This file is indexed.

/usr/include/deal.II/base/polynomials_abf.h is in libdeal.ii-dev 8.1.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// ---------------------------------------------------------------------
// $Id: polynomials_abf.h 30036 2013-07-18 16:55:32Z maier $
//
// Copyright (C) 2004 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__polynomials_abf_h
#define __deal2__polynomials_abf_h


#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/tensor.h>
#include <deal.II/base/point.h>
#include <deal.II/base/polynomial.h>
#include <deal.II/base/polynomial_space.h>
#include <deal.II/base/tensor_product_polynomials.h>
#include <deal.II/base/table.h>
#include <deal.II/base/thread_management.h>

#include <vector>

DEAL_II_NAMESPACE_OPEN

/**
 * This class implements the <i>H<sup>div</sup></i>-conforming,
 * vector-valued Arnold-Boffi-Falk polynomials as described in the
 * article by Arnold-Boffi-Falk:
 * Quadrilateral H(div) finite elements, SIAM J. Numer. Anal.
 * Vol.42, No.6, pp.2429-2451
 *
 *
 * The ABF polynomials are constructed such that the
 * divergence is in the tensor product polynomial space
 * <i>Q<sub>k</sub></i>. Therefore, the polynomial order of each
 * component must be two orders higher in the corresponding direction,
 * yielding the polynomial spaces <i>(Q<sub>k+2,k</sub>,
 * Q<sub>k,k+2</sub>)</i> and <i>(Q<sub>k+2,k,k</sub>,
 * Q<sub>k,k+2,k</sub>, Q<sub>k,k,k+2</sub>)</i> in 2D and 3D, resp.
 *
 * @ingroup Polynomials
 * @author Oliver Kayser-Herold, based on code from Guido Kanschat
 * @date 2006
 */
template <int dim>
class PolynomialsABF
{
public:
  /**
   * Constructor. Creates all basis
   * functions for Raviart-Thomas polynomials
   * of given degree.
   *
   * @arg k: the degree of the
   * Raviart-Thomas-space, which is the degree
   * of the largest tensor product
   * polynomial space
   * <i>Q<sub>k</sub></i> contained.
   */
  PolynomialsABF (const unsigned int k);

  /**
   * Destructor deleting the polynomials.
   */
  ~PolynomialsABF ();

  /**
   * Computes the value and the
   * first and second derivatives
   * of each Raviart-Thomas
   * polynomial at @p unit_point.
   *
   * The size of the vectors must
   * either be zero or equal
   * <tt>n()</tt>.  In the
   * first case, the function will
   * not compute these values.
   *
   * If you need values or
   * derivatives of all tensor
   * product polynomials then use
   * this function, rather than
   * using any of the
   * <tt>compute_value</tt>,
   * <tt>compute_grad</tt> or
   * <tt>compute_grad_grad</tt>
   * functions, see below, in a
   * loop over all tensor product
   * polynomials.
   */
  void compute (const Point<dim>            &unit_point,
                std::vector<Tensor<1,dim> > &values,
                std::vector<Tensor<2,dim> > &grads,
                std::vector<Tensor<3,dim> > &grad_grads) const;

  /**
   * Returns the number of ABF polynomials.
   */
  unsigned int n () const;

  /**
   * Returns the degree of the ABF
   * space, which is two less than
   * the highest polynomial degree.
   */
  unsigned int degree () const;

  /**
   * Return the name of the space,
   * which is <tt>ABF</tt>.
   */
  std::string name () const;

  /**
   * Return the number of
   * polynomials in the space
   * <TT>RT(degree)</tt> without
   * requiring to build an object
   * of PolynomialsABF. This is
   * required by the FiniteElement
   * classes.
   */
  static unsigned int compute_n_pols(unsigned int degree);

private:
  /**
   * The degree of this object as
   * given to the constructor.
   */
  const unsigned int my_degree;

  /**
   * An object representing the
   * polynomial space for a single
   * component. We can re-use it by
   * rotating the coordinates of
   * the evaluation point.
   */
  AnisotropicPolynomials<dim> *polynomial_space;

  /**
   * Number of Raviart-Thomas
   * polynomials.
   */
  unsigned int n_pols;

  /**
   * A mutex that guards the
   * following scratch arrays.
   */
  mutable Threads::Mutex mutex;

  /**
   * Auxiliary memory.
   */
  mutable std::vector<double> p_values;

  /**
   * Auxiliary memory.
   */
  mutable std::vector<Tensor<1,dim> > p_grads;

  /**
   * Auxiliary memory.
   */
  mutable std::vector<Tensor<2,dim> > p_grad_grads;
};


template <int dim>
inline unsigned int
PolynomialsABF<dim>::n() const
{
  return n_pols;
}


template <int dim>
inline unsigned int
PolynomialsABF<dim>::degree() const
{
  return my_degree;
}


template <int dim>
inline std::string
PolynomialsABF<dim>::name() const
{
  return "ABF";
}


DEAL_II_NAMESPACE_CLOSE

#endif