/usr/include/blitz/array/fastiter.h is in libblitz0-dev 1:0.10-3.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | // -*- C++ -*-
/***************************************************************************
* blitz/array/fastiter.h Declaration of FastArrayIterator<P_numtype,N_rank>
*
* $Id$
*
* Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
*
* This file is a part of Blitz.
*
* Blitz is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Blitz is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Blitz. If not, see <http://www.gnu.org/licenses/>.
*
* Suggestions: blitz-devel@lists.sourceforge.net
* Bugs: blitz-support@lists.sourceforge.net
*
* For more information, please see the Blitz++ Home Page:
* https://sourceforge.net/projects/blitz/
*
****************************************************************************/
#ifndef BZ_ARRAY_FASTITER_H
#define BZ_ARRAY_FASTITER_H
#include <blitz/blitz.h>
#include <blitz/array/slice.h>
#include <blitz/constpointerstack.h>
#include <blitz/prettyprint.h>
#include <blitz/simdtypes.h>
#include <blitz/et-forward.h>
#include <blitz/array/domain.h>
#include <blitz/array/asexpr.h>
#ifdef BZ_HAVE_STD
#include <sstream>
#else
#include <strstream.h>
#endif
BZ_NAMESPACE(blitz)
// Wrapper to turn expressions with FAIs to FACIs so they can be
// returned from a function.
template<typename T>
typename T::T_range_result safeToReturn(const T& expr) {
return expr(expr.domain());
}
// forward declaration
template<typename, int> class FastArrayIterator;
template<typename, int> class FastArrayCopyIterator;
template<typename P_numtype, int N_rank, typename P_arraytype>
class FastArrayIteratorBase {
public:
typedef P_numtype T_numtype;
typedef typename opType<T_numtype>::T_optype T_optype;
// if T_numtype is POD, then T_result is T_numtype, but if T_numtype
// is an ET class, T_result will be the array class for that class.
typedef typename asET<T_numtype>::T_wrapped T_typeprop;
typedef typename unwrapET<T_typeprop>::T_unwrapped T_result;
/// Result type for fastRead_tv is a FastTVIterator.
typedef ETBase<FastTV2Iterator<T_numtype,
simdTypes<T_numtype>::vecWidth> > T_tvtypeprop;
typedef typename unwrapET<T_tvtypeprop>::T_unwrapped T_tvresult;
typedef Array<T_numtype, N_rank> T_array;
typedef FastArrayIteratorBase<T_numtype, N_rank, P_arraytype> T_iterator;
typedef const T_array& T_ctorArg1;
typedef int T_ctorArg2; // dummy
typedef FastArrayCopyIterator<T_numtype, N_rank> T_range_result;
static const int
numArrayOperands = 1,
numTVOperands = 0,
numTMOperands = 0,
numIndexPlaceholders = 0,
minWidth = simdTypes<T_numtype>::vecWidth,
maxWidth = simdTypes<T_numtype>::vecWidth,
rank_ = N_rank;
/** For an iterator, the vectorized result for width N is always a
TinyVector<T_numtype, N>. */
template<int N> struct tvresult {
typedef FastTV2Iterator<T_numtype, N> Type;
};
// NB: this ctor does NOT preserve stack and stride
// parameters. This is for speed purposes.
FastArrayIteratorBase(const T_iterator& x)
: data_(x.data_), array_(x.array_)
{ }
void operator=(const T_iterator& x)
{
// doesn't this copy the data in x.array_ and then make data_
// point to x's array? doesn't seem right
array_ = x.array_;
data_ = x.data_;
stack_ = x.stack_;
stride_ = x.stride_;
}
FastArrayIteratorBase(const T_array& array)
: array_(array)
{
data_ = array_.data();
}
~FastArrayIteratorBase()
{ }
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
T_result operator()(TinyVector<int, N_rank> i) const
{ return array_(i); }
#else
T_result operator()(const TinyVector<int, N_rank>& i) const
{ return array_(i); }
#endif
int ascending(const int rank) const
{
if (rank < N_rank)
return array_.isRankStoredAscending(rank);
else
return INT_MIN; // tiny(int());
}
int ordering(const int rank) const
{
if (rank < N_rank)
return array_.ordering(rank);
else
return INT_MIN; // tiny(int());
}
int lbound(const int rank) const
{
if (rank < N_rank)
return array_.lbound(rank);
else
return INT_MIN; // tiny(int());
}
int ubound(const int rank) const
{
if (rank < N_rank)
return array_.ubound(rank);
else
return INT_MAX; // huge(int());
}
RectDomain<rank_> domain() const { return array_.domain(); };
T_result first_value() const { return *data_; }
T_result operator*() const
{ return *data_; }
template<int N>
T_range_result operator()(const RectDomain<N>& d) const
{
return T_range_result(array_(d));
}
T_result operator[](int i) const
{ return data_[i * stride_]; }
T_result fastRead(diffType i) const
{ return data_[i]; }
/** Returns a TinyVector "view" of the data at i, with a vector
length specified by the template parameter N. This makes it
possible to convert a small part of an arbitrary expression into
a TinyVector expression, which is efficiently vectorized. */
template<int N>
typename tvresult<N>::Type fastRead_tv(diffType i) const
{
return typename tvresult<N>::Type(*reinterpret_cast<const TinyVector<T_numtype,N>*>(&data_[i])); }
/** Returns true if the iterator data is aligned on a simd
vector. */
bool isVectorAligned(diffType offset) const
{ return simdTypes<T_numtype>::isVectorAligned(data_ + offset); };
int suggestStride(int rank) const
{ return array_.stride(rank); }
bool isStride(int rank, diffType stride) const
{ return array_.stride(rank) == stride; }
void push(int position)
{
stack_[position] = data_;
}
void pop(int position)
{
data_ = stack_[position];
}
void advance()
{
data_ += stride_;
}
void advance(int n)
{
data_ += n * stride_;
}
void loadStride(int rank)
{
stride_ = array_.stride(rank);
}
// returns the lvalue, ie a pointer to the data
const T_numtype * restrict data() const
{ return data_; }
const T_array& array() const
{ return array_; }
void _bz_setData(const T_numtype* ptr)
{ data_ = ptr; }
// this is needed for the stencil expression fastRead to work
void _bz_offsetData(sizeType i)
{ data_ += i;}
// and these are needed for stencil expression shift to work
void _bz_offsetData(sizeType offset, int dim)
{ data_ += offset*array_.stride(dim); }
void _bz_offsetData(sizeType offset1, int dim1, sizeType offset2, int dim2)
{ data_ += offset1*array_.stride(dim1);
data_ += offset2*array_.stride(dim2); }
int stride() const
{ return stride_; }
/** Returns true if the Array has unit stride in the rank. */
bool isUnitStride(int rank) const
{ return array_.stride(rank) == 1; }
/** Returns true if the loaded iterator stride is 1. */
bool isUnitStride() const
{ return stride() == 1; }
void advanceUnitStride()
{ ++data_; }
bool canCollapse(int outerLoopRank, int innerLoopRank) const
{ return array_.canCollapse(outerLoopRank, innerLoopRank); }
void prettyPrint(BZ_STD_SCOPE(string) &str,
prettyPrintFormat& format) const
{
if (format.tersePrintingSelected())
str += format.nextArrayOperandSymbol();
else if (format.dumpArrayShapesMode())
{
#ifdef BZ_HAVE_STD
BZ_STD_SCOPE(ostringstream) ostr;
#else
ostrstream ostr;
#endif
ostr << array_.shape();
str += ostr.str();
}
else {
str += "Array<";
str += BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype);
str += ",";
char tmpBuf[10];
sprintf(tmpBuf, "%d", N_rank);
str += tmpBuf;
str += ">";
}
}
template<typename T_shape>
bool shapeCheck(const T_shape& shape) const
{ return areShapesConformable(shape, array_.length()); }
// Experimental
T_numtype& operator()(int i) const
{
return (T_numtype&)data_[i*array_.stride(0)];
}
// Experimental
T_numtype& operator()(int i, int j) const
{
return (T_numtype&)data_[i*array_.stride(0) + j*array_.stride(1)];
}
// Experimental
T_numtype& operator()(int i, int j, int k) const
{
return (T_numtype&)data_[i*array_.stride(0)
+ j*array_.stride(1)
+ k*array_.stride(2)];
}
// Experimental
void moveTo(int i)
{
data_ = &const_cast<T_array&>(array_)(i);
}
void moveTo(int i, int j)
{
data_ = &const_cast<T_array&>(array_)(i,j);
}
void moveTo(int i, int j, int k)
{
data_ = &const_cast<T_array&>(array_)(i,j,k);
}
template<int N_rank2>
void moveTo(const TinyVector<int,N_rank2>& i)
{
data_ = &const_cast<T_array&>(array_)(i);
}
// Experimental
void operator=(T_numtype x)
{ *const_cast<T_numtype*>(data_) = x; }
// Experimental
template<typename T_value>
void operator=(T_value x)
{ *const_cast<T_numtype*>(data_) = x; }
// Experimental
template<typename T_value>
void operator+=(T_value x)
{ *const_cast<P_numtype*>(data_) += x; }
// NEEDS_WORK: other operators
// Experimental
operator T_numtype() const
{ return *data_; }
// Experimental
T_result shift(int offset, int dim) const
{
return data_[offset*array_.stride(dim)];
}
// Experimental
T_result shift(int offset1, int dim1, int offset2, int dim2) const
{
return data_[offset1*array_.stride(dim1)
+ offset2*array_.stride(dim2)];
}
// sliceinfo for expressions
template<typename T1, typename T2 = nilArraySection,
class T3 = nilArraySection, typename T4 = nilArraySection,
class T5 = nilArraySection, typename T6 = nilArraySection,
class T7 = nilArraySection, typename T8 = nilArraySection,
class T9 = nilArraySection, typename T10 = nilArraySection,
class T11 = nilArraySection>
class SliceInfo {
public:
typedef FastArrayCopyIterator<P_numtype, blitz::SliceInfo<P_numtype, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::rank> T_slice;
};
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9, typename T10, typename T11>
typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9, T10 r10, T11 r11) const
{
return typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice(array_(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11));
}
protected:
const P_numtype * restrict data_;
P_arraytype array_;
ConstPointerStack<P_numtype,N_rank> stack_;
diffType stride_;
};
template<typename P_numtype, int N_rank> class FastArrayCopyIterator;
template<typename P_numtype, int N_rank>
class FastArrayIterator :
public FastArrayIteratorBase<P_numtype, N_rank, const Array<P_numtype, N_rank>&>
{
public:
typedef FastArrayIteratorBase<P_numtype, N_rank,
const Array<P_numtype, N_rank>&> T_base;
typedef typename T_base::T_numtype T_numtype;
typedef typename T_base::T_array T_array;
typedef typename T_base::T_iterator T_iterator;
typedef typename T_base::T_ctorArg1 T_ctorArg1;
typedef typename T_base::T_ctorArg2 T_ctorArg2;
typedef typename T_base::T_range_result T_range_result;
using T_base::rank_;
using T_base::numArrayOperands;
using T_base::numTVOperands;
using T_base::numTMOperands;
using T_base::numIndexPlaceholders;
// NB: this ctor does NOT preserve stack and stride
// parameters. This is for speed purposes.
FastArrayIterator(const FastArrayIterator<P_numtype, N_rank>& x)
: T_base(x)
{ }
FastArrayIterator(const T_array& array) : T_base(array) {}
using T_base::operator=;
void operator=(const FastArrayIterator<P_numtype, N_rank>& x)
{
T_base::operator=(x);
}
using T_base::operator();
};
/* This version of the FastArrayIterator makes a COPY of the array
it's pointing to. This makes it possible to return expressions of
arrays that have gone out of scope, or to slice expressions. */
template<typename P_numtype, int N_rank>
class FastArrayCopyIterator :
public FastArrayIteratorBase<P_numtype, N_rank, const Array<P_numtype, N_rank> >
{
public:
typedef FastArrayIteratorBase<P_numtype, N_rank,
const Array<P_numtype, N_rank> > T_base;
typedef typename T_base::T_numtype T_numtype;
typedef typename T_base::T_array T_array;
typedef typename T_base::T_iterator T_iterator;
typedef typename T_base::T_ctorArg1 T_ctorArg1;
typedef typename T_base::T_ctorArg2 T_ctorArg2;
typedef typename T_base::T_range_result T_range_result;
using T_base::rank_;
using T_base::numArrayOperands;
using T_base::numTVOperands;
using T_base::numTMOperands;
using T_base::numIndexPlaceholders;
// NB: this ctor does NOT preserve stack and stride
// parameters. This is for speed purposes.
FastArrayCopyIterator(const FastArrayCopyIterator<P_numtype, N_rank>& x)
: T_base(x)
{ }
FastArrayCopyIterator(const T_array& array) : T_base(array) { }
using T_base::operator=;
void operator=(const FastArrayCopyIterator& x)
{
T_base::operator=(x);
}
using T_base::operator();
};
BZ_NAMESPACE_END
#endif // BZ_ARRAY_FASTITER_H
|