This file is indexed.

/usr/share/pyshared/quantities/umath.py is in python-quantities 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from __future__ import absolute_import

import numpy as np

from .quantity import Quantity
from .units import dimensionless, radian, degree
from .decorators import with_doc


#__all__ = [
#    'exp', 'expm1', 'log', 'log10', 'log1p', 'log2'
#]


@with_doc(np.prod)
def prod(a, axis=None, dtype=None, out=None):
    return a.prod(axis, dtype, out)

@with_doc(np.sum)
def sum(a, axis=None, dtype=None, out=None):
    return a.sum(axis, dtype, out)

@with_doc(np.nansum)
def nansum(a, axis=None):
    if not isinstance(a, Quantity):
        return np.nansum(a, axis)

    return Quantity(
        np.nansum(a.magnitude, axis),
        a.dimensionality,
        copy=False
    )

@with_doc(np.cumprod)
def cumprod(a, axis=None, dtype=None, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.
    """
    return a.cumprod(axis, dtype, out)

@with_doc(np.cumsum)
def cumsum(a,axis=None, dtype=None, out=None):
    return a.cumsum(axis, dtype, out)

diff = np.diff

@with_doc(np.ediff1d)
def ediff1d(ary, to_end=None, to_begin=None):
    if not isinstance(ary, Quantity):
        return np.ediff1d(ary, to_end, to_begin)

    return Quantity(
        np.ediff1d(ary.magnitude, to_end, to_begin),
        ary.dimensionality,
        copy=False
    )

@with_doc(np.gradient)
def gradient(f, *varargs):
    # if no sample distances are specified, use dimensionless 1
    # this mimicks the behavior of np.gradient, but perhaps we should
    # remove this default behavior
    # removed for now::
    #
    #   if len(varargs) == 0:
    #       varargs = (Quantity(1),)

    varargsQuantities = [Quantity(i, copy=False) for i in varargs]
    varargsMag = tuple([i.magnitude for i in varargsQuantities])
    ret = np.gradient(f.magnitude, *varargsMag)

    if len(varargs) == 1:
        # if there was only one sample distance provided,
        # apply the units in all directions
        return tuple([ Quantity(i, f.units/varargs[0].units)  for i  in ret])
    else:
        #give each output array the units of the input array
        #divided by the units of the spacing quantity given
        return tuple([ Quantity(i, f.units/j.units)
                      for i,j  in zip( ret, varargsQuantities)])

@with_doc(np.cross)
def cross (a, b , axisa=-1, axisb=-1, axisc=-1, axis=None):
    if not (isinstance(a, Quantity) and isinstance(b, Quantity)):
        return np.cross(a, b, axisa, axisb, axisc, axis)

    if not isinstance(a, Quantity):
        a = Quantity(a, dimensionless, copy=False)
    if not isinstance(b, Quantity):
        b = Quantity(b, dimensionless, copy=False)

    return Quantity(
        np.cross(a, b, axisa, axisb, axisc, axis),
        a._dimensionality*b._dimensionality,
        copy=False
    )

@with_doc(np.trapz)
def trapz(y, x=None, dx=1.0, axis=-1):
    # this function has a weird input structure, so it is tricky to wrap it
    # perhaps there is a simpler way to do this
    if (
        not isinstance(y, Quantity)
        and not isinstance(x, Quantity)
        and not isinstance(dx, Quantity)
    ):
        return np.trapz(y, x, dx, axis)

    if not isinstance(y, Quantity):
        y = Quantity(y, copy = False)
    if not isinstance(x, Quantity) and not x is None:
        x = Quantity(x, copy = False)
    if not isinstance(dx, Quantity):
        dx = Quantity(dx, copy = False)

    if x is None:
        ret = np.trapz(y.magnitude , x, dx.magnitude, axis)
        return Quantity ( ret, y.units * dx.units)
    else:
        ret = np.trapz(y.magnitude , x.magnitude, dx.magnitude, axis)
        return Quantity ( ret, y.units * x.units)

@with_doc(np.sin)
def sin(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to radians.

    Returns a dimensionless quantity.
    """
    if not isinstance(x, Quantity):
        return np.sin(x, out)

    return Quantity(np.sin(x.rescale(radian).magnitude, out),
                    copy=False)

@with_doc(np.arcsin)
def arcsin(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.

    Returns a quantity in units of radians.
    """
    if not isinstance(x, Quantity):
        return np.arcsin(x, out)

    return Quantity(
        np.arcsin(x.rescale(dimensionless).magnitude, out),
        radian,
        copy=False
    )

@with_doc(np.cos)
def cos(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to radians.

    Returns a dimensionless quantity.
    """
    if not isinstance(x, Quantity):
        return np.cos(x, out)

    return Quantity(np.cos(x.rescale(radian).magnitude), copy=False)

@with_doc(np.arccos)
def arccos(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.

    Returns a quantity in units of radians.
    """
    if not isinstance(x, Quantity):
        return np.arccos(x, out)

    return Quantity(
        np.arccos(x.rescale(dimensionless).magnitude, out),
        radian,
        copy=False
    )

@with_doc(np.tan)
def tan(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to radians.

    Returns a dimensionless quantity.
    """
    if not isinstance(x, Quantity):
        return np.tan(x, out)

    return Quantity(np.tan(x.rescale(radian).magnitude), copy=False)

@with_doc(np.arctan)
def arctan(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.

    Returns a quantity in units of radians.
    """
    if not isinstance(x, Quantity):
        return np.arctan(x, out)

    return Quantity(
        np.arctan(x.rescale(dimensionless).magnitude, out),
        radian,
        copy=False
    )

@with_doc(np.arctan2)
def arctan2(x1, x2, out=None):
    """
    Raises a ValueError if inputs do not have identical units.

    Returns a quantity in units of radians.
    """
    if not (isinstance(x1, Quantity) and isinstance(x2, Quantity)):
        return np.arctan2(x1, x2, out)

    if not isinstance(x1, Quantity):
        x1 = Quantity(x1, dimensionless, copy=False)
    if not isinstance(x2, Quantity):
        x2 = Quantity(x2, dimensionless, copy=False)

    if x1._dimensionality.simplified != x2._dimensionality.simplified:
        raise ValueError(
            'x1 and x2 must have identical units, got "%s" and "%s"'\
            % (str(x1._dimensionality), str(x2._dimensionality))
        )

    return Quantity(
        np.arctan2(x1.magnitude, x2.magnitude, out),
        radian,
        copy=False
    )

@with_doc(np.hypot)
def hypot(x1, x2, out = None):
    """
    Raises a ValueError if inputs do not have identical units.
    """
    if not (isinstance(x1, Quantity) and isinstance(x2, Quantity)):
        return np.hypot(x1, x2, out)

    if not isinstance(x1, Quantity):
        x1 = Quantity(x1, dimensionless, copy=False)
    if not isinstance(x2, Quantity):
        x2 = Quantity(x2, dimensionless, copy=False)

    if x1._dimensionality != x2._dimensionality:
        raise ValueError(
            'x1 and x2 must have identical units, got "%s" and "%s"'\
            % (str(x1._dimensionality), str(x2._dimensionality))
        )

    return Quantity(
        np.hypot(x1.magnitude, x2.magnitude, out),
        x1.dimensionality,
        copy = False
    )

@with_doc(np.unwrap)
def unwrap(p, discont=np.pi, axis=-1):
    if not (isinstance(p, Quantity) and isinstance(discont, Quantity)):
        return np.unwrap(p, discont, axis)

    if not isinstance(p, Quantity):
        p = Quantity(p, copy=False)
    if not isinstance(discont, Quantity):
        discont = Quantity(discont, copy=False)

    discont = discont.rescale(p.units)

    return Quantity(
        np.unwrap(p.magnitude, discont.magnitude, axis),
        p.units
    )

@with_doc(np.sinh)
def sinh(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.
    """
    if not isinstance(x, Quantity):
        return np.sinh(x, out)

    return Quantity(
        np.sinh(x.rescale(dimensionless).magnitude, out),
        dimensionless,
        copy=False
    )

@with_doc(np.cosh)
def cosh(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.
    """
    if not isinstance(x, Quantity):
        return np.cosh(x, out)

    return Quantity(
        np.cosh(x.rescale(dimensionless).magnitude, out),
        dimensionless,
        copy=False
    )

@with_doc(np.tanh)
def tanh(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.
    """
    if not isinstance(x, Quantity):
        return np.tanh(x, out)

    return Quantity(
        np.tanh(x.rescale(dimensionless).magnitude, out),
        dimensionless,
        copy=False
    )

@with_doc(np.arcsinh)
def arcsinh(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.
    """
    if not isinstance(x, Quantity):
        return np.arcsinh(x, out)

    return Quantity(
        np.arcsinh(x.rescale(dimensionless).magnitude, out),
        dimensionless,
        copy=False
    )

@with_doc(np.arccosh)
def arccosh(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.
    """
    if not isinstance(x, Quantity):
        return np.arccosh(x, out)

    return Quantity(
        np.arccosh(x.rescale(dimensionless).magnitude, out),
        dimensionless,
        copy=False
    )

@with_doc(np.arctanh)
def arctanh(x, out=None):
    """
    Raises a ValueError if input cannot be rescaled to a dimensionless
    quantity.
    """
    if not isinstance(x, Quantity):
        return np.arctanh(x, out)

    return Quantity(
        np.arctanh(x.rescale(dimensionless).magnitude, out),
        dimensionless,
        copy=False
    )