This file is indexed.

/usr/share/doc/libghc-unordered-containers-doc/html/unordered-containers.txt is in libghc-unordered-containers-doc 0.2.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Efficient hashing-based container types
--   
--   Efficient hashing-based container types. The containers have been
--   optimized for performance critical use, both in terms of large data
--   quantities and high speed.
--   
--   The declared cost of each operation is either worst-case or amortized,
--   but remains valid even if structures are shared.
@package unordered-containers
@version 0.2.5.0


-- | A map from <i>hashable</i> keys to values. A map cannot contain
--   duplicate keys; each key can map to at most one value. A
--   <a>HashMap</a> makes no guarantees as to the order of its elements.
--   
--   The implementation is based on <i>hash array mapped tries</i>. A
--   <a>HashMap</a> is often faster than other tree-based set types,
--   especially when key comparison is expensive, as in the case of
--   strings.
--   
--   Many operations have a average-case complexity of <i>O(log n)</i>. The
--   implementation uses a large base (i.e. 16) so in practice these
--   operations are constant time.
module Data.HashMap.Strict

-- | A map from keys to values. A map cannot contain duplicate keys; each
--   key can map to at most one value.
data HashMap k v

-- | <i>O(1)</i> Construct an empty map.
empty :: HashMap k v

-- | <i>O(1)</i> Construct a map with a single element.
singleton :: Hashable k => k -> v -> HashMap k v

-- | <i>O(1)</i> Return <a>True</a> if this map is empty, <a>False</a>
--   otherwise.
null :: HashMap k v -> Bool

-- | <i>O(n)</i> Return the number of key-value mappings in this map.
size :: HashMap k v -> Int

-- | <i>O(log n)</i> Return <a>True</a> if the specified key is present in
--   the map, <a>False</a> otherwise.
member :: (Eq k, Hashable k) => k -> HashMap k a -> Bool

-- | <i>O(log n)</i> Return the value to which the specified key is mapped,
--   or <a>Nothing</a> if this map contains no mapping for the key.
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v

-- | <i>O(log n)</i> Return the value to which the specified key is mapped,
--   or the default value if this map contains no mapping for the key.
lookupDefault :: (Eq k, Hashable k) => v -> k -> HashMap k v -> v

-- | <i>O(log n)</i> Return the value to which the specified key is mapped.
--   Calls <a>error</a> if this map contains no mapping for the key.
(!) :: (Eq k, Hashable k) => HashMap k v -> k -> v

-- | <i>O(log n)</i> Associate the specified value with the specified key
--   in this map. If this map previously contained a mapping for the key,
--   the old value is replaced.
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v

-- | <i>O(log n)</i> Associate the value with the key in this map. If this
--   map previously contained a mapping for the key, the old value is
--   replaced by the result of applying the given function to the new and
--   old value. Example:
--   
--   <pre>
--   insertWith f k v map
--     where f new old = new + old
--   </pre>
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v

-- | <i>O(log n)</i> Remove the mapping for the specified key from this map
--   if present.
delete :: (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v

-- | <i>O(log n)</i> Adjust the value tied to a given key in this map only
--   if it is present. Otherwise, leave the map alone.
adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v

-- | <i>O(n+m)</i> The union of two maps. If a key occurs in both maps, the
--   mapping from the first will be the mapping in the result.
union :: (Eq k, Hashable k) => HashMap k v -> HashMap k v -> HashMap k v

-- | <i>O(n+m)</i> The union of two maps. If a key occurs in both maps, the
--   provided function (first argument) will be used to compute the result.
unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v

-- | Construct a set containing all elements from a list of sets.
unions :: (Eq k, Hashable k) => [HashMap k v] -> HashMap k v

-- | <i>O(n)</i> Transform this map by applying a function to every value.
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2

-- | <i>O(n)</i> Transform this map by applying a function to every value.
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2

-- | <i>O(n)</i> Transform this map by accumulating an Applicative result
--   from every value.
traverseWithKey :: Applicative f => (k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)

-- | <i>O(n*log m)</i> Difference of two maps. Return elements of the first
--   map not existing in the second.
difference :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v

-- | <i>O(n*log m)</i> Intersection of two maps. Return elements of the
--   first map for keys existing in the second.
intersection :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v

-- | <i>O(n+m)</i> Intersection of two maps. If a key occurs in both maps
--   the provided function is used to combine the values from the two maps.
intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the left-identity
--   of the operator). Each application of the operator is evaluated before
--   before using the result in the next application. This function is
--   strict in the starting value.
foldl' :: (a -> v -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the left-identity
--   of the operator). Each application of the operator is evaluated before
--   before using the result in the next application. This function is
--   strict in the starting value.
foldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the right-identity
--   of the operator).
foldr :: (v -> a -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the right-identity
--   of the operator).
foldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Filter this map by retaining only elements which values
--   satisfy a predicate.
filter :: (v -> Bool) -> HashMap k v -> HashMap k v

-- | <i>O(n)</i> Filter this map by retaining only elements satisfying a
--   predicate.
filterWithKey :: (k -> v -> Bool) -> HashMap k v -> HashMap k v

-- | <i>O(n)</i> Return a list of this map's keys. The list is produced
--   lazily.
keys :: HashMap k v -> [k]

-- | <i>O(n)</i> Return a list of this map's values. The list is produced
--   lazily.
elems :: HashMap k v -> [v]

-- | <i>O(n)</i> Return a list of this map's elements. The list is produced
--   lazily.
toList :: HashMap k v -> [(k, v)]

-- | <i>O(n*log n)</i> Construct a map with the supplied mappings. If the
--   list contains duplicate mappings, the later mappings take precedence.
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v

-- | <i>O(n*log n)</i> Construct a map from a list of elements. Uses the
--   provided function to merge duplicate entries.
fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v


-- | A map from <i>hashable</i> keys to values. A map cannot contain
--   duplicate keys; each key can map to at most one value. A
--   <a>HashMap</a> makes no guarantees as to the order of its elements.
--   
--   The implementation is based on <i>hash array mapped tries</i>. A
--   <a>HashMap</a> is often faster than other tree-based set types,
--   especially when key comparison is expensive, as in the case of
--   strings.
--   
--   Many operations have a average-case complexity of <i>O(log n)</i>. The
--   implementation uses a large base (i.e. 16) so in practice these
--   operations are constant time.
module Data.HashMap.Lazy

-- | A map from keys to values. A map cannot contain duplicate keys; each
--   key can map to at most one value.
data HashMap k v

-- | <i>O(1)</i> Construct an empty map.
empty :: HashMap k v

-- | <i>O(1)</i> Construct a map with a single element.
singleton :: Hashable k => k -> v -> HashMap k v

-- | <i>O(1)</i> Return <a>True</a> if this map is empty, <a>False</a>
--   otherwise.
null :: HashMap k v -> Bool

-- | <i>O(n)</i> Return the number of key-value mappings in this map.
size :: HashMap k v -> Int

-- | <i>O(log n)</i> Return <a>True</a> if the specified key is present in
--   the map, <a>False</a> otherwise.
member :: (Eq k, Hashable k) => k -> HashMap k a -> Bool

-- | <i>O(log n)</i> Return the value to which the specified key is mapped,
--   or <a>Nothing</a> if this map contains no mapping for the key.
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v

-- | <i>O(log n)</i> Return the value to which the specified key is mapped,
--   or the default value if this map contains no mapping for the key.
lookupDefault :: (Eq k, Hashable k) => v -> k -> HashMap k v -> v

-- | <i>O(log n)</i> Return the value to which the specified key is mapped.
--   Calls <a>error</a> if this map contains no mapping for the key.
(!) :: (Eq k, Hashable k) => HashMap k v -> k -> v

-- | <i>O(log n)</i> Associate the specified value with the specified key
--   in this map. If this map previously contained a mapping for the key,
--   the old value is replaced.
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v

-- | <i>O(log n)</i> Associate the value with the key in this map. If this
--   map previously contained a mapping for the key, the old value is
--   replaced by the result of applying the given function to the new and
--   old value. Example:
--   
--   <pre>
--   insertWith f k v map
--     where f new old = new + old
--   </pre>
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v

-- | <i>O(log n)</i> Remove the mapping for the specified key from this map
--   if present.
delete :: (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v

-- | <i>O(log n)</i> Adjust the value tied to a given key in this map only
--   if it is present. Otherwise, leave the map alone.
adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v

-- | <i>O(n+m)</i> The union of two maps. If a key occurs in both maps, the
--   mapping from the first will be the mapping in the result.
union :: (Eq k, Hashable k) => HashMap k v -> HashMap k v -> HashMap k v

-- | <i>O(n+m)</i> The union of two maps. If a key occurs in both maps, the
--   provided function (first argument) will be used to compute the result.
unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v

-- | Construct a set containing all elements from a list of sets.
unions :: (Eq k, Hashable k) => [HashMap k v] -> HashMap k v

-- | <i>O(n)</i> Transform this map by applying a function to every value.
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2

-- | <i>O(n)</i> Transform this map by applying a function to every value.
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2

-- | <i>O(n)</i> Transform this map by accumulating an Applicative result
--   from every value.
traverseWithKey :: Applicative f => (k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)

-- | <i>O(n*log m)</i> Difference of two maps. Return elements of the first
--   map not existing in the second.
difference :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v

-- | <i>O(n*log m)</i> Intersection of two maps. Return elements of the
--   first map for keys existing in the second.
intersection :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v

-- | <i>O(n+m)</i> Intersection of two maps. If a key occurs in both maps
--   the provided function is used to combine the values from the two maps.
intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the left-identity
--   of the operator). Each application of the operator is evaluated before
--   before using the result in the next application. This function is
--   strict in the starting value.
foldl' :: (a -> v -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the left-identity
--   of the operator). Each application of the operator is evaluated before
--   before using the result in the next application. This function is
--   strict in the starting value.
foldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the right-identity
--   of the operator).
foldr :: (v -> a -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Reduce this map by applying a binary operator to all
--   elements, using the given starting value (typically the right-identity
--   of the operator).
foldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> a

-- | <i>O(n)</i> Filter this map by retaining only elements which values
--   satisfy a predicate.
filter :: (v -> Bool) -> HashMap k v -> HashMap k v

-- | <i>O(n)</i> Filter this map by retaining only elements satisfying a
--   predicate.
filterWithKey :: (k -> v -> Bool) -> HashMap k v -> HashMap k v

-- | <i>O(n)</i> Return a list of this map's keys. The list is produced
--   lazily.
keys :: HashMap k v -> [k]

-- | <i>O(n)</i> Return a list of this map's values. The list is produced
--   lazily.
elems :: HashMap k v -> [v]

-- | <i>O(n)</i> Return a list of this map's elements. The list is produced
--   lazily.
toList :: HashMap k v -> [(k, v)]

-- | <i>O(n)</i> Construct a map with the supplied mappings. If the list
--   contains duplicate mappings, the later mappings take precedence.
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v

-- | <i>O(n*log n)</i> Construct a map from a list of elements. Uses the
--   provided function to merge duplicate entries.
fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v


-- | A set of <i>hashable</i> values. A set cannot contain duplicate items.
--   A <a>HashSet</a> makes no guarantees as to the order of its elements.
--   
--   The implementation is based on <i>hash array mapped trie</i>. A
--   <a>HashSet</a> is often faster than other tree-based set types,
--   especially when value comparison is expensive, as in the case of
--   strings.
--   
--   Many operations have a average-case complexity of <i>O(log n)</i>. The
--   implementation uses a large base (i.e. 16) so in practice these
--   operations are constant time.
module Data.HashSet

-- | A set of values. A set cannot contain duplicate values.
data HashSet a

-- | <i>O(1)</i> Construct an empty set.
empty :: HashSet a

-- | <i>O(1)</i> Construct a set with a single element.
singleton :: Hashable a => a -> HashSet a

-- | <i>O(n+m)</i> Construct a set containing all elements from both sets.
--   
--   To obtain good performance, the smaller set must be presented as the
--   first argument.
union :: (Eq a, Hashable a) => HashSet a -> HashSet a -> HashSet a

-- | Construct a set containing all elements from a list of sets.
unions :: (Eq a, Hashable a) => [HashSet a] -> HashSet a

-- | <i>O(1)</i> Return <a>True</a> if this set is empty, <a>False</a>
--   otherwise.
null :: HashSet a -> Bool

-- | <i>O(n)</i> Return the number of elements in this set.
size :: HashSet a -> Int

-- | <i>O(min(n,W))</i> Return <a>True</a> if the given value is present in
--   this set, <a>False</a> otherwise.
member :: (Eq a, Hashable a) => a -> HashSet a -> Bool

-- | <i>O(min(n,W))</i> Add the specified value to this set.
insert :: (Eq a, Hashable a) => a -> HashSet a -> HashSet a

-- | <i>O(min(n,W))</i> Remove the specified value from this set if
--   present.
delete :: (Eq a, Hashable a) => a -> HashSet a -> HashSet a

-- | <i>O(n)</i> Transform this set by applying a function to every value.
--   The resulting set may be smaller than the source.
map :: (Hashable b, Eq b) => (a -> b) -> HashSet a -> HashSet b

-- | <i>O(n)</i> Difference of two sets. Return elements of the first set
--   not existing in the second.
difference :: (Eq a, Hashable a) => HashSet a -> HashSet a -> HashSet a

-- | <i>O(n)</i> Intersection of two sets. Return elements present in both
--   the first set and the second.
intersection :: (Eq a, Hashable a) => HashSet a -> HashSet a -> HashSet a

-- | <i>O(n)</i> Reduce this set by applying a binary operator to all
--   elements, using the given starting value (typically the left-identity
--   of the operator). Each application of the operator is evaluated before
--   before using the result in the next application. This function is
--   strict in the starting value.
foldl' :: (a -> b -> a) -> a -> HashSet b -> a

-- | <i>O(n)</i> Reduce this set by applying a binary operator to all
--   elements, using the given starting value (typically the right-identity
--   of the operator).
foldr :: (b -> a -> a) -> a -> HashSet b -> a

-- | <i>O(n)</i> Filter this set by retaining only elements satisfying a
--   predicate.
filter :: (a -> Bool) -> HashSet a -> HashSet a

-- | <i>O(n)</i> Return a list of this set's elements. The list is produced
--   lazily.
toList :: HashSet a -> [a]

-- | <i>O(n*min(W, n))</i> Construct a set from a list of elements.
fromList :: (Eq a, Hashable a) => [a] -> HashSet a
instance Typeable1 HashSet
instance (Data a, Eq a, Hashable a) => Data (HashSet a)
instance Show a => Show (HashSet a)
instance (Eq a, Hashable a, Read a) => Read (HashSet a)
instance (Hashable a, Eq a) => Monoid (HashSet a)
instance Foldable HashSet
instance (Hashable a, Eq a) => Eq (HashSet a)
instance NFData a => NFData (HashSet a)