This file is indexed.

/usr/include/deal.II/lac/chunk_sparse_matrix.h is in libdeal.ii-dev 8.1.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
// ---------------------------------------------------------------------
// $Id: chunk_sparse_matrix.h 31414 2013-10-24 22:15:50Z bangerth $
//
// Copyright (C) 2008 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__chunk_sparse_matrix_h
#define __deal2__chunk_sparse_matrix_h


#include <deal.II/base/config.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/lac/chunk_sparsity_pattern.h>
#include <deal.II/lac/identity_matrix.h>
#include <deal.II/lac/exceptions.h>

DEAL_II_NAMESPACE_OPEN

template<typename number> class Vector;
template<typename number> class FullMatrix;

/*! @addtogroup Matrix1
 *@{
 */

/**
 * A namespace in which we declare iterators over the elements of sparse
 * matrices.
 */
namespace ChunkSparseMatrixIterators
{
  // forward declaration
  template <typename number, bool Constness>
  class Iterator;

  /**
   * General template for sparse matrix accessors. The first template argument
   * denotes the underlying numeric type, the second the constness of the
   * matrix.
   *
   * The general template is not implemented, only the specializations for the
   * two possible values of the second template argument. Therefore, the
   * interface listed here only serves as a template provided since doxygen
   * does not link the specializations.
   */
  template <typename number, bool Constness>
  class Accessor : public ChunkSparsityPatternIterators::Accessor
  {
  public:
    /**
     * Value of this matrix entry.
     */
    number value() const;

    /**
     * Value of this matrix entry.
     */
    number &value();

    /**
     * Return a reference to the matrix into which this accessor points. Note
     * that in the present case, this is a constant reference.
     */
    const ChunkSparseMatrix<number> &get_matrix () const;
  };



  /**
   * Accessor class for constant matrices, used in the const_iterators. This
   * class builds on the accessor classes used for sparsity patterns to loop
   * over all nonzero entries, and only adds the accessor functions to gain
   * access to the actual value stored at a certain location.
   */
  template <typename number>
  class Accessor<number,true> : public ChunkSparsityPatternIterators::Accessor
  {
  public:
    /**
     * Typedef for the type (including constness) of the matrix to be used
     * here.
     */
    typedef const ChunkSparseMatrix<number> MatrixType;

    /**
     * Constructor.
     */
    Accessor (MatrixType         *matrix,
              const unsigned int  row);

    /**
     * Constructor. Construct the end accessor for the given matrix.
     */
    Accessor (MatrixType         *matrix);

    /**
     * Copy constructor to get from a non-const accessor to a const accessor.
     */
    Accessor (const ChunkSparseMatrixIterators::Accessor<number,false> &a);

    /**
     * Value of this matrix entry.
     */
    number value() const;

    /**
     * Return a reference to the matrix into which this accessor points. Note
     * that in the present case, this is a constant reference.
     */
    MatrixType &get_matrix () const;

  private:
    /**
     * Pointer to the matrix we use.
     */
    MatrixType *matrix;

    /**
     * Make the advance function of the base class available.
     */
    using ChunkSparsityPatternIterators::Accessor::advance;

    /**
     * Make iterator class a friend.
     */
    template <typename, bool>
    friend class Iterator;
  };


  /**
   * Accessor class for non-constant matrices, used in the iterators. This
   * class builds on the accessor classes used for sparsity patterns to loop
   * over all nonzero entries, and only adds the accessor functions to gain
   * access to the actual value stored at a certain location.
   */
  template <typename number>
  class Accessor<number,false> : public ChunkSparsityPatternIterators::Accessor
  {
  private:
    /**
     * Reference class. This is what the accessor class returns when you call
     * the value() function. The reference acts just as if it were a reference
     * to the actual value of a matrix entry, i.e. you can read and write it,
     * you can add and multiply to it, etc, but since the matrix does not give
     * away the address of this matrix entry, we have to go through functions
     * to do all this.
     *
     * The constructor takes a pointer to an accessor object that describes
     * which element of the matrix it points to. This creates an ambiguity
     * when one writes code like iterator->value()=0 (instead of
     * iterator->value()=0.0), since the right hand side is an integer that
     * can both be converted to a <tt>number</tt> (i.e., most commonly a
     * double) or to another object of type <tt>Reference</tt>. The compiler
     * then complains about not knowing which conversion to take.
     *
     * For some reason, adding another overload operator=(int) doesn't seem to
     * cure the problem. We avoid it, however, by adding a second, dummy
     * argument to the Reference constructor, that is unused, but makes sure
     * there is no second matching conversion sequence using a one-argument
     * right hand side.
     */
    class Reference
    {
    public:
      /**
       * Constructor. For the second argument, see the general class
       * documentation.
       */
      Reference (const Accessor *accessor,
                 const bool dummy);

      /**
       * Conversion operator to the data type of the matrix.
       */
      operator number () const;

      /**
       * Set the element of the matrix we presently point to to @p n.
       */
      const Reference &operator = (const number n) const;

      /**
       * Add @p n to the element of the matrix we presently point to.
       */
      const Reference &operator += (const number n) const;

      /**
       * Subtract @p n from the element of the matrix we presently point to.
       */
      const Reference &operator -= (const number n) const;

      /**
       * Multiply the element of the matrix we presently point to by @p n.
       */
      const Reference &operator *= (const number n) const;

      /**
       * Divide the element of the matrix we presently point to by @p n.
       */
      const Reference &operator /= (const number n) const;

    private:
      /**
       * Pointer to the accessor that denotes which element we presently point
       * to.
       */
      const Accessor *accessor;
    };

  public:
    /**
     * Typedef for the type (including constness) of the matrix to be used
     * here.
     */
    typedef ChunkSparseMatrix<number> MatrixType;

    /**
     * Constructor.
     */
    Accessor (MatrixType         *matrix,
              const unsigned int  row);

    /**
     * Constructor. Construct the end accessor for the given matrix.
     */
    Accessor (MatrixType         *matrix);

    /**
     * Value of this matrix entry, returned as a read- and writable reference.
     */
    Reference value() const;

    /**
     * Return a reference to the matrix into which this accessor points. Note
     * that in the present case, this is a non-constant reference.
     */
    MatrixType &get_matrix () const;

  private:
    /**
     * Pointer to the matrix we use.
     */
    MatrixType *matrix;

    /**
     * Make the advance function of the base class available.
     */
    using ChunkSparsityPatternIterators::Accessor::advance;

    /**
     * Make iterator class a friend.
     */
    template <typename, bool>
    friend class Iterator;

    /**
     * Make the inner reference class a friend if the compiler has a bug and
     * requires this.
     */
  };



  /**
   * STL conforming iterator for constant and non-constant matrices.
   *
   * The first template argument denotes the underlying numeric type, the
   * second the constness of the matrix.
   *
   * Since there is a specialization of this class for
   * <tt>Constness=false</tt>, this class is for iterators to constant
   * matrices.
   */
  template <typename number, bool Constness>
  class Iterator
  {
  public:
    /**
     * Typedef for the matrix type (including constness) we are to operate on.
     */
    typedef
    typename Accessor<number,Constness>::MatrixType
    MatrixType;

    /**
     * A typedef for the type you get when you dereference an iterator
     * of the current kind.
     */
    typedef
    const Accessor<number,Constness> &value_type;

    /**
     * Constructor. Create an iterator into the matrix @p matrix for the given
     * row and the index within it.
     */
    Iterator (MatrixType        *matrix,
              const unsigned int row);

    /**
     * Constructor. Create the end iterator for the given matrix.
     */
    Iterator (MatrixType *matrix);

    /**
     * Conversion constructor to get from a non-const iterator to a const
     * iterator.
     */
    Iterator (const ChunkSparseMatrixIterators::Iterator<number,false> &i);

    /**
     * Prefix increment.
     */
    Iterator &operator++ ();

    /**
     * Postfix increment.
     */
    Iterator operator++ (int);

    /**
     * Dereferencing operator.
     */
    const Accessor<number,Constness> &operator* () const;

    /**
     * Dereferencing operator.
     */
    const Accessor<number,Constness> *operator-> () const;

    /**
     * Comparison. True, if both iterators point to the same matrix position.
     */
    bool operator == (const Iterator &) const;

    /**
     * Inverse of <tt>==</tt>.
     */
    bool operator != (const Iterator &) const;

    /**
     * Comparison operator. Result is true if either the first row number is
     * smaller or if the row numbers are equal and the first index is smaller.
     *
     * This function is only valid if both iterators point into the same
     * matrix.
     */
    bool operator < (const Iterator &) const;

    /**
     * Comparison operator. Works in the same way as above operator, just the
     * other way round.
     */
    bool operator > (const Iterator &) const;

    /**
     * Return the distance between the current iterator and the argument.
     * The distance is given by how many times one has to apply operator++
     * to the current iterator to get the argument (for a positive return
     * value), or operator-- (for a negative return value).
     */
    int operator - (const Iterator &p) const;

    /**
     * Return an iterator that is @p n ahead of the current one.
     */
    Iterator operator + (const unsigned int n) const;

  private:
    /**
     * Store an object of the accessor class.
     */
    Accessor<number,Constness> accessor;
  };

}



/**
 * Sparse matrix. This class implements the function to store values
 * in the locations of a sparse matrix denoted by a
 * SparsityPattern. The separation of sparsity pattern and values is
 * done since one can store data elements of different type in these
 * locations without the SparsityPattern having to know this, and more
 * importantly one can associate more than one matrix with the same
 * sparsity pattern.
 *
 * The use of this class is demonstrated in step-51.
 *
 * @note Instantiations for this template are provided for <tt>@<float@> and
 * @<double@></tt>; others can be generated in application programs (see the
 * section on @ref Instantiations in the manual).
 *
 * @author Wolfgang Bangerth, 2008
 */
template <typename number>
class ChunkSparseMatrix : public virtual Subscriptor
{
public:
  /**
   * Declare the type for container size.
   */
  typedef types::global_dof_index size_type;

  /**
   * Type of matrix entries. In analogy to
   * the STL container classes.
   */
  typedef number value_type;

  /**
   * Declare a type that has holds real-valued numbers with the same precision
   * as the template argument to this class. If the template argument of this
   * class is a real data type, then real_type equals the template
   * argument. If the template argument is a std::complex type then real_type
   * equals the type underlying the complex numbers.
   *
   * This typedef is used to represent the return type of norms.
   */
  typedef typename numbers::NumberTraits<number>::real_type real_type;

  /**
   * Typedef of an STL conforming iterator class walking over all the nonzero
   * entries of this matrix. This iterator cannot change the values of the
   * matrix.
   */
  typedef
  ChunkSparseMatrixIterators::Iterator<number,true>
  const_iterator;

  /**
   * Typedef of an STL conforming iterator class walking over all the nonzero
   * entries of this matrix. This iterator @em can change the values of the
   * matrix, but of course can't change the sparsity pattern as this is fixed
   * once a sparse matrix is attached to it.
   */
  typedef
  ChunkSparseMatrixIterators::Iterator<number,false>
  iterator;

  /**
   * A structure that describes some of the traits of this class in terms of
   * its run-time behavior. Some other classes (such as the block matrix
   * classes) that take one or other of the matrix classes as its template
   * parameters can tune their behavior based on the variables in this class.
   */
  struct Traits
  {
    /**
     * It is safe to elide additions of zeros to individual elements of this
     * matrix.
     */
    static const bool zero_addition_can_be_elided = true;
  };

  /**
   * @name Constructors and initalization.
   */
//@{
  /**
   * Constructor; initializes the matrix to be empty, without any structure,
   * i.e.  the matrix is not usable at all. This constructor is therefore only
   * useful for matrices which are members of a class. All other matrices
   * should be created at a point in the data flow where all necessary
   * information is available.
   *
   * You have to initialize the matrix before usage with reinit(const
   * ChunkSparsityPattern&).
   */
  ChunkSparseMatrix ();

  /**
   * Copy constructor. This constructor is only allowed to be called if the
   * matrix to be copied is empty. This is for the same reason as for the
   * ChunkSparsityPattern, see there for the details.
   *
   * If you really want to copy a whole matrix, you can do so by using the
   * copy_from() function.
   */
  ChunkSparseMatrix (const ChunkSparseMatrix &);

  /**
   * Constructor. Takes the given matrix sparsity structure to represent the
   * sparsity pattern of this matrix. You can change the sparsity pattern
   * later on by calling the reinit(const ChunkSparsityPattern&) function.
   *
   * You have to make sure that the lifetime of the sparsity structure is at
   * least as long as that of this matrix or as long as reinit(const
   * ChunkSparsityPattern&) is not called with a new sparsity pattern.
   *
   * The constructor is marked explicit so as to disallow that someone passes
   * a sparsity pattern in place of a sparse matrix to some function, where an
   * empty matrix would be generated then.
   */
  explicit ChunkSparseMatrix (const ChunkSparsityPattern &sparsity);

  /**
   * Copy constructor: initialize the matrix with the identity matrix. This
   * constructor will throw an exception if the sizes of the sparsity pattern
   * and the identity matrix do not coincide, or if the sparsity pattern does
   * not provide for nonzero entries on the entire diagonal.
   */
  ChunkSparseMatrix (const ChunkSparsityPattern &sparsity,
                     const IdentityMatrix  &id);

  /**
   * Destructor. Free all memory, but do not release the memory of the
   * sparsity structure.
   */
  virtual ~ChunkSparseMatrix ();

  /**
   * Copy operator. Since copying entire sparse matrices is a very expensive
   * operation, we disallow doing so except for the special case of empty
   * matrices of size zero. This doesn't seem particularly useful, but is
   * exactly what one needs if one wanted to have a
   * <code>std::vector@<ChunkSparseMatrix@<double@> @></code>: in that case,
   * one can create a vector (which needs the ability to copy objects) of
   * empty matrices that are then later filled with something useful.
   */
  ChunkSparseMatrix<number> &operator = (const ChunkSparseMatrix<number> &);

  /**
   * Copy operator: initialize the matrix with the identity matrix. This
   * operator will throw an exception if the sizes of the sparsity pattern and
   * the identity matrix do not coincide, or if the sparsity pattern does not
   * provide for nonzero entries on the entire diagonal.
   */
  ChunkSparseMatrix<number> &
  operator= (const IdentityMatrix  &id);

  /**
   * This operator assigns a scalar to a matrix. Since this does usually not
   * make much sense (should we set all matrix entries to this value?  Only
   * the nonzero entries of the sparsity pattern?), this operation is only
   * allowed if the actual value to be assigned is zero. This operator only
   * exists to allow for the obvious notation <tt>matrix=0</tt>, which sets
   * all elements of the matrix to zero, but keep the sparsity pattern
   * previously used.
   */
  ChunkSparseMatrix &operator = (const double d);

  /**
   * Reinitialize the sparse matrix with the given sparsity pattern. The
   * latter tells the matrix how many nonzero elements there need to be
   * reserved.
   *
   * Regarding memory allocation, the same applies as said above.
   *
   * You have to make sure that the lifetime of the sparsity structure is at
   * least as long as that of this matrix or as long as reinit(const
   * ChunkSparsityPattern &) is not called with a new sparsity structure.
   *
   * The elements of the matrix are set to zero by this function.
   */
  virtual void reinit (const ChunkSparsityPattern &sparsity);

  /**
   * Release all memory and return to a state just like after having called
   * the default constructor. It also forgets the sparsity pattern it was
   * previously tied to.
   */
  virtual void clear ();
//@}
  /**
   * @name Information on the matrix
   */
//@{
  /**
   * Return whether the object is empty. It is empty if either both dimensions
   * are zero or no ChunkSparsityPattern is associated.
   */
  bool empty () const;

  /**
   * Return the dimension of the image space.  To remember: the matrix is of
   * dimension $m \times n$.
   */
  size_type m () const;

  /**
   * Return the dimension of the range space.  To remember: the matrix is of
   * dimension $m \times n$.
   */
  size_type n () const;

  /**
   * Return the number of nonzero elements of this matrix. Actually, it
   * returns the number of entries in the sparsity pattern; if any of the
   * entries should happen to be zero, it is counted anyway.
   */
  size_type n_nonzero_elements () const;

  /**
   * Return the number of actually nonzero elements of this matrix.
   *
   * Note, that this function does (in contrary to n_nonzero_elements()) not
   * count all entries of the sparsity pattern but only the ones that are
   * nonzero.
   */
  size_type n_actually_nonzero_elements () const;

  /**
   * Return a (constant) reference to the underlying sparsity pattern of this
   * matrix.
   *
   * Though the return value is declared <tt>const</tt>, you should be aware
   * that it may change if you call any nonconstant function of objects which
   * operate on it.
   */
  const ChunkSparsityPattern &get_sparsity_pattern () const;

  /**
   * Determine an estimate for the memory consumption (in bytes) of this
   * object. See MemoryConsumption.
   */
  std::size_t memory_consumption () const;

//@}
  /**
   * @name Modifying entries
   */
//@{
  /**
   * Set the element (<i>i,j</i>) to <tt>value</tt>. Throws an error if the
   * entry does not exist or if <tt>value</tt> is not a finite number. Still,
   * it is allowed to store zero values in non-existent fields.
   */
  void set (const size_type i,
            const size_type j,
            const number value);

  /**
   * Add <tt>value</tt> to the element (<i>i,j</i>).  Throws an error if the
   * entry does not exist or if <tt>value</tt> is not a finite number. Still,
   * it is allowed to store zero values in non-existent fields.
   */
  void add (const size_type i,
            const size_type j,
            const number value);

  /**
   * Add an array of values given by <tt>values</tt> in the given global
   * matrix row at columns specified by col_indices in the sparse matrix.
   *
   * The optional parameter <tt>elide_zero_values</tt> can be used to specify
   * whether zero values should be added anyway or these should be filtered
   * away and only non-zero data is added. The default value is <tt>true</tt>,
   * i.e., zero values won't be added into the matrix.
   */
  template <typename number2>
  void add (const size_type  row,
            const size_type  n_cols,
            const size_type *col_indices,
            const number2   *values,
            const bool       elide_zero_values = true,
            const bool       col_indices_are_sorted = false);

  /**
   * Multiply the entire matrix by a fixed factor.
   */
  ChunkSparseMatrix &operator *= (const number factor);

  /**
   * Divide the entire matrix by a fixed factor.
   */
  ChunkSparseMatrix &operator /= (const number factor);

  /**
   * Symmetrize the matrix by forming the mean value between the existing
   * matrix and its transpose, $A = \frac 12(A+A^T)$.
   *
   * This operation assumes that the underlying sparsity pattern represents a
   * symmetric object. If this is not the case, then the result of this
   * operation will not be a symmetric matrix, since it only explicitly
   * symmetrizes by looping over the lower left triangular part for efficiency
   * reasons; if there are entries in the upper right triangle, then these
   * elements are missed in the symmetrization. Symmetrization of the sparsity
   * pattern can be obtain by ChunkSparsityPattern::symmetrize().
   */
  void symmetrize ();

  /**
   * Copy the given matrix to this one.  The operation throws an error if the
   * sparsity patterns of the two involved matrices do not point to the same
   * object, since in this case the copy operation is cheaper. Since this
   * operation is notheless not for free, we do not make it available through
   * <tt>operator =</tt>, since this may lead to unwanted usage, e.g. in copy
   * arguments to functions, which should really be arguments by reference.
   *
   * The source matrix may be a matrix of arbitrary type, as long as its data
   * type is convertible to the data type of this matrix.
   *
   * The function returns a reference to <tt>*this</tt>.
   */
  template <typename somenumber>
  ChunkSparseMatrix<number> &
  copy_from (const ChunkSparseMatrix<somenumber> &source);

  /**
   * This function is complete analogous to the
   * ChunkSparsityPattern::copy_from() function in that it allows to
   * initialize a whole matrix in one step. See there for more information on
   * argument types and their meaning. You can also find a small example on
   * how to use this function there.
   *
   * The only difference to the cited function is that the objects which the
   * inner iterator points to need to be of type <tt>std::pair<unsigned int,
   * value</tt>, where <tt>value</tt> needs to be convertible to the element
   * type of this class, as specified by the <tt>number</tt> template
   * argument.
   *
   * Previous content of the matrix is overwritten. Note that the entries
   * specified by the input parameters need not necessarily cover all elements
   * of the matrix. Elements not covered remain untouched.
   */
  template <typename ForwardIterator>
  void copy_from (const ForwardIterator begin,
                  const ForwardIterator end);

  /**
   * Copy the nonzero entries of a full matrix into this object. Previous
   * content is deleted. Note that the underlying sparsity pattern must be
   * appropriate to hold the nonzero entries of the full matrix.
   */
  template <typename somenumber>
  void copy_from (const FullMatrix<somenumber> &matrix);

  /**
   * Add <tt>matrix</tt> scaled by <tt>factor</tt> to this matrix, i.e. the
   * matrix <tt>factor*matrix</tt> is added to <tt>this</tt>. This function
   * throws an error if the sparsity patterns of the two involved matrices do
   * not point to the same object, since in this case the operation is
   * cheaper.
   *
   * The source matrix may be a sparse matrix over an arbitrary underlying
   * scalar type, as long as its data type is convertible to the data type of
   * this matrix.
   */
  template <typename somenumber>
  void add (const number factor,
            const ChunkSparseMatrix<somenumber> &matrix);

//@}
  /**
   * @name Entry Access
   */
//@{

  /**
   * Return the value of the entry (<i>i,j</i>).  This may be an expensive
   * operation and you should always take care where to call this function.
   * In order to avoid abuse, this function throws an exception if the
   * required element does not exist in the matrix.
   *
   * In case you want a function that returns zero instead (for entries that
   * are not in the sparsity pattern of the matrix), use the el() function.
   *
   * If you are looping over all elements, consider using one of the iterator
   * classes instead, since they are tailored better to a sparse matrix
   * structure.
   */
  number operator () (const size_type i,
                      const size_type j) const;

  /**
   * This function is mostly like operator()() in that it returns the value of
   * the matrix entry (<i>i,j</i>). The only difference is that if this entry
   * does not exist in the sparsity pattern, then instead of raising an
   * exception, zero is returned. While this may be convenient in some cases,
   * note that it is simple to write algorithms that are slow compared to an
   * optimal solution, since the sparsity of the matrix is not used.
   *
   * If you are looping over all elements, consider using one of the iterator
   * classes instead, since they are tailored better to a sparse matrix
   * structure.
   */
  number el (const size_type i,
             const size_type j) const;

  /**
   * Return the main diagonal
   * element in the <i>i</i>th
   * row. This function throws an
   * error if the matrix is not
   * quadratic.
   *
   * This function is considerably faster than the operator()(), since for
   * quadratic matrices, the diagonal entry may be the first to be stored in
   * each row and access therefore does not involve searching for the right
   * column number.
   */
  number diag_element (const size_type i) const;

  /**
   * Same as above, but return a writeable reference. You're sure you know
   * what you do?
   */
  number &diag_element (const size_type i);

//@}
  /**
   * @name Matrix vector multiplications
   */
//@{
  /**
   * Matrix-vector multiplication: let <i>dst = M*src</i> with <i>M</i> being
   * this matrix.
   *
   * Note that while this function can operate on all vectors that offer
   * iterator classes, it is only really effective for objects of type @ref
   * Vector. For all classes for which iterating over elements, or random
   * member access is expensive, this function is not efficient. In
   * particular, if you want to multiply with BlockVector objects, you should
   * consider using a BlockChunkSparseMatrix as well.
   *
   * Source and destination must not be the same vector.
   */
  template <class OutVector, class InVector>
  void vmult (OutVector &dst,
              const InVector &src) const;

  /**
   * Matrix-vector multiplication: let <i>dst = M<sup>T</sup>*src</i> with
   * <i>M</i> being this matrix. This function does the same as vmult() but
   * takes the transposed matrix.
   *
   * Note that while this function can operate on all vectors that offer
   * iterator classes, it is only really effective for objects of type @ref
   * Vector. For all classes for which iterating over elements, or random
   * member access is expensive, this function is not efficient. In
   * particular, if you want to multiply with BlockVector objects, you should
   * consider using a BlockChunkSparseMatrix as well.
   *
   * Source and destination must not be the same vector.
   */
  template <class OutVector, class InVector>
  void Tvmult (OutVector &dst,
               const InVector &src) const;

  /**
   * Adding Matrix-vector multiplication. Add <i>M*src</i> on <i>dst</i> with
   * <i>M</i> being this matrix.
   *
   * Note that while this function can operate on all vectors that offer
   * iterator classes, it is only really effective for objects of type @ref
   * Vector. For all classes for which iterating over elements, or random
   * member access is expensive, this function is not efficient. In
   * particular, if you want to multiply with BlockVector objects, you should
   * consider using a BlockChunkSparseMatrix as well.
   *
   * Source and destination must not be the same vector.
   */
  template <class OutVector, class InVector>
  void vmult_add (OutVector &dst,
                  const InVector &src) const;

  /**
   * Adding Matrix-vector multiplication. Add <i>M<sup>T</sup>*src</i> to
   * <i>dst</i> with <i>M</i> being this matrix. This function does the same
   * as vmult_add() but takes the transposed matrix.
   *
   * Note that while this function can operate on all vectors that offer
   * iterator classes, it is only really effective for objects of type @ref
   * Vector. For all classes for which iterating over elements, or random
   * member access is expensive, this function is not efficient. In
   * particular, if you want to multiply with BlockVector objects, you should
   * consider using a BlockChunkSparseMatrix as well.
   *
   * Source and destination must not be the same vector.
   */
  template <class OutVector, class InVector>
  void Tvmult_add (OutVector &dst,
                   const InVector &src) const;

  /**
   * Return the square of the norm of the vector $v$ with respect to the norm
   * induced by this matrix, i.e. $\left(v,Mv\right)$. This is useful, e.g. in
   * the finite element context, where the $L_2$ norm of a function equals the
   * matrix norm with respect to the mass matrix of the vector representing
   * the nodal values of the finite element function.
   *
   * Obviously, the matrix needs to be quadratic for this operation, and for
   * the result to actually be a norm it also needs to be either real
   * symmetric or complex hermitian.
   *
   * The underlying template types of both this matrix and the given vector
   * should either both be real or complex-valued, but not mixed, for this
   * function to make sense.
   */
  template <typename somenumber>
  somenumber matrix_norm_square (const Vector<somenumber> &v) const;

  /**
   * Compute the matrix scalar product $\left(u,Mv\right)$.
   */
  template <typename somenumber>
  somenumber matrix_scalar_product (const Vector<somenumber> &u,
                                    const Vector<somenumber> &v) const;
  /**
   * Compute the residual of an equation <i>Mx=b</i>, where the residual is
   * defined to be <i>r=b-Mx</i>. Write the residual into <tt>dst</tt>. The
   * <i>l<sub>2</sub></i> norm of the residual vector is returned.
   *
   * Source <i>x</i> and destination <i>dst</i> must not be the same vector.
   */
  template <typename somenumber>
  somenumber residual (Vector<somenumber>       &dst,
                       const Vector<somenumber> &x,
                       const Vector<somenumber> &b) const;

//@}
  /**
   * @name Matrix norms
   */
//@{

  /**
   * Return the l1-norm of the matrix, that is $|M|_1=max_{all columns
   * j}\sum_{all rows i} |M_ij|$, (max. sum of columns).  This is the natural
   * matrix norm that is compatible to the l1-norm for vectors, i.e.
   * $|Mv|_1\leq |M|_1 |v|_1$.  (cf. Haemmerlin-Hoffmann : Numerische
   * Mathematik)
   */
  real_type l1_norm () const;

  /**
   * Return the linfty-norm of the matrix, that is $|M|_infty=max_{all rows
   * i}\sum_{all columns j} |M_ij|$, (max. sum of rows).  This is the natural
   * matrix norm that is compatible to the linfty-norm of vectors, i.e.
   * $|Mv|_infty \leq |M|_infty |v|_infty$.  (cf. Haemmerlin-Hoffmann :
   * Numerische Mathematik)
   */
  real_type linfty_norm () const;

  /**
   * Return the frobenius norm of the matrix, i.e. the square root of the sum
   * of squares of all entries in the matrix.
   */
  real_type frobenius_norm () const;
//@}
  /**
   * @name Preconditioning methods
   */
//@{

  /**
   * Apply the Jacobi preconditioner, which multiplies every element of the
   * <tt>src</tt> vector by the inverse of the respective diagonal element and
   * multiplies the result with the relaxation factor <tt>omega</tt>.
   */
  template <typename somenumber>
  void precondition_Jacobi (Vector<somenumber>       &dst,
                            const Vector<somenumber> &src,
                            const number              omega = 1.) const;

  /**
   * Apply SSOR preconditioning to <tt>src</tt>.
   */
  template <typename somenumber>
  void precondition_SSOR (Vector<somenumber>       &dst,
                          const Vector<somenumber> &src,
                          const number              om = 1.) const;

  /**
   * Apply SOR preconditioning matrix to <tt>src</tt>.
   */
  template <typename somenumber>
  void precondition_SOR (Vector<somenumber>       &dst,
                         const Vector<somenumber> &src,
                         const number              om = 1.) const;

  /**
   * Apply transpose SOR preconditioning matrix to <tt>src</tt>.
   */
  template <typename somenumber>
  void precondition_TSOR (Vector<somenumber>       &dst,
                          const Vector<somenumber> &src,
                          const number              om = 1.) const;

  /**
   * Perform SSOR preconditioning in-place.  Apply the preconditioner matrix
   * without copying to a second vector.  <tt>omega</tt> is the relaxation
   * parameter.
   */
  template <typename somenumber>
  void SSOR (Vector<somenumber> &v,
             const number        omega = 1.) const;

  /**
   * Perform an SOR preconditioning in-place.  <tt>omega</tt> is the
   * relaxation parameter.
   */
  template <typename somenumber>
  void SOR (Vector<somenumber> &v,
            const number        om = 1.) const;

  /**
   * Perform a transpose SOR preconditioning in-place.  <tt>omega</tt> is the
   * relaxation parameter.
   */
  template <typename somenumber>
  void TSOR (Vector<somenumber> &v,
             const number        om = 1.) const;

  /**
   * Perform a permuted SOR preconditioning in-place.
   *
   * The standard SOR method is applied in the order prescribed by
   * <tt>permutation</tt>, that is, first the row <tt>permutation[0]</tt>,
   * then <tt>permutation[1]</tt> and so on. For efficiency reasons, the
   * permutation as well as its inverse are required.
   *
   * <tt>omega</tt> is the relaxation parameter.
   */
  template <typename somenumber>
  void PSOR (Vector<somenumber> &v,
             const std::vector<size_type> &permutation,
             const std::vector<size_type> &inverse_permutation,
             const number        om = 1.) const;

  /**
   * Perform a transposed permuted SOR preconditioning in-place.
   *
   * The transposed SOR method is applied in the order prescribed by
   * <tt>permutation</tt>, that is, first the row <tt>permutation[m()-1]</tt>,
   * then <tt>permutation[m()-2]</tt> and so on. For efficiency reasons, the
   * permutation as well as its inverse are required.
   *
   * <tt>omega</tt> is the relaxation parameter.
   */
  template <typename somenumber>
  void TPSOR (Vector<somenumber> &v,
              const std::vector<size_type> &permutation,
              const std::vector<size_type> &inverse_permutation,
              const number        om = 1.) const;

  /**
   * Do one SOR step on <tt>v</tt>.  Performs a direct SOR step with right
   * hand side <tt>b</tt>.
   */
  template <typename somenumber>
  void SOR_step (Vector<somenumber> &v,
                 const Vector<somenumber> &b,
                 const number        om = 1.) const;

  /**
   * Do one adjoint SOR step on <tt>v</tt>.  Performs a direct TSOR step with
   * right hand side <tt>b</tt>.
   */
  template <typename somenumber>
  void TSOR_step (Vector<somenumber> &v,
                  const Vector<somenumber> &b,
                  const number        om = 1.) const;

  /**
   * Do one SSOR step on <tt>v</tt>.  Performs a direct SSOR step with right
   * hand side <tt>b</tt> by performing TSOR after SOR.
   */
  template <typename somenumber>
  void SSOR_step (Vector<somenumber> &v,
                  const Vector<somenumber> &b,
                  const number        om = 1.) const;
//@}
  /**
   * @name Iterators
   */
//@{

  /**
   * STL-like iterator with the first entry of the matrix. This is the version
   * for constant matrices.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  const_iterator begin () const;

  /**
   * Final iterator. This is the version for constant matrices.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  const_iterator end () const;

  /**
   * STL-like iterator with the first entry of the matrix. This is the version
   * for non-constant matrices.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  iterator begin ();

  /**
   * Final iterator. This is the version for non-constant matrices.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  iterator end ();

  /**
   * STL-like iterator with the first entry of row <tt>r</tt>. This is the
   * version for constant matrices.
   *
   * Note that if the given row is empty, i.e. does not contain any nonzero
   * entries, then the iterator returned by this function equals
   * <tt>end(r)</tt>. Note also that the iterator may not be dereferencable in
   * that case.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  const_iterator begin (const unsigned int r) const;

  /**
   * Final iterator of row <tt>r</tt>. It points to the first element past the
   * end of line @p r, or past the end of the entire sparsity pattern. This is
   * the version for constant matrices.
   *
   * Note that the end iterator is not necessarily dereferencable. This is in
   * particular the case if it is the end iterator for the last row of a
   * matrix.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  const_iterator end (const unsigned int r) const;

  /**
   * STL-like iterator with the first entry of row <tt>r</tt>. This is the
   * version for non-constant matrices.
   *
   * Note that if the given row is empty, i.e. does not contain any nonzero
   * entries, then the iterator returned by this function equals
   * <tt>end(r)</tt>. Note also that the iterator may not be dereferencable in
   * that case.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  iterator begin (const unsigned int r);

  /**
   * Final iterator of row <tt>r</tt>. It points to the first element past the
   * end of line @p r, or past the end of the entire sparsity pattern. This is
   * the version for non-constant matrices.
   *
   * Note that the end iterator is not necessarily dereferencable. This is in
   * particular the case if it is the end iterator for the last row of a
   * matrix.
   *
   * Note that due to the layout in ChunkSparseMatrix, iterating over matrix
   * entries is considerably slower than for a sparse matrix, as the iterator
   * is travels row-by-row, whereas data is stored in chunks of several rows
   * and columns.
   */
  iterator end (const unsigned int r);
//@}
  /**
   * @name Input/Output
   */
//@{

  /**
   * Print the matrix to the given stream, using the format <tt>(line,col)
   * value</tt>, i.e. one nonzero entry of the matrix per line.
   */
  void print (std::ostream &out) const;

  /**
   * Print the matrix in the usual format, i.e. as a matrix and not as a list
   * of nonzero elements. For better readability, elements not in the matrix
   * are displayed as empty space, while matrix elements which are explicitly
   * set to zero are displayed as such.
   *
   * The parameters allow for a flexible setting of the output format:
   * <tt>precision</tt> and <tt>scientific</tt> are used to determine the
   * number format, where <tt>scientific = false</tt> means fixed point
   * notation.  A zero entry for <tt>width</tt> makes the function compute a
   * width, but it may be changed to a positive value, if output is crude.
   *
   * Additionally, a character for an empty value may be specified.
   *
   * Finally, the whole matrix can be multiplied with a common denominator to
   * produce more readable output, even integers.
   *
   * @attention This function may produce <b>large</b> amounts of output if
   * applied to a large matrix!
   */
  void print_formatted (std::ostream       &out,
                        const unsigned int  precision   = 3,
                        const bool          scientific  = true,
                        const unsigned int  width       = 0,
                        const char         *zero_string = " ",
                        const double        denominator = 1.) const;

  /**
   * Print the actual pattern of the matrix. For each entry with an absolute
   * value larger than threshold, a '*' is printed, a ':' for every value
   * smaller and a '.' for every entry not allocated.
   */
  void print_pattern(std::ostream &out,
                     const double threshold = 0.) const;

  /**
   * Write the data of this object en bloc to a file. This is done in a binary
   * mode, so the output is neither readable by humans nor (probably) by other
   * computers using a different operating system or number format.
   *
   * The purpose of this function is that you can swap out matrices and
   * sparsity pattern if you are short of memory, want to communicate between
   * different programs, or allow objects to be persistent across different
   * runs of the program.
   */
  void block_write (std::ostream &out) const;

  /**
   * Read data that has previously been written by block_write() from a
   * file. This is done using the inverse operations to the above function, so
   * it is reasonably fast because the bitstream is not interpreted except for
   * a few numbers up front.
   *
   * The object is resized on this operation, and all previous contents are
   * lost. Note, however, that no checks are performed whether new data and
   * the underlying ChunkSparsityPattern object fit together. It is your
   * responsibility to make sure that the sparsity pattern and the data to be
   * read match.
   *
   * A primitive form of error checking is performed which will recognize the
   * bluntest attempts to interpret some data as a matrix stored bitwise to a
   * file that wasn't actually created that way, but not more.
   */
  void block_read (std::istream &in);
//@}
  /** @addtogroup Exceptions
   * @{ */

  /**
   * Exception
   */
  DeclException2 (ExcInvalidIndex,
                  int, int,
                  << "The entry with index <" << arg1 << ',' << arg2
                  << "> does not exist.");
  /**
   * Exception
   */
  DeclException1 (ExcInvalidIndex1,
                  int,
                  << "The index " << arg1 << " is not in the allowed range.");
  /**
   * Exception
   */
  DeclException0 (ExcDifferentChunkSparsityPatterns);
  /**
   * Exception
   */
  DeclException2 (ExcIteratorRange,
                  int, int,
                  << "The iterators denote a range of " << arg1
                  << " elements, but the given number of rows was " << arg2);
  /**
   * Exception
   */
  DeclException0 (ExcSourceEqualsDestination);
  //@}
private:
  /**
   * Pointer to the sparsity pattern used for this matrix. In order to
   * guarantee that it is not deleted while still in use, we subscribe to it
   * using the SmartPointer class.
   */
  SmartPointer<const ChunkSparsityPattern,ChunkSparseMatrix<number> > cols;

  /**
   * Array of values for all the nonzero entries. The position within the
   * matrix, i.e.  the row and column number for a given entry can only be
   * deduced using the sparsity pattern. The same holds for the more common
   * operation of finding an entry by its coordinates.
   */
  number *val;

  /**
   * Allocated size of #val. This can be larger than the actually used part if
   * the size of the matrix was reduced somewhen in the past by associating a
   * sparsity pattern with a smaller size to this object, using the reinit()
   * function.
   */
  size_type max_len;

  /**
   * Return the location of entry $(i,j)$ within the val array.
   */
  size_type compute_location (const size_type i,
                              const size_type j) const;

  // make all other sparse matrices friends
  template <typename somenumber> friend class ChunkSparseMatrix;

  /**
   * Also give access to internal details to the iterator/accessor
   * classes.
   */
  template <typename,bool> friend class ChunkSparseMatrixIterators::Iterator;
  template <typename,bool> friend class ChunkSparseMatrixIterators::Accessor;
};

/*@}*/

#ifndef DOXYGEN
/*---------------------- Inline functions -----------------------------------*/



template <typename number>
inline
typename ChunkSparseMatrix<number>::size_type
ChunkSparseMatrix<number>::m () const
{
  Assert (cols != 0, ExcNotInitialized());
  return cols->rows;
}


template <typename number>
inline
typename ChunkSparseMatrix<number>::size_type
ChunkSparseMatrix<number>::n () const
{
  Assert (cols != 0, ExcNotInitialized());
  return cols->cols;
}



template <typename number>
inline
const ChunkSparsityPattern &
ChunkSparseMatrix<number>::get_sparsity_pattern () const
{
  Assert (cols != 0, ExcNotInitialized());
  return *cols;
}



template <typename number>
inline
typename ChunkSparseMatrix<number>::size_type
ChunkSparseMatrix<number>::compute_location (const size_type i,
                                             const size_type j) const
{
  const size_type chunk_size = cols->get_chunk_size();
  const size_type chunk_index
    = cols->sparsity_pattern(i/chunk_size, j/chunk_size);

  if (chunk_index == ChunkSparsityPattern::invalid_entry)
    return ChunkSparsityPattern::invalid_entry;
  else
    {
      return (chunk_index * chunk_size * chunk_size
              +
              (i % chunk_size) * chunk_size
              +
              (j % chunk_size));
    }
}


template <typename number>
inline
void ChunkSparseMatrix<number>::set (const size_type i,
                                     const size_type j,
                                     const number value)
{

  Assert (numbers::is_finite(value), ExcNumberNotFinite());

  Assert (cols != 0, ExcNotInitialized());
  // it is allowed to set elements of the matrix that are not part of the
  // sparsity pattern, if the value to which we set it is zero
  const size_type index = compute_location(i,j);
  Assert ((index != SparsityPattern::invalid_entry) ||
          (value == 0.),
          ExcInvalidIndex(i,j));

  if (index != SparsityPattern::invalid_entry)
    val[index] = value;
}



template <typename number>
inline
void ChunkSparseMatrix<number>::add (const size_type i,
                                     const size_type j,
                                     const number value)
{

  Assert (numbers::is_finite(value), ExcNumberNotFinite());

  Assert (cols != 0, ExcNotInitialized());

  if (value != 0.)
    {
      const size_type index = compute_location(i,j);
      Assert ((index != ChunkSparsityPattern::invalid_entry),
              ExcInvalidIndex(i,j));

      val[index] += value;
    }
}



template <typename number>
template <typename number2>
inline
void ChunkSparseMatrix<number>::add (const size_type  row,
                                     const size_type  n_cols,
                                     const size_type *col_indices,
                                     const number2   *values,
                                     const bool       /*elide_zero_values*/,
                                     const bool       /*col_indices_are_sorted*/)
{
  // TODO: could be done more efficiently...
  for (size_type col=0; col<n_cols; ++col)
    add(row, col_indices[col], static_cast<number>(values[col]));
}



template <typename number>
inline
ChunkSparseMatrix<number> &
ChunkSparseMatrix<number>::operator *= (const number factor)
{
  Assert (cols != 0, ExcNotInitialized());
  Assert (val != 0, ExcNotInitialized());

  const size_type chunk_size = cols->get_chunk_size();

  // multiply all elements of the matrix with the given factor. this includes
  // the padding elements in chunks that overlap the boundaries of the actual
  // matrix -- but since multiplication with a number does not violate the
  // invariant of keeping these elements at zero nothing can happen
  number             *val_ptr    = val;
  const number *const end_ptr    = val +
                                   cols->sparsity_pattern.n_nonzero_elements()
                                   *
                                   chunk_size * chunk_size;
  while (val_ptr != end_ptr)
    *val_ptr++ *= factor;

  return *this;
}



template <typename number>
inline
ChunkSparseMatrix<number> &
ChunkSparseMatrix<number>::operator /= (const number factor)
{
  Assert (cols != 0, ExcNotInitialized());
  Assert (val != 0, ExcNotInitialized());
  Assert (factor !=0, ExcDivideByZero());

  const number factor_inv = 1. / factor;

  const size_type chunk_size = cols->get_chunk_size();

  // multiply all elements of the matrix with the given factor. this includes
  // the padding elements in chunks that overlap the boundaries of the actual
  // matrix -- but since multiplication with a number does not violate the
  // invariant of keeping these elements at zero nothing can happen
  number             *val_ptr    = val;
  const number *const end_ptr    = val +
                                   cols->sparsity_pattern.n_nonzero_elements()
                                   *
                                   chunk_size * chunk_size;

  while (val_ptr != end_ptr)
    *val_ptr++ *= factor_inv;

  return *this;
}



template <typename number>
inline
number ChunkSparseMatrix<number>::operator () (const size_type i,
                                               const size_type j) const
{
  Assert (cols != 0, ExcNotInitialized());
  AssertThrow (compute_location(i,j) != SparsityPattern::invalid_entry,
               ExcInvalidIndex(i,j));
  return val[compute_location(i,j)];
}



template <typename number>
inline
number ChunkSparseMatrix<number>::el (const size_type i,
                                      const size_type j) const
{
  Assert (cols != 0, ExcNotInitialized());
  const size_type index = compute_location(i,j);

  if (index != ChunkSparsityPattern::invalid_entry)
    return val[index];
  else
    return 0;
}



template <typename number>
inline
number ChunkSparseMatrix<number>::diag_element (const size_type i) const
{
  Assert (cols != 0, ExcNotInitialized());
  Assert (m() == n(),  ExcNotQuadratic());
  Assert (i<m(), ExcInvalidIndex1(i));

  // Use that the first element in each row of a quadratic matrix is the main
  // diagonal of the chunk sparsity pattern
  const size_type chunk_size = cols->get_chunk_size();
  return val[cols->sparsity_pattern.rowstart[i/chunk_size]
             *
             chunk_size * chunk_size
             +
             (i % chunk_size) * chunk_size
             +
             (i % chunk_size)];
}



template <typename number>
template <typename ForwardIterator>
inline
void
ChunkSparseMatrix<number>::copy_from (const ForwardIterator begin,
                                      const ForwardIterator end)
{
  Assert (static_cast<size_type >(std::distance (begin, end)) == m(),
          ExcIteratorRange (std::distance (begin, end), m()));

  // for use in the inner loop, we define a typedef to the type of the inner
  // iterators
  typedef typename std::iterator_traits<ForwardIterator>::value_type::const_iterator inner_iterator;
  size_type row=0;
  for (ForwardIterator i=begin; i!=end; ++i, ++row)
    {
      const inner_iterator end_of_row = i->end();
      for (inner_iterator j=i->begin(); j!=end_of_row; ++j)
        // write entries
        set (row, j->first, j->second);
    }
}



//---------------------------------------------------------------------------


namespace ChunkSparseMatrixIterators
{
  template <typename number>
  inline
  Accessor<number,true>::
  Accessor (const MatrixType   *matrix,
            const unsigned int  row)
    :
    ChunkSparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern(),
                                             row),
    matrix (matrix)
  {}



  template <typename number>
  inline
  Accessor<number,true>::
  Accessor (const MatrixType *matrix)
    :
    ChunkSparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern()),
    matrix (matrix)
  {}



  template <typename number>
  inline
  Accessor<number,true>::
  Accessor (const ChunkSparseMatrixIterators::Accessor<number,false> &a)
    :
    ChunkSparsityPatternIterators::Accessor (a),
    matrix (&a.get_matrix())
  {}



  template <typename number>
  inline
  number
  Accessor<number, true>::value () const
  {
    const unsigned int chunk_size = matrix->get_sparsity_pattern().get_chunk_size();
    return matrix->val[reduced_index() * chunk_size * chunk_size
                       +
                       chunk_row * chunk_size
                       +
                       chunk_col];
  }



  template <typename number>
  inline
  typename Accessor<number, true>::MatrixType &
  Accessor<number, true>::get_matrix () const
  {
    return *matrix;
  }



  template <typename number>
  inline
  Accessor<number, false>::Reference::Reference (
    const Accessor *accessor,
    const bool)
    :
    accessor (accessor)
  {}


  template <typename number>
  inline
  Accessor<number, false>::Reference::operator number() const
  {
    const unsigned int chunk_size = accessor->matrix->get_sparsity_pattern().get_chunk_size();
    return accessor->matrix->val[accessor->reduced_index() * chunk_size * chunk_size
                                 +
                                 accessor->chunk_row * chunk_size
                                 +
                                 accessor->chunk_col];
  }



  template <typename number>
  inline
  const typename Accessor<number, false>::Reference &
  Accessor<number, false>::Reference::operator = (const number n) const
  {
    const unsigned int chunk_size = accessor->matrix->get_sparsity_pattern().get_chunk_size();
    accessor->matrix->val[accessor->reduced_index() * chunk_size * chunk_size
                          +
                          accessor->chunk_row * chunk_size
                          +
                          accessor->chunk_col] = n;
    return *this;
  }



  template <typename number>
  inline
  const typename Accessor<number, false>::Reference &
  Accessor<number, false>::Reference::operator += (const number n) const
  {
    const unsigned int chunk_size = accessor->matrix->get_sparsity_pattern().get_chunk_size();
    accessor->matrix->val[accessor->reduced_index() * chunk_size * chunk_size
                          +
                          accessor->chunk_row * chunk_size
                          +
                          accessor->chunk_col] += n;
    return *this;
  }



  template <typename number>
  inline
  const typename Accessor<number, false>::Reference &
  Accessor<number, false>::Reference::operator -= (const number n) const
  {
    const unsigned int chunk_size = accessor->matrix->get_sparsity_pattern().get_chunk_size();
    accessor->matrix->val[accessor->reduced_index() * chunk_size * chunk_size
                          +
                          accessor->chunk_row * chunk_size
                          +
                          accessor->chunk_col] -= n;
    return *this;
  }



  template <typename number>
  inline
  const typename Accessor<number, false>::Reference &
  Accessor<number, false>::Reference::operator *= (const number n) const
  {
    const unsigned int chunk_size = accessor->matrix->get_sparsity_pattern().get_chunk_size();
    accessor->matrix->val[accessor->reduced_index() * chunk_size * chunk_size
                          +
                          accessor->chunk_row * chunk_size
                          +
                          accessor->chunk_col] *= n;
    return *this;
  }



  template <typename number>
  inline
  const typename Accessor<number, false>::Reference &
  Accessor<number, false>::Reference::operator /= (const number n) const
  {
    const unsigned int chunk_size = accessor->matrix->get_sparsity_pattern().get_chunk_size();
    accessor->matrix->val[accessor->reduced_index() * chunk_size * chunk_size
                          +
                          accessor->chunk_row * chunk_size
                          +
                          accessor->chunk_col] /= n;
    return *this;
  }



  template <typename number>
  inline
  Accessor<number,false>::
  Accessor (MatrixType         *matrix,
            const unsigned int  row)
    :
    ChunkSparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern(),
                                             row),
    matrix (matrix)
  {}



  template <typename number>
  inline
  Accessor<number,false>::
  Accessor (MatrixType         *matrix)
    :
    ChunkSparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern()),
    matrix (matrix)
  {}



  template <typename number>
  inline
  typename Accessor<number, false>::Reference
  Accessor<number, false>::value() const
  {
    return Reference(this,true);
  }




  template <typename number>
  inline
  typename Accessor<number, false>::MatrixType &
  Accessor<number, false>::get_matrix () const
  {
    return *matrix;
  }



  template <typename number, bool Constness>
  inline
  Iterator<number, Constness>::
  Iterator (MatrixType        *matrix,
            const unsigned int row)
    :
    accessor(matrix, row)
  {}



  template <typename number, bool Constness>
  inline
  Iterator<number, Constness>::
  Iterator (MatrixType *matrix)
    :
    accessor(matrix)
  {}



  template <typename number, bool Constness>
  inline
  Iterator<number, Constness>::
  Iterator (const ChunkSparseMatrixIterators::Iterator<number,false> &i)
    :
    accessor(*i)
  {}



  template <typename number, bool Constness>
  inline
  Iterator<number, Constness> &
  Iterator<number,Constness>::operator++ ()
  {
    accessor.advance ();
    return *this;
  }


  template <typename number, bool Constness>
  inline
  Iterator<number,Constness>
  Iterator<number,Constness>::operator++ (int)
  {
    const Iterator iter = *this;
    accessor.advance ();
    return iter;
  }


  template <typename number, bool Constness>
  inline
  const Accessor<number,Constness> &
  Iterator<number,Constness>::operator* () const
  {
    return accessor;
  }


  template <typename number, bool Constness>
  inline
  const Accessor<number,Constness> *
  Iterator<number,Constness>::operator-> () const
  {
    return &accessor;
  }


  template <typename number, bool Constness>
  inline
  bool
  Iterator<number,Constness>::
  operator == (const Iterator &other) const
  {
    return (accessor == other.accessor);
  }


  template <typename number, bool Constness>
  inline
  bool
  Iterator<number,Constness>::
  operator != (const Iterator &other) const
  {
    return ! (*this == other);
  }


  template <typename number, bool Constness>
  inline
  bool
  Iterator<number,Constness>::
  operator < (const Iterator &other) const
  {
    Assert (&accessor.get_matrix() == &other.accessor.get_matrix(),
            ExcInternalError());

    return (accessor < other.accessor);
  }


  template <typename number, bool Constness>
  inline
  bool
  Iterator<number,Constness>::
  operator > (const Iterator &other) const
  {
    return (other < *this);
  }


  template <typename number, bool Constness>
  inline
  int
  Iterator<number,Constness>::
  operator - (const Iterator &other) const
  {
    Assert (&accessor.get_matrix() == &other.accessor.get_matrix(),
            ExcInternalError());

    // TODO: can be optimized
    int difference = 0;
    if (*this < other)
      {
        Iterator copy = *this;
        while (copy != other)
          {
            ++copy;
            --difference;
          }
      }
    else
      {
        Iterator copy = other;
        while (copy != *this)
          {
            ++copy;
            ++difference;
          }
      }
    return difference;
  }



  template <typename number, bool Constness>
  inline
  Iterator<number,Constness>
  Iterator<number,Constness>::
  operator + (const unsigned int n) const
  {
    Iterator x = *this;
    for (unsigned int i=0; i<n; ++i)
      ++x;

    return x;
  }

}



template <typename number>
inline
typename ChunkSparseMatrix<number>::const_iterator
ChunkSparseMatrix<number>::begin () const
{
  return const_iterator(this, 0);
}


template <typename number>
inline
typename ChunkSparseMatrix<number>::const_iterator
ChunkSparseMatrix<number>::end () const
{
  return const_iterator(this);
}


template <typename number>
inline
typename ChunkSparseMatrix<number>::iterator
ChunkSparseMatrix<number>::begin ()
{
  return iterator(this, 0);
}


template <typename number>
inline
typename ChunkSparseMatrix<number>::iterator
ChunkSparseMatrix<number>::end ()
{
  return iterator(this);
}


template <typename number>
inline
typename ChunkSparseMatrix<number>::const_iterator
ChunkSparseMatrix<number>::begin (const unsigned int r) const
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return const_iterator(this, r);
}



template <typename number>
inline
typename ChunkSparseMatrix<number>::const_iterator
ChunkSparseMatrix<number>::end (const unsigned int r) const
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return const_iterator(this, r+1);
}



template <typename number>
inline
typename ChunkSparseMatrix<number>::iterator
ChunkSparseMatrix<number>::begin (const unsigned int r)
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return iterator(this, r);
}



template <typename number>
inline
typename ChunkSparseMatrix<number>::iterator
ChunkSparseMatrix<number>::end (const unsigned int r)
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return iterator(this, r+1);
}




#endif // DOXYGEN


/*----------------------------   chunk_sparse_matrix.h     ---------------------------*/

DEAL_II_NAMESPACE_CLOSE

#endif
/*----------------------------   chunk_sparse_matrix.h     ---------------------------*/