/usr/share/pythia8-examples/examples/main19.cc is in pythia8-examples 8.1.86-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | // main19.cc is a part of the PYTHIA event generator.
// Copyright (C) 2014 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// This program runs four instances of Pythia simultaneously,
// one for signal events, one for pileup background ones, and two
// For beam-gas background ones. Note that Pythia does not do nuclear
// effects, so beam-gas is represented by "fixed-target" pp collisions.
// The = and += overloaded operators are used to join several
// event records into one, but should be used with caution.
// Note that each instance of Pythia is independent of any other,
// but with two important points to remember.
// 1) By default all generate the same random number sequence,
// which has to be corrected if they are to generate the same
// physics, like the two beam-gas ones below.
// 2) Interfaces to external Fortran programs are "by definition" static.
// Thus it is not a good idea to use LHAPDF to set different PDF's
// in different instances.
#include "Pythia8/Pythia.h"
using namespace Pythia8;
//==========================================================================
// Method to pick a number according to a Poissonian distribution.
int poisson(double nAvg, Rndm& rndm) {
// Set maximum to avoid overflow.
const int NMAX = 100;
// Random number.
double rPoisson = rndm.flat() * exp(nAvg);
// Initialize.
double rSum = 0.;
double rTerm = 1.;
// Add to sum and check whether done.
for (int i = 0; i < NMAX; ) {
rSum += rTerm;
if (rSum > rPoisson) return i;
// Evaluate next term.
++i;
rTerm *= nAvg / i;
}
// Emergency return.
return NMAX;
}
//==========================================================================
int main() {
// Number of signal events to generate.
int nEvent = 100;
// Beam Energy.
double eBeam = 7000.;
// Average number of pileup events per signal event.
double nPileupAvg = 2.5;
// Average number of beam-gas events per signal ones, on two sides.
double nBeamAGasAvg = 0.5;
double nBeamBGasAvg = 0.5;
// Four generator instances.
Pythia pythiaSignal;
Pythia pythiaPileup;
Pythia pythiaBeamAGas;
Pythia pythiaBeamBGas;
// One object where all individual events are to be collected.
Event sumEvent;
// Switch off automatic event listing.
pythiaSignal.readString("Next:numberShowInfo = 0");
pythiaSignal.readString("Next:numberShowProcess = 0");
pythiaSignal.readString("Next:numberShowEvent = 0");
pythiaPileup.readString("Next:numberShowInfo = 0");
pythiaPileup.readString("Next:numberShowProcess = 0");
pythiaPileup.readString("Next:numberShowEvent = 0");
pythiaBeamAGas.readString("Next:numberShowInfo = 0");
pythiaBeamAGas.readString("Next:numberShowProcess = 0");
pythiaBeamAGas.readString("Next:numberShowEvent = 0");
pythiaBeamBGas.readString("Next:numberShowInfo = 0");
pythiaBeamBGas.readString("Next:numberShowProcess = 0");
pythiaBeamBGas.readString("Next:numberShowEvent = 0");
// Initialize generator for signal processes.
pythiaSignal.readString("HardQCD:all = on");
pythiaSignal.readString("PhaseSpace:pTHatMin = 50.");
pythiaSignal.settings.parm("Beams:eCM", 2. * eBeam);
pythiaSignal.init();
// Initialize generator for pileup (background) processes.
pythiaPileup.readString("Random:setSeed = on");
pythiaPileup.readString("Random:seed = 10000002");
pythiaPileup.readString("SoftQCD:all = on");
pythiaPileup.settings.parm("Beams:eCM", 2. * eBeam);
pythiaPileup.init();
// Initialize generators for beam A - gas (background) processes.
pythiaBeamAGas.readString("Random:setSeed = on");
pythiaBeamAGas.readString("Random:seed = 10000003");
pythiaBeamAGas.readString("SoftQCD:all = on");
pythiaBeamAGas.readString("Beams:frameType = 2");
pythiaBeamAGas.settings.parm("Beams:eA", eBeam);
pythiaBeamAGas.settings.parm("Beams:eB", 0.);
pythiaBeamAGas.init();
// Initialize generators for beam B - gas (background) processes.
pythiaBeamBGas.readString("Random:setSeed = on");
pythiaBeamBGas.readString("Random:seed = 10000004");
pythiaBeamBGas.readString("SoftQCD:all = on");
pythiaBeamBGas.readString("Beams:frameType = 2");
pythiaBeamBGas.settings.parm("Beams:eA", 0.);
pythiaBeamBGas.settings.parm("Beams:eB", eBeam);
pythiaBeamBGas.init();
// Histograms: number of pileups, total charged multiplicity.
Hist nPileH("number of pileup events per signal event", 100, -0.5, 99.5);
Hist nAGH("number of beam A + gas events per signal event", 100, -0.5, 99.5);
Hist nBGH("number of beam B + gas events per signal event", 100, -0.5, 99.5);
Hist nChgH("number of charged multiplicity",100, -0.5, 1999.5);
Hist sumPZH("total pZ of system",100, -100000., 100000.);
// Loop over events.
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
// Generate a signal event. Copy this event into sumEvent.
if (!pythiaSignal.next()) continue;
sumEvent = pythiaSignal.event;
// Select the number of pileup events to generate.
int nPileup = poisson(nPileupAvg, pythiaPileup.rndm);
nPileH.fill( nPileup );
// Generate a number of pileup events. Add them to sumEvent.
for (int iPileup = 0; iPileup < nPileup; ++iPileup) {
pythiaPileup.next();
sumEvent += pythiaPileup.event;
}
// Select the number of beam A + gas events to generate.
int nBeamAGas = poisson(nBeamAGasAvg, pythiaBeamAGas.rndm);
nAGH.fill( nBeamAGas );
// Generate a number of beam A + gas events. Add them to sumEvent.
for (int iAG = 0; iAG < nBeamAGas; ++iAG) {
pythiaBeamAGas.next();
sumEvent += pythiaBeamAGas.event;
}
// Select the number of beam B + gas events to generate.
int nBeamBGas = poisson(nBeamBGasAvg, pythiaBeamBGas.rndm);
nBGH.fill( nBeamBGas );
// Generate a number of beam B + gas events. Add them to sumEvent.
for (int iBG = 0; iBG < nBeamBGas; ++iBG) {
pythiaBeamBGas.next();
sumEvent += pythiaBeamBGas.event;
}
// List first few events.
if (iEvent < 1) {
pythiaSignal.info.list();
pythiaSignal.process.list();
sumEvent.list();
}
// Find charged multiplicity.
int nChg = 0;
for (int i = 0; i < sumEvent.size(); ++i)
if (sumEvent[i].isFinal() && sumEvent[i].isCharged()) ++nChg;
nChgH.fill( nChg );
// Fill net pZ - nonvanishing owing to beam + gas.
sumPZH.fill( sumEvent[0].pz() );
// End of event loop
}
// Statistics. Histograms.
pythiaSignal.stat();
pythiaPileup.stat();
pythiaBeamAGas.stat();
pythiaBeamBGas.stat();
cout << nPileH << nAGH << nBGH << nChgH << sumPZH;
return 0;
}
|