/usr/include/blitz/numinquire.h is in libblitz0-dev 1:0.10-3.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | // -*- C++ -*-
/***************************************************************************
* blitz/numinquire.h Numeric inquiry functions
*
* $Id$
*
* Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
*
* This file is a part of Blitz.
*
* Blitz is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Blitz is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Blitz. If not, see <http://www.gnu.org/licenses/>.
*
* Suggestions: blitz-devel@lists.sourceforge.net
* Bugs: blitz-support@lists.sourceforge.net
*
* For more information, please see the Blitz++ Home Page:
* https://sourceforge.net/projects/blitz/
*
***************************************************************************/
/*
* These numeric inquiry functions are provided as an alternative
* to the somewhat klunky numeric_limits<T>::yadda_yadda syntax.
* Where a similar Fortran 90 function exists, the same name has
* been used.
*
* The argument in all cases is a dummy of the appropriate type
* (double, int, etc.)
*
* These functions assume that numeric_limits<T> has been specialized
* for the appropriate case. If not, the results are not useful.
*/
#ifndef BZ_NUMINQUIRE_H
#define BZ_NUMINQUIRE_H
#ifndef BZ_BLITZ_H
#include <blitz/blitz.h>
#endif
#ifndef BZ_HAVE_NUMERIC_LIMITS
#include <blitz/limits-hack.h>
#else
#include <limits>
#endif
#ifndef BZ_RANGE_H
#include <blitz/range.h>
#endif
BZ_NAMESPACE(blitz)
/*
* This traits class provides zero and one values for numeric
* types. This was previously a template function with specializations,
* but the specializations were causing multiply-defined symbols
* at link time. TV 980226
*/
template<typename T_numtype>
struct _bz_OneZeroTraits {
static inline T_numtype zero() { return 0; }
static inline T_numtype one() { return 1; }
};
#ifdef BZ_HAVE_COMPLEX
template<>
struct _bz_OneZeroTraits<complex<float> > {
static inline complex<float> zero() { return complex<float>(0.0f,0.0f); }
static inline complex<float> one() { return complex<float>(1.0f,0.0f); }
};
template<>
struct _bz_OneZeroTraits<complex<double> > {
static inline complex<double> zero() { return complex<double>(0.0,0.0); }
static inline complex<double> one() { return complex<double>(1.0,0.0); }
};
template<>
struct _bz_OneZeroTraits<complex<long double> > {
static inline complex<long double> zero()
{ return complex<long double>(0.0,0.0); }
static inline complex<long double> one()
{ return complex<long double>(1.0,0.0); }
};
#endif // BZ_HAVE_COMPLEX
template<typename T>
inline T zero(T)
{
return _bz_OneZeroTraits<T>::zero();
}
template<typename T>
inline T one(T)
{
return _bz_OneZeroTraits<T>::one();
}
template<typename T>
inline int digits(T)
{
return numeric_limits<T>::digits;
}
template<typename T>
inline int digits10(T)
{
return numeric_limits<T>::digits10;
}
template<typename T>
inline T epsilon(T) BZ_THROW
{
return numeric_limits<T>::epsilon();
}
// neghuge() by Theodore Papadopoulo, to fix a problem with
// max() reductions.
template<typename T>
inline T neghuge(T) BZ_THROW
{
return numeric_limits<T>::is_integer ? (numeric_limits<T>::min)()
: - (numeric_limits<T>::max)();
}
template<typename T>
inline T huge(T) BZ_THROW
{
return (numeric_limits<T>::max)();
}
template<typename T>
inline T tiny(T) BZ_THROW
{
return (numeric_limits<T>::min)();
}
template<typename T>
inline int max_exponent(T)
{
return numeric_limits<T>::max_exponent;
}
template<typename T>
inline int min_exponent(T)
{
return numeric_limits<T>::min_exponent;
}
template<typename T>
inline int min_exponent10(T)
{
return numeric_limits<T>::min_exponent10;
}
template<typename T>
inline int max_exponent10(T)
{
return numeric_limits<T>::max_exponent10;
}
template<typename T>
inline int precision(T)
{
return numeric_limits<T>::digits10;
}
template<typename T>
inline int radix(T)
{
return numeric_limits<T>::radix;
}
template<typename T>
inline Range range(T)
{
return Range(numeric_limits<T>::min_exponent10,
numeric_limits<T>::max_exponent10);
}
template<typename T>
inline bool is_signed(T) {
return numeric_limits<T>::is_signed;
}
template<typename T>
inline bool is_integer(T) {
return numeric_limits<T>::is_integer;
}
template<typename T>
inline bool is_exact(T) {
return numeric_limits<T>::is_exact;
}
template<typename T>
inline T round_error(T) BZ_THROW
{
return numeric_limits<T>::round_error();
}
template<typename T>
inline bool has_infinity(T) {
return numeric_limits<T>::has_infinity;
}
template<typename T>
inline bool has_quiet_NaN(T) {
return numeric_limits<T>::has_quiet_NaN;
}
template<typename T>
inline bool has_signaling_NaN(T) {
return numeric_limits<T>::has_signaling_NaN;
}
// Provided for non-US english users
template<typename T>
inline bool has_signalling_NaN(T) {
return numeric_limits<T>::has_signaling_NaN;
}
template<typename T>
inline bool has_denorm(T) {
return numeric_limits<T>::has_denorm;
}
template<typename T>
inline bool has_denorm_loss(T) {
return numeric_limits<T>::has_denorm_loss;
}
template<typename T>
inline T infinity(T) BZ_THROW
{
return numeric_limits<T>::infinity();
}
template<typename T>
inline T quiet_NaN(T) BZ_THROW
{
return numeric_limits<T>::quiet_NaN();
}
template<typename T>
inline T signaling_NaN(T) BZ_THROW
{
return numeric_limits<T>::signaling_NaN();
}
template<typename T>
inline T signalling_NaN(T) BZ_THROW
{
return numeric_limits<T>::signaling_NaN();
}
template<typename T>
inline T denorm_min(T) BZ_THROW
{
return numeric_limits<T>::denorm_min();
}
template<typename T>
inline bool is_iec559(T) {
return numeric_limits<T>::is_iec559;
}
template<typename T>
inline bool is_bounded(T) {
return numeric_limits<T>::is_bounded;
}
template<typename T>
inline bool is_modulo(T) {
return numeric_limits<T>::is_modulo;
}
template<typename T>
inline bool traps(T) {
return numeric_limits<T>::traps;
}
template<typename T>
inline bool tinyness_before(T) {
return numeric_limits<T>::tinyness_before;
}
template<typename T>
inline BZ_STD_SCOPE(float_round_style) round_style(T)
{
return numeric_limits<T>::round_style;
}
BZ_NAMESPACE_END
#endif // BZ_NUMINQUIRE_H
|