 (hlevel-proof-technique hlevel0))
(ccm-cs0 (hlevel-ccm-comparison-scheme hlevel0))
(cpn0 (hlevel-ccmfs-per-nodep hlevel0))
(pt1 (hlevel-proof-technique hlevel1))
(ccm-cs1 (hlevel-ccm-comparison-scheme hlevel1))
(cpn1 (hlevel-ccmfs-per-nodep hlevel1)))
; if cpn0 is t and cpn1 is nil (hlevel0 calculates CCMFs on a per-node basis,
; and hlevel1 on a per-edge basis), then we return t.
(or (and cpn0 (not cpn1))
; if hlevel1 has a stronger proof technique than hlevel0, then return t.
(and (not (equal pt1 :built-in-clauses))
(or (equal pt0 :built-in-clauses)
(< (cadr pt0) (cadr pt1))))
; if hlevel1 has a more comprehensive CCM comparison scheme, then return t.
(let ((ccm-cs-vals '((:EQUAL . 0)
(:ALL . 1)
(:SOME . 2)
(:NONE . 3))))
(< (cdr (assoc ccm-cs0 ccm-cs-vals))
(cdr (assoc ccm-cs1 ccm-cs-vals)))))))
(rewrite-table-guard
acl2-defaults-table
(:carpat %body%
:vars %body%
:repl (if (eq key :ccg-hierarchy)
(non-empty-hlevel-listp val)
%body%)))
(defun fix-ccg-hierarchy (hierarchy)
(declare (xargs :guard (or (consp hierarchy)
(and (symbolp hierarchy)
(member-eq hierarchy
'(:CCG-ONLY
:CCG-ONLY-CPN
:HYBRID
:HYBRID-CPN))))))
; if hierarchy is a symbol designating one of the pre-defined hierarchies,
; return the hierarchy that it represents. Otherwise, return hierarchy.
(if (consp hierarchy)
hierarchy
(case hierarchy
(:CCG-ONLY
'((:built-in-clauses :equal t)
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t)
((:induction-depth 1) :EQUAL nil)
((:induction-depth 1) :ALL nil)
((:induction-depth 1) :SOME nil)
((:induction-depth 1) :NONE nil)))
(:CCG-ONLY-CPN
'((:built-in-clauses :equal t)
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t)))
(:HYBRID
'((:built-in-clauses :equal t)
(:measure (:induction-depth 1))
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t)
((:induction-depth 1) :EQUAL nil)
((:induction-depth 1) :ALL nil)
((:induction-depth 1) :SOME nil)
((:induction-depth 1) :NONE nil)))
(:HYBRID-CPN
'((:built-in-clauses :equal t)
(:measure (:induction-depth 1))
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t)))
(otherwise
nil))))
(defun get-ccg-hierarchy (wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table
wrld)))))
; gets the default ccg hierarchy from the acl2-defaults-table. the default is
; :CCG-ONLY.
(let ((entry (assoc :ccg-hierarchy (table-alist 'acl2-defaults-table wrld))))
(if (null entry)
(fix-ccg-hierarchy :CCG-ONLY)
(cdr entry))))
(set-state-ok t)
(program)
(defun chk-ccg-hierarchy1 (hierarchy cpn ctx state)
; checks the given hierarchy to assure that it conforms to the proper form.
; if cpn is nil, all levels of the hierarchy must have a cpn of nil. Otherwise,
; this function checks that there are no levels of the hierarchy with cpn t
; that come after levels with a cpn of nil (once you switch from CCMFs per-node
; to CCMFs per-edge, you cannot go back). The ctx and state are there to enable
; error reporting. This function returns an error triple whose value is nil if
; everything checks out.
(cond ((endp hierarchy)
(value nil))
((not (hlevelp (car hierarchy)))
(er soft ctx
"Each element of a CCG-HIERARCHY must either have the form (PT ~
CCM-CS CPN) or (:MEASURE PT), where PT is either ~
:BUILT-IN-CLAUSES or (:INDUCTION-DEPTH N) for some natural ~
number, N, CCM-CS is one of :EQUAL, :ALL, :SOME, :NONE, and CPN ~
is either T or NIL. ~x0 does not match this form."
(car hierarchy)))
((and (not cpn)
(not (equal (caar hierarchy) :MEASURE))
(hlevel-ccmfs-per-nodep (car hierarchy)))
(er soft ctx
"It is not permitted that a level of a CCG-HIERARCHY have a ~
CCCMFs-per-nodep of T when a previous level had a ~
CCMFs-per-nodep of NIL. But this is the case with level ~x0."
(car hierarchy)))
(t
(chk-ccg-hierarchy1 (cdr hierarchy)
(if (equal (caar hierarchy) :measure)
cpn
(hlevel-ccmfs-per-nodep (car hierarchy)))
ctx state))))
(defun chk-measure-hlevel<-all (hlevel0 hierarchy ctx state)
; ensures that none of the measure levels of hierarchy are subsumed by hlevel0.
(cond ((endp hierarchy)
(value nil))
((or (not (equal (caar hierarchy) :measure))
(and (consp (cadar hierarchy))
(or (atom (cadr hlevel0))
(< (cadadr hlevel0) (cadadr (car hierarchy))))))
(chk-measure-hlevel<-all hlevel0 (cdr hierarchy) ctx state))
(t
(er soft ctx
"Each :MEASURE level of a CCG-HIERARCHY should use strictly more ~
powerful proof techniques than all those that come before it. ~
However, the ~x0 level is subsumed by the earlier level, ~x1."
(car hierarchy)
hlevel0))))
(defun chk-hlevel<-all (hlevel0 hierarchy ctx state)
; insures that none of the CCG levels of the hierarchy are subsumed by
; hlevel0.
(cond ((endp hierarchy)
(value nil))
((or (equal (caar hierarchy) :MEASURE)
(hlevel< hlevel0 (car hierarchy)))
(chk-hlevel<-all hlevel0 (cdr hierarchy) ctx state))
(t
(er soft ctx
"Each level of a CCG-HIERARCHY should be strictly more powerful ~
than all the previous levels. That is, it should always be ~
possible to refine the CCG or CCMF information at each step in ~
the hierarchy. However, the ~x0 level is subsumed by the ~
earlier level, ~x1."
(car hierarchy)
hlevel0))))
(defun chk-hierarchy-strictly-increasing (hierarchy ctx state)
; ensures that no level of hierarchy is subsumed by a later level.
(if (endp hierarchy)
(value nil)
(er-progn
(cond ((equal (caar hierarchy) :MEASURE)
(chk-measure-hlevel<-all (car hierarchy) (cdr hierarchy)
ctx state))
(t
(chk-hlevel<-all (car hierarchy) (cdr hierarchy)
ctx state)))
(chk-hierarchy-strictly-increasing (cdr hierarchy) ctx state))))
(defun chk-ccg-hierarchy (hierarchy ctx state)
; checks a proposed CCG hierarchy.
(cond ((and (symbolp hierarchy)
(member-eq hierarchy '(:CCG-ONLY
:CCG-ONLY-CPN
:HYBRID
:HYBRID-CPN)))
(value nil))
((and (consp hierarchy)
(true-listp hierarchy))
(er-progn
(chk-ccg-hierarchy1 hierarchy t ctx state)
(chk-hierarchy-strictly-increasing hierarchy ctx state)))
(t
(er soft ctx
"A CCG-HIERARCHY must be :CCG-ONLY, :CCG-ONLY-CPN, :HYBRID, ~
:HYBRID-CPN, or a non-empty true-list. ~x0 does not have ~
this form."
hierarchy))))
(defmacro set-ccg-hierarchy (v)
":Doc-Section CCG
Set the default hierarchy of techniques for CCG-based termination
analysis. ~/
~bv[]
(set-ccg-hierarchy ((:built-in-clauses :equal t)
(:measure (:induction-depth 1))
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t)
((:induction-depth 1) :EQUAL nil)
((:induction-depth 1) :ALL nil)
((:induction-depth 1) :SOME nil)
((:induction-depth 1) :NONE nil)))
:set-ccg-hierarchy ((:built-in-clauses :equal t)
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t))~/
General Form:
(set-ccg-hierarchy v)
~ev[]
where ~c[v] is ~c[:CCG-ONLY], ~c[:CCG-ONLY-CPN], ~c[:HYBRID],
~c[:HYBRID-CPN], or a non-empty list of hierarchy levels, which either
have the form ~c[(pt ccm-cs cpn)] or the form ~c[(:measure pt)], where
~c[pt] is either ~c[:built-in-clauses] or ~c[(:induction-depth n)] for
some natural number ~c[n], ~c[ccm-cs] is one of ~c[:EQUAL], ~c[:ALL],
~c[:SOME], or ~c[:NONE], and ~c[cpn] is ~c[t] or ~c[nil].
Each level of the hierarchy describes techniques used to prove
termination. Termination proofs performed after admitting this event will
use the specified techniques in the order in which they are listed.
Basically, the CCG analysis as described and illustrated at a high level
in the documentation for ~il[CCG] can potentially be very expensive. In
order to make the analysis as efficient as possible, we use less expensive
(and less powerful) techniques first, and resort to more powerful and
expensive techniques only when these fail.
There are three ways of varying the CCG analysis, which are represented by
each of the three elements in a hierarchy level (levels of the form
~c[(:measure pt)] will be explained later).
~c[Pt] tells the CCG analysis how to limit proof attempts. The idea behind
this is that ACL2 is designed to prove statements that the user thinks are
true. It therefore does everything it can to prove the conjecture. As ACL2
useres already know, this can lead to very long, or even non-terminating
proof attempts. The CCG analysis, on the other hand, sends multiple
queries to the theorem prover that may or may not be true, in order to
improve the accuracy of the analysis. It is therefore necessary to reign
in ACL2's proof attempts to keep them from taking too long. Of course, the
trade-off is that, the more we limit ACL2's prover, the less powerful it
becomes.
~c[Pt] can be ~c[:built-in-clauses], which tells ACL2 to use only
~il[built-in-clauses] analysis. This is a very fast, and surprisingly
powerful proof technique. For example, the definition of Ackermann's
function given in the documentation for ~il[CCG] is solved using only this
proof technique.
~c[Pt] can also be of the form ~c[(:induction-depth n)], where ~c[n] is a
natural number. This uses the full theorem prover, but limits it in two
ways. First, it stops proof attempts if ACL2 has been working on a subgoal
with no case splitting or induction for 20 steps (that is, at a goal of
the form 1.5'20'). It also limits the ~em[induction depth], which
describes how many times we allow induction goals to lead to further
induction goals. For example, ~c[(:induction-depth 0)] allows no
induction, while ~c[(:induction-depth 1)] allows goals of the form ~c[*1]
or ~c[*2], but stops if it creates a goal such as ~c[*1.1] or ~c[*2.1].
~c[Ccm-cs] limits which CCMs are compared using the theorem
prover. Consider again the ~c[ack] example in the documentation for
~il[CCG]. All we needed was to compare the value of ~c[(acl2-count x)]
before and after the recursive call and the value of ~c[(acl2-count y)]
before and after the recursive call. We would learn nothing, and waste
time with the theorem prover if we compared ~c[(acl2-count x)] to
~c[(acl2-count y)]. However, other times, it is important to compare CCMs
with each other, for example, when arguments are permuted, or we are
dealing with a mutual recursion.
~c[Ccm-cs] can be one of ~c[:EQUAL], ~c[:ALL], ~c[:SOME], or
~c[:NONE]. These limit which CCMs we compare based on the variables they
mention. Let ~c[c] be a recursive call in the body of function ~c[f] that
calls function ~c[g]. Let ~c[m1] be a CCM for ~c[f] and ~c[m2] be a CCM
for ~c[g]. Let ~c[v1] be the formals mentioned in ~c[m1] and ~c[v2] be the
formals mentioned in ~c[m2'] where ~c[m2'] is derived from ~c[m2] by
substituting the formals of ~c[g] with the actuals of ~c[c]. For example,
consider following function:
~bv[]
(defun f (x)
(if (endp x)
0
(1+ (f (cdr x)))))
~ev[]
Now consider the case where ~c[m1] and ~c[m2] are both the measure
~c[(acl2-count x)]. Then if we look at the recursive call ~c[(f (cdr x))]
in the body of ~c[f], then ~c[m2'] is the result of replacing ~c[x] with
~c[(cdr x)] in ~c[m2], i.e., ~c[(acl2-count (cdr x))].
If ~c[ccm-cs] is ~c[:EQUAL] we will compare ~c[m1] to
~c[m2] if ~c[v1] and ~c[v2] are equal. If ~c[value] is ~c[:ALL] we will
compare ~c[m1] to ~c[m2'] if ~c[v2] is a subset of ~c[v1]. If ~c[value] is
~c[:SOME] we will compare ~c[m1] to ~c[m2'] if ~c[v1] and ~c[v2]
intersect. If ~c[value] is ~c[:NONE] we will compare ~c[m1] to ~c[m2] no
matter what.
There is one caveat to what was just said: if ~c[m1] and ~c[m2] are
syntactically equal, then regardless of the value of ~c[ccm-cs] we will
construct a CCMF that will indicate that ~c[(o>= m1 m2)].
~c[Cpn] tells us how much ruler information we will use to compare CCMs.
Unlike ACL2's measure-based termination analysis, CCG has the ability to
use the rulers from both the current recursive call the next recursive
call when constructing the CCMFs. That is, instead of asking ``What
happens when I make recursive call A?'', we can ask, ``What happens when
execution moves from recursive call A to recursive call B?''. Using this
information potentially strengthens the termination analysis. For a brief
example, consider the following code:
~bv[]
(defun half (x)
(if (zp x)
0
(1+ (half (- x 2)))))
~ev[]
Clearly this is terminating. If we choose a measure of ~c[(nfix x)] we
know that if ~c[x] is a positive integer, ~c[(nfix (- x 2))] is less than
~c[(nfix x)]. But consider the measure ~c[(acl2-count x)]. The strange
thing here is that if ~c[x] is 1, then ~c[(acl2-count (- x 2))] is
~c[(acl2-count -1)], which is 1, i.e. the ~c[acl2-count] of ~c[x]. So, the
fact that we know that ~c[x] is a positive integer is not enough to show
that this measure decreases. But notice that if ~c[x] is 1, we will recur
just one more time. So, if we consider what happens when we move from the
recursive call back to itself. In this case we know
~c[(and (not (zp x)) (not (zp (- x 2))))].
Under these conditions, it is trivial for ACL2 to prove that
~c[(acl2-count (- x 2))] is always less than ~c[(acl2-count x)].
However, this can make the CCG analysis much more expensive, since
information about how values change from step to step are done on a
per-edge, rather than a per-node basis in the CCG (where the nodes are the
recursive calls and the edges indicate that execution can move from one
call to another in one step). Thus, calculating CCMFs (how values change
across recursive calls) on a per-edge basis rather than a per-node basis
can require n^2 instead of n prover queries.
If ~c[cpn] is ~c[t], we will use only the ruler of the current recursive
call to compute our CCMFs. If it is ~c[nil], we will use the much more
expensive technique of using the rulers of the current and next call.
Levels of the hierarchy of the form ~c[(:measure pt)] specify that the CCG
analysis is to be set aside for a step, and the traditional measure-based
termination proof is to be attempted. Here, ~c[pt] has the same meaning as
it does in a CCG hierarchy level. That is, it limits the measure proof in
order to avoid prohibitively long termination analyses.
The user may specify their own hierarchy in the form given above. The main
restriction is that no level may be subsumed by an earlier level. That is,
it should be the case at each level of the hierarchy, that it is possible
to discover new information about the CCG that could help lead to a
termination proof.
In addition to constructing his or her own CCG hierarchy, the user may use
several preset hierarchies:
~bv[]
:CCG-ONLY
((:built-in-clauses :equal t)
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t)
((:induction-depth 1) :EQUAL nil)
((:induction-depth 1) :ALL nil)
((:induction-depth 1) :SOME nil)
((:induction-depth 1) :NONE nil))
:CCG-ONLY-CPN
((:built-in-clauses :equal t)
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t))
:HYBRID
((:built-in-clauses :equal t)
(:measure (:induction-depth 1))
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t)
((:induction-depth 1) :EQUAL nil)
((:induction-depth 1) :ALL nil)
((:induction-depth 1) :SOME nil)
((:induction-depth 1) :NONE nil))
:HYBRID-CPN
((:built-in-clauses :equal t)
(:measure (:induction-depth 1))
((:induction-depth 0) :EQUAL t)
((:induction-depth 1) :EQUAL t)
((:induction-depth 1) :ALL t)
((:induction-depth 1) :SOME t)
((:induction-depth 1) :NONE t))
~ev[]
The default hierarchy for CCG termination analysis is :CCG-ONLY.~/"
`(er-progn
(chk-ccg-hierarchy ',v "SET-CCG-HIERARCHY" state)
(with-output :off summary
(progn (table acl2-defaults-table ':ccg-hierarchy ',(fix-ccg-hierarchy v))
(table acl2-defaults-table ':ccg-hierarchy)))))
;; adds :ccg-time-limit to the acl2-global-table.
(add-acl2-defaults-table-key :ccg-time-limit
(or (null val)
(and (rationalp val)
(< 0 val))))
(logic)
(set-state-ok nil)
(defdoc set-ccg-time-limit
":Doc-Section CCG
Set a global time limit for CCG-based termination proofs.~/
~bv[]
Examples:
(set-ccg-time-limit 120) ; limits termination proofs to 120 seconds.
(set-ccg-time-limit 53/2) ; limits termination proofs to 53/2 seconds.
(set-ccg-time-limit nil) ; removes any time limit for termination proofs.
~ev[]
Introduced by the CCG analysis book, this macro sets a global time limit for
the completion of the CCG analysis. The time limit is given as a rational
number, signifying the number of seconds to which the CCG analysis should be
limited, or nil, signifying that there should be no such time limit. If CCG
has not completed its attempt to prove termination in the number of seconds
specified, it will immediately throw an error and the definition attempt will
fail. Note: This is an event! It does not print the usual event summary but
nevertheless changes the ACL2 logical ~il[world] and is so recorded.~/
~bv[] General Form:
(set-ccg-time-limit tl)
~ev[]
where ~c[tl] is a positive rational number or nil. The default is nil. If the
time limit is nil, the CCG analysis will work as long as it needs to in order
to complete the analysis. If the ~c[tl] is a positive rational number,
all CCG analyses will be limited to ~c[tl] seconds.
To see what the current time limit is, see
~ilc[get-ccg-time-limit].~/")
(defun get-ccg-time-limit (wrld)
":Doc-Section CCG
Returns the current default ccg-time-limit setting.~/
~bv[]
Examples:
(get-ccg-time-limit (w state))
~ev[]
This will return the time-limit as specified by the current world. ~/
~bv[]
General Form:
(get-time-limit wrld)
~ev[]
where ~c[wrld] is a ~il[world]. For information on the settings and
their meaning, ~pl[set-termination-method].~/"
(declare (xargs :guard (and (plist-worldp wrld)
(alistp (table-alist 'acl2-defaults-table wrld)))))
(let ((entry (assoc :ccg-time-limit (table-alist 'acl2-defaults-table wrld))))
(or (and entry (cdr entry)) nil)))
(verify-guards get-ccg-time-limit)
(defmacro set-ccg-print-proofs (v)
":Doc-Section CCG
controls whether proof attempts are printed during CCG analysis~/
~bv[]
Examples:
(set-ccg-print-proofs t)
(set-ccg-print-proofs nil)
:set-ccg-print-proofs t~/
General Form:
(set-ccg-print-proofs v)
~ev[]
If ~c[v] is ~c[nil], no proof attempts will be printed during CCG
analysis. This is the default. If ~c[v] is anything but ~c[nil], proofs will
be displayed. Fair warning: there is potentially a large amount of prover
output that might be displayed. It is probably better to use
~l[set-ccg-inhibit-output-lst] to un-inhibit ~c['query] output to figure out
what lemmas might be needed to get a given query to go through."
`(assign ccg-print-proofs ,v))
(defmacro get-ccg-print-proofs ()
":Doc-Section CCG
returns the setting that controls whether proof attempts are printed during
CCG analysis~/
~bv[]
Examples:
(get-ccg-print-proofs)
:get-ccg-print-proofs
~ev[]~/
See ~l[set-ccg-print-proofs] for details."
'(and (f-boundp-global 'ccg-print-proofs state)
(f-get-global 'ccg-print-proofs state)))
;; The following code is used to implement a parallel to io? as defined in
;; basis.lisp. Make sure this all stays in sync with the parallel definitions
;; in that file. To find out more, see the "Essay on Inhibited Output and the
;; Illusion of Windows" in the comments of basis.lisp.
;; *ccg-window-descriptions* parallels *window-descriptions* as defined in
;; basis.lisp. See the comments there for details.
(defconst *ccg-window-descriptions*
; str clr top pop
'((query "4" nil nil nil)
(basics "4" nil nil nil)
(performance "4" nil nil nil)
(build/refine "4" nil nil nil)
(size-change "4" nil nil nil)
(counter-example "4" nil nil nil)))
;; The following mirrors *valid-output-names* as defined in axioms.lisp. This
;; is the list of valid io "kinds" that can be inhibited.
(defconst *ccg-valid-output-names*
'(query basics performance build/refine size-change counter-example))
(defmacro set-ccg-inhibit-output-lst (lst)
":Doc-Section CCG
control output during CCG termination analysis~/
~bv[]
Examples:
(set-ccg-inhibit-output-lst '(query))
(set-ccg-inhibit-output-lst '(build/refine size-change))
(set-ccg-inhibit-output-lst *ccg-valid-output-names*) ; inhibit all ccg output
:set-ccg-inhibit-output-lst (build/refine size-change)~/
General Form:
(set-ccg-inhibit-output-lst lst)
~ev[]
where ~c[lst] is a form (which may mention ~ilc[state]) that evaluates
to a list of names, each of which is the name of one of the
following ``kinds'' of output produced by the CCG termination analysis.
~bv[]
query prints the goal, restrictions, and results of each prover
query (for a discussion on displaying actual proofs,
see ~c[set-ccg-display-proofs](yet to be documented).
basics the basic CCG output, enough to follow along, but concise
enough to keep from drowning in output
performance performance information for the size change analysis
build/refine the details of CCG construction and refinement
size-change the details of size change analysis
counter-example prints out a counter-example that can be useful for
debugging failed termination proof attempts.
~ev[]
It is possible to inhibit each kind of output by putting the corresponding
name into ~c[lst]. For example, if ~c['query] is included in (the value of)
~c[lst], then no information about individual queries is printed during CCG
analysis.
The default setting is ~c['(query performance build/refine size-change)].
That is, by default only the basic CCG information and counter-example (in
the case of a failed proof attempt) are printed. This should hopefully be
adequate for most users."
`(let ((lst ,lst))
(cond ((not (true-listp lst))
(er soft 'set-ccg-inhibit-output-lst
"The argument to set-ccg-inhibit-output-lst must evaluate to a ~
true-listp, unlike ~x0."
lst))
((not (subsetp-eq lst *ccg-valid-output-names*))
(er soft 'set-ccg-inhibit-output-lst
"The argument to set-ccg-inhibit-output-lst must evalutate to a ~
subset of the list ~X01, but ~x2 contains ~&3."
*ccg-valid-output-names*
nil
',lst
(set-difference-eq lst *ccg-valid-output-names*)))
(t (pprogn
(f-put-global 'ccg-inhibit-output-lst lst state)
(value lst))))))
(defmacro get-ccg-inhibit-output-lst ()
":Doc-Section CCG
returns the list of ``kinds'' of output that will be inhibited during CCG
analysis~/
~bv[]
Examples:
(get-ccg-inhibit-output-lst)
:get-ccg-inhibit-output-lst
~bv[]~/
See ~l[set-ccg-inhibit-output-lst]."
'(if (f-boundp-global 'ccg-inhibit-output-lst state)
(f-get-global 'ccg-inhibit-output-lst state)
'(query performance build/refine size-change)))
(program)
(set-state-ok t)
(defmacro ccg-io? (token commentp shape vars body
&key
(clear 'nil clear-argp)
(cursor-at-top 'nil cursor-at-top-argp)
(pop-up 'nil pop-up-argp)
(default-bindings 'nil)
(chk-translatable 't))
; NOTE: Keep this in sync with io? as defined in basis.lisp. This definition is
; almost identical to that one, except we use *ccg-window-descriptions* and
; *ccg-valid-output-names* instead of *window-descriptions* and
; *valid-output-names*, and we store our inhibited-lst in the global table
; under the symbol 'ccg-inhibit-output-lst instead of 'inhibit-output-lst. The
; remaining comments in this definition are from the original io? definition:
; Typical use (io? error nil (mv col state) (x y) (fmt ...)), meaning execute
; the fmt statement unless 'error is on 'inhibit-output-lst. The mv expression
; is the shape of the output produced by the fmt expression, and the list (x y)
; for vars indicates the variables other than state that occur free in that
; expression. See the comment above, and see the Essay on Saved-output for a
; comment that gives a convenient macro for obtaining the free variables other
; than state that occur free in body.
; Default-bindings is a list of doublets (symbol value). It is used in order
; to supply a non-nil return value for other than state when io is suppressed.
; For example, fmt returns col and state, as suggested by the third (shape)
; argument below. Without the :default-bindings, this form would evaluate to
; (mv nil state) if event IO is inhibited. But there are fixnum declarations
; that require the first return value of fmt to be an integer, and we can
; specify the result in the inhibited case to be (mv 0 state) with the
; following :default-bindings:
; (io? event nil (mv col state) nil (fmt ...) :default-bindings ((col 0)))
; The values in :default-bindings are evaluated, so it would be equivalent to
; replace 0 with (- 4 4), for example.
(declare (xargs :guard (and (symbolp token)
(symbol-listp vars)
(no-duplicatesp vars)
(not (member-eq 'state vars))
(assoc-eq token *ccg-window-descriptions*))))
(let* ((associated-window (assoc-eq token *ccg-window-descriptions*))
(expansion
`(let* ((io?-output-inhibitedp
(member-eq ',token
(get-ccg-inhibit-output-lst)))
(io?-alist
(and (not io?-output-inhibitedp)
(list
(cons #\w ,(cadr associated-window))
(cons #\c ,(if clear-argp
clear
(caddr associated-window)))
(cons #\t ,(if cursor-at-top-argp
cursor-at-top
(cadddr associated-window)))
(cons #\p ,(if pop-up-argp
pop-up
(car (cddddr associated-window))))
; Peter Dillinger requested the following binding, so that he could specify a
; window prelude string that distinguishes between, for example, "prove",
; "event", and "summary" output, which with the default string would all just
; show up as window 4.
(cons #\k ,(symbol-name token))))))
(pprogn
(if (or io?-output-inhibitedp
(null (f-get-global 'window-interfacep state)))
state
(mv-let (io?-col state)
(fmt1! (f-get-global 'window-interface-prelude state)
io?-alist 0 *standard-co* state nil)
(declare (ignore io?-col))
state))
,(let ((body
`(check-vars-not-free
(io?-output-inhibitedp io?-alist)
(check-exact-free-vars io? (state ,@vars) ,body)))
(nil-output (if (eq shape 'state)
'state
(cons 'mv (io?-nil-output (cdr shape)
default-bindings))))
(postlude
`(mv-let
(io?-col state)
(if (or io?-output-inhibitedp
(null (f-get-global 'window-interfacep state)))
(mv 0 state)
(fmt1! (f-get-global 'window-interface-postlude state)
io?-alist 0 *standard-co* state nil))
(declare (ignore io?-col))
(check-vars-not-free
(io?-output-inhibitedp io?-alist io?-col)
,shape))))
(let ((body (if commentp
`(let ,(io?-wormhole-bindings 0 vars)
,body)
body)))
(cond
((eq shape 'state)
`(pprogn
(if io?-output-inhibitedp state ,body)
,postlude))
(t `(mv-let ,(cdr shape)
(if io?-output-inhibitedp
,nil-output
,body)
,postlude)))))))))
(cond
(commentp
(let ((form
(cond
((eq shape 'state)
`(pprogn ,expansion (value :q)))
(t
`(mv-let ,(cdr shape)
,expansion
(declare
(ignore ,@(remove1-eq 'state (cdr shape))))
(value :q))))))
`(prog2$
,(if chk-translatable
`(chk-translatable ,body ,shape)
nil)
(wormhole 'comment-window-io
'(lambda (whs)
(set-wormhole-entry-code whs :ENTER))
(list ,@vars)
',form
:ld-error-action :return!
:ld-verbose nil
:ld-pre-eval-print nil
:ld-prompt nil))))
(t `(pprogn
(cond ((saved-output-token-p ',token state)
(push-io-record nil ; io-marker
(list 'let
(list ,@(formal-bindings vars))
',expansion)
state))
(t state))
,expansion)))))
; END public configuration interface
; BEGIN mostly raw definitions for the CCG analysis
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; STRUCT DEFINITIONS ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defstruct-raw funct
;; The funct defstruct represents the relevant information about the function
;; definitions provided by the user.
;;
;; * fn: the function name
(fn nil :type symbol)
;; * formals: the formals of the function
(formals nil :type list)
;; * ccms: the ccms associated with the function. This will be a vector of
;; terms, whose value will always be natural numbers.
(ccms nil :type sequence))
(defstruct-raw context
;; The context defstruct is used to represent a calling context. The
;; individual fields are as follows:
;;
;; * ruler: the ruler of the context.
(ruler nil)
;; * call: the actual recursive call of the context.
(call nil)
;; * parent-funct: the funct representing the function containing the context.
(parent-funct (make-funct) :type funct)
;; * call-funct: the funct representing the function called by the call of the
;; context.
(call-funct (make-funct) :type funct)
;; * num: a unique ID number assigned to each context. Also indicates
;; its index in the context-array.
num)
;; The following macros make it easy to get and set the fields of the functs of
;; a given context.
(defmacro-raw context-fn (c)
`(funct-fn (context-parent-funct ,c)))
(defmacro-raw context-formals (c)
`(funct-formals (context-parent-funct ,c)))
(defmacro-raw context-callfn (c)
`(funct-fn (context-call-funct ,c)))
(defmacro-raw context-callformals (c)
`(funct-formals (context-call-funct ,c)))
(defmacro-raw context-ccms (c)
`(funct-ccms (context-parent-funct ,c)))
(defstruct-raw ccmf-node
;; The ccmf-node struct represents nodes in the graph representation
;; of a CCMF (see the comments for the struct ccmf). It contains two
;; lists of edges: >-edges is a list of the indices of the CCMs that
;; are always < the current one, and likewise >=-edges is a list of
;; the indeces of the CCMs that are always <= the current one.
(>-edges nil :type list)
(>=-edges nil :type list))
(defstruct-raw ccmf
;; The ccmf struct represents CCMFs as a graph with edges labeled by
;; > or >=. The fields are as follows:
;;
;; * firstsite: the index of the "tail" context of the CCMF.
(firstsite 0 :type fixnum)
;; * lastsite: the index of the "head" context of the CCMF.
(lastsite 0 :type fixnum)
;; * fc-num: the original index of the "tail" context. This is needed
;; because CCGs get separated into SCCs, so the index of the head
;; and tail contexts in the current SCC (firstsite and lastsite)
;; and the context in the original context array may be
;; different. Also, this item is actually a list of indices because
;; of the possibility of context merging. The list keeps track of
;; the original indices of all the contexts that were merged to
;; make the current head or tail context. Currently, absorption and
;; merging are not used, so we tend to just refer to the first item
;; in the list.
(fc-num (list 0) :type (cons fixnum list))
;; * lc-num: the original index of the "head" context (see note for
;; fc-num).
(lc-num (list 0) :type (cons fixnum list))
;; * graph: the graph representing the CCMF. This is an array of
;; ccmf-nodes.
(graph nil :type (array ccmf-node))
;; * in-sizes: the number of CCMFs for the "tail" context.
(in-sizes 0 :type fixnum)
;; * out-sizes: the number of CCMFs for the "head" context.
(out-sizes 0 :type fixnum)
;; * steps: the number of steps in the CCG represented by the
;; CCMF. This is used in the sct algorithm.
(steps 1 :type fixnum))
(defstruct-raw accg-edge
;; The accg-edge struct represents edges in the annotated CCG (ACCG).
;; * tail: the index of the tail ACCG node of the edge.
(tail -1 :type fixnum)
;; * head: the index of the head ACCG node of the edge.
(head -1 :type fixnum)
;; * ccmf: the CCMF associated with the edge in the ACCG.
(ccmf nil :type (or null ccmf)))
(defstruct-raw accg-node
;; The accg-node struct represents nodes in the ACCG. An ACCG is an
;; array of these.
;; * context: the context associated with the node.
(context (make-context) :type context)
;; * fwd-edges: edges for which the current node is the tail.
(fwd-edges nil :type list)
;; * bwd-edges: edges for which the current node is the head.
(bwd-edges nil :type list)
;; * num: the index of the node in the array of nodes of the ACCG.
(num 0 :type fixnum))
;; The following macros are self-explanitory. They allow us to refer
;; to fields of a substruct of a given struct as if it were a field in
;; the struct.
(defmacro-raw accg-node-ruler (accg)
`(context-ruler (accg-node-context ,accg)))
(defmacro-raw accg-node-call (accg)
`(context-call (accg-node-context ,accg)))
(defmacro-raw accg-node-parent-funct (accg)
`(context-parent-funct (accg-node-context ,accg)))
(defmacro-raw accg-node-call-funct (accg)
`(context-call-funct (accg-node-context ,accg)))
(defmacro-raw accg-node-fn (accg)
`(context-fn (accg-node-context ,accg)))
(defmacro-raw accg-node-formals (accg)
`(context-formals (accg-node-context ,accg)))
(defmacro-raw accg-node-callformals (accg)
`(context-callformals (accg-node-context ,accg)))
(defmacro-raw accg-node-callfn (accg)
`(context-callfn (accg-node-context ,accg)))
(defmacro-raw accg-node-context-num (accg)
`(context-num (accg-node-context ,accg)))
(defmacro-raw accg-node-ccms (accg)
`(context-ccms (accg-node-context ,accg)))
;;; The following two structs are used to represent an SRG. See the
;;; paper on the polynomial approximation of SCT (a.k.a. SCP) for a
;;; full explanation. Briefly: an SRG has CCMs for nodes and edges
;;; labeled with > or >= between them as the corresponding CCMF
;;; dictates. In other words, the graph connects all the CCMF graphs
;;; into one graph.
(defstruct-raw srg-edge
;; The srg-edge represents an edge in an SRG.
;; * tail: the tail CCM of the edge.
(tail 0 :type fixnum)
;; * head: the head CCM of the edge.
(head 0 :type fixnum)
;; * ccmf: the CCMF from which this edge was derived.
(ccmf (make-ccmf) :type ccmf)
;; * label: generally > or >=, indicating the label of the CCMF edge
;; from which this edge is derived.
(label 'none :type symbol))
(defstruct-raw srg-node
;; The srg-node struct represents a node of the SRG
;; * node: the index of the ACCG node associated with this SRG node.
(node 0 :type fixnum)
;; * ccm: the index of the CCM in the array of CCMs assigned to the
;; corresponding ACCG node.
(ccm 0 :type fixnum)
;; * fwd-edges: the list of srg-edges of which this srg-node is the
;; tail.
(fwd-edges nil :type list)
;; * bwd-edges: the list of srg-edges of which this srg-node is the
;; head.
(bwd-edges nil :type list))
;;; the memoization struct contains the information that we use for
;;; memoization. The fields are as follows:
;;;
;;; * proved: the list of proved conjectures.
;;; * unproved0: the list of conjectures that we could not prove with 0 inductions.
;;; * unproved1: the list of conjectures that we could not prove with 1 induction.
(defstruct-raw memoization
(proved nil :type list)
(unproved (make-array 0 :initial-element nil :element-type 'list)
:type (vector list)))
(defun-raw create-memoization (max-ind)
(make-memoization :unproved (make-array (1+ max-ind)
:initial-element nil
:element-type 'list)))
;;; ccg-simplify-hyps-no-split takes a list of expressions, hyps,
;;; representing a conjunction of predicates and quickly simplifies
;;; them in such a way that does not cause a case split. It returns
;;; the list of simplified expressions.
(defun-raw ccg-simplify-hyps-no-split (hyps ctx ens wrld state)
(declare (ignore ctx))
(mv-let (nhyps ttree)
(normalize-lst hyps t nil ens wrld nil)
(er-progn
(accumulate-ttree-and-step-limit-into-state ttree :skip state)
(value (flatten-ands-in-lit-lst nhyps)))))
(defrec query-spec-var
((wrld . ens)
(ctx . otf-flg)
(stop-time . mem))
t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Printing Functions ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw print-funct-ccms (functs wrld state)
(if (endp functs)
state
(pprogn
(fms "The CCM~#1~[~/s~] for ~x0 ~#1~[is~/are~] ~&1.~|"
`((#\0 . ,(funct-fn (car functs)))
(#\1 . ,(untranslate-lst
(mapcar #'de-propagate
(coerce (funct-ccms (car functs))
'list))
nil
wrld)))
*standard-co*
state
nil)
(print-funct-ccms (cdr functs) wrld state))))
;; The following definitions culminate in print-counter-example.
(defun-raw prettify-ccms (ccm-array vars vals wrld)
(let ((fn (if vars
#'(lambda (x)
(untranslate (subcor-var vars vals
(de-propagate x))
nil wrld))
#'(lambda (x)
(untranslate (de-propagate x)
nil wrld)))))
(map 'vector fn ccm-array)))
(defmacro-raw ce-defun-fn (defun)
`(cadr ,defun))
(defmacro-raw ce-defun-formals (defun)
`(caddr ,defun))
(defmacro-raw ce-defun-body (defun)
`(cadddr ,defun))
(defmacro-raw ce-defun-test (defun)
`(let ((body (ce-defun-body ,defun)))
(if (eq (fn-symb body) 'if)
(cadr body)
T)))
(defmacro-raw ce-defun-call (defun)
`(let ((body (ce-defun-body ,defun)))
(if (eq (fn-symb body) 'if)
(caddr body)
body)))
(defun-raw ccmf-graph-no-edges? (ccmf-graph)
(loop for node across ccmf-graph
when (or (consp (ccmf-node->-edges node))
(consp (ccmf-node->=-edges node)))
return nil
finally (return t)))
(defun-raw ccmf-graph-term (i graph ccms0 ccms1 acc)
(if (< i 0)
(cond ((endp acc) acc)
((endp (cdr acc)) (car acc))
(t (cons 'and acc)))
(let* ((node (aref graph i))
(>=-edges (ccmf-node->=-edges node))
(>-edges (ccmf-node->-edges node))
(ccm (de-propagate (aref ccms0 i))))
(ccmf-graph-term (1- i)
graph
ccms0
ccms1
(append (mapcar #'(lambda (x)
`(> ,ccm
,(de-propagate
(aref ccms1 x))))
>-edges)
(mapcar #'(lambda (x)
`(>= ,ccm
,(de-propagate
(aref ccms1 x))))
>=-edges)
acc)))))
(defun-raw print-ccmfs1 (defuns defun0 defun1 ccmfs flst funct0 col wrld state)
(if (endp defuns)
state
(let* ((graph (ccmf-graph (car ccmfs)))
(ne? (ccmf-graph-no-edges? graph))
(f0 (car defuns))
(f1 (if (consp (cdr defuns))
(cadr defuns)
defun0))
(f2 (cond ((endp (cdr defuns))
defun1)
((endp (cddr defuns))
defun0)
(t (caddr defuns))))
(fn0 (ce-defun-fn f0))
(fn1 (ce-defun-fn f1))
(fn2 (ce-defun-fn f2))
(formals (ce-defun-formals f1))
(actuals (fargs (ce-defun-call f0)))
(ccms0 (prettify-ccms (funct-ccms (car flst)) nil nil wrld))
(ccms0-lst (coerce ccms0 'list))
(ccms1 (prettify-ccms (funct-ccms (if (endp (cdr flst))
funct0
(cadr flst)))
formals actuals wrld))
(ccms1-lst (coerce ccms1 'list)))
(pprogn
(fms "When execution moves from the recursive call in ~x0 of ~x1 to ~
~#2~[itself~/the recursive call in ~x1 of ~x3~], we need to know ~
how the measures of ~x0 compare with the result of substituting ~
the formals of ~x1 with the actuals of the call to ~x1 in the ~
measures of ~x1. The measure~#4~[~/s~] for ~x0 ~
~#4~[is~/are~]:~|~%~*6~%The result~#5~[~/s~] of applying the ~
substitution to the measures of ~x1 ~#5~[is~/are~]:~|~%~*7~%We ~
know ~#8~[nothing about how the values of these CCMs ~
relate.~/the following about these CCMs:~%~%~Y9A~]~|~%If you can ~
show that any of the terms in the first list is always either ~
strictly greater than, or greater than or equal to some term in ~
the second list, this could be helpful for proving termination.~|"
(list (cons #\0 fn0)
(cons #\1 fn1)
(cons #\2 (if (eq fn0 fn1) 0 1))
(cons #\3 fn2)
(cons #\4 ccms0-lst)
(cons #\5 ccms1-lst)
(cons #\6 `("" "~x*.~|" "~x*~|" "~x*~|"
,ccms0-lst))
(cons #\7 `("" "~x*.~|" "~x*~|" "~x*~|"
,ccms1-lst))
(cons #\8 (if ne? 0 1))
(cons #\9 (ccmf-graph-term
(1- (array-dimension graph 0))
graph
ccms0
ccms1
nil))
(cons #\A (term-evisc-tuple nil state)))
*standard-co* state nil)
(print-ccmfs1 (cdr defuns)
defun0
defun1
(cdr ccmfs)
(cdr flst)
funct0
col wrld state)))))
(defun-raw print-ccmfs (defuns ccmfs flst col wrld state)
(if (endp defuns)
state
(print-ccmfs1 defuns
(car defuns)
(if (endp (cdr defuns))
(car defuns)
(cadr defuns))
ccmfs
flst
(car flst)
col
wrld
state)))
(defun-raw print-ccms (defuns functs col wrld state)
;; (format t "defuns: ~A functs: ~A col: ~A state: ~A~%" defuns functs col state)
(if (endp defuns)
(mv-let (col state)
(fmt1 "~|" nil col *standard-co* state nil)
(declare (ignore col))
state)
(mv-let
(col state)
(fmt1 "The CCM~#1~[~/s~] for ~x0 ~#1~[is~/are~] ~&1. "
(list (cons #\0 (cadar defuns))
(cons #\1 (untranslate-lst
(mapcar #'de-propagate
(coerce (funct-ccms (car functs))
'list))
nil
wrld)))
col
*standard-co*
state nil)
(print-ccms (cdr defuns) (cdr functs) col wrld state))))
(defun-raw produce-counter-example1 (ccmfs context-array alist wrld)
(if (endp ccmfs)
(mv nil nil nil)
(let* ((context (aref context-array (car (ccmf-fc-num (car ccmfs)))))
(funct (context-parent-funct context))
(fn (funct-fn funct)))
(mv-let
(name i)
(ccg-counter-example-fn-name fn (assoc-eq-value fn 0 alist) wrld)
(mv-let
(contexts functs names)
(produce-counter-example1 (cdr ccmfs) context-array
(assoc-set-eq fn (1+ i) alist) wrld)
(mv (cons context contexts)
(cons funct functs)
(cons name names)))))))
(defun-raw produce-counter-example2 (contexts names name0 ctx ens wrld state)
(if (endp contexts)
(value nil)
(let* ((context (car contexts))
(funct (context-parent-funct context))
(call (cons (if (endp (cdr names))
name0
(cadr names))
(fargs (context-call context)))))
(er-let*
((ruler (state-global-let*
((inhibit-output-lst
;; no output here.
*valid-output-names*))
;; remove any redundant or subsumed hyps.
(simp-hyps0 (context-ruler context)
ctx ens wrld state nil t nil :term-order)))
(body (value (if (endp ruler)
call
`(if ,(if (endp (cdr ruler))
(car ruler)
`(and ,@ruler))
,call
(list ,@(funct-formals funct))))))
(rst (produce-counter-example2 (cdr contexts)
(cdr names)
name0
ctx ens wrld state)))
(value (cons `(defun ,(car names) ,(funct-formals funct) ,body)
rst))))))
(defun-raw accg-find-ccmf (accg i j)
(loop for edge in (accg-node-fwd-edges (aref accg i))
when (= j (accg-edge-head edge))
return (accg-edge-ccmf edge)))
(defun-raw produce-counter-example (path accg context-array ctx ens wrld state)
(let* ((ccmfs (loop for p on path
when (and (consp p) (consp (cdr p)))
collect (accg-find-ccmf accg (car p) (cadr p)))))
(pprogn
(fms "Producing counter-example, including simplifying rulers in order to ~
maximize the reabability of the counter-example."
nil
*standard-co*
state nil)
(mv-let
(contexts functs names)
(produce-counter-example1 ccmfs context-array nil wrld)
(er-let* ((defuns (produce-counter-example2 contexts names (car names)
ctx ens wrld state)))
(value (list* ccmfs functs defuns)))))))
(defun-raw print-counter-example (accg ce contexts ctx ens wrld state)
(er-let*
((triple (produce-counter-example (cdr ce)
accg
contexts
ctx ens wrld state))
(ccmfs (value (car triple)))
(functs (value (cadr triple)))
(defuns (value (cddr triple))))
(pprogn
(fms "The following function definitions correspond to an actual loop in ~
your function definitions for which the CCG analysis was unable to ~
prove termination in all cases: ~%~%~Y01~%"
(list (cons #\0 (untranslate (if (endp (cdr defuns))
(car defuns)
(cons 'mutual-recursion defuns))
nil wrld))
(cons #\1 (term-evisc-tuple nil state)))
*standard-co*
state nil)
;; (print-ccms defuns functs 0 wrld state)
(print-ccmfs defuns ccmfs functs 0 wrld state)
(let* ((loop-graph (car ce))
(ne? (ccmf-graph-no-edges? loop-graph))
(ccms (funct-ccms (car functs))))
(fms "As it stands, we do not have enough information to show that this ~
loop terminates. ~#0~[When we put it all together, we find that ~
when we loop from ~x1 to itself, we know ~#2~[nothing about how ~
the values of the CCMs change. ~/the following about how values ~
change from one iteration to the loop to the next (measures are ~
presented without substitution):~%~%~Y34~]~/~]~|~%Note that under ~
this abstraction, the loop is idempotent (i.e. going through the ~
loop again will result in the same information about ~
non-increasing and decreasing values as we have just stated), and ~
that there is no CCM that decreases to itself across the loop. ~
There are therefore three possibilities: ~|~%(1) We did not guess ~
the CCMs needed for proving termination. If this is the case, you ~
could provide them for us using a :CONSIDER-CCMS or ~
:CONSIDER-ONLY-CCMS hint (see :DOC CCG-XARGS). If you are truly ~
desperate, you can resort to proving termination using ACL2's ~
measure-based termination method (do this globally by using ~
SET-TERMINATION-METHOD or just once by using the ~
:TERMINATION-METHOD xarg; see :DOC CCG-XARGS).~|~%(2) We guessed ~
the proper CCMs, but were unable to prove some necessary ~
theorem(s) about how these values change from step to step in the ~
loop. In this case, we suggest that you look at the ~
counter-example we generated and use it to determine what ~
additional lemmas are needed for CCG analysis to successfully ~
prove termination.~|~%(3) The loop really is non-terminating for ~
some inputs. In this case, you should alter the definition of the ~
function so that it will terminate on all inputs.~%~%"
(list (cons #\0 (if (consp (cdr defuns)) 0 1))
(cons #\1 (cadar defuns))
(cons #\2 (if ne? 0 1))
(cons #\3 (untranslate
(ccmf-graph-term
(1- (array-dimension loop-graph 0))
loop-graph
ccms
ccms
nil)
nil
wrld))
(cons #\4 (term-evisc-tuple nil state)))
*standard-co*
state nil)))))
(defun-raw print-ccmf-changes (col changes state)
(if (endp changes)
state
(let ((change (car changes)))
(mv-let
(col state)
(fmt1 "When execution moves ~@0, the following ~
always holds:~|~%~x1.~|~%"
`((#\0 . ,(if (consp (car change))
`("from context ~x0 to context ~x1"
(#\0 . ,(caar change))
(#\1 . ,(cdar change)))
`("across context ~x0"
(#\0 . ,(car change)))))
(#\1 . ,(cdr change)))
col
*standard-co*
state
nil)
(print-ccmf-changes col (cdr changes) state)))))
(defun-raw p< (p1 p2)
(or (< (car p1) (car p2))
(and (= (car p1) (car p2))
(< (cdr p1) (cdr p2)))))
(defun-raw construct-accg-changes-printout (changes)
(if (endp changes)
nil
(cons `("the edge from context ~x0 to context ~x1"
(#\0 . ,(caar changes))
(#\1 . ,(cdar changes)))
(construct-accg-changes-printout (cdr changes)))))
(defun-raw print-accg-changes (changes state)
(if (endp changes)
(fms "~|" nil *standard-co* state nil)
(pprogn
(fms "~x0 -> ~x1"
`((#\0 . ,(caar changes))
(#\1 . ,(cdar changes)))
*standard-co*
state
nil)
(print-accg-changes (cdr changes) state))))
(defun-raw print-changes (col changes state)
(if (and (endp (car changes))
(endp (cdr changes)))
(mv-let
(col state)
(fmt1 "We discovered nothing new about the CCG.~|"
nil
col
*standard-co*
state
nil)
(declare (ignore col))
state)
(mv-let
(col state)
(fmt1 "We discovered the following about the CCG.~|~%"
nil
col
*standard-co*
state
nil)
(mv-let
(col state)
(if (endp (car changes))
(mv col state)
(mv-let
(col state)
(fmt1 "We can safely omit the following edges from the CCG:~|"
nil
col
*standard-co*
state
nil)
(declare (ignore col))
(mv 0 (print-accg-changes (car changes) state))))
(print-ccmf-changes col
(sort (copy-list (cdr changes))
(if (consp (caadr changes))
#'p<
#'<)
:key #'car)
state)))))
(defun-raw print-context-array1 (i names context-array state)
(if (>= i (array-dimension context-array 0))
state
(pprogn
(let ((context (aref context-array i)))
(fms "CALLING CONTEXT ~x0~#1~[~/ in the body of ~x2~]:~|rulers: ~
~x3~|call: ~x4~|"
`((#\0 . ,i)
(#\1 . ,names)
(#\2 . ,(context-fn context))
(#\3 . ,(context-ruler context))
(#\4 . ,(context-call context)))
*standard-co*
state
nil))
(print-context-array1 (1+ i) names context-array state))))
(defun-raw print-context-array (names context-array state)
(pprogn
(fms "The calling contexts for ~#0~[this definition~/these definitions~] ~
are:~|"
`((#\0 . ,names))
*standard-co*
state
nil)
(print-context-array1 0 names context-array state)))
(defun-raw print-accg-edges3 (edges accg state)
(if (endp edges)
state
(pprogn
(let ((pair (accg-edge-context-pair (car edges) accg)))
(fms "~x0 -> ~x1"
`((#\0 . ,(car pair))
(#\1 . ,(cdr pair)))
*standard-co*
state
nil))
(print-accg-edges3 (cdr edges) accg state))))
(defun-raw print-accg-edges2 (i n accg state)
(if (>= i n)
state
(pprogn
(print-accg-edges3 (accg-node-fwd-edges (aref accg i)) accg state)
(print-accg-edges2 (1+ i) n accg state))))
(defun-raw print-accg-edges1 (accgs state)
(if (endp accgs)
(fms "~|" nil *standard-co* state nil)
(pprogn
(print-accg-edges2 0
(array-dimension (car accgs) 0)
(car accgs)
state)
(print-accg-edges1 (cdr accgs) state))))
(defun-raw print-accg-edges (col accgs state)
(if (endp accgs)
state
(mv-let
(col state)
(fmt1 "The Calling Context Graph has the following edges:~|"
nil col *standard-co* state nil)
(declare (ignore col))
(print-accg-edges1 accgs state))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; the following code is for building a CCG
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; limit-induction-hint-fn limits the amount of time spent on a proof
;;; attempt by limiting the amount of induction and subgoals that may
;;; be considered before the prover gives up. This is done with
;;; computed hintus.
(defun limit-induction-hint-fn (i)
;; this computed hint has two pieces. the first limits induction,
;; the second limits subgoals in order to avoid infinite loops.
`(or (and (length-exceedsp (car id) ,i) ;;if we are i inductions deep
(endp (cdadr id)) ;;and we are not in a subgoal of an induction
(eq (cddr id) 0) ;;and we haven't done anything with the current subgoal yet,
'(:computed-hint-replacement t :do-not-induct :otf-flg-override));; do not induct any further.
(and (> (cddr id) 20) ;; if we have been working on the same subgoal for 20 steps with no induction or case splitting,
'(:computed-hint-replacement t
:do-not '(eliminate-destructors
eliminate-irrelevance
generalize fertilize) ;; turn off all proof methods
;; Pete: put a quote in front of (eliminate ...) above since that generated an error
:in-theory (theory 'minimal-theory))))) ;; and use minimal theory
(defun translated-limit-induction-hint (i)
`((eval-and-translate-hint-expression
"CCG Query" nil
(cons
'nil
(cons
((lambda
(i id)
(if
(if
(length-exceedsp (car id) i)
(if
(endp (cdr (car (cdr id))))
(if (eq (cdr (cdr id)) '0)
'(:computed-hint-replacement t
:do-not-induct :otf-flg-override)
'nil)
'nil)
'nil)
(if
(length-exceedsp (car id) i)
(if
(endp (cdr (car (cdr id))))
(if (eq (cdr (cdr id)) '0)
'(:computed-hint-replacement t
:do-not-induct :otf-flg-override)
'nil)
'nil)
'nil)
(if (< '20 (cdr (cdr id)))
'(:computed-hint-replacement
t
:do-not '(eliminate-destructors eliminate-irrelevance
generalize fertilize)
:in-theory (theory 'minimal-theory))
'nil)))
',i
id)
(cons state 'nil))))))
;;;ccg-simplify-contexts;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw ccg-negate (exp)
;; returns expression corresponding to the negation of expression exp.
(if (and (consp exp)
(eq (first exp) 'not))
(second exp)
`(not ,exp)))
(defun-raw ccg-addlist (lst)
;; creates a macro-expanded expression corresponding to the sum of a
;; list of expressions.
(cond ((endp lst) 0)
((endp (cdr lst)) (car lst))
(t `(binary-+ ,(car lst) ,(ccg-addlist (cdr lst))))))
(defun-raw ccg-count-contexts (tms)
;; given a list of lists of items, returns the total number of items.
(let ((i 0))
(dolist (tm tms i)
(setf i (+ i (len tm))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; helper functions ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The following code implements memoization. Currently this works as
;;; follows. At the beginning of termination analysis, we create a
;;; memoization struct with the default values for each list. At each
;;; prover query that is not built-in-clauses only, we check the prove
;;; list to see if any previously proved query subsumes our current
;;; goal. If so, we know our goal is true. Otherwise, we check our
;;; current goal against those previously unproven using 1 induction
;;; and, if our current restrictions indicate that we should only use
;;; 0 inductions, those previously unproven using 0 inductions. Here
;;; we check for equality (modulo alpha renaming) rather than
;;; subsumption, due to the fact that ACL2 is not a decision
;;; procedure, but relies on heuristics to guide proofs. Hence, ACL2
;;; might fail to prove a given theorem but succeed in proving a more
;;; general version. Therefore, unless we find the same query (modulo
;;; alpha renaming) in our unproved lists, we try the proof anyway.
;;;
;;; When a ACL2 is done with a query, we add it to proved, unproved0,
;;; or unproved1 depending on whether the proof attempt was successful
;;; (and if it was not successful, how many inductions were tried).
;;;
;;; Possible improvements:
;;;
;;; * instead of proving queries on the fly, perhaps we could collect
;;; all the queries and sort them from most to least general. That
;;; way, if we prove a query, we get for free all the queries that
;;; it generalizes.
;;;
;;; * can we do some preprocessing on the queries before we compare
;;; them for subsumption? The current subsumption checks are simple
;;; syntactic comparisons.
;;;
;;; * we can use random testing to discover queries that are provably
;;; false. We can then have another list, false-queries that we can
;;; check against. When doing so, we can safely check subsumption
;;; rather than equality, making it much more powerful than the
;;; current unproved checks.
(defun-raw subsumed-by-proved-clause (cl proved)
(and (consp proved)
(or (eq t (subsumes *init-subsumes-count* (car proved) cl nil))
(subsumed-by-proved-clause cl (cdr proved)))))
(defun-raw eliminate-subsumed-tail (cl cl-set acc)
(if (endp cl-set)
acc
(eliminate-subsumed-tail cl (cdr cl-set)
(if (subsumes *init-subsumes-count*
cl (car cl-set) nil)
acc
(cons (car cl-set) acc)))))
(defun-raw add-proved-clause (cl proved)
(cons cl (eliminate-subsumed-tail cl proved nil)))
(defun-raw equals-unproved-clause1 (cl unproved)
;; note, it is logically sufficient to check that cl subsumes some
;; unproved clause to say that if the unproved clause is unproveable
;; in the current theory, that cl will also be unproveable. However,
;; we are talking about clauses that ACL2 was unable to prove under
;; a set of restrictions. Given ACL2's heuristics and proving
;; algorithm, it is possible that adding hypotheses might lead ACL2
;; astray. Therefore, we want to attempt the proof unless we were
;; unsuccessful proving the exact same query.
(and (consp unproved)
(or (let ((cl-unproved (car unproved)))
(and (eq t (subsumes *init-subsumes-count* cl cl-unproved nil))
(eq t (subsumes *init-subsumes-count* cl-unproved cl nil))))
(equals-unproved-clause1 cl (cdr unproved)))))
(defun-raw equals-unproved-clause (cl unproved i)
;; checks if we already failed to prove cl using an induction depth of i or
;; higher.
(and (< i (array-dimension unproved 0))
(or (equals-unproved-clause1 cl (aref unproved i))
(equals-unproved-clause cl unproved (1+ i)))))
;;; time-limit check
(defmacro-raw time-er (ctx)
`(er soft ,ctx "CCG analysis has exceeded the specified time ~
limit. If you did not expect a time-limit, check the global ~
time-limit setting (see :DOC set-ccg-time-limit and the ~
discussion of the :time-limit flag in :DOC CCG) to find out ~
more. At this point you have several options:~|~% ~
* Set the :don't-guess-ccms flag to t. Sometimes CCG analysis ~
guesses too many CCMs which leads to excessive prover ~
queries. This will eliminate *all* CCMs other than the ~
acl2-count of each formal.~|~%~
* Do you see a variable that you don't think is relevant to the ~
termination proof? In that case, us the :ignore-formals flag ~
to tell the CCG analysis to throw out CCMs that contain that ~
formal. This may also cut down on CCMs and therefore prover ~
queries.~|~%~
* Finally, if you are willing to wait some more, you ~
could try increasing the time limit, or eliminating it by ~
setting it to nil."))
(defun-raw time-left (stop-time ctx state)
(let ((now (get-internal-run-time)))
(if (< now stop-time)
(value (/ (- stop-time now)
(coerce internal-time-units-per-second 'float)))
(time-er ctx))))
(defun-raw time-check (stop-time ctx state)
(if (and (posp stop-time)
(<= stop-time (get-internal-run-time)))
(time-er ctx)
(value nil)))
(defmacro-raw maybe-prover-before-stop-time (stop-time ctx state body)
`(let ((stop-time ,stop-time))
(if (null stop-time)
,body
(er-let* ((time-limit (time-left stop-time ,ctx ,state)))
(with-prover-time-limit time-limit
,body)))))
(defun prove-no-er (term pspv hints ens wrld ctx state)
;; calls prover, catching any error that occurred. Returns the error
;; triple whose value is the cons of the negation of the error value
;; returned by prove (i.e. whether prove successfully proved the
;; query or not) and either nil (if unsuccessful) or the resulting
;; ttree (if successful).
(mv-let (er ttree state)
(prove term pspv hints ens wrld ctx state)
(if er
(value (cons nil nil))
(value (cons t ttree)))))
;; query is the work-horse of our algorithm. It calls the prover
;; with the appropriate restrictions to ensure that it does not
;; attempt to prove termination forever. This function returns an
;; error triple whose value is the ttree generated by the proof. If
;; the proof fails, the triple indicates an error.
(defun-raw query (hyps concl pt qspv state)
(let* ((stop-time (access query-spec-var qspv :stop-time))
(mem (access query-spec-var qspv :mem))
(otf-flg (access query-spec-var qspv :otf-flg))
(ens (access query-spec-var qspv :ens))
(ctx (access query-spec-var qspv :ctx))
(wrld (access query-spec-var qspv :wrld))
(clause (add-literal concl (dumb-negate-lit-lst hyps) t))
(bic-onlyp (equal pt :built-in-clauses))
(ind-limit (if bic-onlyp -1 (cadr pt)))
(displayed-goal (prettyify-clause-set (list clause)
(let*-abstractionp state)
wrld)))
(pprogn (ccg-io? query nil state
(bic-onlyp ind-limit clause wrld)
(fms "We now make the following query, using ~
proof-technique ~x0 (see :DOC ~
CCG-hierarchy)~#1~[~/ and with the otf-flg set to ~
~x2~]:~|~%GOAL~%~Y34."
`((#\0 . ,pt)
(#\1 . ,(if bic-onlyp 0 1))
(#\2 . ,otf-flg)
(#\3 . ,displayed-goal)
(#\4 . ,(term-evisc-tuple nil state)))
(proofs-co state)
state
nil))
(er-let*
((pair
(cond (bic-onlyp
;; if the proof-technique tells us to only use built-in-clauses, we call built-in-clause-p
(mv-let (built-in-clausep ttree)
(built-in-clausep 'query clause ens (match-free-override wrld) wrld state)
(value (if built-in-clausep
(cons t ttree)
(cons nil nil)))))
;; have we already proved a more general query?
((subsumed-by-proved-clause clause (memoization-proved mem))
(pprogn
(ccg-io? query nil state
()
(fms "But we see that this query is already ~
subsumed by another query that was ~
previously proven.~%~%"
nil
(proofs-co state)
state
nil))
(value (cons t nil))))
;; have we already failed to prove this query using the same proof techniques?
((equals-unproved-clause clause
(memoization-unproved mem)
ind-limit)
(pprogn
(ccg-io? query nil state
()
(fms "But we see that we already tried and ~
failed to prove an equivalent query ~
using the same restrictions on the ~
theorem prover.~%~%"
nil
(proofs-co state)
state
nil))
(value (cons nil nil))))
(t
;; otherwise, we we need to call prove.
(er-let*
((pair
(let ((hints (translated-limit-induction-hint ind-limit)))
(maybe-prover-before-stop-time
stop-time ctx state
(prove-no-er (termify-clause-set (list clause))
(make-pspv ens wrld
:displayed-goal displayed-goal
:otf-flg otf-flg)
hints ens wrld ctx state)))))
(progn
;; update the memoization
(if (car pair)
(setf (memoization-proved mem)
(add-proved-clause clause
(memoization-proved mem)))
(setf (aref (memoization-unproved mem)
ind-limit)
(cons clause
(aref (memoization-unproved mem)
ind-limit))))
(value pair)))))))
(pprogn
(ccg-io? query nil state
()
(fms "ACL2 has ~#0~[SUCCEEDED in proving this ~
query~/FAILED to prove this query~].~|"
(list (cons #\0 (if (car pair) 0 1)))
(proofs-co state)
state
nil))
(er-progn
(time-check stop-time ctx state)
(if (car pair)
(accumulate-ttree-and-step-limit-into-state
(cdr pair)
:skip;(initial-step-limit wrld state)
state)
(pprogn
(erase-gag-state state)
(value nil)))
(value (car pair))))))))
;; the following two functions, ccg-generic-dfs-visit and
;; ccg-generic-dfs perform a depth-first search of a "generic"
;; directed graph. That is, a graph that is represented as an array of
;; nodes with some way to get a list of adjacent nodes
;; (node-fwd-edges) and some way, given an edge to get the index of
;; the node that it points to (edge-head). The algorithm itself is
;; taken directly out of the CLRS algorithms book.
(defun-raw ccg-generic-dfs-visit (u graph f color time node-fwd-edges edge-head)
(setf (aref color u) 'grey)
(dolist (vn (funcall node-fwd-edges (aref graph u)))
(let ((v (funcall edge-head vn)))
(when (eq (aref color v) 'white)
(setf time (ccg-generic-dfs-visit v graph f color time node-fwd-edges edge-head)))))
(setf (aref color u) 'black)
(setf (aref f time) u)
(incf time))
(defun-raw ccg-generic-dfs (graph node-fwd-edges edge-head)
;; this is the main generic DFS function. See the comment before the
;; previous function for a description of the arguments. This
;; function returns an array of indices indicating the order that
;; the nodes of the graph were visited. That is, the ith element of
;; the return value is the index of the ith node visited.
(let* ((size (array-total-size graph))
(f (make-array size :element-type 'fixnum))
(time 0)
(color (make-array size
:element-type '(member white grey black)
:initial-element 'white)))
(dotimes (i size f)
(when (eq (aref color i) 'white)
(setf time (ccg-generic-dfs-visit i graph f color time node-fwd-edges edge-head))))))
;;; The next two functions, like the previous two, operate on a
;;; "generic" graph that is represented as an array of
;;; nodes. Together, they implement an SCC analysis. The algorithm
;;; used here is straight from the CLRS algorithm book.
(defun-raw ccg-generic-scc-aux (u graph scc scc-array scc-num color node-bwd-edges edge-tail)
;; this is the helper function for ccg-generic-scc. u is the index
;; of the current node. graph is the array of nodes in the
;; graph. scc is the list of nodes in the scc that we are building.
(let ((scc scc))
(setf (aref color u) 'grey)
(dolist (vn (funcall node-bwd-edges (aref graph u)))
(let ((v (funcall edge-tail vn)))
(when (eq (aref color v) 'white)
(setf scc
(ccg-generic-scc-aux v graph scc scc-array scc-num color
node-bwd-edges edge-tail)))))
(setf (aref color u) 'black)
(setf (aref scc-array u) scc-num)
(cons u scc)))
(defun-raw ccg-generic-scc (graph node-fwd-edges node-bwd-edges edge-tail edge-head)
;; this is the main scc algorithm. graph is the array of nodes
;; representing the graph to be analyzed. node-fwd-edges is a
;; function that takes a node from the graph and returns the list of
;; the edges for which the given node is the tail. node-bwd-edges
;; takes a node from the graph and returns the list of edges for
;; which the given node is the head. edge-tail takes an edge and
;; returns the index in graph that corresponds to the tail of the
;; edge. edge-head takes an edge nad returns the index in graph that
;; corresponds to the head of the edge. the function returns a list
;; of lists of the nodes such that each list lists all the nodes in
;; one scc, as well as an array indicating which scc each node
;; belongs to.
(let ((scc-num -1))
(loop
with f = (ccg-generic-dfs graph node-fwd-edges edge-head)
with size = (array-dimension graph 0)
with color = (make-array size
:element-type '(member black grey white)
:initial-element 'white)
with scc-array = (make-array size
:element-type 'fixnum
:initial-element 0)
for i from (1- size) downto 0
for u = (aref f i)
when (eq (aref color u) 'white)
collect (ccg-generic-scc-aux u graph nil scc-array (incf scc-num) color
node-bwd-edges edge-tail)
into sccs
finally (return (values sccs scc-array)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; building an accg ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw accg-can-omit-edge? (node1 node2 hlevel qspv state)
;; given two ACCG nodes, node1 and node2, such that the function called by
;; the call of node1 is equal to the fn of node2, as well as a
;; ccg-restrict struct, and proof-related stuff (ens, wrld, ctx,
;; state), this function attempts to prove that it is impossible to
;; end up at node2 directly after visiting node1. We do this by
;; attempting to prove that the ruler of node1 implies the negation of
;; the ruler of node2 after the formals of the fn of node2 have been
;; replaced by the actuals of the call of node1. if this can be
;; proven, we return nil, otherwise, we return t.
(if (hlevel-ccmfs-per-nodep hlevel)
(value nil)
(query (append (accg-node-ruler node1)
(subcor-var-lst (accg-node-formals node2)
(fargs (accg-node-call node1))
(accg-node-ruler node2)))
nil
(hlevel-proof-technique hlevel) qspv state)))
(defun-raw accg-fill-in-edges (accg name-node-alist)
(loop for i from 0 below (array-dimension accg 0)
for node1 = (aref accg i)
for successors = (cdr (assoc (accg-node-callfn node1)
name-node-alist))
do (setf (accg-node-fwd-edges node1)
(loop for node2 in successors
for j = (accg-node-num node2)
for edge = (make-accg-edge :tail i :head j)
do (setf (accg-node-bwd-edges node2)
(cons edge (accg-node-bwd-edges node2)))
collect edge))))
(defun-raw context-to-accg-node-lst (contexts total)
(if (endp contexts)
(mv nil total)
(mv-let
(nodes ntotal)
(context-to-accg-node-lst (cdr contexts) total)
(let ((node (make-accg-node :context (car contexts))))
(mv (cons node nodes) (cons node ntotal))))))
(defun-raw ccg-build-accg0 (names contexts)
(if (endp names)
(mv nil nil)
(let ((name (car names))
(context-list (car contexts)))
(mv-let
(alist total)
(ccg-build-accg0 (cdr names) (cdr contexts))
(mv-let
(nodes ntotal)
(context-to-accg-node-lst context-list total)
(mv (acons name nodes alist)
ntotal))))))
(defun-raw ccg-build-accg (names contexts)
;; given the names of the functions being analyzed, the contexts
;; organized as a list of lists of contexts such that the ith list
;; in contexts corresponds to the list of contexts in the ith
;; function in names, the ccg-restrict struct restrict, and the
;; other proof-related stuff, we build an ACCG.
(mv-let
(name-node-alist accg-node-lst)
(ccg-build-accg0 names contexts)
(let ((accg (coerce accg-node-lst 'vector)))
(progn
(loop for i from 0 below (array-dimension accg 0)
do (setf (accg-node-num (aref accg i)) i))
(accg-fill-in-edges accg name-node-alist)
accg))))
(defun-raw simplify-contexts1 (context-lst ens wrld ctx state)
(if (endp context-lst)
state
(mv-let
(erp value state)
(ccg-simplify-hyps-no-split (context-ruler (car context-lst))
ctx ens wrld state)
(progn
(unless erp (setf (context-ruler (car context-lst)) value))
(simplify-contexts1 (cdr context-lst) ens wrld ctx state)))))
(defun-raw simplify-contexts (contexts ens wrld ctx state)
(if (endp contexts)
state
(pprogn
(simplify-contexts1 (car contexts) ens wrld ctx state)
(simplify-contexts (cdr contexts) ens wrld ctx state))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; annotating accgs (ccmfs) ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; choosing ccms (see CAV paper) ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun de-propagate (term)
(if (eq (fn-symb term) 'ccg-propagate)
(fargn term 2)
term))
(defun-raw ccg-formal-sizes (formals)
;; given a list of formals, this function returns a list of
;; expressions to calculate the acl2-count of each formal.
(loop for x in formals
collect `(acl2-count ,x)))
(defun-raw ccg-add-zp-ccm (r formals ccms)
;; if an expression, r -- which will generally correspond to one of
;; the expressions in a ruler -- is (not (zp e)) for some expression
;; e that is not in the list of formals, then we add e to our list
;; of ccms.
(cond ((atom r) ccms)
((and (eq (ffn-symb r) 'not)
(consp (fargn r 1))
(eq (ffn-symb (fargn r 1)) 'zp)
;; NOTE: We could remove th
(not (member-eq (fargn (fargn r 1) 1) formals)))
(cons (fargn (fargn r 1) 1) ccms))
(t ccms)))
(defun-raw ccg-add-<-ccm (r formals ccms)
;; if an expression, r -- which will generally correspond to one of
;; the expressions in a ruler -- is one of the following forms, we
;; add the corresponding expression to the ccms:
;;
;; * (< 0 e2) --> (acl2-count e2)
;; * (< e1 e2) --> (acl2-count (- e2 e1))
;; * (not (< e1 0)) --> (1+ (acl2-count e1))
;; * (not (< e1 e2)) --> (1+ (acl2-count (- e1 e2)))
(declare (ignore formals))
(cond ((atom r) ccms)
((or (eq (car r) '<)
(and (eq (car r) 'not)
(consp (second r))
(eq (car (second r)) '<)))
(let* ((r0 (if (eq (car r) '<) r (second r)))
(p (term-order (second r0) (third r0)))
(arg1 (if p (second r0) (third r0)))
(arg2 (if p (third r0) (second r0))))
(cond ((and (quotep arg1) (quotep arg2))
ccms)
((not (or (quotep arg1) (quotep arg2)))
(cons `(acl2-count (binary-+ '1
(binary-+ ,arg2
(unary-- ,arg1))))
ccms))
((and (quotep arg1) (acl2-numberp (unquote arg1)))
(if (and (or (eql (unquote arg1) 0)
(eql (unquote arg1) 1))
(variablep arg2))
ccms
(cons `(acl2-count (binary-+ (quote ,(- 1 (unquote arg1))) ,arg2))
ccms)))
((and (quotep arg2) (acl2-numberp (unquote arg2)))
(if (and (or (eql (unquote arg2) 0)
(eql (unquote arg2) 1))
(variablep arg1))
ccms
(cons `(acl2-count (binary-+ (quote ,(- 1 (unquote arg2))) ,arg1))
ccms)))
(t
ccms))))
(t ccms)))
(defun-raw ccg-add-dec-ccm (arg ccms)
;; a rule for adding a ccm that is not very helpful in general, but
;; illustrates how it might be useful, in the future, to allow users
;; to define their own rules for adding ccms. given an expression
;; that should correspond to an argument of the call of a context,
;; adds arg to the list of ccms if it is of the form (dec e).
(if (and (consp arg)
(eq (car arg) 'dec))
(cons arg ccms)
ccms))
(defun-raw accg-guess-ccms-for-node (node)
;; given a node, guesses ccms beyond the basic acl2-count of the
;; formals.
(let ((ccms nil)
(rulers (accg-node-ruler node))
(formals (accg-node-formals node)))
(dolist (r rulers ccms)
(setf ccms (ccg-add-<-ccm r formals ccms))
(setf ccms (ccg-add-zp-ccm r formals ccms)))
;; (dolist (a (fargs (accg-node-call node)) ccms)
;; (setf ccms (ccg-add-dec-ccm a ccms)))
))
(defun-raw ccg-remove-duplicate-ccms-in-functs (functs)
;; a function for removing any duplicate ccms in an array of lists of ccms.
(dolist (funct functs functs)
(setf (funct-ccms funct)
(remove-duplicates (funct-ccms funct)
:test #'equal
:key #'de-propagate))))
(defun-raw ccg-remove-duplicate-ccms (ccms)
;; a function for removing any duplicate ccms in an array of lists of ccms.
(let ((n (array-dimension ccms 0)))
(dotimes (i n ccms)
(setf (aref ccms i) (remove-duplicates (aref ccms i)
:test #'equal
:key #'de-propagate)))))
;; when we guess ccms beyond the basic acl2-count of the formals of a
;; function, we need to propagate the ccms throughout the accg. for
;; example, suppose we have two functions, f and g, such that f
;; contains the call (g x y) when (not (zp (- y x))) and g always
;; calls (f (1+ x) y). then f will get assigned the ccm (- y x), but g
;; will only have (acl2-count x) and (acl2-count y). in this
;; situation, there will be no way to tell that (- y x) decreases each
;; time through the loop. we need some sort of "place-holder" to keep
;; track of the value of (- y x) when we are in the function g. the
;; next few functions do this by walking backwards through the graph,
;; visiting each node just once, and adding the ccm resulting in
;; substituting actuals for formals in the non-trivial ccms from the
;; next node. in our example, g would get the ccm (- y (1+ x)).
(defun-raw accg-propagate-ccm (ccm accg n consider-onlyp)
;; propagates a single ccm through the accg. here ccm is the ccm
;; expression, accg is the accg, n is the index of the node to which
;; the ccm is assigned, and consider-onlyp is an array of booleans
;; that tells us whether the user supplied the ccms using a
;; :CONSIDER-ONLY-CCMS hint or not for each node. this is done in a
;; breadth-first order to ensure the shortest propagation paths and
;; therefore simpler ccms in general.
(let* ((size (array-dimension accg 0))
;; queued tells us if node i has been added to the queue for
;; each 0 <= i < size.
(queued (make-array size :element-type 'boolean :initial-element nil))
;; successor tells us the index of the successor of node i
;; from which we propagate the ccm.
(successor (make-array size :element-type 'integer :initial-element 0))
;; ccms is an array assigning each node index, i, to the ccm
;; for that node.
(ccms (make-array size :initial-element nil))
;; queue is the queue into which we put the indices of the
;; nodes we are to visit in the order in which we are to
;; visit them. the initial element is -1 so we know when we
;; reach the end of the queue.
(queue (make-array size :element-type 'integer :initial-element -1))
(c (accg-node-context-num (aref accg n)))
;; i is the index of the queue where the next enqueue
;; operation should put the next node index.
(i 0)
;; queue-preds is a small function that puts all the unqueued
;; predecessors of node m into the queue.
(queue-preds (lambda (m)
(loop for edge in (accg-node-bwd-edges (aref accg m))
for pred = (accg-edge-tail edge)
unless (or (aref queued pred)
(aref consider-onlyp pred))
do (setf (aref queued pred) t)
and do (setf (aref queue (incf i)) pred)
and do (setf (aref successor pred) m)))))
(let ((node (aref accg n)))
(setf (accg-node-ccms node)
(cons ccm (accg-node-ccms node)))
(setf (aref ccms n) ccm))
(setf (aref queued n) t)
(funcall queue-preds n)
(loop for j from 1 below size
for k = (aref queue j)
when (= k -1) ;; if we get a -1, we have reached the end of the queue.
return nil
do (let* ((succ (aref successor k))
(node (aref accg k))
;; we substitute actuals for formals in the ccm of the
;; successor to get the new ccm.
(nccm (subcor-var (accg-node-callformals node)
(fargs (accg-node-call node))
(aref ccms succ))))
(setf (aref ccms k) nccm))
do (funcall queue-preds k))
(loop for j from 1 below size
for k = (aref queue j)
when (= k -1)
return nil
do (let ((node (aref accg k)))
(setf (accg-node-ccms node)
(cons `(ccg-propagate ,c ,(aref ccms k))
(accg-node-ccms node)))))))
(defun-raw accg-propagate-ccms (ccms accg consider-onlyp)
;; (print ccms) accg-propagate-ccms propagates all the ccms in ccms
;; throughout the accg. here, ccms is an array of lists of ccms
;; corresponding to the ccms assigned to each node in the
;; accg. consider-onlyp is an array of booleans telling us whether
;; or not the user supplied the ccms using a :CONSIDER-ONLY-CCMS
;; xarg for each node. we return nccms which holds the new list of
;; ccms for each node.
(loop with size = (array-dimension ccms 0)
for i from 0 below size
do (loop for ccm in (aref ccms i)
do (accg-propagate-ccm ccm accg i consider-onlyp))))
(defun-raw accg-partition-ccms-by-function (ccms nodes)
;; in order to compute ccmfs by node instead of by edge, ccms need
;; to be assigned by function, not by accg node. this function takes
;; the ccms assigned to the nodes of a accg and unions all the ccms
;; of the contexts of each function. the result is an alist that
;; maps function names to the ccms for that function.
(loop for i from 0 below (array-dimension ccms 0)
for funct = (accg-node-parent-funct (aref nodes i))
do (setf (funct-ccms funct)
(append (aref ccms i) (funct-ccms funct)))))
(defun-raw accg-guess-ccms (accg functs ccm-hints-alist)
;; accg-guess-ccms puts all the ccm-guessing together. it takes an
;; accg and an alist mapping function names to ccms that is
;; presumably provided by the user. the ccms are computed and then
;; the accg is annotated by setting the accg-node-ccms field of each
;; node in the accg to the appropriate list of ccms.
(let* ((size (array-dimension accg 0))
(ccms (make-array size :element-type 'list :initial-element nil))
(consider-onlyp (make-array size :element-type 'boolean :initial-element nil)))
;; first we fill in the correct values for consider-onlyp for each
;; node depending on whether the user provided ccms using
;; :CONSIDER-ONLY-CCMs for the function containing the node. at
;; the same time, we set the ccms for any node for which the user
;; did supply ccms.
(loop for i from 0 below size
for entry = (assoc (accg-node-fn (aref accg i))
ccm-hints-alist)
do (setf (aref consider-onlyp i) (cadr entry))
unless (eq (cddr entry) *0*) ;; no value supplied is represented as *0*.
do (setf (aref ccms i) (cddr entry)))
;; guess the non-trivial ccms for each node.
(loop for i from 0 below size
for node = (aref accg i)
unless (or (aref consider-onlyp i)
;; don't guess ccms for dead-ends.
(endp (accg-node-fwd-edges (aref accg i))))
do (setf (aref ccms i)
(append (accg-guess-ccms-for-node node)
(aref ccms i))))
;; next, we propagate the ccms and then partition them by
;; function. finally, we set the ccm list of each node to be the
;; non-trivial ccms for the function plus the acl2-count of each
;; formal of the parent function and the sum of all the formal
;; acl2-counts (if there is more than one formal).
(accg-propagate-ccms
(ccg-remove-duplicate-ccms ccms)
accg
consider-onlyp)
(ccg-remove-duplicate-ccms-in-functs functs)
(loop for funct in functs
for fn-sccms in ccm-hints-alist
for fsizes = (ccg-formal-sizes (funct-formals funct))
;;; I've commented out the next line to avoid a compiler warning.
; for ccms = (funct-ccms funct)
unless (cadr fn-sccms)
do (setf (funct-ccms funct)
(append fsizes
(if (length-exceedsp fsizes 1)
(cons (ccg-addlist fsizes)
(funct-ccms funct))
(funct-ccms funct))))
finally (ccg-remove-duplicate-ccms-in-functs functs))
;; finally, we coerce the ccms for each function from lists into vectors
(loop for funct in functs
do (setf (funct-ccms funct)
(coerce (funct-ccms funct) 'vector)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; accg annotation (ccmfs) ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw ccmf->-value? (ruler e1 e2 pt qspv state)
;; returns true if we can prove that, under the ruler conditions, e2
;; will always be o< e1.
(query ruler `(o< ,(de-propagate e2) ,(de-propagate e1))
pt qspv state))
(defun-raw ccmf->=-value? (ruler e1 e2 pt qspv state)
;; returns true if we can prove that, under the ruler conditions, e1
;; will never be o< e2.
(query ruler `(not (o< ,(de-propagate e1) ,(de-propagate e2)))
pt qspv state))
(defun-raw ccmf-skip-edge (f1 n1 c1 e1 f2 n2 e2 hlevel)
;; returns whether, based on the restrictions indicated by the
;; ccg-restrict struct, restrict, we should skip creating a ccmf
;; edge for the ccms e1 and e2. this is mostly based on the
;; ccg-restrict-measure-vars field.
;; (format t "ccmf-skip-edge: ~A ~A~%~%" e1 e2)
(or (null hlevel)
(eq (fn-symb e1) 'ccg-propagated)
(and (eq (fn-symb e2) 'ccg-propagated)
(not (equal (fargn e2 1) c1)))
;; NOTE: we used to think that built-in-clauses are so fast, we don't
;; need to skip any. However, we came across some very expensive analyses
;; (see one-way-unify1 in the foundations book in the paco directory of
;; the regression suite).
(and ;;(not (ccg-restrict-bic-onlyp restrict))
(let ((v1 (all-vars e1)) ;; v1 is all the variables in e1
(v2 (all-vars e2))) ;; v2 is all the variables in e2
(and (not (and (eq f1 f2)
(= n1 n2)))
(case (hlevel-ccm-comparison-scheme hlevel)
;; (:across
;; (not (and (subsetp v1 v2)
;; (subsetp v2 v1))))
;; ;; if :equal, we skip if the variable sets are not equal.
(:equal
(not (and (subsetp v1 v2)
(subsetp v2 v1))))
;; if :all, we skip if v1 is not a proper subset of v2.
(:all
(or (subsetp v2 v1)
(not (subsetp v1 v2))))
;; if :some, we skip if v1 a subset of v2 or v1 and v2 do
;; not intersect.
(:some
(or (subsetp v1 v2)
(not (intersectp-eq v1 v2))))
;; if :none, we skip if v1 and v2 intersect.
(:none
(intersectp-eq v1 v2))))))))
(defun-raw accg-copy-ccmf-graph (graph &key (size nil))
;; creates a copy of a ccmf graph
(let* ((n (array-dimension graph 0))
(ngraph (make-array (if size (max n size) n)
:element-type 'ccmf-node
:initial-element (make-ccmf-node))))
(loop for i from 0 below n
for node = (aref graph i)
do (setf (aref ngraph i)
(make-ccmf-node :>-edges (copy-list (ccmf-node->-edges node))
:>=-edges (copy-list (ccmf-node->=-edges node)))))
ngraph))
(defun-raw accg-add-ccmfs (accg)
(loop for node1 across accg
for in-sizes = (array-dimension (accg-node-ccms node1) 0)
do (loop for edge in (accg-node-fwd-edges node1)
for head = (accg-edge-head edge)
for node2 = (aref accg head)
for graph = (make-array in-sizes)
do (loop for i from 0 below in-sizes
do (setf (aref graph i)
(make-ccmf-node)))
do (setf (accg-edge-ccmf edge)
(make-ccmf :firstsite (accg-edge-tail edge)
:lastsite head
:fc-num (accg-node-context-num node1)
:lc-num (accg-node-context-num node2)
:in-sizes in-sizes
:out-sizes (array-dimension (accg-node-ccms
node2)
0)
:graph graph)))))
;;;;;;;;;;;;;;;;;;;;;;;;
;;; accg sccs ;;;
;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw accg-scc (graph)
(ccg-generic-scc graph
#'accg-node-fwd-edges #'accg-node-bwd-edges
#'accg-edge-tail #'accg-edge-head))
(defun-raw accg-edge-context-pair (edge accg)
(cons (car
(accg-node-context-num
(aref accg
(accg-edge-tail
edge))))
(car
(accg-node-context-num
(aref accg
(accg-edge-head
edge))))))
(defun-raw accg-delete-non-scc-edges1 (edges accg scc scc-array)
(if (endp edges)
(mv nil nil)
(mv-let
(changes nedges)
(accg-delete-non-scc-edges1 (cdr edges) accg scc scc-array)
(if (= scc (aref scc-array (accg-edge-head (car edges))))
(mv changes (cons (car edges) nedges))
(mv (cons (accg-edge-context-pair (car edges) accg)
changes)
nedges)))))
(defun-raw accg-delete-non-scc-edges (accg scc-array)
(loop with changes = nil
for i from 0 below (array-dimension accg 0)
for nodei = (aref accg i)
for scci = (aref scc-array i)
do (mv-let
(nchanges nedges)
(accg-delete-non-scc-edges1 (accg-node-fwd-edges nodei) accg scci scc-array)
(progn
(setf (accg-node-fwd-edges nodei) nedges)
(setf changes (append nchanges changes))))
do (setf (accg-node-bwd-edges nodei)
(delete-if-not #'(lambda (x)
(= scci
(aref scc-array
(accg-edge-tail x))))
(accg-node-bwd-edges nodei)))
finally (return changes)))
(defun-raw accg-separate-sccs0 (accg sccs scc-array &key (ccmfp nil))
(if (endp (cdr sccs))
(mv nil (list accg))
(let* ((m (array-dimension accg 0)) ;; the number of nodes in the current accg
(n (len sccs)) ;; the number of sccs
(count (make-array n ;; an array keeping track of the size of each scc.
:element-type 'fixnum
:initial-element 0))
(mapping (make-array m ;; a mapping from the old index of each node to its new index.
:element-type 'fixnum
:initial-element 0))
(changes nil))
;; next, we calculate the values of count and the mapping.
(loop for i from 0 below m
for j = (aref scc-array i)
do (setf (aref mapping i) (aref count j))
do (incf (aref count j)))
;; naccgs is an array of the new accgs.
(let ((naccgs (make-array n)))
;; we set each accg in naccg to be an array of nodes.
(loop for i from 0 below n
do (setf (aref naccgs i)
(make-array (aref count i))))
;; we now populate naccgs with nodes, setting the
;; accg-node-num and resetting the accg-node-bwd-edges
(loop for i from 0 below m
for sccn = (aref scc-array i)
for noden = (aref mapping i)
for node = (aref accg i)
do (setf (aref (aref naccgs sccn) noden)
node)
do (setf (accg-node-num node) noden)
do (setf (accg-node-bwd-edges node) nil))
;; now we fix the edges
(loop for i from 0 below n
for naccg = (aref naccgs i)
do (loop for j from 0 below (aref count i)
for node = (aref naccg j)
;; we recalculate the accg-node-fwd-edges of node as follows
do (setf (accg-node-fwd-edges node)
(loop for e in (accg-node-fwd-edges node)
for head = (accg-edge-head e)
for nhead = (aref mapping head)
for ccmf = (accg-edge-ccmf e)
;; if the edge traverses two
;; edges in the same scc,
if (= (aref scc-array head) i)
;; set the head and tail of the edge
do (setf (accg-edge-head e) nhead)
and do (setf (accg-edge-tail e) j)
;; add the edge to the
;; appropriate bwd-edges list
and do (let ((hnode (aref naccg nhead)))
(setf (accg-node-bwd-edges hnode)
(cons e
(accg-node-bwd-edges hnode))))
;; collect e into our new list of fwd-edges
and collect e
;; when we need to worry about
;; ccmfs, fix this edge's
;; ccmf.
and when ccmfp
do (setf (ccmf-firstsite ccmf) j)
and do (setf (ccmf-lastsite ccmf)
nhead)
else do (setf changes
(cons
(accg-edge-context-pair e accg)
changes))))))
;; finally, we collect all the non-trivial sccs into a list and return it.
(mv changes
(loop for i from 0 below n
for naccg = (aref naccgs i)
unless (and (= (aref count i) 1)
(not (accg-node-fwd-edges (aref naccg 0))))
collect naccg))))))
(defun-raw accg-separate-sccs (accg &key (ccmfp nil))
;; separates an accg into its sccs. ccmfp indicates whether or not
;; the accg has already been annotated with ccmfs. this function is
;; destructive.
;; we start by doing the scc analysis:
(multiple-value-bind
(sccs scc-array)
(accg-scc accg)
(accg-separate-sccs0 accg sccs scc-array :ccmfp ccmfp)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; putting it all together ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw build-and-annotate-accgs (names functs contexts ccm-hints-alist)
;; build-and-annotate-accgs does exactly what it says. names is the
;; names of the functions, contexts is a list of lists of contexts
;; such that the ith list in contexts is the list of contexts in the
;; ith function in names. restrict is the current ccg-restrict
;; struct, and ccms-alist is the alist mapping function names to the
;; ccms provided for the user for that function.
(let ((accg (ccg-build-accg names contexts)))
(multiple-value-bind
(sccs scc-array)
(accg-scc accg)
(progn
(accg-delete-non-scc-edges accg scc-array)
(accg-guess-ccms accg functs ccm-hints-alist)
(accg-add-ccmfs accg)
(mv-let
(changes0 naccgs)
(accg-separate-sccs0 accg sccs scc-array :ccmfp t)
(declare (ignore changes0))
naccgs)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; refining accgs ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw weaker-proof-techniquesp (h1 h2)
;; given two levels in the hierarchy, this function tells us whether the
;; proof-techniques of the first are weaker than the proof-techniques of the
;; second, i.e. that it might be possible to prove something using the proof
;; techniques of h2 that would not be proven using the techniques in h1.
(or ;; h1 is nil in our first round of refinement, when their is no
;; previous level to the hierarchy
(null h1)
(not (null h2)) ;; this should never happen
(let ((pt1 (car h1))
(pt2 (car h2)))
;; the proof techniques of h1 are weaker if it limited to built-in-clauses
;; while h2 is not:
(if (equal pt1 :built-in-clauses)
(not (equal pt2 :built-in-clauses))
;; the proof techniques of h1 are weaker if it is of the form
;; (:induction-depth n1), h2 is of the form (:induction-depth n2) and
;; (< n1 n2).
(and (consp pt2)
(< (cadr pt1)
(cadr pt2)))))))
(defun-raw accg-ccmf-adj-matrix (ccmf)
;; given a ccmf, this function builds an adjacency matrix where
;; element i,j is >, >=, or nil if there is a >-edge, >=-edge, or no
;; edge from ccm i of the first context to ccm j of the second index
;; in the ccmf, respectively.
(loop with n1 = (ccmf-in-sizes ccmf)
with n2 = (ccmf-out-sizes ccmf)
with graph = (ccmf-graph ccmf)
with matrix = (make-array `(,n1 ,n2)
:initial-element nil
:element-type '(member nil '>= '>))
for i from 0 below n1
for node = (aref graph i)
do (loop for j in (ccmf-node->-edges node)
do (setf (aref matrix i j) '>))
do (loop for j in (ccmf-node->=-edges node)
do (setf (aref matrix i j) '>=))
finally (return matrix)))
;; currently destructive
(defun-raw accg-refine-ccmf2 (i j matrix node e1 hyps f1 c1 f2 ccms2 cformals args redop
changes old-hlevel hlevel qspv state)
(let ((wrld (access query-spec-var qspv :wrld)))
(if (< j 0)
(value changes)
(let* ((o2 (aref ccms2 j))
(e2 (subcor-var cformals args o2))
(u1 (untranslate e1 nil wrld))
(u2 (untranslate o2 nil wrld))
(skipp (or (ccmf-skip-edge f1 i c1 e1 f2 j e2 hlevel)
(not (or redop ;; if circumstances tell us to redo the > proof,
(ccmf-skip-edge f1 i c1 e1 f2 j e2 old-hlevel)))))
(label (aref matrix i j))
(pt (hlevel-proof-technique hlevel)))
(er-let*
((nlabel
(cond (skipp (value label))
((eq label '>) (value '>))
((equal (de-propagate e1) (de-propagate e2)) (value '>=))
(t
(er-let*
((result
(pprogn
(increment-timer 'other-time state)
(ccg-io? build/refine nil state
(u1 u2)
(fms "We attempt to prove that, under the given ~
conditions, it is the case that the ~
context measure ~x0 is always greater than ~
~x1.~|"
`((#\0 . ,u1)
(#\1 . ,u2))
*standard-co*
state
nil))
(increment-timer 'print-time state)
(ccmf->-value? hyps e1 e2 pt qspv state))))
(cond (result (value '>))
((eq label '>=) (value '>=))
(t
(er-let*
((result
(pprogn
(increment-timer 'other-time state)
(ccg-io? build/refine nil state
(u1 u2)
(fms "Since the previous query failed, ~
we attempt to prove that, under ~
the given conditions, it is the ~
case that the context measure ~x0 ~
is never less than ~x1.~|"
`((#\0 . ,u1)
(#\1 . ,u2))
*standard-co*
state
nil))
(increment-timer 'print-time state)
(ccmf->=-value? hyps e1 e2 pt qspv state))))
(value (if result '>= nil))))))))))
(progn
;;(format t "~&e1: ~A e2: ~A label: ~A~%" e1 e2 nlabel)
(case nlabel
(> (setf (ccmf-node->-edges node)
(cons j (ccmf-node->-edges node))))
(>= (setf (ccmf-node->=-edges node)
(cons j (ccmf-node->=-edges node)))))
(accg-refine-ccmf2 i (1- j) matrix node e1
hyps f1 c1 f2 ccms2 cformals args redop
(if (eq nlabel label)
changes
(cons `(,nlabel ,u1 ,u2) changes))
old-hlevel hlevel qspv state)))))))
(defun-raw accg-refine-ccmf1 (i matrix ccmf
hyps f1 ccms1 c1 f2 ccms2 cformals args redop
changes old-hlevel hlevel
qspv state)
;; this function destructively refines a ccmf. note that its
;; signature looks just like that of accg-construct-ccmf-graph,
;; except we have the added arguments redop and old-hlevel, which
;; help us to know when we need to redo proofs we have already done.
(if (< i 0)
(value (cond ((endp changes) changes)
((endp (cdr changes)) (car changes))
(t (cons 'and changes))))
(er-let*
((changes0 (accg-refine-ccmf2 i (1- (ccmf-out-sizes ccmf)) matrix (aref (ccmf-graph ccmf) i)
(aref ccms1 i) hyps f1 c1 f2 ccms2 cformals args redop
changes old-hlevel hlevel qspv state)))
(accg-refine-ccmf1 (1- i) matrix ccmf
hyps f1 ccms1 c1 f2 ccms2 cformals args redop
changes0 old-hlevel hlevel qspv state))))
(defun-raw accg-refine-ccmf (ccmf hyps f1 ccms1 c1 f2 ccms2 cformals args redop
old-hlevel hlevel qspv state)
(let ((matrix (accg-ccmf-adj-matrix ccmf)))
(loop for node across (ccmf-graph ccmf)
do (setf (ccmf-node->-edges node) nil)
do (setf (ccmf-node->=-edges node) nil))
(accg-refine-ccmf1 (1- (ccmf-in-sizes ccmf)) matrix
ccmf hyps f1 ccms1 c1 f2 ccms2 cformals args redop
nil old-hlevel hlevel qspv state)))
(defun-raw accg-node-refine-ccmfs-per-edge
(edges node1 accg ccms1 c1 ruler1 cformals args
stronger-proofsp changes old-hlevel hlevel
qspv state)
(if (endp edges)
(value changes)
(let* ((edge (car edges))
(node2 (aref accg (accg-edge-head edge)))
(ccms2 (accg-node-ccms node2))
(ruler2 (subcor-var-lst cformals args (accg-node-ruler node2)))
(wrld (access query-spec-var qspv :wrld)))
(pprogn
(increment-timer 'other-time state)
(ccg-io? build/refine nil state
(node1 ruler1 wrld node2)
(fms "We use theorem prover queries to discen how the context ~
measures change when execution moves from call ~x0 in ~
function ~x1 under the ruler ~x2 to call ~x3 in ~
function ~x4 under the ruler ~x5.~|"
`((#\0 . ,(accg-node-call node1))
(#\1 . ,(accg-node-fn node1))
(#\2 . ,(untranslate-lst ruler1 nil wrld))
(#\3 . ,(accg-node-call node2))
(#\4 . ,(accg-node-fn node2))
(#\5 . ,(untranslate-lst (accg-node-ruler node2) nil wrld)))
*standard-co*
state
nil))
(increment-timer 'print-time state)
(er-let*
((nchanges (accg-refine-ccmf (accg-edge-ccmf edge)
(append ruler1 ruler2)
(accg-node-fn node1)
ccms1
c1
(accg-node-fn node2)
ccms2
cformals args
stronger-proofsp
old-hlevel hlevel
qspv state)))
(accg-node-refine-ccmfs-per-edge
(cdr edges) node1 accg ccms1 c1 ruler1
cformals args
stronger-proofsp
(if (null nchanges)
changes
(acons (cons (car (accg-node-context-num node1))
(car (accg-node-context-num node2)))
nchanges
changes))
old-hlevel hlevel
qspv state))))))
(defun-raw accg-refine-ccmfs1 (i accg stronger-proofsp changes
old-hlevel hlevel qspv state)
;; refines all the ccmfs in an accg.
(if (< i 0)
(value changes)
(let* ((node1 (aref accg i))
(ccms1 (accg-node-ccms node1))
(c1 (accg-node-context-num node1))
(ruler1 (accg-node-ruler node1))
(cformals (accg-node-callformals node1))
(args (fargs (accg-node-call node1)))
(wrld (access query-spec-var qspv :wrld)))
(er-let*
((changes0
(if (hlevel-ccmfs-per-nodep hlevel)
;; if we are creating/refining ccmfs on a per-node basis
;; (rather than per-edge), we refine one ccmf for the node and
;; propagate its graph to the ccmf of every edge.
(pprogn
(ccg-io? build/refine nil state
(c1 ruler1 wrld)
(fms "We use theorem prover queries to discern how our ~
context mesaures change when execution moves ~
across call ~x0 in function ~x1 under the ruler ~
~x2.~|"
`((#\0 . ,(accg-node-call node1))
(#\1 . ,(accg-node-fn node1))
(#\2 . ,(untranslate-lst ruler1 nil wrld)))
*standard-co*
state
nil))
(er-let*
((edge1 (value (car (accg-node-fwd-edges node1))))
(node2 (value (aref accg (accg-edge-head edge1))))
(ccmf (value (accg-edge-ccmf (car (accg-node-fwd-edges node1)))))
(nchanges (accg-refine-ccmf ccmf
ruler1
(accg-node-fn node1)
ccms1
c1
(accg-node-fn node2)
(accg-node-ccms node2)
cformals args
stronger-proofsp
old-hlevel hlevel
qspv state))
(ngraph (value (ccmf-graph ccmf))))
(loop for edge in (cdr (accg-node-fwd-edges node1))
for occmf = (accg-edge-ccmf edge)
do (setf (ccmf-graph occmf)
(accg-copy-ccmf-graph ngraph))
finally (return (value (if (null nchanges)
changes
(acons (car (accg-node-context-num
node1))
nchanges
changes)))))))
;; if we are creating/refining ccmfs on a per-edge basis, we
;; refine the ccmf of each edge seperately.
(accg-node-refine-ccmfs-per-edge (accg-node-fwd-edges node1)
node1 accg ccms1 c1 ruler1 cformals args
stronger-proofsp changes old-hlevel hlevel
qspv state))))
(accg-refine-ccmfs1 (1- i) accg stronger-proofsp changes0 old-hlevel hlevel
qspv state)))))
(defun-raw accg-refine-ccmfs (accg stronger-proofsp old-hlevel hlevel
qspv state)
(accg-refine-ccmfs1 (1- (array-dimension accg 0)) accg stronger-proofsp nil
old-hlevel hlevel
qspv state))
(defun-raw accg-refine-ccmfs-lst1 (accgs caccgs uaccgs changes stronger-proofsp
old-hlevel hlevel qspv state)
(if (endp accgs)
(value (list* changes caccgs uaccgs))
(er-let*
((accg (value (car accgs)))
(nchanges (accg-refine-ccmfs accg stronger-proofsp old-hlevel hlevel
qspv state)))
(accg-refine-ccmfs-lst1 (cdr accgs)
(if (consp nchanges)
(cons accg caccgs)
caccgs)
(if (consp nchanges)
uaccgs
(cons accg uaccgs))
(append nchanges changes)
stronger-proofsp
old-hlevel hlevel
qspv state))))
(defun-raw accg-refine-ccmfs-lst (accgs stronger-proofsp old-hlevel hlevel
qspv state)
;; refines the ccmfs of a list of accgs.
;;
;;
;;
;; OUTPUT: an error triple whose value is (list* d c u) where d ... c is the
;; list of accgs that were changed during refinement, and u is the list of
;; accgs that were unchanged during refinement.
(accg-refine-ccmfs-lst1 accgs nil nil nil stronger-proofsp old-hlevel hlevel
qspv state))
(defun-raw prune-accg-node (node1 edges accg changes hlevel qspv state)
(if (endp edges)
(value changes)
(let* ((edge (car edges))
(node2 (aref accg (accg-edge-head edge))))
(er-let*
((result
(pprogn
(increment-timer 'other-time state)
(ccg-io? build/refine nil state
(node1 node2)
(fms "We attempt to prove that it is not possible for ~
execution to move from context ~x0 to context ~x1.~|"
`((#\0 . ,(car (accg-node-context-num node1)))
(#\1 . ,(car (accg-node-context-num node2))))
*standard-co*
state
nil))
(increment-timer 'print-time state)
(accg-can-omit-edge? node1 node2 hlevel qspv state))))
(progn
(unless result
(setf (accg-node-fwd-edges node1)
(cons edge (accg-node-fwd-edges node1)))
(setf (accg-node-bwd-edges node2)
(cons edge (accg-node-bwd-edges node2))))
(prune-accg-node node1 (cdr edges) accg
(if result
(acons (car (accg-node-context-num node1))
(car (accg-node-context-num node2))
changes)
changes)
hlevel qspv state))))))
(defun-raw prune-accg1 (i accg changes hlevel qspv state)
(if (< i 0)
(value changes)
(let* ((node (aref accg i))
(edges (accg-node-fwd-edges node)))
(setf (accg-node-fwd-edges node) nil)
(er-let* ((nchanges (prune-accg-node node edges accg changes
hlevel qspv state)))
(prune-accg1 (1- i) accg nchanges hlevel qspv state)))))
(defun-raw prune-accg (accg hlevel qspv state)
;; reset all the bwd-edges
(loop for node across accg
do (setf (accg-node-bwd-edges node) nil))
(pprogn
(ccg-io? build/refine nil state
()
(fms "We attempt to prune the CCG by using theorem prover queries ~
to determine if the rulers of adjacent calling contexts are ~
incompatible.~|"
nil
*standard-co*
state
nil))
;; prune!
(prune-accg1 (1- (array-dimension accg 0)) accg nil hlevel qspv state)))
(defun-raw accg-refine-accg (accg stronger-proofsp old-hlevel hlevel
qspv state)
;; this function refines an accg based on whether we have stronger
;; proof techniques available (stronger-proofsp), or some other
;; weaker set of restrictions (comparing restrict to
;; old-restrict). The result is a list of new accgs that have been
;; separated into sccs.
(er-let*
((accg-changes0
(if (and stronger-proofsp
(not (hlevel-ccmfs-per-nodep hlevel)))
;; if we are using stronger proof techniques
;; and we are not doing ccmfs on a per-node
;; basis (in which case we avoid pruning to
;; allow for simpler justifications in the end)
(prune-accg accg hlevel qspv state)
(value nil))))
(if (consp accg-changes0)
(mv-let
(accg-changes1 naccgs)
(accg-separate-sccs accg :ccmfp t)
(er-let*
((triple (accg-refine-ccmfs-lst naccgs stronger-proofsp
old-hlevel hlevel
qspv state)))
(value (cons (cons (append accg-changes0 accg-changes1)
(car triple))
naccgs))))
(er-let*
((changes0 (accg-refine-ccmfs accg stronger-proofsp
old-hlevel hlevel
qspv state)))
(value (cons (cons nil changes0) (list accg)))))))
(defun-raw accg-refine-accgs1 (accgs ces changes caccgs uaccgs uces
stronger-proofsp old-hlevel new-hlevel
qspv state)
(if (endp accgs)
(value (list* changes caccgs uaccgs uces))
(er-let*
((pair (accg-refine-accg (car accgs) stronger-proofsp
old-hlevel new-hlevel qspv state)))
(if (or (consp (caar pair)) (consp (cdar pair)))
(accg-refine-accgs1 (cdr accgs)
(cdr ces)
(cons (append (caar pair) (car changes))
(append (cdar pair) (cdr changes)))
(append (cdr pair) caccgs)
uaccgs
uces
stronger-proofsp old-hlevel new-hlevel
qspv state)
(accg-refine-accgs1 (cdr accgs)
(cdr ces)
changes
caccgs
;; if there are no changes, (cdr pair) is a
;; singleton list.
(append (cdr pair) uaccgs)
(cons (car ces) uces)
stronger-proofsp old-hlevel new-hlevel
qspv state)))))
(defun-raw accg-refine-accgs (accgs ces old-hlevel new-hlevel qspv state)
;; refines a list of accgs by calling accg-refine-accg repeatedly. Returns an
;; error triple whose value is (cons c u) where c is a list of the accgs that were
;; changed by refinement, and u is a list of the accgs that were not changed
;; by refinement.
(pprogn
(ccg-io? basics nil state
(new-hlevel accgs)
(fms "We now move to the ~x0 level of the hierarchy ~
(see :DOC CCG-hierarchy) in order to refine the remaining ~
SCC~#1~[~/s~] of our anotated CCG.~|"
`((#\0 . ,new-hlevel)
(#\1 . ,accgs))
*standard-co*
state
nil))
(er-let*
((tuple (accg-refine-accgs1 accgs ces nil nil nil nil
(weaker-proof-techniquesp old-hlevel
new-hlevel)
old-hlevel new-hlevel
qspv state))
(changes (value (car tuple)))
(caccgs (value (cadr tuple)))
(uaccgs (value (caddr tuple)))
(uces (value (cdddr tuple))))
(pprogn
(ccg-io? basics nil state
(changes state)
(mv-let
(col state)
(fmt "We have completed CCG refinement. "
nil
*standard-co*
state
nil)
(print-changes col changes state)))
(value (list* caccgs uaccgs uces))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; the following code is used to clean up CCGs (see the SCP
;;; paper). the code culminates in the cln function.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw srg-scc (graph)
;; srg-scc is the instantiation of ccg-generic-scc for srgs.
(ccg-generic-scc graph
#'srg-node-fwd-edges #'srg-node-bwd-edges
#'srg-edge-tail #'srg-edge-head))
(defun-raw srg-scc-has->-edgep (scc scc-array srg)
;; srg-scc-has->-edgep tells us whether an scc of an srg contains an
;; edge labeled with a >. here scc is a list of indices of nodes in
;; the same scc, and scc-array maps srg indices to a unique scc
;; identifier (as in the second value returned by srg-scc).
(let ((scc-num (aref scc-array (car scc))))
(dolist (p scc nil)
(let ((x (aref srg p)))
(when (dolist (e (srg-node-fwd-edges x) nil)
(when (and (eq (srg-edge-label e) '>)
(= scc-num (aref scc-array
(srg-edge-head e))))
(return t)))
(return t))))))
(defun-raw ccmf-remove-ccms (ccmf first-del-array last-del-array)
;; virtually and destructively removes ccms from a ccmf by removing
;; all edges involving those ccms. This is sufficient for our
;; purposes and easier than rebuilding the ccmf without the
;; ccms. here, ccmf is a ccmf struct, first-del-array and
;; last-del-array are arrays of booleans for which a value of t in
;; slot i indicates that the ith ccm should be removed from the ith
;; source or sink ccm, respectively. returns the ccmf or nil if all
;; the edges have been removed from the ccmf, in which case,
;; termination cannot be proven.
(loop with graph = (ccmf-graph ccmf)
for i from 0 below (ccmf-in-sizes ccmf) ;; we loop through the graph array.
for node = (aref graph i)
for f = (lambda (x) (aref last-del-array x))
if (aref first-del-array i) ;; if we are supposed to delete this source node,
do (setf (aref graph i) (make-ccmf-node)) ;; we set the node to a blank node
else ;; otherwise, we remove all the > and >= edges that lead
;; to a deleted sink node:
do (setf (aref graph i)
(make-ccmf-node :>-edges (delete-if f (ccmf-node->-edges node))
:>=-edges (delete-if f (ccmf-node->=-edges node))))))
(defun-raw ccmf-remove-ccms-list (ccmfs deletep-array)
;; given a list of ccmfs and an array of arrays of booleans
;; indicating which ccms to delete for each context, calls
;; ccmf-remove-ccms on each ccmf in ccmfs with the appropriate
;; deletion arrays. this function is destructively updates each
;; ccmf.
(dolist (ccmf ccmfs nil)
(ccmf-remove-ccms ccmf
(aref deletep-array
(ccmf-firstsite ccmf))
(aref deletep-array
(ccmf-lastsite ccmf)))))
(defun-raw srg-restrict (srg ccms)
;; restricts the given srg to only the ccms indexed by the natural
;; numbers in the list ccms. this function is *not* destructive.
(let* ((n (length ccms))
(rsrg (make-array n)) ;; the restricted srg.
(a (make-array (array-dimension srg 0) ;; maps the srg nodes
:element-type 'fixnum ;; to their new index
:initial-element -1))) ;; if they are in rsrg.
;; create a new node for each slot in rsrg with the node and ccm
;; of the appropriate node in the original srg. we also update the
;; map as we go mapping old node indices to new ones.
(loop
for p in ccms
for i from 0
for node = (aref srg p)
do (setf (aref a p) i)
do (setf (aref rsrg i)
(make-srg-node :node (srg-node-node node)
:ccm (srg-node-ccm node))))
(loop
for p in ccms
for i from 0
for node = (aref srg p)
for nnode = (aref rsrg i)
do (loop for e in (srg-node-fwd-edges node)
unless (= (aref a (srg-edge-head e)) -1)
do (let* ((head (aref a (srg-edge-head e)))
(hnode (aref rsrg head))
(ne (make-srg-edge :head head
:tail i
:ccmf (srg-edge-ccmf e)
:label (srg-edge-label e))))
(setf (srg-node-fwd-edges nnode)
(cons ne (srg-node-fwd-edges nnode)))
(setf (srg-node-bwd-edges hnode)
(cons ne (srg-node-bwd-edges hnode))))))
rsrg))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; the following code implements the SCP analysis.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw srg-scc-for-node-aux (srg nn visited node-fwd-edges edge-head)
;; this is the helper function for srg-scc-for-node
(setf (aref visited nn) t)
(loop for edge in (funcall node-fwd-edges (aref srg nn))
for head = (funcall edge-head edge)
unless (aref visited head)
do (srg-scc-for-node-aux srg head visited node-fwd-edges edge-head)))
(defun-raw srg-scc-for-node (srg nn)
;; given an srg and the index of a node in that srg (nn), returns an
;; array of booleans of the same size as srg which indicates for
;; each i whether the node of the srg at index i is in the same srg
;; as the node at index nn. it does so by traversing the srg from
;; node nn forwards and backwards and taking the intersection of the
;; nodes reached.
(let* ((n (array-dimension srg 0))
(in-scc-array (make-array n :element-type '(member t nil :ignore) :initial-element nil)))
(let* ((n (array-dimension in-scc-array 0)))
;; traverse the graph forwards, using in-scc-array to keep track
;; of the visited nodes.
(srg-scc-for-node-aux srg nn in-scc-array #'srg-node-fwd-edges #'srg-edge-head)
;; for our backwards traversal, we only want to visit nodes that
;; we already visited on our forward traversal. therefore, we
;; set the index of visited nodes to nil and the index of
;; unvisited nodes to the non-nil value :ignore.
(loop for i from 0 below n
if (aref in-scc-array i)
do (setf (aref in-scc-array i) nil)
else
do (setf (aref in-scc-array i) :ignore))
;; now traverse the graph backwards.
(srg-scc-for-node-aux srg nn in-scc-array #'srg-node-bwd-edges #'srg-edge-tail)
;; finally, reset any :ignore indices to nil, since they are not in the scc.
(loop for i from 0 below n
when (eq (aref in-scc-array i) :ignore)
do (setf (aref in-scc-array i) nil))
in-scc-array)))
(defun-raw srg-add-scc-for-node (srg nn in-scc-array)
;; takes the per-index disjunction of the boolean array in-scc-array
;; and the result of calling srg-scc-for-node on srg and nn. In
;; other words, given an array indicating which nodes are in a
;; collection of sccs, this function adds the scc containing node nn
;; to the array.
(if (aref in-scc-array nn)
in-scc-array
(let ((new-in-scc-array (srg-scc-for-node srg nn)))
(loop for i from 0 below (length in-scc-array)
when (and (not (aref in-scc-array i))
(aref new-in-scc-array i))
do (setf (aref in-scc-array i) t))
in-scc-array)))
(defun-raw mtp (srg ccmfs num-contexts fwd-edges bwd-edges edge-head edge-tail)
;; generic function for finding a maximal thread presever (mtp) as
;; described in the scp paper. However, our algorithm is slightly
;; different than that described in the scp paper. this is because
;; we have a ccmf for every edge rather than every node. because of
;; this, we cannot keep one count value for each ccm in the srg,
;; since the are potentially multiple edges from the context
;; containing the ccm, and if the ccm is not non-increasing or
;; decreasing along any one of those edges, it is not part of the
;; mtp. therefore, for each ccm, we maintain several counts, one for
;; each outgoing edge.
;; the srg is an srg, the ccmfs is a list of ccmfs that should be
;; the ccmfs of the srg. num-contexts is the number of contexts
;; represented by the srg. fwd-edges, bwd-edges, edge-head, and
;; edge-tail are functions that tell us how to get around the
;; graph. these are here to allow us to quickly find mtps in a graph
;; and its inverse.
(let* ((n (array-dimension srg 0))
;; we make the count array a matrix. for each ccm, we
;; maintain num-context counts. unless the accg is not
;; complete, some of these counts will always be 0. however,
;; this slight inefficiency in space allows us to maintain
;; simpler and more efficient code.
(count (make-array `(,n ,num-contexts)
:element-type 'fixnum :initial-element 0))
;; the accg matrix is an adjacency matrix representation of
;; the accg implied by the ccmfs.
(accg-matrix (make-array `(,num-contexts ,num-contexts)
:element-type 'boolean
:initial-element nil))
;; marked keeps track of which ccms are marked as not being
;; part of the mtp.
(marked (make-array n :element-type 'boolean :initial-element nil))
;; the worklist keeps track of the ccms to visit.
(worklist nil))
;; first, we construct the accg-matrix
(dolist (ccmf ccmfs)
(setf (aref accg-matrix (ccmf-firstsite ccmf) (ccmf-lastsite ccmf)) t))
;; next, we initiate the counts.
(dotimes (i n)
(let ((node (aref srg i)))
;; for each edge from node i, we increment the counter
;; corresponding to the index of the context for which the
;; head of e is a ccm:
(dolist (e (funcall fwd-edges node))
(incf (aref count i (srg-node-node (aref srg (funcall edge-head e))))))
;; for every successor of the context of node that has count 0
;; gets added to the worklist and is marked.
(dotimes (j num-contexts)
(when (and (aref accg-matrix (srg-node-node node) j)
(= (aref count i j) 0))
(setf worklist (cons i worklist))
(setf (aref marked i) t)))))
;; finally, we enter the meat of the algorithm, working through the worklist.
(loop while (consp worklist)
for cw = (car worklist)
for j = (srg-node-node (aref srg cw))
do (setf worklist (cdr worklist))
;; every node in the worklist is out of the mtp, so we
;; decrement the appropriate count of all its
;; predecessors. any of them whose count reaches 0 gets
;; added to the worklist and is marked.
do (dolist (e (funcall bwd-edges (aref srg cw)))
(let ((i (funcall edge-tail e)))
(unless (aref marked i)
(decf (aref count i j))
(when (= (aref count i j) 0)
(setf (aref marked i) t)
(setf worklist (cons i worklist))))))
;; finally, we return all the unmarked ccms.
finally (return (loop for i from 0 below n
unless (aref marked i) collect i)))))
(defun-raw mtp-fwd (srg ccmfs num-contexts)
;; instantiation of mtp for analysis of the original srg/accg
(mtp srg ccmfs num-contexts
#'srg-node-fwd-edges #'srg-node-bwd-edges
#'srg-edge-head #'srg-edge-tail))
(defun-raw mtp-bwd (srg ccmfs num-contexts)
;; instantiation of mtp for analysis of the transposition of the
;; srg/accg
(mtp srg ccmfs num-contexts
#'srg-node-bwd-edges #'srg-node-fwd-edges
#'srg-edge-tail #'srg-edge-head))
(defun-raw fan-free (srg edge-list other-node num-contexts)
;; generic function for determining if there is no fanning in the
;; srg. edge-list is a function for retrieving the list of
;; incoming/outgoing edges of a node. other-node tells us how to get
;; the other node adjacent to an edge. num-contexts is the number of
;; contexts that the srg represents. in our context fanning is when
;; a ccm has multiple incoming/outgoing edges from ccms of the same
;; context.
(loop
with n = (array-dimension srg 0)
;; seen is an array keeping track of which contexts we have seen ccms from.
with seen = (make-array num-contexts :element-type 'boolean :initial-element nil)
for i from 0 below n
;; loop through the edges of srg ccm i, keeping track of the
;; contexts to which the adjacent ccms belong. if we see a context
;; twice, we have fanning and return nil.
unless (loop for e in (funcall edge-list (aref srg i))
for j = (funcall other-node e)
for context = (srg-node-node (aref srg j))
if (aref seen context) return nil
else do (setf (aref seen context) t)
finally (return t))
return nil
;; reset the seen array. this is cheaper than creating a new array
;; for each iteration of the outer loop.
do (loop for i from 0 below num-contexts
do (setf (aref seen i) nil))
finally (return t)))
(defun-raw fan-in-free (srg num-contexts)
;; instantiation of fan-free to check for fan-in
(fan-free srg #'srg-node-bwd-edges #'srg-edge-tail num-contexts))
(defun-raw fan-out-free (srg num-contexts)
;; instantiation of fan-free to check for fan-out
(fan-free srg #'srg-node-fwd-edges #'srg-edge-head num-contexts))
(defun-raw mtp-to-anchor (srg ahash)
;; given an srg that has been restricted to some mtp and a set of
;; ccmfs represented by a hash table, we add to ahash the anchor
;; implied by srg. that is, we add all ccmfs containing a > edge in
;; the restricted srg.
(loop for i from 0 below (array-dimension srg 0)
do (loop for e in (srg-node-fwd-edges (aref srg i))
when (and (eq (srg-edge-label e) '>)
(not (gethash (srg-edge-ccmf e) ahash)))
do (setf (gethash (srg-edge-ccmf e) ahash) t))
finally (return ahash)))
(defun-raw simple-anchors (srg ahash ccmfs num-contexts)
;; simple anchors, also called type 1 anchors in other papers by the
;; scp authors, are anchors based on mtps.
(let ((srgp (srg-restrict srg (mtp-fwd srg ccmfs num-contexts))))
(if (fan-in-free srgp num-contexts)
(mtp-to-anchor srgp ahash)
(let ((srgq (srg-restrict srg (mtp-bwd srg ccmfs num-contexts))))
(if (fan-out-free srgq num-contexts)
(mtp-to-anchor srgq ahash)
nil)))))
(defun-raw srg-restrict-edges (srg pred)
;; this function non-destructively constructs a new srg that is
;; identical to srg except it excludes edges that fail the
;; predicate, pred.
(loop
with n = (array-dimension srg 0)
with rsrg = (make-array n)
for i from 0 below n
for node = (aref srg i)
do (setf (aref rsrg i)
(make-srg-node :node (srg-node-node node)
:ccm (srg-node-ccm node)
:fwd-edges (remove-if-not pred (srg-node-fwd-edges node))
:bwd-edges (remove-if-not pred (srg-node-bwd-edges node))))
finally (return rsrg)))
(defun-raw ndg (srg)
;; constructs the no-descent graph, a subgraph of the srg consisting
;; of only nonstrict edges.
(srg-restrict-edges srg (lambda (e) (eq (srg-edge-label e) '>=))))
(defun-raw srg-interior (srg)
;; constructs the interior of an srg, that is, the subgraph of the
;; srg consisting of the edges of the srg that are interior to an
;; scc of the srg.
(multiple-value-bind
(scc scc-array)
(srg-scc srg)
(declare (ignore scc))
(srg-restrict-edges srg
(lambda (e)
(eq (aref scc-array (srg-edge-tail e))
(aref scc-array (srg-edge-head e)))))))
(defun-raw srg-to-matrix (srg)
;; straight-forward function for making an adjacency matrix of srg.
(loop with n = (array-dimension srg 0)
with matrix = (make-array (list n n)
:element-type 'boolean
:initial-element nil)
for i from 0 below n
do (loop for e in (srg-node-fwd-edges (aref srg i))
do (setf (aref matrix i (srg-edge-head e)) t))
finally (return matrix)))
;; (let* ((n (array-dimension srg 0))
;; (matrix (make-array (list n n) :element-type 'boolean :initial-element nil)))
;; (dotimes (i n matrix)
;; (dolist (e (srg-node-fwd-edges (aref srg i)))
;; (setf (aref matrix i (srg-edge-head e)) t)))))
(defun-raw ccmf-to-ccmfdown-in-srg (srg ccmf ndgi-matrix)
;; by ccmfdown, here, we mean the original ccmf minus any arcs
;; belonging to the interior of ndg of srg. for ccmf, G, this is
;; represented in the scp paper as G with a small down arrow to its
;; right. hence the name. we return a copy of the srg restricted to
;; not include edges in ccmfdown.
(srg-restrict-edges srg
(lambda (e)
(not (and (eq (srg-node-node (aref srg (srg-edge-tail e)))
(ccmf-firstsite ccmf))
(eq (srg-node-node (aref srg (srg-edge-head e)))
(ccmf-lastsite ccmf))
(aref ndgi-matrix (srg-edge-tail e) (srg-edge-head e)))))))
(defun-raw anchor-find (srg ccmfs num-contexts)
;; the anchor finding algorithm, as given in the scp paper.
(let ((ahash (make-hash-table :rehash-size 2 :rehash-threshold (float 3/4))))
(multiple-value-bind
(sccs scc-array)
(srg-scc srg)
(declare (ignore scc-array))
;; for every scc of the srg, look for simple anchors.
(dolist (scc sccs)
(simple-anchors (srg-restrict srg scc) ahash ccmfs num-contexts))
;; convert the set of anchors to a list.
(let ((anchors (loop for k being the hash-keys of ahash using (hash-value v)
when v collect k)))
;;(format t "simple anchors: ~A~%" anchors)
;; if we have found anchors, return them.
(if anchors
anchors
;; otherwise, we attempt to find "type 2" anchors, as they
;; are called in the scp paper.
(loop with ndgi-matrix = (srg-to-matrix (srg-interior (ndg srg)))
for ccmf in ccmfs
for h = (ccmf-to-ccmfdown-in-srg srg ccmf ndgi-matrix)
when (or (mtp-fwd h ccmfs num-contexts)
(mtp-bwd h ccmfs num-contexts))
return (list ccmf)))))))
(defun-raw copy-a-ccmf (ccmf)
(make-ccmf :firstsite (ccmf-firstsite ccmf)
:lastsite (ccmf-lastsite ccmf)
:fc-num (ccmf-fc-num ccmf)
:lc-num (ccmf-lc-num ccmf)
:graph (accg-copy-ccmf-graph (ccmf-graph ccmf))
:in-sizes (ccmf-in-sizes ccmf)
:out-sizes (ccmf-out-sizes ccmf)
:steps (ccmf-steps ccmf)))
(defun-raw copy-ccmfs (ccmfs)
;; just like it says, this function copies a list of ccmfs.
(loop for ccmf in ccmfs
collect (copy-a-ccmf ccmf)))
(defun-raw copy-accg (accg)
(let* ((n (array-dimension accg 0))
(naccg (make-array n)))
(loop for i from 0 below n
for node = (aref accg i)
do (setf (aref naccg i)
(make-accg-node :context (accg-node-context node)
:num i)))
(loop
for node across accg
for nnode across naccg
do (setf (accg-node-fwd-edges nnode)
(loop
for edge in (accg-node-fwd-edges node)
for head = (accg-edge-head edge)
for hnode = (aref naccg head)
for nedge = (make-accg-edge
:tail (accg-edge-tail edge)
:head head
:ccmf (copy-a-ccmf (accg-edge-ccmf edge)))
do (setf (accg-node-bwd-edges hnode)
(cons nedge (accg-node-bwd-edges hnode)))
collect nedge)))
naccg))
(defun-raw accg-ccmfs (accg)
;; returns all the ccmfs used to annotate accg
(loop for node across accg
append (mapcar #'accg-edge-ccmf
(accg-node-fwd-edges node))))
;; (let ((ccmfs nil))
;; (dotimes (i (array-dimension accg 0) ccmfs)
;; (dolist (e (accg-node-fwd-edges (aref accg i)))
;; (setf ccmfs (cons (accg-edge-ccmf e) ccmfs))))))
(defun-raw accg-contexts (accg)
;; returns the contexts of the accg.
(map 'vector (lambda (x) (accg-node-context x)) accg))
(defun-raw accg-srg-add-edge (tailnode headnode tailnum headnum ccmf label)
;; adds an adge to the tailnode and headnode of an srg.
(let ((edge (make-srg-edge :tail tailnum
:head headnum
:ccmf ccmf
:label label)))
(setf (srg-node-fwd-edges tailnode)
(cons edge (srg-node-fwd-edges tailnode)))
(setf (srg-node-bwd-edges headnode)
(cons edge (srg-node-bwd-edges headnode)))
nil))
(defun-raw accg-remove-edges-corresponding-to-ccmfs (accg ccmfs)
;; destructively removes edges corresponding to the list of ccmfs from the
;; accg. The ccmfs must be pointer-equal (eq) to the ones you want removed
;; from the accg.
;; first, we set the firstsite field of the ccmfs we want to remove
;; to -1.
(loop for ccmf in ccmfs do (setf (ccmf-firstsite ccmf) -1))
;; next, we loop through all the accg-nodes, deleting any
;; incoming/outgoing edges whose firstsite is -1.
(loop with pred = (lambda (edge)
(= (ccmf-firstsite (accg-edge-ccmf edge)) -1))
for node across accg
do (setf (accg-node-fwd-edges node)
(delete-if pred (accg-node-fwd-edges node)))
do (setf (accg-node-bwd-edges node)
(delete-if pred (accg-node-bwd-edges node))))
accg)
(defun-raw accg-construct-srg (accg)
;; constructs an srg from a accg. to do this, we "flatten" out the
;; ccms of each accg-node, laying all the ccms from all the
;; accg-nodes next to each other and creating an srg-node for each
;; ccm.
(let* ((n (array-dimension accg 0))
;; we need an offset array to tell us what index in the srg
;; corresponds to the first ccm in each accg-node.
(node-offset (make-array n
:element-type 'fixnum
:initial-element 0))
(c 0))
;; compute the offsets:
(dotimes (i n)
(setf (aref node-offset i) c)
(incf c (array-dimension (accg-node-ccms (aref accg i)) 0)))
;; at this point c = the number of nodes in the srg.
(let ((srg (make-array c
:element-type 'srg-node
:initial-element (make-srg-node))))
;; make all the new nodes.
(loop for i from 1 below c
do (setf (aref srg i) (make-srg-node)))
;; now we add all the edges.
(loop ;; we loop through the accg
for i from 0 below n
do (loop ;; we loop through the fwd-ccmfs of node i
for edge in (accg-node-fwd-edges (aref accg i))
for ccmf = (accg-edge-ccmf edge)
for offset1 = (aref node-offset i)
for offset2 = (aref node-offset (accg-edge-head edge))
for cg = (ccmf-graph ccmf)
do (loop ;; we loop through the ccmf.
for j from 0 below (array-dimension cg 0)
for a from offset1
for nodea = (aref srg a)
do (setf (srg-node-node nodea) i)
do (setf (srg-node-ccm nodea) j)
do (loop ;; we loop through the >-edges and add them to the srg.
for x in (ccmf-node->-edges (aref cg j))
for b = (+ offset2 x)
do (accg-srg-add-edge nodea (aref srg b) a b ccmf '>))
do (loop ;; we loop through the >=-edges and add them to the srg.
for x in (ccmf-node->=-edges (aref cg j))
for b = (+ offset2 x)
do (accg-srg-add-edge nodea (aref srg b) a b ccmf '>=))))
finally (return srg)))))
(defun-raw cln-accg (accg)
;; this function cleans a accg by removing any ccmf edge that is
;; not internal to an scc in the corresponding srg that contains a >
;; edge.
(let* ((srg (accg-construct-srg accg)) ;; the srg for the accg.
(n (array-dimension accg 0))
(deletep-array (make-array n))) ;; tells us which ccms to delete.
;; initiate the deletep-array
(dotimes (i n)
(setf (aref deletep-array i)
(make-array (array-dimension
(accg-node-ccms (aref accg i))
0)
:element-type 'boolean
:initial-element nil)))
;; analyze the sccs of the srg.
(multiple-value-bind
(sccs scc-array)
(srg-scc srg)
;; for each scc, add the nodes of the scc to the deletep array
;; unless it contains a > edge.
(loop for scc in sccs
unless (srg-scc-has->-edgep scc scc-array srg)
do (loop for v in scc
for node = (aref srg v)
for context = (srg-node-node node)
for ccm = (srg-node-ccm node)
do (setf (aref (aref deletep-array context) ccm) t))))
;; destructively remove the unwanted ccms.
(progn
(ccmf-remove-ccms-list (accg-ccmfs accg)
deletep-array)
accg)))
(defun-raw scp (accg)
;; the main scp algorithm. it takes an accg and recursively removes
;; anchors and analyzes the sccs of the remainder of the graph until
;; either there is no graph left, or we can't find any more
;; anchors. see the scp paper.
(when accg
(let* ((n (array-dimension accg 0))
(anchors (anchor-find (accg-construct-srg accg)
(accg-ccmfs accg)
n)))
(when anchors
(mv-let
(changes sccs)
(accg-separate-sccs
(accg-remove-edges-corresponding-to-ccmfs accg anchors))
(declare (ignore changes))
(loop for scc in sccs
unless (scp (cln-accg scc))
return nil
finally (return t)))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; the following code implements the SCT analysis
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defstruct-raw scg-path
;; the first num in the path
(start 0 :type fixnum)
;; the second num in the path
(end 0 :type fixnum)
;; the total length of the path
(length 0 :type fixnum)
;; the interior of the path (everything except the start and end). We
;; represent this as a tree so that we don't have to append every time we
;; compose SCGs. We do this in such a way that a depth-first car-to-cdr
;; seorch of the tree returns the path.
(interior nil :type (or null fixnum cons)))
(defun-raw new-scg-path (start end)
(make-scg-path :start start
:end end
:length 2
:interior nil))
(defun-raw compose-scg-paths (p1 p2)
(make-scg-path :start (scg-path-start p1)
:end (scg-path-end p2)
:length (1- (+ (scg-path-length p1)
(scg-path-length p2)))
:interior (let ((x (if (null (scg-path-interior p2))
(scg-path-start p2)
(cons (scg-path-start p2)
(scg-path-interior p2)))))
(if (null (scg-path-interior p1))
x
(cons (scg-path-interior p1) x)))))
(defun-raw flatten-scg-interior (interior acc)
(cond ((null interior)
acc)
((atom interior)
(cons interior acc))
(t
(flatten-scg-interior (car interior)
(flatten-scg-interior (cdr interior)
acc)))))
(defun-raw flatten-scg-path (path)
(cons (scg-path-start path)
(flatten-scg-interior (scg-path-interior path)
(list (scg-path-end path)))))
;; for the purposes of this algorithm, we only need to know the starts and ends
;; of paths. We only need the interior to construct the paths later. Therefore,
;; we define functions for equality and ordering paths accordingly.
(defun-raw scg-path-equal (p1 p2)
(and (= (scg-path-start p1)
(scg-path-start p2))
(= (scg-path-end p1)
(scg-path-end p2))))
(defun-raw path< (p1 p2)
(or (< (scg-path-start p1)
(scg-path-start p2))
(and (= (scg-path-start p1)
(scg-path-start p2))
(< (scg-path-end p1)
(scg-path-end p2)))))
;; since we keep the interior of a path aronud for constructing
;; counter-examples, we want to keep around the shortest path. Therefore, when
;; given two paths with identical start and end points, we pick the one with
;; the shortest path.
(defun-raw shortest-scg-path (p1 p2)
(if (<= (scg-path-length p1)
(scg-path-length p2))
p1
p2))
(defstruct-raw scg
(paths nil :type list)
(newest-paths nil :type list)
(new-newest-paths nil :type list)
(num 0 :type fixnum)
(graph nil))
(defun-raw sorted-set-union1 (lst1 lst2 key1 key2 predicate combine key test)
;; lst1 and lst2 should be sorted, non-empty lists.
;; key1 should be equal to (funcall key (car lst1))
;; key2 should be equal to (funcall key (car lst2))
;; key should be a unary function that returns an equal-able value.
(cond ((funcall test key1 key2)
(cons (car lst1)
(sorted-set-union (cdr lst1) (cdr lst2)
predicate
:key key
:combine combine
:test test)))
((funcall predicate key1 key2)
(cons (car lst1)
(if (endp (cdr lst1))
lst2
(sorted-set-union1 (cdr lst1) lst2
(funcall key (cadr lst1))
key2
predicate
combine
key
test))))
(t
(cons (car lst2)
(if (endp (cdr lst2))
lst1
(sorted-set-union1 lst1 (cdr lst2)
key1
(funcall key (cadr lst2))
predicate
combine
key
test))))))
(defun-raw sorted-set-union (lst1 lst2 predicate
&key (key #'identity)
(combine #'(lambda (x y)
(declare (ignore y))
x))
(test #'equal))
(cond ((endp lst1) lst2)
((endp lst2) lst1)
(t
(sorted-set-union1 lst1 lst2
(funcall key (car lst1))
(funcall key (car lst2))
predicate
combine
key
test))))
(defun-raw sorted-set-difference1 (lst1 lst2 key1 key2 predicate key test)
;; lst1 and lst2 should be sorted, non-empty lists.
;; key1 should be equal to (funcall key (car lst1))
;; key2 should be equal to (funcall key (car lst2))
;; key should be a unary function that returns an equal-able value.
(cond ((funcall test key1 key2)
(sorted-set-difference (cdr lst1) (cdr lst2)
predicate
:key key
:test test))
((funcall predicate key1 key2)
(cons (car lst1)
(if (endp (cdr lst1))
nil
(sorted-set-difference1 (cdr lst1) lst2
(funcall key (cadr lst1))
key2
predicate
key
test))))
(t
(if (endp (cdr lst2))
lst1
(sorted-set-difference1 lst1 (cdr lst2)
key1
(funcall key (cadr lst2))
predicate
key
test)))))
(defun-raw sorted-set-difference (lst1 lst2 predicate
&key (key #'identity)
(test #'equal))
(cond ((endp lst1) nil)
((endp lst2) lst1)
(t
(sorted-set-difference1 lst1 lst2
(funcall key (car lst1))
(funcall key (car lst2))
predicate
key
test))))
(defun-raw sorted-union/difference1 (lst1 lst2 key1 key2 predicate combine key test)
;; lst1 and lst2 should be sorted, non-empty lists.
;; key1 should be equal to (funcall key (car lst1))
;; key2 should be equal to (funcall key (car lst2))
;; key should be a unary function that returns an equal-able value.
(cond ((funcall test key1 key2)
(mv-let (union difference)
(sorted-union/difference (cdr lst1) (cdr lst2)
predicate
:combine combine
:key key
:test test)
(mv (cons (funcall combine (car lst1) (car lst2))
union)
difference)))
((funcall predicate key1 key2)
(mv-let (union difference)
(if (endp (cdr lst1))
(mv lst2 nil)
(sorted-union/difference1 (cdr lst1) lst2
(funcall key (cadr lst1))
key2
predicate
combine
key
test))
(mv (cons (car lst1) union)
(cons (car lst1) difference))))
(t
(mv-let (union difference)
(if (endp (cdr lst2))
(mv lst1 lst1)
(sorted-union/difference1 lst1 (cdr lst2)
key1
(funcall key (cadr lst2))
predicate
combine
key
test))
(mv (cons (car lst2) union)
difference)))))
(defun-raw sorted-union/difference (lst1 lst2 predicate
&key (key #'identity)
(combine #'(lambda (x y)
(declare (ignore y))
x))
(test #'equal))
(cond ((endp lst1) (mv lst2 nil))
((endp lst2) (mv lst1 lst1))
(t
(sorted-union/difference1 lst1 lst2
(funcall key (car lst1))
(funcall key (car lst2))
predicate
combine
key
test))))
(defun-raw sorted-adjoin (element set predicate
&key (key #'identity)
(combine #'(lambda (x y)
(declare (ignore y))
x))
(test #'equal))
(sorted-set-union (list element) set predicate
:key key :combine combine :test test))
(defun-raw sorted-remove-duplicates1 (lst carkey key combine test)
(if (endp (cdr lst))
lst
(let ((cadrkey (funcall key (cadr lst))))
(if (funcall test carkey cadrkey)
(let ((comb (funcall combine (car lst) (cadr lst))))
(sorted-remove-duplicates1 (cons comb (cddr lst))
(funcall key comb)
key
combine
test))
(cons (car lst)
(sorted-remove-duplicates1 (cdr lst)
cadrkey
key
combine
test))))))
(defun-raw sorted-remove-duplicates (lst &key (key #'identity)
(combine #'(lambda (x y)
(declare (ignore y))
x))
(test #'equal))
(cond ((endp lst) nil)
((endp (cdr lst)) lst)
(t
(sorted-remove-duplicates1 lst
(funcall key (car lst))
key
combine
test))))
(defun-raw list-to-sorted-set (lst predicate
&key (key #'identity)
(combine #'(lambda (x y)
(declare (ignore y))
x))
(test #'equal))
;; WARNING: THIS FUNCTION IS DESTRUCTIVE TO LST.
(sorted-remove-duplicates (sort lst predicate :key key)
:key key
:combine combine
:test test))
(defun-raw scg-graph-key (graph)
#-gcl
graph
#+gcl
(loop for node across graph
for >-edges = (ccmf-node->-edges node)
for >=-edges = (ccmf-node->=-edges node)
collect (cons (length >-edges) (length >=-edges)) into lens
collect (cons >-edges >=-edges) into lst
finally (list* (array-dimension graph 0) lens lst)))
(defun-raw update-scg-paths (graph paths i graph-hash)
;; graph is a ccmf-graph
;; paths is a sorted set of paths to be added for graph
;; i is our scg counter, used for giving each scg a unique numerical id.
;; graph-hash is an equalp hash-table (an equal hash-table in GCL)
;;
;; OUTPUT: 4 values:
;; 1. the new value of i.
;; 2. whether this is the first update to the new-newest-paths of the scg.
;; 3. the new paths added.
;; 4. the scg that was updated.
;; (format t "~&Calling: ~A~%" `(update-scg-paths ,graph ,paths ,i ,graph-hash))
(let* ((key (scg-graph-key graph))
(scg (gethash key graph-hash)))
(if scg
(let* ((new-newest-paths (scg-new-newest-paths scg))
(npaths (sorted-set-difference
(sorted-set-difference paths
(scg-paths scg)
#'path<
:test #'scg-path-equal)
(scg-newest-paths scg)
#'path<
:test #'scg-path-equal)))
(mv-let (union difference)
(sorted-union/difference npaths new-newest-paths #'path<
:test #'scg-path-equal
:combine #'shortest-scg-path)
(progn
(setf (scg-new-newest-paths scg) union)
(mv i (endp new-newest-paths) difference scg))))
(let ((nscg (make-scg :graph graph
:num i
:new-newest-paths paths)))
(setf (gethash key graph-hash) nscg)
;; (format t "Returning: ~A~%"
;; `(update-scg-paths ,(1+ i)
;; t
;; ,paths
;; ,nscg))
(mv (1+ i) t paths nscg)))))
(defun-raw age-scgs (lst)
;; lst is a list of scgs
;;
;; SIDE-EFFECT: the scgs are "aged", i.e. their newest-paths are unioned with
;; their paths, the new-newest-paths are moved to the newest-paths, and their
;; new-newest-paths slot is set to nil.
;;
;; OUTPUT: lst
(loop for scg in lst
do (setf (scg-paths scg)
(sorted-set-union (scg-paths scg)
(scg-newest-paths scg)
#'path<
:combine #'shortest-scg-path
:test #'scg-path-equal))
do (setf (scg-newest-paths scg)
(scg-new-newest-paths scg))
do (setf (scg-new-newest-paths scg)
nil)
finally (return lst)))
(defun-raw ccmfs-to-scgs1 (ccmfs graph-hash i acc)
(if (endp ccmfs)
(mv i (sort acc #'< :key #'scg-num))
(let ((ccmf (car ccmfs)))
(mv-let (ni new? diff scg)
(update-scg-paths (ccmf-graph ccmf)
(list (new-scg-path (ccmf-firstsite ccmf)
(ccmf-lastsite ccmf)))
i
graph-hash)
(ccmfs-to-scgs1 (cdr ccmfs) graph-hash ni
(if (and new? (consp diff))
(cons scg acc)
acc))))))
(defun-raw ccmfs-to-scgs (ccmfs graph-hash)
(ccmfs-to-scgs1 ccmfs graph-hash 0 nil))
(defun-raw compose-scg-graphs (g h)
(loop with n = (array-dimension g 0)
with gh = (make-array (array-dimension g 0)
:element-type 'ccmf-node
:initial-element (make-ccmf-node))
for i below n
for nodei = (aref g i)
for >-edges = nil
for >=-edges = nil
do (loop for j in (ccmf-node->-edges nodei)
for nodej = (aref h j)
do (loop for k in (ccmf-node->-edges nodej)
do (setf >-edges (cons k >-edges)))
do (loop for k in (ccmf-node->=-edges nodej)
do (setf >-edges (cons k >-edges))))
do (loop for j in (ccmf-node->=-edges nodei)
for nodej = (aref h j)
do (loop for k in (ccmf-node->-edges nodej)
do (setf >-edges (cons k >-edges)))
do (loop for k in (ccmf-node->=-edges nodej)
do (setf >=-edges (cons k >=-edges))))
do (let* ((sorted->-edges (list-to-sorted-set >-edges #'<)))
(setf (aref gh i)
(make-ccmf-node
:>-edges sorted->-edges
:>=-edges (sorted-set-difference
(list-to-sorted-set >=-edges #'<)
sorted->-edges
#'<))))
finally (return gh)))
(defun-raw compose-scg-path-lsts1 (gpath hpaths acc)
(if (or (endp hpaths)
(not (= (scg-path-start (car hpaths))
(scg-path-end gpath))))
acc
(compose-scg-path-lsts1 gpath (cdr hpaths)
(cons (compose-scg-paths gpath (car hpaths))
acc))))
(defun-raw compose-scg-path-lsts (gpaths hpaths acc)
;; gpaths should be a list of paths sorted in increasing order by their cdrs.
;; hpaths should be a list of paths sorted in increasing order by their cars.
;; acc is the accumulator
;; returns a sorted-set of paths (sorted by path<).
(cond ((or (endp gpaths) (endp hpaths))
(list-to-sorted-set acc #'path<
:test #'scg-path-equal
:combine #'shortest-scg-path))
((< (scg-path-end (car gpaths))
(scg-path-start (car hpaths)))
(compose-scg-path-lsts (cdr gpaths) hpaths acc))
((> (scg-path-end (car gpaths))
(scg-path-start (car hpaths)))
(compose-scg-path-lsts gpaths (cdr hpaths) acc))
(t
(compose-scg-path-lsts (cdr gpaths)
hpaths
(compose-scg-path-lsts1 (car gpaths)
hpaths
acc)))))
(defun-raw scg-counter-example? (scg diff)
(and ;;there is a new self loop:
(loop for path in diff
when (= (scg-path-start path)
(scg-path-end path))
return t
finally (return nil))
;;there is no old self loop (in which case, we have already checked it out).
(loop for path in (append (scg-paths scg)
(scg-newest-paths scg)
(sorted-set-difference (scg-new-newest-paths scg)
diff
#'path<
:test #'scg-path-equal))
when (= (scg-path-start path)
(scg-path-end path))
return nil
finally (return t))
;; there is no >-edge from a CCM to itself:
(loop with graph = (scg-graph scg)
for i from 0 below (array-dimension graph 0)
when (member i (ccmf-node->-edges (aref graph i)))
return nil
finally (return t))
;; the graph is idempotent
(let ((graph (scg-graph scg)))
(equalp (compose-scg-graphs graph graph)
graph))))
(defun-raw shortest-self-loop (paths path)
(cond ((endp paths) path)
((= (scg-path-start (car paths))
(scg-path-end (car paths)))
(shortest-self-loop (cdr paths)
(if (or (null path)
(< (scg-path-length (car paths))
(scg-path-length path)))
(car paths)
path)))
(t
(shortest-self-loop (cdr paths) path))))
(defun-raw compose-scgs (g h i graph-hash)
(let ((ghgraph (compose-scg-graphs (scg-graph g) (scg-graph h)))
(ghpaths (compose-scg-path-lsts (sort (copy-list (scg-newest-paths g))
#'< :key #'scg-path-end)
(scg-newest-paths h)
nil)))
(mv-let (ni new? diff gh)
(update-scg-paths ghgraph ghpaths i graph-hash)
(if (scg-counter-example? gh diff)
(mv t ni (cons (scg-graph gh)
(flatten-scg-path (shortest-self-loop diff nil))))
(mv nil ni (if (and new? (consp diff)) gh nil))))))
(defun-raw scg-predecessors (scg)
(sorted-remove-duplicates (mapcar #'scg-path-start (scg-newest-paths scg))))
(defun-raw scg-successors (scg)
(list-to-sorted-set (mapcar #'scg-path-end (scg-newest-paths scg))
#'<))
(defun-raw organize-scgs-by-preds1 (scgs array)
(if (endp scgs)
nil
(let ((scg (car scgs)))
;; to maintain the sortedness of the slots in the array, we loop through
;; and build our lists on the way back.
(organize-scgs-by-preds1 (cdr scgs) array)
(loop for i in (scg-predecessors scg)
do (setf (aref array i)
(cons scg (aref array i)))))))
(defun-raw organize-scgs-by-preds (scgs numsites)
(let ((array (make-array numsites :initial-element nil :element-type 'list)))
(organize-scgs-by-preds1 scgs array)
array))
(defun-raw union-scgs (scg-array indices)
(loop for i in indices
append (aref scg-array i) into union
finally (return (list-to-sorted-set union #'< :key #'scg-num))))
(defun-raw copy-scgs (scgs)
(loop for scg in scgs
collect (make-scg :graph (scg-graph scg)
:num (scg-num scg)
:paths (scg-paths scg)
:newest-paths (scg-newest-paths scg)
:new-newest-paths (scg-new-newest-paths scg))))
(defun print-sct-loop-report (iteration comps state)
(ccg-io? performance nil state
(iteration comps)
(fms "Iteration: ~x0 Compositions: ~x1."
(list (cons #\0 iteration)
(cons #\1 comps))
*standard-co*
state
nil)))
(defun-raw print-sct-total-report (success? comps graph-hash start-time state)
(mv-let
(col state)
(ccg-io? size-change nil (mv col state)
(success?)
(fmt "~%SCT has found ~#0~[no~/a~] counter-example to ~
termination. "
(list (cons #\0 (if success? 0 1)))
*standard-co*
state
nil)
:default-bindings ((col 0)))
(mv-let
(col state)
(ccg-io? performance nil (mv col state)
(comps graph-hash start-time internal-time-units-per-second)
(fmt1 "In the process, ~x0 total ~#1~[compositions ~
were~/composition was~] performed and ~x2 unique ~
~#3~[graphs were~/graph was~] created. Total time taken ~
was ~x4 seconds.~|"
(list (cons #\0 comps)
(cons #\1 (if (= comps 1) 1 0))
(cons #\2 (hash-table-count graph-hash))
(cons #\3 (if (= (hash-table-count graph-hash) 1)
1 0))
(cons #\4 (/ (- (get-internal-run-time) start-time)
;;internal-time-units-per-second
(coerce internal-time-units-per-second 'float))))
col
*standard-co*
state
nil)
:default-bindings ((col 0)))
(mv-let
(col state)
(ccg-io? size-change nil (mv col state)
()
(fmt1 "~|" nil col *standard-co* state nil))
(declare (ignore col))
state))))
(defun-raw sct (ccmfs numsites state)
;; ccmfs: a list of CCMFs to be analyzed
;; numsites: the number of contexts over which the CCMFs range.
;; state: the state
;;
;; OUTPUT: an error triple whose value is a counter-example of the form (cons
;; g p) where g is a ccmf-graph and p is the shortest self-looping path
;; associated with g.
;; the basic algorithm for sct is fairly simple:
;; * let S be the set of SCGs
;; * repeat the following
;; * if there is a maximal ccmf without a > edge from some ccm to
;; itself, return the counter-example associated with that ccmf.
;; * let S' be S unioned with the result of composing every pair
;; <s,s'> in SxS such that the lastsite of s is the firstsite of s'.
;; * if S' = S, return nil
;; * set S <- S'
;;
;; however, this is inefficient, due to duplicate SCGs and the associativity
;; of composition. Therefore, we do the following.
(let ((graph-hash (make-hash-table :test #-gcl 'equalp #+gcl 'equal))
(start-time (get-internal-run-time)))
;; first, we create the scgs, putting them in the graph-hash
(mv-let
(i newest)
(ccmfs-to-scgs ccmfs graph-hash)
(progn
;;(format t "~&i: ~A~%newest: ~A~%" i newest)
;; we check if any of the new scgs are counter-examples to termination.
(loop
for scg in newest
for nnp = (scg-new-newest-paths scg)
when (scg-counter-example? scg nnp)
do (return-from sct (value (cons (scg-graph scg)
(flatten-scg-path
(shortest-self-loop nnp nil))))))
;; we age the scgs.
(age-scgs newest)
;; the main loop:
(loop
with total-comps = 0
with generators = (organize-scgs-by-preds (copy-scgs newest) numsites)
until (endp newest)
for iteration from 0
for new-newest = nil
for comps = 0
;;do (print iteration)
;; for every scg, g, to be processed
do (loop
for g in newest
;; all the ends of the pathst associated with g:
for gsucc = (scg-successors g)
do (loop
;; for each generator that starts at a context where g ends,
for h in (union-scgs generators gsucc)
;; compose them together, checking for counter-examples along
;; the way
do (mv-let (counter-example? ni gh)
(compose-scgs g h i graph-hash)
(progn
(incf comps)
(incf total-comps)
(setf i ni)
;; if we've found it, print out the report and
;; return the counter-example.
(cond (counter-example?
(pprogn
(increment-timer 'other-time state)
(print-sct-loop-report iteration comps
state)
(print-sct-total-report nil
total-comps
graph-hash
start-time
state)
(increment-timer 'print-time state)
(return-from sct (value gh))))
;; otherwise, if gh is new and different, we
;; add it to our new-newest set.
(gh
(setf new-newest
(cons gh new-newest))))))))
;; we age all of our SCGs.
do (age-scgs (list-to-sorted-set (append newest
(copy-list new-newest))
#'< :key #'scg-num))
;; new-newest is the new newest (hence the name).
do (setf newest new-newest)
;; print the loop report.
do (pprogn
(increment-timer 'other-time state)
(print-sct-loop-report iteration comps state)
(increment-timer 'print-time state))
;; if we never find a counter-example, print out the report and return
;; nil.
finally (pprogn
(increment-timer 'other-time state)
(print-sct-total-report t total-comps graph-hash start-time state)
(increment-timer 'print-time state)
(return (value nil))))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; the rest of the code connects our termination analysis with ACL2's ;;;
;;; function admission process. ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw find-funct (fn functs)
(cond ((endp functs)
(make-funct :fn fn))
((eq fn (funct-fn (car functs)))
(car functs))
(t
(find-funct fn (cdr functs)))))
(defun-raw t-machine-to-contexts (t-machine parent-funct functs)
(if (endp t-machine)
nil
(let* ((tac (car t-machine))
(call (access tests-and-call tac :call)))
(cons (make-context :ruler (access tests-and-call tac :tests)
:call call
:parent-funct parent-funct
:call-funct (find-funct (ffn-symb call) functs))
(t-machine-to-contexts (cdr t-machine) parent-funct functs)))))
(defun-raw t-machines-to-contexts1 (t-machines functs all-functs)
(if (endp t-machines)
nil
(cons (t-machine-to-contexts (car t-machines)
(car functs)
all-functs)
(t-machines-to-contexts1 (cdr t-machines)
(cdr functs)
all-functs))))
(defun-raw t-machines-to-contexts (t-machines functs)
(t-machines-to-contexts1 t-machines functs functs))
(defun-raw make-funct-structs (names arglists)
(if (endp names)
nil
(cons (make-funct :fn (car names)
:formals (car arglists))
(make-funct-structs (cdr names) (cdr arglists)))))
(defun ccg-measures-declared (measures)
;;; tells us whether the user declared any measures
(and (consp measures)
(or (not (equal (car measures) *0*))
(ccg-measures-declared (cdr measures)))))
(defun-raw context-array (contexts)
;; turns a list of lists of contexts into an array and fixes the
;; context-num field of each context to be its index in the array.
(let ((carray (coerce (loop for cs in contexts
append cs)
'vector)))
(loop for i from 0 below (length carray)
do (setf (context-num (aref carray i))
(list i)))
carray))
(defun-raw accg-scp-list (lst proved unproved)
;; given a list of accgs, lst, performs scp on a cleaned version of the accg,
;; putting the cleaned accg into proved if scp determines the accg is
;; terminating or the original accg into unproved if it is not proven
;; terminating.
(if (endp lst)
(mv proved unproved)
(let* ((accg (cln-accg (copy-accg (car lst)))))
(cond ((scp (copy-accg accg))
(accg-scp-list (cdr lst)
(cons accg proved)
unproved))
(t
(accg-scp-list (cdr lst) proved (cons (car lst) unproved)))))))
(defun-raw accg-sct-list1 (lst i n proved unproved ces state)
;; given a list of accgs, lst, performs sct on a cleaned version of each
;; accg, putting the cleaned into proved if sct determines the accg is
;; terminating or the original accg into unproved if it is not proven
;; terminating.
(if (endp lst)
(pprogn
(let ((plen (len proved)))
(ccg-io? basics nil state
(plen unproved)
(fms "Size-change analysis has proven ~x0 out of ~x1 SCCs of ~
the CCG terminating.~|"
`((#\0 . ,plen)
(#\1 . ,(+ plen (len unproved))))
*standard-co*
state
nil)))
(value (list* proved unproved ces)))
(pprogn
(increment-timer 'other-time state)
(ccg-io? size-change nil state
()
(fms "We now begin size change analysis on the ~n0 SCC out of ~
~n1."
(list (cons #\0 `(,i))
(cons #\1 n))
*standard-co*
state
nil))
(increment-timer 'print-time state)
(let* ((accg (cln-accg (copy-accg (car lst)))))
(if (null accg)
;; this should no longer happen because cln-accg no
;; longer returns nil if there are empty ccmfs.
(pprogn
(increment-timer 'other-time state)
(ccg-io? size-change nil state
()
(fms "A trivial analysis has revealed that this SCC is ~
potentially non-terminating. We will set it aside ~
for further refinement.~|"
nil *standard-co* state nil))
(increment-timer 'print-time state)
(accg-sct-list1 (cdr lst) (1+ i) n proved (cons (car lst) unproved)
(cons nil ces) state))
(er-let*
((ce (sct (accg-ccmfs accg) (array-dimension accg 0) state)))
(if (null ce)
(pprogn
(increment-timer 'other-time state)
(ccg-io? size-change nil state
()
(fms "We have shown this SCC to be terminating, so we ~
do not need to refine it any further.~|"
nil *standard-co* state nil))
(increment-timer 'print-time state)
(accg-sct-list1 (cdr lst)
(1+ i)
n
(cons accg proved)
unproved
ces
state))
(pprogn
(increment-timer 'other-time state)
(ccg-io? size-change nil state
()
(fms "This SCC is potentially non-terminating. We will ~
set it aside for further refinement.~|"
nil *standard-co* state nil))
(increment-timer 'print-time state)
(accg-sct-list1 (cdr lst)
(1+ i)
n
proved
(cons (car lst) unproved)
(cons ce ces)
state)))))))))
(defun-raw accg-sct-list (lst proved unproved ces state)
(accg-sct-list1 lst 1 (len lst) proved unproved ces state))
(defun ccg-counter-example-fn-name1 (char-lst pkg i wrld)
(declare (xargs :guard (and (standard-char-listp char-lst)
(stringp pkg)
(natp i)
(plist-worldp wrld))))
(let ((name (intern$ (coerce (append char-lst
`(#\_)
(explode-nonnegative-integer i 10 nil))
'string)
pkg)))
(cond ((new-namep name wrld) (mv name i))
(t (ccg-counter-example-fn-name1 char-lst pkg (1+ i) wrld)))))
(defun ccg-counter-example-fn-name (root i wrld)
(declare (xargs :guard (and (symbolp root)
(plist-worldp wrld)
(natp i))))
(ccg-counter-example-fn-name1 (coerce (symbol-name root) 'list)
(symbol-package-name root)
i
wrld))
(defun assoc-set-eq (key value alist)
(declare (xargs :guard (and (symbolp key)
(alistp alist))))
(cond ((endp alist)
(acons key value alist))
((eq key (caar alist))
(acons key value (cdr alist)))
(t
(assoc-set-eq key value (cdr alist)))))
(defun assoc-eq-value (key default alist)
(declare (xargs :guard (and (symbolp key)
(alistp alist))))
(let ((pair (assoc-eq key alist)))
(if (consp pair)
(cdr pair)
default)))
(defun-raw aref-lst (array lst)
(mapcar #'(lambda (x) (aref array x)) lst))
(defun-raw alist-add-eq (alist key val)
;; given an alist whose values are lists, returns the alist
;; resulting from adding val to the list that is the value
;; corresponding to the key key.
(cond ((endp alist)
(acons key (list val) nil))
((eq (caar alist) key)
(acons key (cons val (cdar alist)) (cdr alist)))
(t
(cons (car alist) (alist-add-eq (cdr alist) key val)))))
(defun-raw order-names-arglists (names arglists rv-alist)
;; when determining the minimal set of formals necessary to prove
;; termination, we do a simple search of all the subsets of
;; variables. to speed this up, we create a list indicating the
;; order that we add the variables. this list is ordered by number
;; of formals first, formal order second, and by function last. so,
;; if we have function f with formals (x y) and function g with
;; formals (a b), then the order would be ((f x) (g a) (f y) (g
;; b)). So, the sets we would try, in the order we try them, are as
;; follows:
;;
;; 1. {(f x)}
;; 2. {(g a)}
;; 3. {(f y)}
;; 4. {(g b)}
;; 5. {(f x) (g a)}
;; 6. {(f x) (f y)}
;; 7. {(f x) (g b)}
;; 8. {(g a) (f y)}
;; 9. {(g a) (g b)}
;; 10. {(f y) (g b)}
;; 11. {(f x) (g a) (f y)}
;; 12. {(f x) (g a) (g b)}
;; 13. {(f x) (f y) (g b)}
;; 14. {(g a) (f y) (g b)}
;; 15. {(f x) (g a) (f y) (g b)}
;;
;; the idea is that most functions require only a small subset of
;; the actuals to prove termination.
(let* ((na-arrays (coerce (mapcar (lambda (x y) (coerce (cons x y) 'vector))
names arglists)
'vector))
(maxsize (loop for v across na-arrays maximize (array-dimension v 0))))
(loop for i from 1 below maxsize
append (loop for array across na-arrays
when (and (< i (array-dimension array 0))
(not (member-eq (aref array i)
(cdr (assoc (aref array 0) rv-alist)))))
collect (cons (aref array 0)
(aref array i))))))
(defmacro-raw ccmf-tail-fn (ccmf contexts)
`(context-fn (aref ,contexts
(car (ccmf-fc-num ,ccmf)))))
(defmacro-raw ccmf-head-fn (ccmf contexts)
`(context-fn (aref ,contexts
(car (ccmf-lc-num ,ccmf)))))
(defun-raw restrict-ccmf (ccmf ccmr1 ccmr2)
;; the dual to ccmf-remove-ccms, in that it only retains the ccms
;; indicated by ccmr1 and ccmr2, but is not destructive.
(let* ((graph (ccmf-graph ccmf))
(n (array-dimension graph 0))
(ngraph (make-array n
:element-type 'ccmf-node
:initial-element (make-ccmf-node)))
(nccmf (make-ccmf :firstsite (ccmf-firstsite ccmf)
:lastsite (ccmf-lastsite ccmf)
:fc-num (ccmf-fc-num ccmf)
:lc-num (ccmf-lc-num ccmf)
:in-sizes (ccmf-in-sizes ccmf)
:out-sizes (ccmf-out-sizes ccmf)
:graph ngraph))
(f (lambda (x) (aref ccmr2 x))))
(loop for i from 0 below n
for node = (aref graph i)
if (aref ccmr1 i)
do (setf (aref ngraph i)
(make-ccmf-node
:>-edges (remove-if-not f (ccmf-node->-edges node))
:>=-edges (remove-if-not f (ccmf-node->=-edges node))))
else
do (setf (aref ngraph i) (make-ccmf-node)))
(loop for node across ngraph
when (or (consp (ccmf-node->-edges node))
(consp (ccmf-node->=-edges node)))
return nccmf
finally (return nil))))
(defun-raw can-solve-restricted-accgs? (accgs ccmrs scp? state)
;; this is the workhorse of our controller-alist search. given ccm
;; restrictions (see create-ccm-restrictions), ccmrs, and a flag to
;; indicate whether the original accg was solved using scp or sct,
;; we restrict the accg and attempt to reprove termination.
(loop for accg in accgs
for n = (array-dimension accg 0)
for naccg = (make-array n)
;; first, initiate the naccg nodes
do (loop for i from 0 below n
for node = (aref accg i)
do (setf (aref naccg i)
(make-accg-node
:context (accg-node-context node)
:num i)))
;; next, set the ccmfs for those nodes to be the restricted
;; version of the ccmfs of the original accg node.
do (loop
for i from 0 below n
for node = (aref accg i)
for nnode1 = (aref naccg i)
for ccmr1 = (aref ccmrs (car (accg-node-context-num node)))
do (loop
for edge in (accg-node-fwd-edges node)
for ccmf = (accg-edge-ccmf edge)
for ccmr2 = (aref ccmrs (accg-edge-head edge))
for nnode2 = (aref naccg (accg-edge-head edge))
for nccmf = (restrict-ccmf ccmf ccmr1 ccmr2)
if nccmf
do (let ((nedge (make-accg-edge :head (accg-edge-head edge)
:tail (accg-edge-tail edge)
:ccmf nccmf)))
(setf (accg-node-fwd-edges nnode1)
(cons nedge (accg-node-fwd-edges nnode1)))
(setf (accg-node-bwd-edges nnode2)
(cons nedge (accg-node-bwd-edges nnode2))))
else do (return-from can-solve-restricted-accgs? (value nil))))
;; finally, run scp or sct as indicated. if we fail, then we
;; immediately return nil.
do (if scp?
(unless (scp (cln-accg naccg)) (return (value nil)))
(er-let*
((caccg (value (cln-accg naccg)))
(ce (if (null caccg)
(value t)
(sct (accg-ccmfs caccg) n state))))
(unless (null ce) (return (value nil)))))
finally (return (value t))))
(defun-raw create-ccm-restrictions (contexts av-alist)
;; creates "ccm restrictions", which is an array of boolean arrays
;; such that element i j is t iff we want to keep ccm j from context
;; i. which ccms to keep is determined by av-alist, which tells us
;; which variables from each function we are using for the current
;; restriction.
(loop with n = (array-dimension contexts 0)
with ccmrs = (make-array n)
for i from 0 below n
for context = (aref contexts i)
for ccms = (context-ccms context)
;; vars are the variables we are allowed to use for this context.
for vars = (cdr (assoc (context-fn context) av-alist))
for m = (array-dimension ccms 0)
for ccmri = (make-array m
:element-type 'boolean
:initial-element nil)
do (setf (aref ccmrs i) ccmri)
do (loop for j from 0 below m
do (setf (aref ccmri j)
(subsetp (all-vars (aref ccms j))
vars)))
finally (return ccmrs)))
(defun-raw ruler-vars (names contexts)
;; returns an alist mapping fucntion names to the variables used in
;; the rulers of the contexts of that function.
(loop with rv-alist = (pairlis$ names nil)
for context across contexts
for fn = (context-fn context)
for vars = (all-vars1-lst (context-ruler context) nil)
for pair = (assoc fn rv-alist)
do (setf (cdr pair) (union-eq vars (cdr pair)))
finally (return rv-alist)))
(defun-raw cgma-aux (nalist proved-scp proved-sct contexts av-alist i state)
;; helper function for ccg-generate-measure-alist. nalist is the
;; list of function-formal pairs as generated by
;; order-names-arglists. proved-scp is a list of accgs proved
;; terminating by the scp algorithm, and proved-sct is a list of
;; accgs proved terminating by the sct algorithm. contexts is the
;; array of contexts. av-alist is an alist mapping each function
;; name to the formals that we want enabled, and i is the number of
;; formals we want to enable. returns the first av-alist
;; for which we can prove termination, or nil if we cannot
;; prove termination.
(cond ((zp i) ;; if we don't want to add any more variables, try to
;; prove termination of the restricted accgs.
(let ((ccmrs (create-ccm-restrictions contexts av-alist)))
(er-let*
((p1 (can-solve-restricted-accgs? proved-scp ccmrs t state))
(p2 (if p1
(can-solve-restricted-accgs? proved-sct ccmrs nil state)
(value nil))))
(if p2
(value av-alist)
(value nil)))))
((endp nalist) ;; if we reach the end of the list before i
;; reaches 0, just return nil.
(value nil))
(t ;; otherwise, we proceed in two different ways:
(er-let*
;; first, we enable the first formal in nalist and
;; proceed to enable i-1 of the rest of the formals.
((nav-alist (cgma-aux (cdr nalist) proved-scp proved-sct contexts
(alist-add-eq av-alist
(caar nalist)
(cdar nalist))
(1- i)
state)))
;; if we were successful, report our success.
(if nav-alist
(value nav-alist)
;; otherwise, try leaving the current variable out
;; and enable i of the remaining variables.
(cgma-aux (cdr nalist) proved-scp proved-sct
contexts av-alist i state))))))
(defun-raw ccg-generate-measure-alist1 (i nalist proved-scp proved-sct
contexts rv-alist state)
(er-let* ((av-alist (cgma-aux nalist proved-scp proved-sct
contexts rv-alist i state)))
(if av-alist
(value (mapcar (lambda (x) (cons (car x) (cons :? (cdr x))))
av-alist))
(ccg-generate-measure-alist1 (1+ i) nalist
proved-scp proved-sct
contexts rv-alist state))))
(defun-raw ccg-generate-measure-alist (proved-scp proved-sct names arglists
contexts cpn state)
;; generates a measure-alist designed to minimize the resulting
;; controller-alist. we return the restricted set of the ccms
;; necessary for proving termination with :CCG consed onto the
;; front. the result is a "pseudo-measure" from which ACL2 can
;; compute a safe controller alist. proved-scp and proved-sct are
;; the accgs proved terminating using the scp or sct algorithm,
;; respectively. names is the list of names of the functions, and
;; arglists is the list of the arglists for each function. contexts
;; is the array of contexts. cpn tells us whether or not we proved
;; termination constructing contexts by node rather than by
;; edge. This is important because, in order to construct a sound
;; controller-alist we need to include all the variables in the
;; context rulers if we could not prove termination using per-node
;; contexts.
;; first, we construct an alist of the initially enabled formals
;; based on cpn, and use it to make an ordered list of name-formal
;; pairs.
(let* ((rv-alist (if cpn (pairlis$ names nil) (ruler-vars names contexts)))
(nalist (order-names-arglists names arglists rv-alist)))
(ccg-generate-measure-alist1 0 nalist proved-scp proved-sct
contexts rv-alist state)))
;;;;; ALL TERMINATION ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun-raw name-var-pairs1 (name arglist rst)
;; name: the name of a function
;; arglist: the arglist of the function whose name is name
;; rst: the list to which to append the result
;;
;; OUTPUT: ((name . x) | x in arglist) appended to rst.
(if (endp arglist)
rst
(acons name (car arglist)
(name-var-pairs1 name (cdr arglist) rst))))
(defun-raw name-var-pairs (functs rv-alist)
;; functs: a list of structs of type funct.
;; rv-alist: an alist mapping the names of the functions in functs
;; to subsets of their formals. The idea is that these are
;; restricted variables. That is, in the measured-subset analysis,
;; all subsets must be supersets of the variables specified in
;; rv-alist.
;;
;; OUTPUT: two lists of the form ((fn . x) ...) where fn is the name
;; of a function in funct and x is a formal of that function. The
;; first list is of these pairs that we may consider removing from
;; the measured subset, and the second is a list of these pairs that
;; we may *not* consider removing from the measured subset (as
;; specified by rv-alist).
(if (endp functs)
(mv nil nil)
(mv-let
(free fixed)
(name-var-pairs (cdr functs) rv-alist)
(let* ((funct (car functs))
(fn (funct-fn funct))
(rv (cdr (assoc fn rv-alist))))
(mv (name-var-pairs1 fn
(set-difference-eq (funct-formals funct) rv)
free)
(name-var-pairs1 fn rv fixed))))))
(defun-raw get-ccm-vars1 (i ccms ccm-vars)
;; i: integer such that 0 <= i < |ccms|.
;; ccms: an array of calling context measures.
;; ccm-vars: accumulator array such that ccm-vars[j] contains a list
;; of all the variables in the expression ccms[j].
;;
;; OUTPUT: completed ccm-vars.
(cond ((< i 0)
ccm-vars)
(t
(setf (aref ccm-vars i)
(all-vars (aref ccms i)))
(get-ccm-vars1 (1- i) ccms ccm-vars))))
(defun-raw get-ccm-vars (ccms)
;; ccms: an array of ccms.
;;
;; OUTPUT: an array, ccm-vars, such that ccm-vars[i] contains the
;; list of variables in expression ccms[i] for all 0 <= i < |ccms|
(let ((len (array-dimension ccms 0)))
(get-ccm-vars1 (1- len) ccms (make-array len
:element-type 'list
:initial-element nil))))
(defun-raw fn-ccm-vars-alist (functs)
(if (endp functs)
nil
(let ((funct (car functs)))
(acons (funct-fn funct) (get-ccm-vars (funct-ccms funct))
(fn-ccm-vars-alist (cdr functs))))))
(defun-raw gather-relevant-ccms1 (i var ccm-vars indices)
;; i: an integer such that 0 <= i < |ccm-vars|. Should initially be |ccm-vars|-1.
;; ccm-vars: an array of lists of integers.
;; var: a variable
;; indices: the accumulator; it is { k | i < k < |ccm-vars|
;; s.t. ccm-vars[k] contains var }. Should initially be nil.
;;
;; OUTPUT: { k | 0 <= k < |ccm-vars| s.t. ccm-vars[k] contains var }
(if (< i 0)
indices
(gather-relevant-ccms1 (1- i) var ccm-vars
(if (member-eq var (aref ccm-vars i))
(cons i indices)
indices))))
(defun-raw gather-relevant-ccms (var ccm-vars)
;; ccm-vars: an array of lists of variables
;; var: a variable
;;
;; OUTPUT: the list of the indices of the slots of ccm-vars that
;; contain var.
(gather-relevant-ccms1 (1- (array-dimension ccm-vars 0)) var ccm-vars nil))
(defun-raw gather-all-relevant-ccms1 (avars alist)
;; functs: a list of structures of type funct
;;
;; OUTPUT: a mapping of sorts from formals to the ccms containing
;; those formals. See the note on the output of
;; gather-all-relevant-ccms-for-funct.
(if (endp avars)
nil
(let* ((avar (car avars))
(fn (car avar))
(var (cdr avar)))
(cons (gather-relevant-ccms var (cdr (assoc fn alist)))
(gather-all-relevant-ccms1 (cdr avars) alist)))))
(defun-raw gather-all-relevant-ccms (avars functs)
(gather-all-relevant-ccms1 avars (fn-ccm-vars-alist functs)))
(defun set-difference-and-intersection (set1 set2)
(declare (xargs :guard (and (eqlable-listp set1)
(eqlable-listp set2))))
;; set1: an eqlable-listp.
;; set2: an eqlable-listp
;;
;; OUTPUT: two lists. The first is the difference of set1 and set2,
;; and the second is the intersection of set1 and set2.
(if (endp set1)
(mv nil nil)
(mv-let (difference intersection)
(set-difference-and-intersection (cdr set1) set2)
(if (member (car set1) set2)
(mv difference (cons (car set1) intersection))
(mv (cons (car set1) difference) intersection)))))
(defun-raw ccmf-remove-relevant-edges1 (i graph relevant-ccms1 relevant-ccms2
edges-alist)
;; i: integer such that 0 <= i < |graph|.
;; graph: a ccmf-graph.
;; relevant-ccms1: an increasing list of integers, j, such that 0 <=
;; j < |graph|. These are the ccms we are to virtually remove from
;; the graph by removing all its outgoing edges.
;; ASSUMPTION: relevant-ccms1 is in increasing order.
;; relevant-ccms2: a list of natural numbers. These are the ccms we
;; are to virtually remove from the target context of the graph by
;; removing all of its incoming edges.
;; edges-alist: the accumulator alist that maps each 0 <= j <
;; |graph| to a cons of the >-edges and >=-edges removed from the
;; graph, so we can put them back later.
;;
;; SIDE EFFECT: all edges to and from relevant ccms in the graph are
;; removed.
;;
;; OUTPUT: the completed edges-alist.
(cond ((<= (array-dimension graph 0) i)
edges-alist)
((and (consp relevant-ccms1)
(= i (car relevant-ccms1)))
;; if i is a member of relevant-ccms1, it is the first
;; element because of our assumption that relevant-ccms1 is
;; increasing. In this case we remove all the outgoing edges
;; from graph[i].
(let* ((node (aref graph i))
(>-edges-i (ccmf-node->-edges node)) ;;get the >-edges
(>=-edges-i (ccmf-node->=-edges node))) ;; get the >=-edges
(setf (ccmf-node->-edges node) nil) ;; set the >-edges to nil
(setf (ccmf-node->=-edges node) nil) ;; set the >=-edges to nil
(ccmf-remove-relevant-edges1 (1+ i) graph
(cdr relevant-ccms1) relevant-ccms2
;; add the removed edges (if
;; any) to the accumulator:
(if (and (endp >-edges-i) (endp >=-edges-i))
edges-alist
(acons i (cons >-edges-i >=-edges-i)
edges-alist)))))
((consp relevant-ccms2)
;; if a non-nil relevant-ccms2 was supplied, we remove all
;; the edges pointing from graph[i] to ccms specified by
;; relevant-ccms2.
(let* ((node (aref graph i))
(>-edges-i (ccmf-node->-edges node))
(>=-edges-i (ccmf-node->=-edges node)))
(mv-let (>-diff >-intersect)
(set-difference-and-intersection >-edges-i relevant-ccms2)
(mv-let (>=-diff >=-intersect)
(set-difference-and-intersection >=-edges-i relevant-ccms2)
(progn
;; if we removed any edges, set the new
;; edge lists.
(when (consp >-intersect)
(setf (ccmf-node->-edges node) >-diff))
(when (consp >=-intersect)
(setf (ccmf-node->=-edges node) >=-diff))
(ccmf-remove-relevant-edges1
(1+ i) graph
relevant-ccms1 relevant-ccms2
;; add the removed edges (if any) to the accumulator.
(if (and (endp >-intersect) (endp >=-intersect))
edges-alist
(acons i (cons >-intersect >=-intersect)
edges-alist))))))))
(t
;; if the current index is not in relevant-ccms1 and
;; relevant-ccms2 is empty, there is nothing to do, so we
;; move on to the next index.
(ccmf-remove-relevant-edges1 (1+ i)
graph
relevant-ccms1
relevant-ccms2
edges-alist))))
(defun-raw ccmf-remove-relevant-edges (ccmf relevant-ccms1 relevant-ccms2)
;; ccmf: a struct of type ccmf.
;; relevant-ccms1: an increasing list of integers, j, such that 0 <=
;; j < |graph|. These are the ccms we are to virtually remove from
;; the graph by removing all its outgoing edges.
;; ASSUMPTION: relevant-ccms1 is in increasing order.
;; relevant-ccms2: a list of natural numbers. These are the ccms we
;; are to virtually remove from the target context of the graph by
;; removing all of its incoming edges.
;;
;; SIDE EFFECT: all edges to and from relevant ccms in the ccmf are
;; removed.
;;
;; OUTPUT: the ccmf consed to an alist that maps each 0 <= j <
;; |graph| to a cons of the >-edges and >=-edges removed from the
;; graph, so we can put them back later.
(let ((graph (ccmf-graph ccmf)))
(cons ccmf
(ccmf-remove-relevant-edges1 0
graph
relevant-ccms1 relevant-ccms2
nil))))
(defun-raw ccmf-remove-relevant-edges-lst (ccmfs contexts fn relevant-ccms acc)
;; ccmfs: a list of structs of type ccmf which should be the ccmfs for fn.
;; contexts: an array of contexts.
;; fn: a function name
;; relevant-ccms: a list of indices of the ccms of fn. Indicates
;; which ccms to remove.
;; acc: the accumulator. This accumulates the removed edge
;; information so we can restore the ccmfs when we are done.
;;
;; SIDE EFFECT: all edges to and from relevant ccms in the ccmfs of
;; are removed.
;;
;; OUTPUT: the completed accumulator. It is an alist mapping the
;; ccmfs to an alist mapping the indicices of the source ccms of the
;; ccmf to a cons of the >-edges and >=-edges that were removed.
(if (endp ccmfs)
acc
(let* ((ccmf (car ccmfs))
(tcontext (aref contexts (car (ccmf-fc-num ccmf))))
(relevant-ccms1 (if (eq (context-fn tcontext) fn) relevant-ccms nil))
(hcontext (aref contexts (car (ccmf-lc-num ccmf))))
(relevant-ccms2 (if (eq (context-fn hcontext) fn) relevant-ccms nil)))
(ccmf-remove-relevant-edges-lst
(cdr ccmfs)
contexts
fn
relevant-ccms
(cons (ccmf-remove-relevant-edges ccmf relevant-ccms1 relevant-ccms2)
acc)))))
(defun-raw accg-remove-relevant-ccmf-edges1 (i accg contexts fn relevant-ccms acc)
;; i: natural number such that 0 <= i < |accg|.
;; accg: an array of structs of type accg-node.
;; contexts: an array of contexts.
;; fn: a function name.
;; relevant-ccms: the ccms to remove from all ccmfs corresponding to fn.
;; acc: the accumulator.
;;
;; SIDE EFFECT: all edges to and from relevant ccms in the ccmfs of
;; the accg are removed.
;;
;; OUTPUT: an alist mapping the ccmfs to an alist mapping the
;; indicices of the source ccms of the ccmf to a cons of the >-edges
;; and >=-edges that were removed.
(if (< i 0)
acc
(let* ((node (aref accg i)))
(accg-remove-relevant-ccmf-edges1
(1- i)
accg
contexts
fn
relevant-ccms
(if (eq (accg-node-fn node) fn)
(let ((pred (lambda (edge)
(equal (accg-node-fn (aref accg (accg-edge-tail edge)))
fn))))
(ccmf-remove-relevant-edges-lst
(append (mapcar #'accg-edge-ccmf
(accg-node-fwd-edges node))
;; remove all edges from contexts of fn to avoid
;; redundant work.
(mapcar #'accg-edge-ccmf
(remove-if pred
(accg-node-bwd-edges node))))
contexts
fn
relevant-ccms
acc))
acc)))))
(defun-raw accg-remove-relevant-ccmf-edges (accg contexts fn relevant-ccms)
;; accg: an array of structs of type accg-node.
;; contexts: an array of contexts.
;; fn: a function name.
;; relevant-ccms: the ccms to remove from all ccmfs corresponding to fn.
;;
;; SIDE EFFECT: all edges to and from relevant ccms in the ccmfs of
;; the accg are removed.
;;
;; OUTPUT: an alist mapping the ccmfs to an alist mapping the
;; indicices of the source ccms of the ccmf to a cons of the >-edges
;; and >=-edges that were removed.
(accg-remove-relevant-ccmf-edges1 (1- (array-dimension accg 0))
accg
contexts
fn
relevant-ccms
nil))
(defun-raw accg-remove-relevant-ccmf-edges-lst-tail (accgs contexts fn relevant-ccms acc)
;; tail recursive implementation of accg-remove-relevant-ccmf-edges-lst
(if (endp accgs)
acc
(accg-remove-relevant-ccmf-edges-lst-tail
(cdr accgs)
contexts
fn
relevant-ccms
(accg-remove-relevant-ccmf-edges1
(1- (array-dimension (car accgs) 0))
(car accgs)
contexts
fn
relevant-ccms
acc))))
(defun-raw accg-remove-relevant-ccmf-edges-lst (accgs contexts fn relevant-ccms)
;; accgs: a list of accgs.
;; contexts: an array of contexts
;; fn: function name
;; relevant-ccms: the ccms of fn to "remove" (ccms are kept, but all
;; incoming and outgoing edges are removed).
;;
;; SIDE-EFFECT: all the incoming and outgoing edges of the indicated
;; ccms of fn in the ccmfs of the accgs are removed.
;;
;; OUTPUT: an alist mapping the ccmfs to an alist mapping the
;; indicices of the source ccms of the ccmf to a cons of the >-edges
;; and >=-edges that were removed.
(accg-remove-relevant-ccmf-edges-lst-tail accgs contexts fn relevant-ccms nil))
(defun-raw restore-edges1 (ccmf alist)
;; ccmf: a struct of type ccmf.
;; alist: maps indices of the ccmf to the cons of the >-edges and
;; >=-edges that should be added back to the ccmf.
;;
;; SIDE-EFFECT: the edges indicated by the alist are added back to the ccmf.
;;
;; OUTPUT: nil.
(if (endp alist)
nil
(let* ((entry (car alist))
(i (car entry))
(>-edges (cadr entry))
(>=-edges (cddr entry))
(node (aref (ccmf-graph ccmf) i)))
(setf (ccmf-node->-edges node)
(merge 'list
>-edges
(ccmf-node->-edges node)
#'<))
(setf (ccmf-node->=-edges node)
(merge 'list
>=-edges
(ccmf-node->=-edges node)
#'<))
(restore-edges1 ccmf (cdr alist)))))
(defun-raw restore-edges (alist)
;; alist: maps ccmfs to alists mapping indices of the ccmf to the
;; cons of the >-edges and >=-edges that should be added back to the
;; ccmf.
;;
;; SIDE-EFFECT: the edges indicated by the alist are added back to
;; their respective ccmfs.
;;
;; OUTPUT: nil.
(if (endp alist)
nil
(progn
(restore-edges1 (caar alist) (cdar alist))
(restore-edges (cdr alist)))))
(defun-raw can-scp-lstp (accgs)
;; accgs: a list of accgs.
;;
;; OUTPUT: returns non-nil iff scp succeeds for all the accgs.
(or (endp accgs)
(and (scp (cln-accg (copy-accg (car accgs))))
(can-scp-lstp (cdr accgs)))))
(defun-raw can-sct-lstp (accgs state)
;; accgs: a list of accgs
;; state: the state
;;
;; OUTPUT: returns non-nil iff sct succeeds for the ccmfs of all the accgs.
(if (endp accgs)
(value t)
(let ((naccg (cln-accg (copy-accg (car accgs)))))
(if (null naccg)
(value nil)
(er-let*
((ce (sct (accg-ccmfs naccg)
(array-dimension naccg 0)
state)))
(if (null ce)
(can-sct-lstp (cdr accgs) state)
(value nil)))))))
(defun remove-covered-subsets-tail (avar subsets acc)
;;tail recursive implementation of remove-covered-subsets
(cond ((endp subsets) acc)
((equal avar (caar subsets))
(remove-covered-subsets-tail avar (cdr subsets) acc))
(t
(remove-covered-subsets-tail avar
(cdr subsets)
(cons (car subsets) acc)))))
(defun remove-covered-subsets (avar subsets)
;; avar: an element.
;; subsets: a list of lists.
;;
;; OUTPUT: the subset of subsets which do not have avar as its first element.
(remove-covered-subsets-tail avar subsets nil))
(defun remove-avar-from-subsets-tail (avar subsets acc)
;; a tail-recursive implementation of remove-avar-from-subsets.
(if (endp subsets)
acc
(remove-avar-from-subsets-tail avar (cdr subsets)
(cons (if (equal avar (caar subsets))
(cdar subsets)
(car subsets))
acc))))
(defun remove-avar-from-subsets (avar subsets)
;; avar: an element
;; subsets: a list of lists
;;
;; OUTPUT: the result of removing avar from all the lists in subsets
;; for which avar is the first element.
(remove-avar-from-subsets-tail avar subsets nil))
(defun add-avar-to-subsets-tail (avar subsets acc)
;; a tail-recursive implementation of add-avar-to-subsets.
(if (endp subsets)
acc
(add-avar-to-subsets-tail avar (cdr subsets)
(acons avar (car subsets) acc))))
(defun add-avar-to-subsets (avar subsets)
;; avar: an element.
;; subsets: a list of lists.
;;
;; OUTPUT: the result of consing avar to every element of subsets.
(add-avar-to-subsets-tail avar subsets nil))
(defun-raw all-termination1 (proved-scp proved-sct contexts avars
relevant-edges subsets state)
;; proved-scp: a list of accgs for which scp succeeds.
;; proved-sct: a list of accgs for which sct succeeds.
;; contexts: an array of contexts.
;; avars: a list of pairs of the form (fn. x) where fn is a function
;; name, and x is a formal of that function.
;; relevant-edges: a list of lists of indices such that the ith
;; element of avars appears exactly in the ccms of the corresponding
;; function indicated by the indices of the ith member of relevant-edges.
;; subsets: a list of lists of the elements of avars. This helps us
;; avoid finding supersets of already discovered measured-subsets by
;; telling us what subsets to avoid (because they would result in a
;; superset of an already calculated measured-subset).
;;
;; OUTPUT: a list of lists of the elements of avars coresponding to
;; minimal variables needed to still successfully run scp on the
;; elements of proved-scp and run sct on the elements of proved-sct.
(cond ((member-equal '() subsets)
;; if '() is in subsets, that means that we have recreated an
;; already calculated measured-subset, so we stop and return
(value '()))
((endp avars)
;; since we prune as we go, we know that if we make it to the
;; end of the avars, we have a solution. So, we return the
;; set containing the empty set, which will be populated on
;; our way back up the search tree.
(value '(())))
(t
(let* ((avar (car avars)) ;; take the first avar.
(fn (car avar)) ;; the formal name
;; we begin by removing all the ccm edges that are
;; relevant to var from all the accgs in both
;; proved-sct and proved scp.
(re-info (accg-remove-relevant-ccmf-edges-lst-tail
proved-sct
contexts
fn
(car relevant-edges)
(accg-remove-relevant-ccmf-edges-lst
proved-scp
contexts
fn
(car relevant-edges)))))
;; if we can still prove termination without var, we
;; continue our search down the subtree in which var
;; is disabled. otherwise, we set nsubsets to be the
;; empty set.
(er-let*
((p (can-sct-lstp proved-sct state))
(nsubsets (if (and p
(can-scp-lstp proved-scp))
(all-termination1 proved-scp proved-sct
contexts
(cdr avars) (cdr relevant-edges)
(remove-covered-subsets avar subsets)
state)
(value '()))))
(progn
;; next we restore the edges we removed.
(restore-edges re-info)
;; finally, we search the branch of the search tree in
;; which var is enabled.
(er-let*
((nnsubsets (all-termination1
proved-scp proved-sct
contexts
(cdr avars) (cdr relevant-edges)
(append nsubsets
(remove-avar-from-subsets avar subsets))
state)))
;; our solution is all the minimal measured subsets we
;; discovered with var disabled along with var added to
;; all the minimal measured subsets we discovered with
;; var enabled.
(value (append nsubsets
(add-avar-to-subsets avar nnsubsets))))))))))
(defun-raw funct-fns-lst (functs)
;; given a list of functs, returns a corresponding list of all their funct-fns.
(if (endp functs)
nil
(cons (funct-fn (car functs)) (cdr functs))))
(defun append-to-all (list list-of-lists)
(if (endp list-of-lists)
nil
(cons (append list (car list-of-lists))
(append-to-all list (cdr list-of-lists)))))
(defun-raw all-termination (proved-scp proved-sct contexts functs cpn state)
;; proved-scp: a list of accgs for which scp succeeds.
;; proved-sct: a list of accgs for which sct succeeds.
;; contexts: an array of contexts.
;; functs: a list of structures of type funct.
;; cpn: a boolean telling us if we proved termination using ccmfs
;; per node (as opposed to per edge).
;;
;; OUTPUT: the minimal measured subsets of functs using the accgs
;; that were used to prove termination.
;; we need this strange case in the beginning.
(if (and (endp proved-scp)
(endp proved-sct))
(value '(()))
(let ((names (funct-fns-lst functs)))
(mv-let
(free fixed)
;; if we proved termination with ccmfs per node, then by
;; Vroon's dissertation, there is a measure involving only
;; those variables that are needed to show termination in
;; proved-scp and proved-sct. That is, all variables are
;; candidates for removal from the measured-subset. If we
;; used ccmfs per edge, then the dissertation tells us
;; that we need to keep all variables that appear in the
;; ruler. So these are off-limits for removal from the
;; measured subset.
(name-var-pairs functs
(if cpn
(pairlis$ names nil)
(ruler-vars names contexts)))
;; we append all the required variables to the calculated
;; measured subset.
(let ((relevant-ccms (gather-all-relevant-ccms free functs)))
(er-let* ((at1 (all-termination1 proved-scp proved-sct
contexts free relevant-ccms nil state)))
(value (append-to-all fixed at1))))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ACL2 integration ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun get-ccms1 (m edcls key ctx state)
;; this function is based on get-measures1 in the ACL2 sources.
;; A typical edcls is given above, in the comment for get-guards. Note
;; that the :CCMs entry is found in an XARGS declaration. By the check
;; in chk-dcl-lst we know there is at most one :CCMs entry in each XARGS
;; declaration. But there may be more than one declaration. If more than
;; one measure is specified by this edcls, we'll cause an error. Otherwise,
;; we return the measure or the term *0*, which is taken as a signal that
;; no measure was specified.
;; Our first argument, m, is the list of ccms term found so far, or
;; *0* if none has been found. We map down edcls and ensure that
;; each XARGS either says nothing about :CCMs or specifies m.
(cond ((null edcls) (value m))
((eq (caar edcls) 'xargs)
(let ((temp (assoc-keyword key (cdar edcls))))
(cond ((null temp)
(get-ccms1 m (cdr edcls) key ctx state))
((equal m *0*)
(get-ccms1 (cadr temp) (cdr edcls) key ctx state))
((and (subsetp-equal m (cadr temp))
(subsetp-equal (cadr temp) m))
(get-ccms1 m (cdr edcls) key ctx state))
(t (er soft ctx
"It is illegal to declare two different ~
sets values for the key ~x0 for the admission ~
of a single function. But you have specified ~
~x0 ~x1 and ~x1 ~x2."
key m (cadr temp))))))
(t (get-ccms1 m (cdr edcls) key ctx state))))
(defun get-ccms2 (lst key ctx state)
;; this function is based on get-measures2 in the acl2-sources
(cond ((null lst) (value nil))
(t (er-let* ((m (get-ccms1 *0* (fourth (car lst)) key ctx state))
(rst (get-ccms2 (cdr lst) key ctx state)))
(value (cons m rst))))))
(defun get-ccms (symbol-class lst key ctx state)
;; based on get-measures in the ACL2 sources
;; This function returns a list in 1:1 correspondence with lst containing
;; the user's specified :CCMs (or *0* if no measure is specified). We
;; cause an error if more than one :CCMs is specified within the edcls of
;; a given element of lst.
;; If symbol-class is program, we ignore the contents of lst and simply return
;; all *no-measure*s. See the comment in chk-acceptable-defuns where get-ccms is
;; called.
(cond
((eq symbol-class :program)
(value (make-list (length lst) :initial-element *0*)))
(t (get-ccms2 lst key ctx state))))
(defun translate-ccms-list (ccms-list ctx wrld state)
;; translates a list of ccm lists using translate measures.
(cond ((endp ccms-list) (value nil))
(t (er-let* ((tccms (if (eq (car ccms-list) *0*)
(value *0*)
(translate-measures (car ccms-list)
ctx wrld state)))
(rst (translate-ccms-list (cdr ccms-list)
ctx wrld state)))
(value (cons tccms rst))))))
(defun chk-no-overlap (consider consider-only)
;; makes sure that, for each function, there is not both a consider
;; and consider-only hint.
(cond ((endp consider)
nil)
((not (or (eq (car consider) *0*)
(eq (car consider-only) *0*)))
(cons consider consider-only))
(t
(chk-no-overlap (cdr consider) (cdr consider-only)))))
(defun combine-ccm-hints (consider consider-only uc uco ctx state)
;; combines the :CONSIDER-CCMS and :CONSIDER-ONLY-CCMS hints into one list of
;; CCMs. We do not allow both of these to be specified for the same function,
;; so we check that one or the other is *0*. The value returned is a list of
;; pairs. The car of each pair is nil iff the given CCM is from a
;; :CONSIDER-CCMS hint and non-nil if it is from a :CONSIDER-ONLY-CCMS
;; hint. The cdr of each pair is the hint itself. If neither xarg is given
;; (i.e. if they are both *0*) for a given function, the car of the pair is
;; nil, and the cdr is *0*.
(cond ((endp consider)
(value nil))
((eq (car consider-only) *0*)
(er-let* ((rst (combine-ccm-hints (cdr consider) (cdr consider-only)
(cdr uc) (cdr uco)
ctx state)))
(value (acons nil (car consider) rst))))
((eq (car consider) *0*)
(er-let* ((rst (combine-ccm-hints (cdr consider) (cdr consider-only)
(cdr uc) (cdr uco)
ctx state)))
(value (acons t (car consider-only) rst))))
(t
(er soft ctx
"It is illegal to provide both a :CONSIDER and ~
a :CONSIDER-ONLY hint for the same function. But ~
you have specified :CONSIDER ~x0 and :CONSIDER-ONLY ~x1."
(car uc) (car uco)))))
(defconst *ccg-xargs-keywords*
'(:CONSIDER-CCMS :CONSIDER-ONLY-CCMS :TERMINATION-METHOD
:CCG-PRINT-PROOFS :TIME-LIMIT
:CCG-HIERARCHY))
(defun get-unambiguous-xargs-val1/edcls (key v edcls ctx state)
; V is the value specified so far for key in the XARSGs of this or previous
; edcls, or else the consp '(unspecified) if no value has been specified yet.
; We cause an error if a value different from that specified so far is
; specified. We return either the consp '(unspecified) or the uniformly agreed
; upon value.
(cond
((null edcls) (value v))
((eq (caar edcls) 'xargs)
(let ((temp (assoc-keyword key (cdar edcls))))
(cond ((null temp)
(get-unambiguous-xargs-val1/edcls key v (cdr edcls) ctx state))
((or (consp v)
(equal v (cadr temp)))
(get-unambiguous-xargs-val1/edcls key (cadr temp) (cdr edcls)
ctx state))
(t
(er soft ctx
"It is illegal to specify ~x0 ~x1 in one place and ~
~x2 in another within the same definition. The ~
functionality controlled by that flag operates on ~
the entire event or not at all."
key v (cadr temp))))))
(t (get-unambiguous-xargs-val1/edcls key v (cdr edcls) ctx state))))
(defun get-unambiguous-xargs-val1 (key lst ctx state)
; We scan the edcls of lst and either extract a single uniformly agreed
; upon value for key among the XARGS and return that value, or else no
; value is specified and we return the consp '(unspecified) or else two or
; more values are specified and we cause an error. We also cause an error
; if any edcls specifies a non-symbol for the value of key. Thus, if we
; return a symbol it is the uniformly agreed upon value and if we return
; a consp there was no value specified.
(cond ((null lst) (value '(unspecified)))
(t (er-let*
((v (get-unambiguous-xargs-val1 key (cdr lst) ctx state))
(ans (get-unambiguous-xargs-val1/edcls key v (fourth (car lst))
ctx state)))
(value ans)))))
(defun get-unambiguous-xargs-val (key lst default ctx state)
; Lst is a list of mutually recursive defun tuples of the form (name args doc
; edcls body). We scan the edcls for the settings of the XARGS keyword key.
; If at least one entry specifies a setting, x, and all entries that specify a
; setting specify x, we return x. If no entry specifies a setting, we return
; default. If two or more entries specify different settings, we cause an
; error.
; We assume every legal value of key is a symbol. If you supply a consp
; default and the default is returned, then no value was specified for key.
; Just to be concrete, suppose key is :mode and default is :logic. The
; user has the opportunity to specify :mode in each element of lst, i.e., he
; may say to make the first fn :logic and the second fn :program. But
; that is nonsense. We have to process the whole clique or none at all.
; Therefore, we have to meld all of his various :mode specs together to come
; up with a setting for the DEFUNS event. This function explores lst and
; either comes up with an unambiguous :mode or else causes an error.
(er-let* ((x (get-unambiguous-xargs-val1 key lst ctx state)))
(cond ((equal x '(unspecified)) (value default))
(t (value x)))))
(defdoc CCG-XARGS
":Doc-Section CCG
giving hints to CCG analysis via ~l[xargs]~/
In addition to the ~ilc[xargs] provided by ACL2 for passing ~il[hints] to
function definitions, the CCG analysis enables several others for guiding the
CCG termination analysis for a given function definition. The following
example is nonsensical but illustrates all of these xargs:
~bv[]
(declare (xargs :termination-method :ccg
:consider-ccms ((foo x) (bar y z))
:consider-only-ccms ((foo x) (bar y z))
:ccg-print-proofs nil
:time-limit 120
:ccg-hierarchy *ccg-hierarchy-hybrid*))~/
General Form:
(xargs :key1 val1 ... :keyn valn)
~ev[]
Where the keywords and their respective values are as shown below.
Note that the :TERMINATION-METHOD ~c[xarg] is always valid, but the other
~c[xargs] listed above are only valid if the termination method being used
for the given function is :CCG.
~c[:TERMINATION-METHOD value]~nl[]
~c[Value] here is either ~c[:CCG] or ~c[:MEASURE]. For details on the meaning
of these settings, see the documentation for ~ilc[set-termination-method]. If
this ~c[xarg] is given, it overrides the global setting for the current
definition. If the current definition is part of a ~ilc[mutual-recursion],
and a ~c[:termination-method] is provided, it must match that provided by all
other functions in the ~c[mutual-recursion].
~c[:CONSIDER-CCMS value] or ~c[:CONSIDER-ONLY-CCMS value]~nl[]
~c[Value] is a list of terms involving only the formals of the function being
defined. Both suggest measures for the current function to the CCG
analysis. ACL2 must be able to prove that each of these terms always evaluate
to an ordinal ~pl[ordinals]. ACL2 will attempt to prove this before beginning
the CCG analysis. The difference between ~c[:consider-ccms] and
~c[:consider-only-ccms] is that if ~c[:consider-ccms] is used, the CCG
analysis will attempt to guess additional measures that it thinks might be
useful for proving termination, whereas if ~c[:consider-only-ccms] is used,
only the measures given will be used for the given function in the CCG
analysis. These two ~c[xargs] may not be used together, and attempting to do
so will result in an error.
~c[:CCG-PRINT-PROOFS value]~nl[]
~c[Value] is either ~c[t] or ~c[nil]. This is a local override of the
~ilc[set-ccg-print-proofs] setting. See this documentation topic for details.
~c[:TIME-LIMIT value]~nl[]
~c[Value] is either a positive rational number or nil. This is a local
override of the ~ilc[set-ccg-time-limit] setting. See this documentation
topic for details.
~c[:CCG-HIERARCHY value]~nl[]
~c[Value] is a CCG hierarchy. This is a local override of the
~ilc[set-ccg-hierarchy] setting. See this documentation topic for details.~/")
(defun chk-acceptable-ccg-xargs (fives symbol-class ctx wrld state)
(er-let* ((untranslated-consider (get-ccms symbol-class
fives
:CONSIDER-CCMs
ctx state))
(consider (translate-ccms-list untranslated-consider ctx wrld state))
(untranslated-consider-only (get-ccms symbol-class
fives
:CONSIDER-ONLY-CCMs
ctx state))
(consider-only (translate-ccms-list untranslated-consider-only
ctx wrld state))
(ccms (combine-ccm-hints consider consider-only
untranslated-consider
untranslated-consider-only
ctx state))
(verbose (get-unambiguous-xargs-flg
:CCG-PRINT-PROOFS
fives
(get-ccg-print-proofs) ;; default is global setting
ctx state))
(time-limit (get-unambiguous-xargs-val
:TIME-LIMIT
fives
;; the default time-limit is that specified in the
;; world
(get-ccg-time-limit wrld)
ctx state)))
(cond ((not (booleanp verbose))
(er soft ctx
"The :CCG-PRINT-PROOFS specified by XARGS must either ~
be NIL or T. ~x0 is neither."
verbose))
((not (or (null time-limit)
(rationalp time-limit)))
(er soft ctx
"The :TIME-LIMIT specified by XARGS must either be NIL ~
or a rational number. ~x0 is neither."
time-limit))
(t
(value (list ccms
verbose
time-limit))))))
(defun ?-ccm-lstp (lst)
(or (endp lst)
(let ((ccm (car lst)))
(and (true-listp ccm)
(eq (car ccm) :?)
(arglistp (cdr ccm))
(?-ccm-lstp (cdr lst))))))
(defun ccg-redundant-measure-for-defunp (def justification wrld)
(let ((name (car def))
(measure0 (if justification
(access justification
justification
:measure)
nil))
(measures (fetch-dcl-field :measure
(butlast (cddr def)
1))))
(cond ((and (consp measure0)
(eq (car measure0) :?))
(if (and (consp measures)
(null (cdr measures))
(eq (caar measures) :?)
(set-equalp-eq (cdar measures)
(cdr measure0)))
'redundant
(msg "the existing measure for ~x0 is ~x1, possibly indicating ~
it was previously proven terminating using the CCG ~
analysis. The new measure must therefore be explicitly ~
declared to be a call of :? on the measured subset; for ~
example, ~x1 will serve as the new :measure."
name
measure0)))
(t
(let* ((wrld1 (decode-logical-name name wrld))
(val (scan-to-cltl-command (cdr wrld1)))
(old-def (assoc-eq name (cdddr val))))
(or (non-identical-defp-chk-measures
name
measures
(fetch-dcl-field :measure
(butlast (cddr old-def)
1))
justification)
'redundant))))))
(defun ccg-redundant-subset-for-defunp (chk-measurep chk-ccmsp def wrld)
(let* ((name (car def))
(justification (getprop name
'justification
'nil
'current-acl2-world
wrld))
(mok (if chk-measurep
(ccg-redundant-measure-for-defunp def justification wrld)
'redundant)))
(cond ((consp mok) ; a message
mok)
((and chk-ccmsp justification)
(let ((subset (access justification justification :subset))
(ccms-lst (fetch-dcl-field :consider-only-ccms
(butlast (cddr def) 1))))
(if (and (consp ccms-lst)
(null (cdr ccms-lst))
(?-ccm-lstp (car ccms-lst))
(set-equalp-eq (all-vars1-lst (car ccms-lst) nil)
subset))
'redundant
(msg "A redundant definition using CCG termination must use ~
the xarg :consider-only-ccms to declare a list of CCMs ~
of the form (:? ...) whose arguments are equal to the ~
measured subset of the previous definition. The ~
definition of ~x0 does not do this. The previously ~
defined version of this function has measured subset ~
~x1. Thus, an appropriate list of CCMs to declare would ~
be ~x2."
name
subset
`((:? ,@subset))))))
(t
'redundant))))
(defun ccg-redundant-subset-for-defunsp1 (chk-measurep chk-ccmsp def-lst wrld ans)
(if (endp def-lst)
ans
(let ((ans0 (ccg-redundant-subset-for-defunp chk-measurep
chk-ccmsp
(car def-lst)
wrld)))
(cond ((consp ans0) ans0) ; a message
((eq ans ans0)
(ccg-redundant-subset-for-defunsp1 chk-measurep
chk-ccmsp
(cdr def-lst)
wrld
ans))
(t nil)))))
(defun ccg-redundant-subset-for-defunsp (chk-measurep chk-ccmsp def-lst wrld)
(if (null def-lst)
'redundant
(let ((ans (ccg-redundant-subset-for-defunp chk-measurep
chk-ccmsp
(car def-lst)
wrld)))
(if (consp ans)
ans ;; a message
(ccg-redundant-subset-for-defunsp1 chk-measurep
chk-ccmsp
(cdr def-lst)
wrld
ans)))))
; Should this be in sync with redundant-or-reclassifying-defunsp ? --harshrc
(defun ccg-redundant-or-reclassifying-defunsp (chk-measurep
chk-ccmsp
defun-mode
symbol-class
ld-skip-proofsp
def-lst
wrld)
(let ((ans (redundant-or-reclassifying-defunsp0 defun-mode
symbol-class
ld-skip-proofsp
nil
def-lst
wrld)))
(cond ((or (consp ans) ;; a message
(not (eq ans 'redundant))
; the following 2 are a negation of the conditions for checking measures in
; redundant-or-reclassifying-defunsp. We skip the check that each old
; definition also has defun-mode of :logic, because if
; redundant-or-reclassifying-defunsp0 returns 'redundant, and defun-mode is
; :logic, we know that the old definitions must also all be logic (otherwise
; there would have been an error or the new definitions would be
; reclassifications). Keep this in sync with the conditions for checking
; measures in redundant-or-reclassifying-defunsp.
(not (eq defun-mode :logic))
ld-skip-proofsp)
ans)
(t
(ccg-redundant-subset-for-defunsp chk-measurep
chk-ccmsp
def-lst
wrld)))))
(defun get-and-chk-ccg-hierarchy (fives ctx wrld state)
(er-let*
((hierarchy (get-unambiguous-xargs-val
:CCG-HIERARCHY
fives
*0*
ctx state)))
(if (equal hierarchy *0*)
(value (get-ccg-hierarchy wrld))
(er-progn
(chk-ccg-hierarchy hierarchy ctx state)
(value (fix-ccg-hierarchy hierarchy))))))
(defun ccg-hierarchy-kinds-of-levels (hierarchy has-ccgp has-measurep)
(declare (xargs :guard (and (hlevel-listp hierarchy)
(booleanp has-ccgp)
(booleanp has-measurep))))
(cond ((and has-ccgp has-measurep)
(mv t t))
((endp hierarchy)
(mv has-ccgp has-measurep))
(t
(let ((is-measurep (equal (caar hierarchy) :measure)))
(ccg-hierarchy-kinds-of-levels (cdr hierarchy)
(or has-ccgp (not is-measurep))
(or has-measurep is-measurep))))))
; ccg version of chk-acceptable-defuns (see defuns.lisp). Should be synced? --harshrc
; annotated portions which differ by "ccg rewrite" comment --harshrc
(defun ccg-chk-acceptable-defuns (lst ctx wrld state #+:non-standard-analysis std-p)
; WARNING: This function installs a world, hence should only be called when
; protected by a revert-world-on-error.
; Rockwell Addition: We now also return the non-executable flag.
; This function does all of the syntactic checking associated with defuns. It
; causes an error if it doesn't like what it sees. It returns the traditional
; 3 values of an error-producing, output-producing function. However, the
; "real" value of the function is a list of items extracted from lst during the
; checking. These items are:
; names - the names of the fns in the clique
; arglists - their formals
; docs - their documentation strings
; pairs - the (section-symbol . citations) pairs parsed from docs
; guards - their translated guards
; measures - their translated measure terms
; ruler-extenders-lst
; - their ruler-extenders
; mp - the domain predicate (e.g., o-p) for well-foundedness
; rel - the well-founded relation (e.g., o<)
; hints - their translated hints, to be used during the proofs of
; the measure conjectures, all flattened into a single list
; of hints of the form ((cl-id . settings) ...).
; guard-hints
; - like hints but to be used for the guard conjectures and
; untranslated
; std-hints (always returned, but only of interest when
; #+:non-standard-analysis)
; - like hints but to be used for the std-p conjectures
; otf-flg - t or nil, used as "Onward Thru the Fog" arg for prove
; bodies - their translated bodies
; symbol-class
; - :program, :ideal, or :common-lisp-compliant
; normalizeps
; - list of Booleans, used to determine for each fn in the clique
; whether its body is to be normalized
; reclassifyingp
; - t or nil, t if this is a reclassifying from :program
; with identical defs.
; wrld - a modified wrld in which the following properties
; may have been stored for each fn in names:
; 'formals, 'stobjs-in and 'stobjs-out
; non-executablep - t or nil according to whether these defuns are to
; non-executable. Non-executable defuns may violate the
; translate conventions on stobjs.
; guard-debug
; - t or nil, used to add calls of EXTRA-INFO to guard conjectures
; split-types-terms
; - list of translated terms, each corresponding to type
; declarations made for a definition with XARGS keyword
; :SPLIT-TYPES T
(er-let*
((fives (chk-defuns-tuples lst nil ctx wrld state))
; Fives is a list in 1:1 correspondence with lst. Each element of
; fives is a 5-tuple of the form (name args doc edcls body). Consider the
; element of fives that corresponds to
; (name args (DECLARE ...) "Doc" (DECLARE ...) body)
; in lst. Then that element of fives is (name args "Doc" (...) body),
; where the ... is the cdrs of the DECLARE forms appended together.
; No translation has yet been applied to them. The newness of name
; has not been checked yet either, though we know it is all but new,
; i.e., is a symbol in the right package. We do know that the args
; are all legal.
(tm (get-unambiguous-xargs-flg :TERMINATION-METHOD
fives
(get-termination-method wrld)
ctx state)) ;ccg rewrite
(term-method (if (or (eq tm :ccg)
(eq tm :measure))
(value tm)
(er soft ctx
"The :TERMINATION-METHOD flag must be :CCG or ~
:MEASURE, but ~x0 is none of these."
tm))) ;ccg rewrite
(names (value (strip-cars fives))))
(er-progn
(chk-no-duplicate-defuns names ctx state)
(chk-xargs-keywords fives ;ccg rewrite
(if (eq term-method :ccg)
(append *ccg-xargs-keywords*
*xargs-keywords*)
(cons :termination-method
*xargs-keywords*))
ctx state)
(er-let*
((tuple (chk-acceptable-defuns0 fives ctx wrld state))
(hierarchy (if (eq term-method :ccg)
(get-and-chk-ccg-hierarchy fives ctx wrld state)
(value nil)))) ;ccg rewrite
(let* ((stobjs-in-lst (car tuple))
(defun-mode (cadr tuple))
(non-executablep (caddr tuple))
(symbol-class (cdddr tuple)))
(mv-let ;ccg rewrite
(has-ccgp has-measurep)
(if (eq term-method :measure)
(mv nil t)
(ccg-hierarchy-kinds-of-levels hierarchy nil nil))
(let ((rc (ccg-redundant-or-reclassifying-defunsp
has-measurep has-ccgp
defun-mode symbol-class
(ld-skip-proofsp state) lst wrld))) ;ccg rewrite - CHECK - harshrc
(cond
((eq rc 'redundant)
(chk-acceptable-defuns-redundancy names ctx wrld state))
((eq rc 'verify-guards)
; We avoid needless complication by simply causing a polite error in this
; case. If that proves to be too inconvenient for users, we could look into
; arranging for a call of verify-guards here.
(chk-acceptable-defuns-verify-guards-er names ctx wrld state))
; Synced with latest version of chk-acceptable-defuns svn version 1020
; Added below cond clause for hons.
; june 16 2013 - harshrc
#+hons
((and (eq rc 'reclassifying)
(conditionally-memoized-fns names
(table-alist 'memoize-table wrld)))
; We no longer recall exactly why we have this restriction. However, after
; discussing this with Sol Swords we think it's because we tolerate all sorts
; of guard violations when dealing with :program mode functions, but we expect
; guards to be handled properly with :logic mode functions, including the
; condition function. If we verify termination and guards for the memoized
; function but not the condition, that could present a problem. Quite possibly
; we can relax this check somewhat after thinking things through -- e.g., if
; the condition function is a guard-verified :logic mode function -- if there
; is demand for such an enhancement.
(er soft ctx
"It is illegal to verify termination (i.e., convert from ~
:program to :logic mode) for function~#0~[~/s~] ~&0, because ~
~#0~[it is~/they are~] currently memoized with conditions; you ~
need to unmemoize ~#0~[it~/them~] first. See :DOC memoize."
(conditionally-memoized-fns names
(table-alist 'memoize-table wrld))))
(t
(er-let*
((tuple1 (chk-acceptable-defuns1 names fives
stobjs-in-lst defun-mode symbol-class rc
non-executablep ctx wrld state
#+:non-standard-analysis std-p))
(tuplec (if (eq term-method :measure)
(value (list nil nil nil)) ;ccg rewrite
(chk-acceptable-ccg-xargs fives symbol-class
ctx wrld state))))
(value (append (list 'chk-acceptable-defuns term-method)
(cdr tuple1)
tuplec
`(,hierarchy))))))))))))) ;ccg rewrite
;; (defun ccg-chk-acceptable-defuns (fives lst ctx wrld state #+:non-standard-analysis std-p)
;; ; Rockwell Addition: We now also return the non-executable flag.
;; ; This function does all of the syntactic checking associated with defuns. It
;; ; causes an error if it doesn't like what it sees. It returns the traditional
;; ; 3 values of an error-producing, output-producing function. However, the
;; ; "real" value of the function is a list of items extracted from lst during the
;; ; checking. These items are:
;; ; names - the names of the fns in the clique
;; ; arglists - their formals
;; ; docs - their documentation strings
;; ; pairs - the (section-symbol . citations) pairs parsed from docs
;; ; guards - their translated guards
;; ; measures - their translated measure terms
;; ; ruler-extenders-lst
;; ; - their ruler-extenders
;; ; mp - the domain predicate (e.g., o-p) for well-foundedness
;; ; rel - the well-founded relation (e.g., o<)
;; ; hints - their translated hints, to be used during the proofs of
;; ; the measure conjectures, all flattened into a single list
;; ; of hints of the form ((cl-id . settings) ...).
;; ; guard-hints
;; ; - like hints but to be used for the guard conjectures and
;; ; untranslated
;; ; std-hints (always returned, but only of interest when
;; ; #+:non-standard-analysis)
;; ; - like hints but to be used for the std-p conjectures
;; ; otf-flg - t or nil, used as "Onward Thru the Fog" arg for prove
;; ; bodies - their translated bodies
;; ; symbol-class
;; ; - :program, :ideal, or :common-lisp-compliant
;; ; normalizeps
;; ; - list of Booleans, used to determine for each fn in the clique
;; ; whether its body is to be normalized
;; ; reclassifyingp
;; ; - t or nil, t if this is a reclassifying from :program
;; ; with identical defs.
;; ; wrld - a modified wrld in which the following properties
;; ; may have been stored for each fn in names:
;; ; 'formals, 'stobjs-in and 'stobjs-out
;; ; non-executablep - t or nil according to whether these defuns are to
;; ; non-executable. Non-executable defuns may violate the
;; ; translate conventions on stobjs.
;; ; guard-debug
;; ; - t or nil, used to add calls of EXTRA-INFO to guard conjectures
;; (er-let*
;; ((tm (get-unambiguous-xargs-flg :TERMINATION-METHOD
;; fives
;; (get-termination-method wrld)
;; ctx state))
;; (term-method (if (or (eq tm :ccg)
;; (eq tm :measure))
;; (value tm)
;; (er soft ctx
;; "The :TERMINATION-METHOD flag must be :CCG or ~
;; :MEASURE, but ~x0 is none of these."
;; tm)))
;; (names (value (strip-cars fives))))
;; (er-progn
;; (chk-no-duplicate-defuns names ctx state)
;; (chk-xargs-keywords fives
;; (if (eq term-method :ccg)
;; (append *ccg-xargs-keywords*
;; *xargs-keywords*)
;; (cons :termination-method
;; *xargs-keywords*))
;; ctx state)
;; (er-let*
;; ((tuple0 (chk-acceptable-defuns0 fives ctx wrld state))
;; (stobjs-in-lst (value (car tuple0)))
;; (defun-mode (value (cadr tuple0)))
;; (verify-guards (value (caddr tuple0)))
;; (symbol-class (value (cdddr tuple0)))
;; (hierarchy (if (eq term-method :ccg)
;; (get-and-chk-ccg-hierarchy fives ctx wrld state)
;; (value nil))))
;; (mv-let
;; (has-ccgp has-measurep)
;; (if (eq term-method :measure)
;; (mv nil t)
;; (ccg-hierarchy-kinds-of-levels hierarchy nil nil))
;; (er-let*
;; ((rc (value (ccg-redundant-or-reclassifying-defunsp
;; has-measurep has-ccgp
;; defun-mode symbol-class
;; (ld-skip-proofsp state) lst wrld))))
;; (cond
;; ((eq rc 'redundant)
;; (chk-acceptable-defuns-redundancy names ctx wrld state))
;; ((eq rc 'verify-guards)
;; (chk-acceptable-defuns-verify-guards names ctx wrld state))
;; (t
;; (er-let*
;; ((tuple1 (chk-acceptable-defuns1 names fives stobjs-in-lst
;; defun-mode symbol-class rc ctx
;; wrld state
;; #+:non-standard-analysis
;; std-p))
;; (tuplec (if (eq term-method :measure)
;; (value (list nil nil nil))
;; (chk-acceptable-ccg-xargs fives symbol-class
;; ctx wrld state))))
;; (value (append (list 'chk-acceptable-defuns term-method)
;; (cdr tuple1)
;; tuplec
;; `(,hierarchy))))))))))))
(defun find-?-ccm1 (ccm-list)
(and (consp ccm-list)
(let ((ccm (car ccm-list)))
(or (and (consp ccm)
(eq (car ccm) :?)
ccm)
(find-?-ccm1 (cdr ccm-list))))))
(defun find-?-ccm (names ccms)
;; looks for CCMS with :? as the function.
(if (endp ccms)
nil
(let ((bad-ccm (find-?-ccm1 (car ccms))))
(if bad-ccm
(cons (car names) bad-ccm)
(find-?-ccm (cdr names) (cdr ccms))))))
(defun fns-without-consider-only-ccms-hints (names ccms)
;; checks if all the CCMs have been declared using :CONSIDER-ONLY-CCMS. Any
;; functions for which this is not the case are collected into a list.
;; Ccms should of the form returned by combine-ccm-hints.
(if (endp ccms)
nil
(let ((rst (fns-without-consider-only-ccms-hints (cdr names)
(cdr ccms))))
(if (and (consp (car ccms))
(caar ccms))
rst
(cons (car names)
rst)))))
(defun-raw ccm-o-p-clauses2 (contexts term clauses)
(if (endp contexts)
clauses
(ccm-o-p-clauses2
(cdr contexts)
term
(conjoin-clause-to-clause-set
(add-literal term
(dumb-negate-lit-lst (context-ruler (car contexts)))
t)
clauses))))
(defun-raw ccm-o-p-clauses1 (contexts ccm-list clauses)
(if (endp ccm-list)
clauses
(ccm-o-p-clauses1 contexts (cdr ccm-list)
(ccm-o-p-clauses2 contexts
(mcons-term* 'o-p (car ccm-list))
clauses))))
(defun-raw ccm-o-p-clauses0 (contexts ccm-list clauses)
(cond ((endp contexts)
clauses)
((eq (car ccm-list) *0*)
(ccm-o-p-clauses0 (cdr contexts)
(cdr ccm-list)
clauses))
(t
(ccm-o-p-clauses0 (cdr contexts)
(cdr ccm-list)
(ccm-o-p-clauses1 (car contexts)
(car ccm-list)
clauses)))))
(defun-raw ccm-o-p-clauses (contexts ccm-list)
;; builds the clauses to prove that the CCMs in ccm-list all
;; evaluate to natural numbers.
(ccm-o-p-clauses0 contexts ccm-list nil))
(defun-raw ccg-intermediate-step (accgs ces new-hlevel old-hlevel proved qspv state)
(er-let*
((triple (accg-refine-accgs accgs ces old-hlevel new-hlevel qspv state))
(caccgs (value (car triple)))
(uaccgs (value (cadr triple)))
(uces (value (cddr triple))))
(cond ((endp caccgs)
(pprogn
;;(progn (print uaccgs) state)
(ccg-io? basics nil state
()
(fms "Since we have no new information, we skip size ~
change analysis and attempt to further refine the ~
SCCs.~|"
nil
*standard-co*
state
nil))
(value (list* proved uaccgs uces))))
(t
(pprogn
(let ((clen (len caccgs)))
(ccg-io? basics nil state
(uaccgs clen caccgs)
(fms "~@0 of the CCG ~#\3~[was~/were~] altered. We ~
analyze ~#\3~[it~/each of these~] with the size ~
change termination analysis.~@4~|"
`((#\0 . ,(if (consp uaccgs)
"~N1 of the ~n2 SCCs"
"~#\3~[The sole SCC~/All the SCCs~]"))
(#\1 . ,clen)
(#\2 . ,(+ clen (len uaccgs)))
(#\3 . ,caccgs)
(#\4 . ,(if (endp uaccgs)
""
" The others will be set aside ~
for further refinement.")))
*standard-co*
state
nil)))
(accg-sct-list caccgs proved uaccgs uces state))))))
(defun-raw ccg-measure-step (hlevel names t-machines measure-alist mp rel
bodies verbose qspv state)
(if (consp measure-alist)
(let ((ctx (access query-spec-var qspv :ctx))
(wrld (access query-spec-var qspv :wrld))
(ens (access query-spec-var qspv :ens))
(stop-time (access query-spec-var qspv :stop-time))
(otf-flg (access query-spec-var qspv :otf-flg))
(pt (cadr hlevel)))
(pprogn
(ccg-io? basics nil state
(hlevel)
(fms "The current level of the CCG hierarchy is ~x0. We ~
therefore attempt a measure proof.~|"
`((#\0 . hlevel))
*standard-co*
state
nil))
(mv-let
(erp pair state)
(er-let*
((hints (if (equal pt :built-in-clauses)
(translate-hints
"Measure Built-in-clauses Hint"
'(("goal"
:do-not '(eliminate-destructors
eliminate-irrelevance
generalize
fertilize)
:in-theory (theory 'minimal-theory)
:do-not-induct :otf-flg-override))
ctx wrld state)
(value (translated-limit-induction-hint (cadr pt))))))
(state-global-let*
((inhibit-output-lst (if verbose
(@ inhibit-output-lst)
(list* 'event 'error (@ inhibit-output-lst)))))
(maybe-prover-before-stop-time
stop-time ctx state
(prove-termination names t-machines measure-alist mp rel
hints otf-flg bodies
ctx ens wrld state
(f-get-global
'accumulated-ttree
state)))))
(if erp
(er-progn
(time-check stop-time ctx state)
(pprogn
(ccg-io? basics nil state
()
(fms "Since ACL2 has failed to prove the measure ~
conjecture, we continue with the hierarchical ~
analysis.~|"
nil
*standard-co*
state
nil))
(value nil)))
(pprogn
(ccg-io? basics nil state
()
(fms "ACL2 has succeeded in proving the measure ~
conjecture, thereby proving termination."
nil
*standard-co*
state
nil))
(value (list* :measure
(car pair)
measure-alist
(cdr pair))))))))
(pprogn
(ccg-io? basics nil state
(hlevel)
(fms "Skipping level ~x0 of the hierarchy due to previously ~
mentioned error when guessing measures."
`((#\0 . hlevel))
*standard-co*
state
nil))
(value nil))))
(defun-raw ccg (accgs ces last-ccg-hlevel hierarchy proved context-array
names arglists t-machines measure-alist mp rel bodies
verbose qspv state)
(cond ((endp accgs)
(pprogn
(increment-timer 'other-time state)
(ccg-io? basics nil state
()
(fms "We have successfully proven termination! We now weed ~
out irrelevant CCMs so that we can minimize the ~
measured-subset. This may require running the size ~
change analysis several more times.~|"
nil
*standard-co*
state
nil))
(increment-timer 'print-time state)
(er-let*
((ms (ccg-generate-measure-alist
nil proved
names arglists
context-array
;; the following is overly-cautious. It could be the case that
;; some SCCs were proven terminating with ccmfs-per-node
;; and others with ccmfs-per-edge, in which case we would
;; be assuming here that we proved all of the SCCs terminating
;; with ccmfs-per-edge.
(hlevel-ccmfs-per-nodep last-ccg-hlevel)
state)))
(pprogn
(mv-let
(col state)
(io? event nil (mv col state)
(names ms)
(fmt "CCG analysis has succeeded in proving termination of ~
~&0 using CCMs over the following variables~#0~[~/, ~
respectively~]: ~&1. Thus, we admit ~#0~[this ~
function~/these ~ functions~] under the principle of ~
definition."
(list (cons #\0 names)
(cons #\1 (strip-cddrs ms)))
*standard-co*
state
nil)
:default-bindings ((col 0)))
(value (list* :ccg
col
ms
(f-get-global
'accumulated-ttree
state))))))))
((endp hierarchy)
(pprogn
(ccg-io? basics nil state
()
(fms "We have completed all levels of the hierarchy, but ~
have failed to prove termination."
()
*standard-co*
state
nil))
(if (null (car ces))
state
(ccg-io? counter-example nil state
()
(print-counter-example
(car accgs) (car ces)
context-array
(access query-spec-var qspv :ctx)
(access query-spec-var qspv :ens)
(access query-spec-var qspv :wrld)
state)))
(mv t nil state)))
((eq (caar hierarchy) :MEASURE)
(er-let*
((tuple (ccg-measure-step (car hierarchy)
names
t-machines
measure-alist
mp
rel
bodies
verbose
qspv
state)))
(if tuple
(value tuple)
(ccg accgs ces last-ccg-hlevel (cdr hierarchy) proved context-array
names arglists t-machines measure-alist mp rel bodies
verbose qspv state))))
(t
(er-let*
((tuple
(state-global-let*
((inhibit-output-lst
(if verbose
(@ inhibit-output-lst)
(list* 'prove 'proof-tree (@ inhibit-output-lst)))))
(ccg-intermediate-step accgs
ces
(car hierarchy)
last-ccg-hlevel
proved
qspv
state)))
(nproved (value (car tuple)))
(naccgs (value (cadr tuple)))
(nces (value (cddr tuple))))
(ccg naccgs nces (car hierarchy) (cdr hierarchy) nproved
context-array
names arglists t-machines measure-alist mp rel bodies
verbose qspv state)))))
(defun-raw build-accgs (names contexts functs ccm-hints wrld state)
(let* ((context-array (context-array contexts))
;; (num-contexts (array-dimension context-array 0))
(accgs (build-and-annotate-accgs names
functs
contexts
(pairlis$ names ccm-hints))))
;; first we build the accgs using the first restriction
(pprogn
(increment-timer 'other-time state)
(ccg-io? basics nil state
(names context-array accgs)
(pprogn
(fms "We begin with the Calling Context Graph (CCG), ~
containing the following contexts (if the output doesn't ~
make sense, see :DOC CCG and also the paper referenced ~
above):~|"
nil
*standard-co*
state
nil)
(print-context-array1 0 names context-array state)
(fms "and the following edges:~|"
nil *standard-co* state nil)
(print-accg-edges1 accgs state)
(fms "We have annotated the CCG with the following calling ~
context measures (CCMs):~|"
nil *standard-co* state nil)
(print-funct-ccms functs wrld state)))
(increment-timer 'print-time state)
(pprogn
(ccg-io? basics nil state
()
(fms "Before we begin the hierarchical analysis, we run our ~
size-change analysis so we have a baseline for refinement."
nil
*standard-co*
state
nil))
(er-let*
((tuple (accg-sct-list accgs nil nil nil state)))
(value (cons context-array tuple)))))))
(defun max-induction-depth1 (hierarchy max)
(declare (xargs :guard (and (hlevel-listp hierarchy)
(integerp max)
(<= -1 max))))
(if (endp hierarchy)
max
(max-induction-depth1
(cdr hierarchy)
(cond ((or (equal (caar hierarchy) :measure)
(equal (hlevel-proof-technique (car hierarchy))
:built-in-clauses))
max)
(t
(max max (cadr (hlevel-proof-technique (car hierarchy)))))))))
(defun max-induction-depth (hierarchy)
(max-induction-depth1 hierarchy -1))
(defun ruler-extender-printout1 (names ruler-extenders-lst)
(if (endp names)
nil
(cons `("function ~x0 has ruler extenders ~x1"
(#\0 . ,(car names))
(#\1 . ,(car ruler-extenders-lst)))
(ruler-extender-printout1 (cdr names)
(cdr ruler-extenders-lst)))))
(defun ruler-extender-printout (names ruler-extenders-lst)
`("" "~@*." "~@*, and " "~@*, "
,(ruler-extender-printout1 names ruler-extenders-lst)))
(defun-raw prove-termination-with-ccg (names functs contexts
ruler-extenders-lst ccm-hints
hierarchy verbose time-limit
arglists measures t-machines mp
rel otf-flg bodies
ctx ens wrld state ttree)
;; based on prove-termination in the ACL2 sources, this function
;; attempts to prove the termination of the given functions. names
;; is the list of names of the the functions, term-method is the
;; termination method to be used (:hybrid or :ccg), contexts are the
;; contexts for the functions, ccm-hints is a list of pairs as defined by
;; combine-ccm-hints, cpn, verbose, time-limit, and ccm-comparison-scheme are the
;; user-specified CCG options, arglists is the list of lists of
;; formals for the functions, measures are the user-specified
;; measures, t-machines are the termination machines of the
;; functions, mp and rel are the domain and relation for proving
;; termination with a measure and otf-flg is the on-through-the-fog
;; flag.
;; If we succeed, we return 4 values, consed together as "the" value
;; in this error/value/state producing function. The first value is
;; the proof method that ultimately proved termination (:ccg or
;; :measure). The second value is the "justification" alist. For a
;; measure-based proof, this is the measure-alist, and for a
;; CCG-based proof, this is the result of
;; ccg-generate-measure-alist. The last two values are the column
;; and ttree. Currently, we simply return 0 for the column and nil
;; for the ttree. I believe the column value is correct, but the
;; ttree should eventually be the accumulation of all the ttrees
;; associated with all the proofs done in the termination analysis.
;; This function is specially coded so that if contexts is nil then
;; it is a signal that there is only one element of names and it is
;; a non-recursive function. In that case, we short-circuit all of
;; the proof machinery and simply do the associated output. We
;; coded it this way to preserve the invariant that
;; prove-termination is THE place the defun output is initiated.
;; This function increments timers. Upon entry, any accumulated time
;; is charged to 'other-time. The printing done herein is charged
;; to 'print-time and the proving is charged to 'prove-time.
(let* ((ccms (mapcar #'cdr ccm-hints))
(entry (find-?-ccm names ccms))
;;(time-limit (get-ccg-time-limit wrld))
(stop-time (if time-limit (+ (get-internal-run-time)
(* internal-time-units-per-second
time-limit))
nil))
(qspv (make query-spec-var
:stop-time stop-time
:mem (create-memoization
(max-induction-depth hierarchy))
:otf-flg otf-flg
:ens ens
:ctx ctx
:wrld wrld)))
(cond
((and entry
(not (ld-skip-proofsp state)))
(let ((fn (car entry))
(ccm (cdr entry)))
(er soft ctx
"A CCM of the form (:? v1 ... vk) is only legal when the defun is ~
redundant (see :DOC redundant-events) or when skipping proofs ~
(see :DOC ld-skip-proofsp). The CCM ~x0 supplied for function ~
symbol ~x1 is thus illegal."
ccm fn)))
((null contexts)
(mv-let (col state)
(io? event nil (mv col state)
(names)
(fmt "Since ~&0 is non-recursive, its admission is trivial. "
(list (cons #\0 names))
(proofs-co state)
state
nil)
:default-bindings ((col 0)))
(value (list* :ccg (or col 0) nil nil))))
((ld-skip-proofsp state)
(let ((fns (fns-without-consider-only-ccms-hints names ccms)))
(if (consp fns)
(er soft ctx
"Proofs cannot be skipped on a CCG termination proof unless ~
CCMs are defined for every function. You did not supply CCMs ~
for function~#0~[~/s~] ~&0. Therefore, proofs cannot be skipped."
fns)
(value (list* :ccg
0
(pairlis$ names
(mapcar (lambda (x)
`(:? ,@(all-vars1-lst (cdr x) nil)))
ccms))
nil
nil)))))
(t
(pprogn
(ccg-io?
basics nil state
(names ruler-extenders-lst)
(fms "Attempting to prove termination using Calling Context Graph ~
(CCG) analysis. There are various ways in which users can ~
control CCG analysis. See the :DOC CCG for details. This ~
analysis is described in a 2006 CAV paper by Manolios and ~
Vroon.~|~%The ruler-extenders for each function are as follows: ~
~*0~|"
`((#\0 .
,(ruler-extender-printout names
ruler-extenders-lst)))
*standard-co*
state
nil))
(simplify-contexts contexts ens wrld ctx state)
(mv-let
(o-p-clauses ttree)
(clean-up-clause-set (ccm-o-p-clauses contexts ccms)
ens wrld ttree state)
(er-let*
((ttree (accumulate-ttree-and-step-limit-into-state
ttree :skip state)))
(pprogn
(increment-timer 'other-time state)
(er-let*
((displayed-goal (value
(prettyify-clause-set o-p-clauses
(let*-abstractionp state)
wrld)))
(simp-phrase (value (tilde-*-simp-phrase ttree)))
(ttree1
(if o-p-clauses
(pprogn
(io? event nil state
(ttree displayed-goal simp-phrase)
(fms "You have told us to consider CCMs that are not ~
trivially proved to be ordinals. ~
Therefore, the conjecture that we must prove ~
before we can continue with the CCG ~
analysis~#0~[~/, given ~*1,~] is ~
~@2~%~%Goal~%~Q34."
`((#\0 . ,(if (nth 4 simp-phrase) 1 0))
(#\1 . ,simp-phrase)
(#\2 . ,(if (tagged-objectsp 'sr-limit ttree)
" as follows (where the ~
subsumption/replacement limit ~
affected this analysis; see :DOC ~
case-split-limitations)."
""))
(#\3 . ,displayed-goal)
(#\4 . ,(term-evisc-tuple nil state)))
(proofs-co state)
state
nil))
(increment-timer 'print-time state)
(prove (termify-clause-set o-p-clauses)
(make-pspv
ens wrld
:displayed-goal displayed-goal
:otf-flg otf-flg)
nil ens wrld ctx state))
(value ttree))))
(mv-let
(has-ccgp has-measurep)
(ccg-hierarchy-kinds-of-levels hierarchy nil nil)
(er-let*
((ba-tuple
(if has-ccgp
(build-accgs names contexts functs ccm-hints wrld state)
(list* (make-array 0
:initial-element (make-context)
:element-type 'context)
`(,(make-array 0
:initial-element (make-accg-node)
:element-type 'accg-node))
`(,(make-array 0
:initial-element (make-accg-node)
:element-type 'accg-node))
`(nil))))
(context-array (value (car ba-tuple)))
(proved-accgs (value (cadr ba-tuple)))
(accgs (value (caddr ba-tuple)))
(ces (value (cdddr ba-tuple)))
(measure-alist
(if (not has-measurep)
(value nil)
(mv-let
(erp ma state)
(guess-measure-alist names arglists
measures
t-machines
ctx wrld state)
(if (not erp)
(value ma)
(pprogn
(ccg-io? basics nil state
(names)
(fms "Since there was an error guessing the ~
measure~#0~[~/s~], we will skip all levels ~
of the hierarchy of the form (:MEASURE ~
PT).~|"
`((#\0 . ,names))
*standard-co*
state
nil))
(value nil)))))))
(er-let* ((quadruple
(ccg accgs ces nil hierarchy proved-accgs context-array
names arglists t-machines measure-alist mp rel bodies
verbose qspv state)))
(let* ((term-method (car quadruple))
(col (cadr quadruple))
(measure-alist (caddr quadruple))
(ttree-new (cdddr quadruple)))
(prog2$
nil;dummy --harshrc
;(cw "~|**DEBUG**:: old ttree=~x0 ~ new ttree is ~x1 ~ and ttree1 is ~x2~|" ttree ttree-new ttree1)
(value (list* term-method
col
measure-alist
(cons-tag-trees ttree-new ttree1))))))
)))))))))))
(defun-raw ccg-prove-termination-recursive
(names arglists measures ccm-hints
ruler-extenders-lst t-machines mp rel
verbose time-limit hierarchy
otf-flg bodies ctx ens wrld state)
; Next we get the measures for each function. That may cause an error
; if we couldn't guess one for some function.
(let ((functs (make-funct-structs names arglists)))
(prove-termination-with-ccg
names functs (t-machines-to-contexts t-machines functs)
ruler-extenders-lst
ccm-hints hierarchy verbose time-limit arglists measures t-machines
mp rel otf-flg bodies ctx ens wrld state nil)))
(defun-raw ccg-put-induction-info
(names arglists term-method measures ccms ruler-extenders-lst bodies
mp rel verbose time-limit hierarchy
hints otf-flg big-mutrec ctx ens wrld state)
; WARNING: This function installs a world. That is safe at the time of this
; writing because this function is only called by defuns-fn0, which is only
; called by defuns-fn, where that call is protected by a revert-world-on-error.
; We are processing a clique of mutually recursive functions with the names,
; arglists, measures, ruler-extenders-lst, and bodies given. All of the above
; lists are in 1:1 correspondence. The hints is the result of appending
; together all of the hints provided. Mp and rel are the domain predicate and
; well-founded relation to be used. We attempt to prove the admissibility of
; the recursions. We cause an error if any proof fails. We put a lot of
; properties under the function symbols, namely:
; recursivep all fns in names
; justification all recursive fns in names
; induction-machine the singly recursive fn in name*
; quick-block-info the singly recursive fn in name*
; symbol-class :ideal all fns in names
; *If names consists of exactly one recursive fn, we store its
; induction-machine and its quick-block-info, otherwise we do not.
; If no error occurs, we return a triple consisting of the column the printer
; is in, the final value of wrld and a tag tree documenting the proofs we did.
; Note: The function could be declared to return 5 values, but we would rather
; use the standard state and error primitives and so it returns 3 and lists
; together the three "real" answers.
(let ((wrld1 (putprop-recursivep-lst names bodies wrld)))
; The put above stores a note on each function symbol as to whether it is
; recursive or not. An important question arises: have we inadventently
; assumed something axiomatically about inadmissible functions? We say no.
; None of the functions in question have bodies yet, so the simplifier doesn't
; care about properties such as 'recursivep. However, we make use of this
; property below to decide if we need to prove termination.
(cond ((and (null (cdr names))
(null (getprop (car names) 'recursivep nil
'current-acl2-world wrld1)))
; If only one function is being defined and it is non-recursive, we can quit.
; But we have to store the symbol-class and we have to print out the admission
; message with prove-termination so the rest of our processing is uniform.
(er-let*
((tuple (prove-termination-non-recursive names bodies mp rel hints otf-flg big-mutrec
ctx ens wrld1 state)))
(value (cons nil tuple))))
(t
(let ((t-machines (termination-machines names bodies ruler-extenders-lst)))
(er-let*
((wrld1 (update-w
; Sol Swords sent an example in which a clause-processor failed during a
; termination proof. That problem goes away if we install the world, which we
; do by making the following binding.
t ; formerly big-mutrec
wrld1))
(quadruple
(if (eq term-method :measure)
(er-let* ((triple (prove-termination-recursive
names arglists
measures
t-machines
mp rel hints otf-flg bodies
ctx ens wrld1 state)))
(value (cons :measure triple)))
(ccg-prove-termination-recursive names arglists
measures
ccms
ruler-extenders-lst
t-machines
mp rel
verbose
time-limit
hierarchy
otf-flg bodies
ctx ens wrld1 state))))
;;(progn
;;(print quadruple)
(let* ((term-method (car quadruple))
(col (cadr quadruple))
(measure-alist (caddr quadruple))
(ttree (cdddr quadruple)))
(er-let*
((tuple (put-induction-info-recursive names arglists
col ttree
measure-alist t-machines
ruler-extenders-lst
bodies mp rel wrld1
state)))
(value (cons term-method tuple))))))))))
(defun defun-redundant-get-ccms (fives wrld)
;; gets the CCMs installed into the world for a given set of function definitions.
(if (endp fives)
nil
(let ((subset (access justification
(getprop (first (car fives))
'justification
(make justification :subset '())
'current-acl2-world
wrld)
:subset)))
(cons `((:? ,@subset))
(defun-redundant-get-ccms (cdr fives) wrld)))))
(defun defun-redundant-get-measures (fives wrld)
;; gets the CCMs installed into the world for a given set of function definitions.
(if (endp fives)
nil
(let ((subset (access justification
(getprop (first (car fives))
'justification
(make justification :subset '())
'current-acl2-world
wrld)
:subset)))
(cons `(:? ,@subset)
(defun-redundant-get-measures (cdr fives) wrld)))))
(defun remove-keywords (keys lst)
(cond ((endp lst)
nil)
((member-eq (car lst) keys)
(remove-keywords keys (cddr lst)))
(t
(list* (car lst) (cadr lst) (remove-keywords keys (cddr lst))))))
(defun remove-dcls0 (edcls keys)
(cond ((endp edcls) nil) ;; if we don't have any xargs, we don't need to do anything.
((eq (caar edcls) 'xargs)
(let ((newlst (remove-keywords keys (cdar edcls))))
(if (endp newlst)
(remove-dcls0 (cdr edcls) keys)
(acons 'xargs
newlst
(remove-dcls0 (cdr edcls) keys)))))
(t (cons (car edcls)
(remove-dcls0 (cdr edcls) keys)))))
(defun remove-dcls (fives keys)
;; we alter the definitions given in fives to remove xarg
;; declarations corresponding to the given keys
(cond ((endp fives)
nil)
((endp (nth 3 (car fives))) ;; if there are no declarations, there is nothing to do.
(cons (car fives)
(remove-dcls (cdr fives) keys)))
(t
(cons (update-nth 3 (remove-dcls0 (nth 3 (car fives)) keys) (car fives))
(remove-dcls (cdr fives) keys)))))
(defun update-keyword (key val lst)
(cond ((endp lst)
(list key val))
((eq (car lst) key)
(cons key (cons val (remove-keywords `(,key) (cddr lst)))))
(t
(cons (car lst)
(cons (cadr lst)
(update-keyword key val (cddr lst)))))))
(defun unambiguously-fix-dcls0 (edcls key val)
(cond ((endp edcls)
(list (cons 'xargs (list key val))))
((eq (caar edcls) 'xargs)
(acons 'xargs (update-keyword key val (cdar edcls))
(remove-dcls0 (cdr edcls) `(,key))))
(t
(cons (car edcls)
(unambiguously-fix-dcls0 (cdr edcls) key val)))))
(defun unambiguously-fix-dcls (fives key vals)
;; we alter the definitions given in fives to declare key to be of
;; vals, such that the ith definition in fives has key set to the
;; ith value of vals.
(cond ((endp fives)
nil)
(t
(cons (update-nth 3 (unambiguously-fix-dcls0 (nth 3 (car fives)) key (car vals))
(car fives))
(unambiguously-fix-dcls (cdr fives) key (cdr vals))))))
(defun app-lst (lst)
;; appends all the elements of lst together.
(if (endp lst)
nil
(append (car lst) (app-lst (cdr lst)))))
(defun fives-to-defuns0 (fives)
(if (endp fives)
nil
(let* ((five (car fives))
(name (first five))
(args (second five))
(doc (third five))
(dcls (fourth five))
(body (fifth five))
(d1 (list body))
(d2 (if doc (cons doc d1) d1))
(d3 (if dcls (acons 'declare dcls d2) d2)))
(cons `(defun ,name ,args ,@d3)
(fives-to-defuns0 (cdr fives))))))
(defun fives-to-defuns (fives)
;; turns a list of "fives" into defuns from which such "fives" would
;; be derived.
`(with-output
:off (summary event)
,(if (endp (cdr fives))
(car (fives-to-defuns0 fives))
(cons 'mutual-recursion
(fives-to-defuns0 fives)))))
;; END raw definitions for CCG analysis
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; These support optional make-event expansion by events other than make-event.
; -Peter Dillinger
(defun dynamic-make-event-fn (body event-form state)
;; (declare (xargs :mode :program))
(make-event-fn `',body
nil
nil
nil
event-form
state))
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun defun-make-event (names fives symbol-class term-method wrld event-form state)
(if (or (eq symbol-class :program)
(and (null (cdr names))
(null (getprop (car names) 'recursivep nil
'current-acl2-world wrld))))
(value (cond ((null (cdr names)) (car names))
(t names)))
(let* ((fives0 (remove-dcls fives
(if (eq term-method :measure)
*ccg-xargs-keywords*
(list* :HINTS
:MEASURE
:WELL-FOUNDED-RELATION
*ccg-xargs-keywords*))))
(fives1 (unambiguously-fix-dcls fives0 :termination-method
(make-list (length fives)
:initial-element :measure)))
(fives2 (if (eq term-method :measure)
fives1
(unambiguously-fix-dcls
fives1
:MEASURE
(defun-redundant-get-measures fives wrld)))))
(er-progn
(state-global-let* ((accumulated-ttree nil)
(inhibit-output-lst (cons 'summary (@ inhibit-output-lst))))
(dynamic-make-event-fn (fives-to-defuns fives2)
event-form
state))
(value (cond ((null (cdr names)) (car names))
(t names)))))))
; defines a function to bridge ACL2 and raw lisp. if you ask ACL2 what its
; definition is, it will say "(value nil)," but if you run it, you get the
; behavior of the raw body. there are no soundness issues with that because
; the function is flagged as permanently :program-mode only.
;
; defun-bridge is provided by my hacker stuff. -Peter
; June 16 2013 - ccg.lisp certification breaks with ACL2 6.2
; Keep this function and defuns-fn1 call in sync in ACL2 sources - harshrc
(defun-raw ccg-defuns-fn0
; WARNING: This function installs a world. That is safe at the time of this
; writing because this function is only called by defuns-fn, where that call is
; protected by a revert-world-on-error.
(names arglists docs pairs guards term-method measures
ccms ;ccg
ruler-extenders-lst mp rel
verbose time-limit hierarchy ;ccg
hints guard-hints std-hints
otf-flg guard-debug bodies symbol-class normalizeps
split-types-terms non-executablep
#+:non-standard-analysis std-p
ctx wrld state)
(cond
((eq symbol-class :program)
(defuns-fn-short-cut names docs pairs guards split-types-terms bodies
non-executablep ; not sure about this, but seems plausible
wrld state))
(t
(let ((ens (ens state))
(big-mutrec (big-mutrec names)))
(er-let*
((tuple (ccg-put-induction-info names arglists
term-method ;ccg specific
measures
ccms ;ccg
ruler-extenders-lst
bodies
mp rel
verbose ;ccg
time-limit ;ccg
hierarchy ;ccg
hints
otf-flg
big-mutrec
ctx ens wrld state)))
(defuns-fn1
(cdr tuple) ;(car tuple) is term-method
ens
big-mutrec
names
arglists
docs
pairs
guards
guard-hints
std-hints
otf-flg
guard-debug
bodies
symbol-class
normalizeps
split-types-terms
non-executablep
#+:non-standard-analysis std-p
ctx
state))))))
(defun-bridge ccg-defuns-fn (def-lst state event-form #+:non-standard-analysis std-p)
; Important Note: Don't change the formals of this function without
; reading the *initial-event-defmacros* discussion in axioms.lisp.
; On Guards
; When a function symbol fn is defund the user supplies a guard, g, and a
; body b. Logically speaking, the axiom introduced for fn is
; (fn x1...xn) = b.
; After admitting fn, the guard-related properties are set as follows:
; prop after defun
; body b*
; guard g
; unnormalized-body b
; type-prescription computed from b
; symbol-class :ideal
; * We actually normalize the above. During normalization we may expand some
; boot-strap non-rec fns.
; In addition, we magically set the symbol-function of fn
; symbol-function b
; and the symbol-function of *1*fn as a program which computes the logical
; value of (fn x). However, *1*fn is quite fancy because it uses the raw body
; in the symbol-function of fn if fn is :common-lisp-compliant, and may signal
; a guard error if 'guard-checking-on is set to other than nil or :none. See
; oneify-cltl-code for the details.
; Observe that the symbol-function after defun may be a form that
; violates the guards on primitives. Until the guards in fn are
; checked, we cannot let raw Common Lisp evaluate fn.
; Intuitively, we think of the Common Lisp programmer intending to defun (fn
; x1...xn) to be b, and is declaring that the raw fn can be called only on
; arguments satisfying g. The need for guards stems from the fact that there
; are many Common Lisp primitives, such as car and cdr and + and *, whose
; behavior outside of their guarded domains is unspecified. To use these
; functions in the body of fn one must "guard" fn so that it is never called in
; a way that would lead to the violation of the primitive guards. Thus, we
; make a formal precondition on the use of the Common Lisp program fn that the
; guard g, along with the tests along the various paths through body b, imply
; each of the guards for every subroutine in b. We also require that each of
; the guards in g be satisfied. This is what we mean when we say fn is
; :common-lisp-compliant.
; It is, however, often impossible to check the guards at defun time. For
; example, if fn calls itself recursively and then gives the result to +, we
; would have to prove that the guard on + is satisfied by fn's recursive
; result, before we admit fn. In general, induction may be necessary to
; establish that the recursive calls satisfy the guards of their masters;
; hence, it is probably also necessary for the user to formulate general lemmas
; about fn to establish those conditions. Furthermore, guard checking is no
; longer logically necessary and hence automatically doing it at defun time may
; be a waste of time.
:program (value nil)
:raw
(with-ctx-summarized
(defun-ctx def-lst state event-form #+:non-standard-analysis std-p)
(let ((wrld (w state))
(def-lst0
#+:non-standard-analysis
(if std-p
(non-std-def-lst def-lst)
def-lst)
#-:non-standard-analysis
def-lst)
(event-form (or event-form (list 'defuns def-lst))))
(revert-world-on-error
(er-let*
((tuple (ccg-chk-acceptable-defuns def-lst ctx wrld state
#+:non-standard-analysis std-p)))
; Chk-acceptable-defuns puts the 'formals, 'stobjs-in and 'stobjs-out
; properties (which are necessary for the translation of the bodies).
; All other properties are put by the defuns-fn0 call below.
(cond
((eq tuple 'redundant)
(stop-redundant-event ctx state))
(t
(enforce-redundancy
event-form ctx wrld
(let ((term-method (nth 1 tuple))
(names (nth 2 tuple))
(arglists (nth 3 tuple))
(docs (nth 4 tuple))
(pairs (nth 5 tuple))
(guards (nth 6 tuple))
(measures (nth 7 tuple))
(ruler-extenders-lst (nth 8 tuple))
(mp (nth 9 tuple))
(rel (nth 10 tuple))
(hints (nth 11 tuple))
(guard-hints (nth 12 tuple))
(std-hints (nth 13 tuple))
(otf-flg (nth 14 tuple))
(bodies (nth 15 tuple))
(symbol-class (nth 16 tuple))
(normalizeps (nth 17 tuple))
(reclassifyingp (nth 18 tuple))
(wrld (nth 19 tuple))
(non-executablep (nth 20 tuple))
(guard-debug (nth 21 tuple))
(split-types-terms (nth 22 tuple))
(ccms (nth 23 tuple))
(verbose (nth 24 tuple))
(time-limit (nth 25 tuple))
(hierarchy (nth 26 tuple)))
(er-let*
((pair (ccg-defuns-fn0
names
arglists
docs
pairs
guards
term-method
measures
ccms
ruler-extenders-lst
mp
rel
verbose
time-limit
hierarchy
hints
guard-hints
std-hints
otf-flg
guard-debug
bodies
symbol-class
normalizeps
split-types-terms
non-executablep
#+:non-standard-analysis std-p
ctx
wrld
state)))
; Triple is of the form (term-method wrld . ttree), where term-method is the
; actual termination method used to prove termination.
; Pair is of the form (wrld . ttree).
;;--harshrc: As Daron says (where?), I changed code, to force checking a nil ttree
;;but ideally we shud accumulate all successful ttrees.
(er-progn
(chk-assumption-free-ttree nil;(cdr pair)
ctx state)
(install-event-defuns names event-form def-lst0 symbol-class
reclassifyingp non-executablep pair ctx wrld
state)
(if (or (eq symbol-class :program)
(ld-skip-proofsp state)
(and (null (cdr names))
(null (getprop (car names)
'recursivep
nil
'current-acl2-world
wrld))))
(value (cond ((null (cdr names)) (car names))
(t names)))
(er-let* ((fives (chk-defuns-tuples def-lst nil ctx wrld state)))
(defun-make-event
names fives symbol-class term-method
(car pair) event-form state))))))))))))))
; redefine defuns-fn to "be" (call) ccg-defuns-fn.
;
; redefun is provided by my hacker stuff. -Peter
(redefun defuns-fn (def-lst state event-form #+:non-standard-analysis std-p)
(ccg-defuns-fn def-lst state event-form #+:non-standard-analysis std-p))
(progn+touchable
:all
(redefun+rewrite
defstobj-fn
(:carpat (process-embedded-events %1%
%2%
%3%
%4%
%5%
(append
. %app-cdr%)
. %pee-cdr%)
:repl (process-embedded-events %1%
%2%
%3%
%4%
%5%
(append
'((set-termination-method :measure))
. %app-cdr%)
. %pee-cdr%)
:vars (%1% %2% %3% %4% %5% %app-cdr% %pee-cdr%)
:mult 1)))
|