This file is indexed.

/usr/include/deal.II/lac/constraint_matrix.templates.h is in libdeal.ii-dev 8.1.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
// ---------------------------------------------------------------------
// $Id: constraint_matrix.templates.h 31932 2013-12-08 02:15:54Z heister $
//
// Copyright (C) 1999 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------


#ifndef __deal2__constraint_matrix_templates_h
#define __deal2__constraint_matrix_templates_h


#include <deal.II/lac/constraint_matrix.h>

#include <deal.II/base/table.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparsity_pattern.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/block_sparsity_pattern.h>
#include <deal.II/lac/block_sparse_matrix.h>
#include <deal.II/lac/parallel_vector.h>
#include <deal.II/lac/parallel_block_vector.h>
#include <deal.II/lac/petsc_parallel_vector.h>
#include <deal.II/lac/petsc_vector.h>
#include <deal.II/lac/trilinos_vector.h>

#include <iomanip>

DEAL_II_NAMESPACE_OPEN


template<typename number>
void
ConstraintMatrix::condense (const SparseMatrix<number> &uncondensed,
                            SparseMatrix<number>       &condensed) const
{
  // create two dummy vectors and enter the
  // other function
  Vector<number> dummy (0);
  condense (uncondensed, dummy, condensed, dummy);
}



template<typename number>
void
ConstraintMatrix::condense (SparseMatrix<number> &uncondensed) const
{
  Vector<number> dummy (0);
  condense (uncondensed, dummy);
}



template <typename number>
void
ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed) const
{
  BlockVector<number> dummy (0);
  condense (uncondensed, dummy);
}



template<class VectorType>
void
ConstraintMatrix::condense (const VectorType &uncondensed,
                            VectorType       &condensed) const
{
  Assert (sorted == true, ExcMatrixNotClosed());
  AssertDimension (condensed.size()+n_constraints(), uncondensed.size());

  // store for each line of the
  // vector its new line number after
  // compression. If the shift is -1,
  // this line will be condensed away
  std::vector<int> new_line;

  new_line.reserve (uncondensed.size());

  std::vector<ConstraintLine>::const_iterator next_constraint = lines.begin();
  size_type                                   shift           = 0;
  size_type n_rows = uncondensed.size();

  if (next_constraint == lines.end())
    // if no constraint is to be handled
    for (size_type row=0; row!=n_rows; ++row)
      new_line.push_back (row);
  else
    for (size_type row=0; row!=n_rows; ++row)
      if (row == next_constraint->line)
        {
          // this line is constrained
          new_line.push_back (-1);
          // note that @p lines is ordered
          ++shift;
          ++next_constraint;
          if (next_constraint == lines.end())
            // nothing more to do; finish rest
            // of loop
            {
              for (size_type i=row+1; i<n_rows; ++i)
                new_line.push_back (i-shift);
              break;
            };
        }
      else
        new_line.push_back (row-shift);


  next_constraint = lines.begin();
  // note: in this loop we need not check
  // whether @p next_constraint is a valid
  // iterator, since @p next_constraint is
  // only evaluated so often as there are
  // entries in new_line[*] which tells us
  // which constraints exist
  for (size_type row=0; row<uncondensed.size(); ++row)
    if (new_line[row] != -1)
      // line not constrained
      // copy entry
      condensed(new_line[row]) += uncondensed(row);

    else
      // line must be distributed
      {
        for (size_type q=0; q!=next_constraint->entries.size(); ++q)
          condensed(new_line[next_constraint->entries[q].first])
          +=
            uncondensed(row) * next_constraint->entries[q].second;

        ++next_constraint;
      };
}



template <class VectorType>
void
ConstraintMatrix::condense (VectorType &vec) const
{
  Assert (sorted == true, ExcMatrixNotClosed());

  // distribute all entries, and set them to zero. do so in
  // two loops because in the first one we need to add to elements
  // and in the second one we need to set elements to zero. for
  // parallel vectors, this can only work if we can put a compress()
  // in between, but we don't want to call compress() twice per entry
  for (std::vector<ConstraintLine>::const_iterator
       constraint_line = lines.begin();
       constraint_line!=lines.end(); ++constraint_line)
    {
      // in case the constraint is
      // inhomogeneous, this function is not
      // appropriate. Throw an exception.
      Assert (constraint_line->inhomogeneity == 0.,
              ExcMessage ("Inhomogeneous constraint cannot be condensed "
                          "without any matrix specified."));

      const typename VectorType::value_type old_value = vec(constraint_line->line);
      for (size_type q=0; q!=constraint_line->entries.size(); ++q)
        if (vec.in_local_range(constraint_line->entries[q].first) == true)
          vec(constraint_line->entries[q].first)
          += (static_cast<typename VectorType::value_type>
              (old_value) *
              constraint_line->entries[q].second);
    }

  vec.compress(VectorOperation::add);

  for (std::vector<ConstraintLine>::const_iterator
       constraint_line = lines.begin();
       constraint_line!=lines.end(); ++constraint_line)
    if (vec.in_local_range(constraint_line->line) == true)
      vec(constraint_line->line) = 0.;

  vec.compress(VectorOperation::insert);
}



template<typename number, class VectorType>
void
ConstraintMatrix::condense (const SparseMatrix<number> &uncondensed,
                            const VectorType           &uncondensed_vector,
                            SparseMatrix<number>       &condensed,
                            VectorType                 &condensed_vector) const
{
  // check whether we work on real vectors
  // or we just used a dummy when calling
  // the other function above.
  const bool use_vectors = (uncondensed_vector.size() == 0 &&
                            condensed_vector.size() == 0) ? false : true;

  const SparsityPattern &uncondensed_struct = uncondensed.get_sparsity_pattern ();

  Assert (sorted == true, ExcMatrixNotClosed());
  Assert (uncondensed_struct.is_compressed() == true, ExcMatrixNotClosed());
  Assert (condensed.get_sparsity_pattern().is_compressed() == true, ExcMatrixNotClosed());
  Assert (uncondensed_struct.n_rows() == uncondensed_struct.n_cols(),
          ExcNotQuadratic());
  Assert (condensed.n() == condensed.m(),
          ExcNotQuadratic());
  AssertDimension (condensed.n()+n_constraints(), uncondensed.n());
  if (use_vectors == true)
    {
      AssertDimension (condensed_vector.size()+n_constraints(),
                       uncondensed_vector.size());
      AssertDimension (condensed_vector.size(), condensed.m());
    }

  // store for each line of the matrix
  // its new line number
  // after compression. If the shift is
  // -1, this line will be condensed away
  std::vector<int> new_line;

  new_line.reserve (uncondensed_struct.n_rows());

  std::vector<ConstraintLine>::const_iterator next_constraint = lines.begin();
  size_type                                   shift           = 0;
  const size_type n_rows = uncondensed_struct.n_rows();

  if (next_constraint == lines.end())
    // if no constraint is to be handled
    for (size_type row=0; row!=n_rows; ++row)
      new_line.push_back (row);
  else
    for (size_type row=0; row!=n_rows; ++row)
      if (row == next_constraint->line)
        {
          // this line is constrained
          new_line.push_back (-1);
          // note that @p lines is ordered
          ++shift;
          ++next_constraint;
          if (next_constraint == lines.end())
            // nothing more to do; finish rest
            // of loop
            {
              for (size_type i=row+1; i<n_rows; ++i)
                new_line.push_back (i-shift);
              break;
            };
        }
      else
        new_line.push_back (row-shift);


  next_constraint = lines.begin();

  // note: in this loop we need not check
  // whether @p next_constraint is a valid
  // iterator, since @p next_constraint is
  // only evaluated so often as there are
  // entries in new_line[*] which tells us
  // which constraints exist
  for (size_type row=0; row<uncondensed_struct.n_rows(); ++row)
    if (new_line[row] != -1)
      {
        // line not constrained
        // copy entries if column will not
        // be condensed away, distribute
        // otherwise
        for (typename SparseMatrix<number>::const_iterator
             p = uncondensed.begin(row);
             p != uncondensed.end(row); ++p)
          if (new_line[p->column()] != -1)
            condensed.add (new_line[row],
                           new_line[p->column()],
                           p->value());
          else
            {
              // let c point to the
              // constraint of this column
              std::vector<ConstraintLine>::const_iterator c = lines.begin();
              while (c->line != p->column())
                ++c;

              for (size_type q=0; q!=c->entries.size(); ++q)
                // distribute to rows with
                // appropriate weight
                condensed.add (new_line[row], new_line[c->entries[q].first],
                               p->value() * c->entries[q].second);

              // take care of inhomogeneity:
              // need to subtract this element from the
              // vector. this corresponds to an
              // explicit elimination in the respective
              // row of the inhomogeneous constraint in
              // the matrix with Gauss elimination
              if (use_vectors == true)
                condensed_vector(new_line[row]) -= p->value() *
                                                   c->inhomogeneity;
            }

        if (use_vectors == true)
          condensed_vector(new_line[row]) += uncondensed_vector(row);
      }
    else
      // line must be distributed
      {
        for (typename SparseMatrix<number>::const_iterator
             p = uncondensed.begin(row);
             p != uncondensed.end(row); ++p)
          // for each column: distribute
          if (new_line[p->column()] != -1)
            // column is not constrained
            for (size_type q=0; q!=next_constraint->entries.size(); ++q)
              condensed.add (new_line[next_constraint->entries[q].first],
                             new_line[p->column()],
                             p->value() *
                             next_constraint->entries[q].second);

          else
            // not only this line but
            // also this col is constrained
            {
              // let c point to the constraint
              // of this column
              std::vector<ConstraintLine>::const_iterator c = lines.begin();
              while (c->line != p->column())
                ++c;

              for (size_type r=0; r!=c->entries.size(); ++r)
                for (size_type q=0; q!=next_constraint->entries.size(); ++q)
                  condensed.add (new_line[next_constraint->entries[q].first],
                                 new_line[c->entries[r].first],
                                 p->value() *
                                 next_constraint->entries[r].second *
                                 c->entries[r].second);

              if (use_vectors == true)
                for (size_type q=0; q!=next_constraint->entries.size(); ++q)
                  condensed_vector (new_line[next_constraint->entries[q].first])
                  -= p->value() *
                     next_constraint->entries[q].second *
                     c->inhomogeneity;
            }

        // condense the vector
        if (use_vectors == true)
          for (size_type q=0; q!=next_constraint->entries.size(); ++q)
            condensed_vector(new_line[next_constraint->entries[q].first])
            +=
              uncondensed_vector(row) * next_constraint->entries[q].second;

        ++next_constraint;
      };
}



template<typename number, class VectorType>
void
ConstraintMatrix::condense (SparseMatrix<number> &uncondensed,
                            VectorType           &vec) const
{
  // check whether we work on real vectors
  // or we just used a dummy when calling
  // the other function above.
  const bool use_vectors = vec.size() == 0 ? false : true;

  const SparsityPattern &sparsity = uncondensed.get_sparsity_pattern ();

  Assert (sorted == true, ExcMatrixNotClosed());
  Assert (sparsity.is_compressed() == true, ExcMatrixNotClosed());
  Assert (sparsity.n_rows() == sparsity.n_cols(),
          ExcNotQuadratic());
  if (use_vectors == true)
    AssertDimension (vec.size(), sparsity.n_rows());

  double average_diagonal = 0;
  for (size_type i=0; i<uncondensed.m(); ++i)
    average_diagonal += std::fabs (uncondensed.diag_element(i));
  average_diagonal /= uncondensed.m();

  // store for each index whether it must be
  // distributed or not. If entry is
  // invalid_size_type, no distribution is
  // necessary.  otherwise, the number states
  // which line in the constraint matrix
  // handles this index
  std::vector<size_type> distribute (sparsity.n_rows(),
                                     numbers::invalid_size_type);

  for (size_type c=0; c<lines.size(); ++c)
    distribute[lines[c].line] = c;

  const size_type n_rows = sparsity.n_rows();
  for (size_type row=0; row<n_rows; ++row)
    {
      if (distribute[row] == numbers::invalid_size_type)
        // regular line. loop over cols
        {
          for (typename SparseMatrix<number>::iterator
               entry = uncondensed.begin(row);
               entry != uncondensed.end(row); ++entry)
            {
              const size_type column = entry->column();

              // end of row reached?
              // this should not
              // happen, since we only
              // operate on compressed
              // matrices!
              Assert (column != SparsityPattern::invalid_entry,
                      ExcMatrixNotClosed());

              if (distribute[column] != numbers::invalid_size_type)
                // distribute entry at
                // regular row @p row
                // and irregular column
                // sparsity.get_column_numbers()[j];
                // set old entry to
                // zero
                {
                  for (size_type q=0;
                       q!=lines[distribute[column]].entries.size(); ++q)
                    uncondensed.add (row,
                                     lines[distribute[column]].entries[q].first,
                                     entry->value() *
                                     lines[distribute[column]].entries[q].second);

                  // need to subtract this element from the
                  // vector. this corresponds to an
                  // explicit elimination in the respective
                  // row of the inhomogeneous constraint in
                  // the matrix with Gauss elimination
                  if (use_vectors == true)
                    vec(row) -=
                      entry->value() * lines[distribute[column]].inhomogeneity;

                  // set old value to zero
                  entry->value() = 0.;
                }
            }
        }
      else
        // row must be distributed
        {
          for (typename SparseMatrix<number>::iterator
               entry = uncondensed.begin(row);
               entry != uncondensed.end(row); ++entry)
            {
              const size_type column = entry->column();

              // end of row reached?
              // this should not
              // happen, since we only
              // operate on compressed
              // matrices!
              Assert (column != SparsityPattern::invalid_entry,
                      ExcMatrixNotClosed());

              if (distribute[column] == numbers::invalid_size_type)
                // distribute entry at
                // irregular row
                // @p row and regular
                // column
                // column. set
                // old entry to zero
                {
                  for (size_type q=0;
                       q!=lines[distribute[row]].entries.size(); ++q)
                    uncondensed.add (lines[distribute[row]].entries[q].first,
                                     column,
                                     entry->value() *
                                     lines[distribute[row]].entries[q].second);

                  // set old entry to zero
                  entry->value() = 0.;
                }
              else
                // distribute entry at
                // irregular row @p row and
                // irregular column
                // @p column set old entry
                // to one on main
                // diagonal, zero otherwise
                {
                  for (size_type p=0; p!=lines[distribute[row]].entries.size(); ++p)
                    {
                      for (size_type q=0;
                           q!=lines[distribute[column]].entries.size(); ++q)
                        uncondensed.add (lines[distribute[row]].entries[p].first,
                                         lines[distribute[column]].entries[q].first,
                                         entry->value() *
                                         lines[distribute[row]].entries[p].second *
                                         lines[distribute[column]].entries[q].second);

                      if (use_vectors == true)
                        vec(lines[distribute[row]].entries[p].first) -=
                          entry->value() * lines[distribute[row]].entries[p].second *
                          lines[distribute[column]].inhomogeneity;
                    }

                  // set old entry to correct
                  // value
                  entry->value() = (row == column ? average_diagonal : 0. );
                }
            }

          // take care of vector
          if (use_vectors == true)
            {
              for (size_type q=0; q!=lines[distribute[row]].entries.size(); ++q)
                vec(lines[distribute[row]].entries[q].first)
                += (vec(row) * lines[distribute[row]].entries[q].second);

              vec(lines[distribute[row]].line) = 0.;
            }
        }
    }
}



template <typename number, class BlockVectorType>
void
ConstraintMatrix::condense (BlockSparseMatrix<number> &uncondensed,
                            BlockVectorType           &vec) const
{
  // check whether we work on real vectors
  // or we just used a dummy when calling
  // the other function above.
  const bool use_vectors = vec.n_blocks() == 0 ? false : true;

  const size_type blocks = uncondensed.n_block_rows();

  const BlockSparsityPattern &
  sparsity = uncondensed.get_sparsity_pattern ();

  Assert (sorted == true, ExcMatrixNotClosed());
  Assert (sparsity.is_compressed() == true, ExcMatrixNotClosed());
  Assert (sparsity.n_rows() == sparsity.n_cols(),
          ExcNotQuadratic());
  Assert (sparsity.n_block_rows() == sparsity.n_block_cols(),
          ExcNotQuadratic());
  Assert (sparsity.n_block_rows() == sparsity.n_block_cols(),
          ExcNotQuadratic());
  Assert (sparsity.get_column_indices() == sparsity.get_row_indices(),
          ExcNotQuadratic());

  if (use_vectors == true)
    {
      AssertDimension (vec.size(), sparsity.n_rows());
      AssertDimension (vec.n_blocks(), sparsity.n_block_rows());
    }

  double average_diagonal = 0;
  for (size_type b=0; b<uncondensed.n_block_rows(); ++b)
    for (size_type i=0; i<uncondensed.block(b,b).m(); ++i)
      average_diagonal += std::fabs (uncondensed.block(b,b).diag_element(i));
  average_diagonal /= uncondensed.m();

  const BlockIndices &
  index_mapping = sparsity.get_column_indices();

  // store for each index whether it must be
  // distributed or not. If entry is
  // numbers::invalid_size_type,
  // no distribution is necessary.
  // otherwise, the number states which line
  // in the constraint matrix handles this
  // index
  std::vector<size_type> distribute (sparsity.n_rows(),
                                     numbers::invalid_size_type);

  for (size_type c=0; c<lines.size(); ++c)
    distribute[lines[c].line] = c;

  const size_type n_rows = sparsity.n_rows();
  for (size_type row=0; row<n_rows; ++row)
    {
      // get index of this row
      // within the blocks
      const std::pair<size_type,size_type>
      block_index = index_mapping.global_to_local(row);
      const size_type block_row = block_index.first;

      if (distribute[row] == numbers::invalid_size_type)
        // regular line. loop over
        // all columns and see
        // whether this column must
        // be distributed
        {

          // to loop over all entries
          // in this row, we have to
          // loop over all blocks in
          // this blockrow and the
          // corresponding row
          // therein
          for (size_type block_col=0; block_col<blocks; ++block_col)
            {
              for (typename SparseMatrix<number>::iterator
                   entry = uncondensed.block(block_row, block_col).begin(block_index.second);
                   entry != uncondensed.block(block_row, block_col).end(block_index.second);
                   ++entry)
                {
                  const size_type global_col
                    = index_mapping.local_to_global(block_col,entry->column());

                  if (distribute[global_col] != numbers::invalid_size_type)
                    // distribute entry at
                    // regular row @p row
                    // and irregular column
                    // global_col; set old
                    // entry to zero
                    {
                      const double old_value = entry->value ();

                      for (size_type q=0;
                           q!=lines[distribute[global_col]].entries.size(); ++q)
                        uncondensed.add (row,
                                         lines[distribute[global_col]].entries[q].first,
                                         old_value *
                                         lines[distribute[global_col]].entries[q].second);

                      // need to subtract this element from the
                      // vector. this corresponds to an
                      // explicit elimination in the respective
                      // row of the inhomogeneous constraint in
                      // the matrix with Gauss elimination
                      if (use_vectors == true)
                        vec(row) -= entry->value() *
                                    lines[distribute[global_col]].inhomogeneity;

                      entry->value() = 0.;
                    }
                }
            }
        }
      else
        {
          // row must be
          // distributed. split the
          // whole row into the
          // chunks defined by the
          // blocks
          for (size_type block_col=0; block_col<blocks; ++block_col)
            {
              for (typename SparseMatrix<number>::iterator
                   entry = uncondensed.block(block_row, block_col).begin(block_index.second);
                   entry != uncondensed.block(block_row, block_col).end(block_index.second);
                   ++entry)
                {
                  const size_type global_col
                    = index_mapping.local_to_global (block_col, entry->column());

                  if (distribute[global_col] ==
                      numbers::invalid_size_type)
                    // distribute
                    // entry at
                    // irregular
                    // row @p row
                    // and regular
                    // column
                    // global_col. set
                    // old entry to
                    // zero
                    {
                      const double old_value = entry->value();

                      for (size_type q=0;
                           q!=lines[distribute[row]].entries.size(); ++q)
                        uncondensed.add (lines[distribute[row]].entries[q].first,
                                         global_col,
                                         old_value *
                                         lines[distribute[row]].entries[q].second);

                      entry->value() = 0.;
                    }
                  else
                    // distribute entry at
                    // irregular row @p row
                    // and irregular column
                    // @p global_col set old
                    // entry to one if on
                    // main diagonal, zero
                    // otherwise
                    {
                      const double old_value = entry->value ();

                      for (size_type p=0; p!=lines[distribute[row]].entries.size(); ++p)
                        {
                          for (size_type q=0; q!=lines[distribute[global_col]].entries.size(); ++q)
                            uncondensed.add (lines[distribute[row]].entries[p].first,
                                             lines[distribute[global_col]].entries[q].first,
                                             old_value *
                                             lines[distribute[row]].entries[p].second *
                                             lines[distribute[global_col]].entries[q].second);

                          if (use_vectors == true)
                            vec(lines[distribute[row]].entries[p].first) -=
                              old_value * lines[distribute[row]].entries[p].second *
                              lines[distribute[global_col]].inhomogeneity;
                        }

                      entry->value() = (row == global_col ? average_diagonal : 0. );
                    }
                }
            }

          // take care of vector
          if (use_vectors == true)
            {
              for (size_type q=0; q!=lines[distribute[row]].entries.size(); ++q)
                vec(lines[distribute[row]].entries[q].first)
                += (vec(row) * lines[distribute[row]].entries[q].second);

              vec(lines[distribute[row]].line) = 0.;
            }
        }
    }
}


//TODO: I'm sure the followng could be made more elegant by using a bit of
//introspection using static member variables of the various vector
//classes to dispatch between the different functions, rather than using
//knowledge of the individual types

// number of functions to select the right implementation for set_zero().
namespace internal
{
  namespace ConstraintMatrix
  {
    namespace
    {
      typedef types::global_dof_index size_type;

      template<class VEC>
      void set_zero_parallel(const std::vector<size_type> &cm, VEC &vec, size_type shift = 0)
      {
        Assert(!vec.has_ghost_elements(), ExcInternalError());
        IndexSet locally_owned = vec.locally_owned_elements();
        for (typename std::vector<size_type>::const_iterator it = cm.begin();
             it != cm.end(); ++it)
          {
            // If shift>0 then we are working on a part of a BlockVector
            // so vec(i) is actually the global entry i+shift.
            // We first make sure the line falls into the range of vec,
            // then check if is part of the local part of the vector, before
            // finally setting it to 0.
            if ((*it)<shift)
              continue;
            size_type idx = *it - shift;
            if (idx<vec.size() && locally_owned.is_element(idx))
              vec(idx) = 0.;
          }
      }

      template<typename Number>
      void set_zero_parallel(const std::vector<size_type> &cm, parallel::distributed::Vector<Number> &vec, size_type shift = 0)
      {
        for (typename std::vector<size_type>::const_iterator it = cm.begin();
             it != cm.end(); ++it)
          {
            // If shift>0 then we are working on a part of a BlockVector
            // so vec(i) is actually the global entry i+shift.
            // We first make sure the line falls into the range of vec,
            // then check if is part of the local part of the vector, before
            // finally setting it to 0.
            if ((*it)<shift)
              continue;
            size_type idx = *it - shift;
            if (vec.in_local_range(idx))
              vec(idx) = 0.;
          }
        vec.zero_out_ghosts();
      }

      template<class VEC>
      void set_zero_in_parallel(const std::vector<size_type> &cm, VEC &vec, internal::bool2type<false>)
      {
        set_zero_parallel(cm, vec, 0);
      }

      // in parallel for BlockVectors
      template<class VEC>
      void set_zero_in_parallel(const std::vector<size_type> &cm, VEC &vec, internal::bool2type<true>)
      {
        size_type start_shift = 0;
        for (size_type j=0; j<vec.n_blocks(); ++j)
          {
            set_zero_parallel(cm, vec.block(j), start_shift);
            start_shift += vec.block(j).size();
          }
      }

      template<class VEC>
      void set_zero_serial(const std::vector<size_type> &cm, VEC &vec)
      {
        for (typename std::vector<size_type>::const_iterator it = cm.begin();
             it != cm.end(); ++it)
          vec(*it) = 0.;
      }

      template<class VEC>
      void set_zero_all(const std::vector<size_type> &cm, VEC &vec)
      {
        set_zero_in_parallel<VEC>(cm, vec, internal::bool2type<IsBlockVector<VEC>::value>());
        vec.compress(VectorOperation::insert);
      }


      template<class T>
      void set_zero_all(const std::vector<size_type> &cm, dealii::Vector<T> &vec)
      {
        set_zero_serial(cm, vec);
      }

      template<class T>
      void set_zero_all(const std::vector<size_type> &cm, dealii::BlockVector<T> &vec)
      {
        set_zero_serial(cm, vec);
      }
    }
  }
}


template <class VectorType>
void
ConstraintMatrix::set_zero (VectorType &vec) const
{
  // since we lines is a private member, we cannot pass it to the functions
  // above. therefore, copy the content which is cheap
  std::vector<size_type> constrained_lines(lines.size());
  for (unsigned int i=0; i<lines.size(); ++i)
    constrained_lines[i] = lines[i].line;
  internal::ConstraintMatrix::set_zero_all(constrained_lines, vec);
}




template <typename VectorType>
void
ConstraintMatrix::
distribute_local_to_global (const Vector<double>            &local_vector,
                            const std::vector<size_type> &local_dof_indices,
                            VectorType                      &global_vector,
                            const FullMatrix<double>        &local_matrix) const
{
  Assert (sorted == true, ExcMatrixNotClosed());
  AssertDimension (local_vector.size(), local_dof_indices.size());
  AssertDimension (local_matrix.m(), local_dof_indices.size());
  AssertDimension (local_matrix.n(), local_dof_indices.size());

  const size_type n_local_dofs = local_vector.size();
  if (lines.empty())
    global_vector.add(local_dof_indices, local_vector);
  else
    for (size_type i=0; i<n_local_dofs; ++i)
      {
        // check whether the current index is
        // constrained. if not, just write the entry
        // into the vector. otherwise, need to resolve
        // the constraint
        if (is_constrained(local_dof_indices[i]) == false)
          {
            global_vector(local_dof_indices[i]) += local_vector(i);
            continue;
          }

        // find the constraint line to the given
        // global dof index
        const size_type line_index = calculate_line_index (local_dof_indices[i]);
        const ConstraintLine *position =
          lines_cache.size() <= line_index ? 0 : &lines[lines_cache[line_index]];

        // Gauss elimination of the matrix columns
        // with the inhomogeneity. Go through them one
        // by one and again check whether they are
        // constrained. If so, distribute the constraint
        const double val = position->inhomogeneity;
        if (val != 0)
          for (size_type j=0; j<n_local_dofs; ++j)
            if (is_constrained(local_dof_indices[j]) == false)
              global_vector(local_dof_indices[j]) -= val * local_matrix(j,i);
            else
              {
                const double matrix_entry = local_matrix(j,i);
                if (matrix_entry == 0)
                  continue;

                const ConstraintLine &position_j =
                  lines[lines_cache[calculate_line_index(local_dof_indices[j])]];
                for (size_type q=0; q<position_j.entries.size(); ++q)
                  {
                    Assert (!(!local_lines.size()
                              || local_lines.is_element(position_j.entries[q].first))
                            || is_constrained(position_j.entries[q].first) == false,
                            ExcMessage ("Tried to distribute to a fixed dof."));
                    global_vector(position_j.entries[q].first)
                    -= val * position_j.entries[q].second * matrix_entry;
                  }
              }

        // now distribute the constraint,
        // but make sure we don't touch
        // the entries of fixed dofs
        for (size_type j=0; j<position->entries.size(); ++j)
          {
            Assert (!(!local_lines.size()
                      || local_lines.is_element(position->entries[j].first))
                    || is_constrained(position->entries[j].first) == false,
                    ExcMessage ("Tried to distribute to a fixed dof."));
            global_vector(position->entries[j].first)
            += local_vector(i) * position->entries[j].second;
          }
      }
}



template<class VectorType>
void
ConstraintMatrix::distribute (const VectorType &condensed,
                              VectorType       &uncondensed) const
{
  Assert (sorted == true, ExcMatrixNotClosed());
  AssertDimension (condensed.size()+n_constraints(), uncondensed.size());

  // store for each line of the new vector
  // its old line number before
  // distribution. If the shift is
  // -1, this line was condensed away
  std::vector<int> old_line;

  old_line.reserve (uncondensed.size());

  std::vector<ConstraintLine>::const_iterator next_constraint = lines.begin();
  size_type                                   shift           = 0;
  size_type n_rows = uncondensed.size();

  if (next_constraint == lines.end())
    // if no constraint is to be handled
    for (size_type row=0; row!=n_rows; ++row)
      old_line.push_back (row);
  else
    for (size_type row=0; row!=n_rows; ++row)
      if (row == next_constraint->line)
        {
          // this line is constrained
          old_line.push_back (-1);
          // note that @p lines is ordered
          ++shift;
          ++next_constraint;
          if (next_constraint == lines.end())
            // nothing more to do; finish rest
            // of loop
            {
              for (size_type i=row+1; i<n_rows; ++i)
                old_line.push_back (i-shift);
              break;
            }
        }
      else
        old_line.push_back (row-shift);


  next_constraint = lines.begin();
  // note: in this loop we need not check
  // whether @p next_constraint is a valid
  // iterator, since @p next_constraint is
  // only evaluated so often as there are
  // entries in new_line[*] which tells us
  // which constraints exist
  for (size_type line=0; line<uncondensed.size(); ++line)
    if (old_line[line] != -1)
      // line was not condensed away
      uncondensed(line) = condensed(old_line[line]);
    else
      {
        // line was condensed away,
        // create it newly. first set
        // it to zero
        uncondensed(line) = next_constraint->inhomogeneity;
        // then add the different
        // contributions
        for (size_type i=0; i<next_constraint->entries.size(); ++i)
          uncondensed(line) += (condensed(old_line[next_constraint->entries[i].first]) *
                                next_constraint->entries[i].second);
        ++next_constraint;
      };
}


namespace internal
{
  namespace
  {
    // create an output vector that consists of the input vector's locally owned
    // elements plus some ghost elements that need to be imported from elsewhere
    //
    // this is an operation that is different for all vector types and so we
    // need a few overloads
#ifdef DEAL_II_WITH_TRILINOS
    void
    import_vector_with_ghost_elements (const TrilinosWrappers::MPI::Vector &vec,
                                       const IndexSet                      &/*locally_owned_elements*/,
                                       const IndexSet                      &needed_elements,
                                       TrilinosWrappers::MPI::Vector       &output,
                                       const internal::bool2type<false>     /*is_block_vector*/)
    {
      Assert(!vec.has_ghost_elements(),
             TrilinosWrappers::VectorBase::ExcGhostsPresent());
#ifdef DEAL_II_WITH_MPI
      const Epetra_MpiComm *mpi_comm
        = dynamic_cast<const Epetra_MpiComm *>(&vec.trilinos_vector().Comm());

      Assert (mpi_comm != 0, ExcInternalError());
      output.reinit (needed_elements, mpi_comm->GetMpiComm());
#else
      output.reinit (needed_elements, MPI_COMM_WORLD);
#endif
      output = vec;
    }
#endif

#ifdef DEAL_II_WITH_PETSC
    void
    import_vector_with_ghost_elements (const PETScWrappers::MPI::Vector &vec,
                                       const IndexSet                   &locally_owned_elements,
                                       const IndexSet                   &needed_elements,
                                       PETScWrappers::MPI::Vector       &output,
                                       const internal::bool2type<false>  /*is_block_vector*/)
    {
      output.reinit (vec.get_mpi_communicator(), locally_owned_elements, needed_elements);
      output = vec;
    }
#endif

    template <typename number>
    void
    import_vector_with_ghost_elements (const parallel::distributed::Vector<number> &vec,
                                       const IndexSet                              &locally_owned_elements,
                                       const IndexSet                              &needed_elements,
                                       parallel::distributed::Vector<number>       &output,
                                       const internal::bool2type<false>             /*is_block_vector*/)
    {
      // TODO: the in vector might already have all elements. need to find a
      // way to efficiently avoid the copy then
      const_cast<parallel::distributed::Vector<number>&>(vec).zero_out_ghosts();
      output.reinit (locally_owned_elements, needed_elements, vec.get_mpi_communicator());
      output = vec;
      output.update_ghost_values();
    }


    // all other vector non-block vector types are sequential and we should
    // not have this function called at all -- so throw an exception
    template <typename Vector>
    void
    import_vector_with_ghost_elements (const Vector                     &/*vec*/,
                                       const IndexSet                   &/*locally_owned_elements*/,
                                       const IndexSet                   &/*needed_elements*/,
                                       Vector                           &/*output*/,
                                       const internal::bool2type<false>  /*is_block_vector*/)
    {
      Assert (false, ExcMessage ("We shouldn't even get here!"));
    }


    // for block vectors, simply dispatch to the individual blocks
    template <class VectorType>
    void
    import_vector_with_ghost_elements (const VectorType                &vec,
                                       const IndexSet                  &locally_owned_elements,
                                       const IndexSet                  &needed_elements,
                                       VectorType                      &output,
                                       const internal::bool2type<true>  /*is_block_vector*/)
    {
      output.reinit (vec.n_blocks());

      types::global_dof_index block_start = 0;
      for (unsigned int b=0; b<vec.n_blocks(); ++b)
        {
          import_vector_with_ghost_elements (vec.block(b),
                                             locally_owned_elements.get_view (block_start, block_start+vec.block(b).size()),
                                             needed_elements.get_view (block_start, block_start+vec.block(b).size()),
                                             output.block(b),
                                             internal::bool2type<false>());
          block_start += vec.block(b).size();
        }

      output.collect_sizes ();
    }
  }
}


template <class VectorType>
void
ConstraintMatrix::distribute (VectorType &vec) const
{
  Assert (sorted==true, ExcMatrixNotClosed());

  // if the vector type supports parallel storage and if the vector actually
  // does store only part of the vector, distributing is slightly more
  // complicated. we might be able to skip the complicated part if one
  // processor owns everything and pretend that this is a sequential vector,
  // but it is difficult for the other processors to know whether they should
  // not do anything or if other processors will create a temporary vector,
  // exchange data (requiring communication, maybe even with the processors
  // that do not own anything because of that particular parallel model), and
  // call compress() finally. the first case here is for the complicated case,
  // the last else is for the simple case (sequential vector)
  const IndexSet vec_owned_elements = vec.locally_owned_elements();
  if (vec.supports_distributed_data == true)
    {
      // This processor owns only part of the vector. one may think that
      // every processor should be able to simply communicate those elements
      // it owns and for which it knows that they act as sources to constrained
      // DoFs to the owner of these DoFs. This would lead to a scheme where all
      // we need to do is to add some local elements to (possibly non-local) ones
      // and then call compress().
      //
      // Alas, this scheme does not work as evidenced by the disaster of bug #51,
      // see http://code.google.com/p/dealii/issues/detail?id=51 and the
      // reversion of one attempt that implements this in r29662. Rather, we
      // need to get a vector that has all the *sources* or constraints we
      // own locally, possibly as ghost vector elements, then read from them,
      // and finally throw away the ghosted vector. Implement this in the following.
      IndexSet needed_elements = vec_owned_elements;

      typedef std::vector<ConstraintLine>::const_iterator constraint_iterator;
      for (constraint_iterator it = lines.begin();
           it != lines.end(); ++it)
        if (vec_owned_elements.is_element(it->line))
          for (unsigned int i=0; i<it->entries.size(); ++i)
            if (!vec_owned_elements.is_element(it->entries[i].first))
              needed_elements.add_index(it->entries[i].first);

      VectorType ghosted_vector;
      internal::import_vector_with_ghost_elements (vec,
                                                   vec_owned_elements, needed_elements,
                                                   ghosted_vector,
                                                   internal::bool2type<IsBlockVector<VectorType>::value>());

      for (constraint_iterator it = lines.begin();
           it != lines.end(); ++it)
        if (vec_owned_elements.is_element(it->line))
          {
            typename VectorType::value_type
            new_value = it->inhomogeneity;
            for (unsigned int i=0; i<it->entries.size(); ++i)
              new_value += (static_cast<typename VectorType::value_type>
                            (ghosted_vector(it->entries[i].first)) *
                            it->entries[i].second);
            Assert(numbers::is_finite(new_value), ExcNumberNotFinite());
            vec(it->line) = new_value;
          }

      // now compress to communicate the entries that we added to
      // and that weren't to local processors to the owner
      //
      // this shouldn't be strictly necessary but it probably doesn't
      // hurt either
      vec.compress (VectorOperation::insert);
    }
  else
    // purely sequential vector (either because the type doesn't
    // support anything else or because it's completely stored
    // locally)
    {
      std::vector<ConstraintLine>::const_iterator next_constraint = lines.begin();
      for (; next_constraint != lines.end(); ++next_constraint)
        {
          // fill entry in line
          // next_constraint.line by adding the
          // different contributions
          typename VectorType::value_type
          new_value = next_constraint->inhomogeneity;
          for (unsigned int i=0; i<next_constraint->entries.size(); ++i)
            new_value += (static_cast<typename VectorType::value_type>
                          (vec(next_constraint->entries[i].first)) *
                          next_constraint->entries[i].second);
          Assert(numbers::is_finite(new_value), ExcNumberNotFinite());
          vec(next_constraint->line) = new_value;
        }
    }
}



// Some helper definitions for the local_to_global functions.
namespace internals
{
  typedef types::global_dof_index size_type;

  // this struct contains all the information we need to store about each of
  // the global entries (global_row): are they obtained directly by some local
  // entry (local_row) or some constraints (constraint_position). This is not
  // directly used in the user code, but accessed via the GlobalRowsFromLocal.
  //
  // The actions performed here correspond to reshaping the constraint
  // information from global degrees of freedom to local ones (i.e.,
  // cell-related DoFs), and also transforming the constraint information from
  // compressed row storage (each local dof that is constrained has a list of
  // constraint entries associated to it) into compressed column storage based
  // on the cell-related DoFs (we have a list of global degrees of freedom,
  // and to each we have a list of local rows where the entries come from). To
  // increase the speed, we additionally store whether an entry is generated
  // directly from the local degrees of freedom or whether it comes from a
  // constraint.
  struct Distributing
  {
    Distributing (const size_type global_row = numbers::invalid_size_type,
                  const size_type local_row = numbers::invalid_size_type);
    Distributing (const Distributing &in);
    Distributing &operator = (const Distributing &in);
    bool operator < (const Distributing &in) const
    {
      return global_row<in.global_row;
    };

    size_type global_row;
    size_type local_row;
    mutable size_type constraint_position;
  };

  inline
  Distributing::Distributing (const size_type global_row,
                              const size_type local_row) :
    global_row (global_row),
    local_row (local_row),
    constraint_position (numbers::invalid_size_type) {}

  inline
  Distributing::Distributing (const Distributing &in)
    :
    constraint_position (numbers::invalid_size_type)
  {
    *this = (in);
  }

  inline
  Distributing &Distributing::operator = (const Distributing &in)
  {
    global_row = in.global_row;
    local_row = in.local_row;
    // the constraints pointer should not contain any data here.
    Assert (constraint_position == numbers::invalid_size_type,
            ExcInternalError());

    if (in.constraint_position != numbers::invalid_size_type)
      {
        constraint_position = in.constraint_position;
        in.constraint_position = numbers::invalid_size_type;
      }
    return *this;
  }



  // this is a cache for constraints that are encountered on a local level.
  // The functionality is similar to
  // std::vector<std::vector<std::pair<uint,double> > >, but tuned so that
  // frequent memory allocation for each entry is avoided. The data is put
  // into a std::vector<std::pair<uint,double> > and the row length is kept
  // fixed at row_length. Both the number of rows and the row length can
  // change is this structure is filled. In that case, the data is
  // rearranged. This is not directly used in the user code, but accessed via
  // the GlobalRowsFromLocal.
  struct DataCache
  {
    DataCache ()
      :
      row_length (8)
    {}

    void reinit ()
    {
      individual_size.resize(0);
      data.resize(0);
    }

    size_type insert_new_index (const std::pair<size_type,double> &pair)
    {
      Assert(row_length > 0, ExcInternalError());
      const unsigned int index = individual_size.size();
      individual_size.push_back(1);
      data.resize(individual_size.size()*row_length);
      data[index*row_length] = pair;
      individual_size[index] = 1;
      return index;
    }

    void append_index (const size_type index,
                       const std::pair<size_type,double> &pair)
    {
      AssertIndexRange (index, individual_size.size());
      const size_type my_length = individual_size[index];
      if (my_length == row_length)
        {
          AssertDimension(data.size(), individual_size.size()*row_length);
          // no space left in this row, need to double row_length and
          // rearrange the data items. Move all items to the right except the
          // first one, starting at the back. Since individual_size contains
          // at least one element when we get here, subtracting 1 works fine.
          data.resize(2*data.size());
          for (size_type i=individual_size.size()-1; i>0; --i)
            std::memmove(&data[i*row_length*2], &data[i*row_length],
                         individual_size[i]*
                         sizeof(std::pair<size_type,double>));
          row_length *= 2;
        }
      data[index*row_length+my_length] = pair;
      individual_size[index] = my_length + 1;
    }

    size_type
    get_size (const size_type index) const
    {
      return individual_size[index];
    }

    const std::pair<size_type,double> *
    get_entry (const size_type index) const
    {
      return &data[index*row_length];
    }

    size_type row_length;

    std::vector<std::pair<size_type,double> > data;

    std::vector<size_type> individual_size;
  };



  // collects all the global rows from a local contribution (cell) and their
  // origin (direct/constraint). this is basically a vector consisting of
  // "Distributing" structs using access via the DataCache. Provides some
  // specialized sort and insert functions.
  //
  // in case there are no constraints, this is basically a list of pairs
  // <uint,unit> with the first index being the global index and the second
  // index the local index. The list is sorted with respect to the global
  // index.
  //
  // in case there are constraints, a global dof might get a contribution also
  // because it gets data from a constrained dof. This means that a global dof
  // might also have indirect contributions from a local dof via a constraint,
  // besides the direct ones.
  //
  // The actions performed here correspond to reshaping the constraint
  // information from global degrees of freedom to local ones (i.e.,
  // cell-related DoFs), and also transforming the constraint information from
  // compressed row storage (each local dof that is constrained has a list of
  // constraint entries associated to it) into compressed column storage based
  // on the cell-related DoFs (we have a list of global degrees of freedom,
  // and to each we have a list of local rows where the entries come from). To
  // increase the speed, we additionally store whether an entry is generated
  // directly from the local degrees of freedom or whether it comes from a
  // constraint.
  class GlobalRowsFromLocal
  {
  public:
    GlobalRowsFromLocal ()
      :
      n_active_rows (0),
      n_inhomogeneous_rows (0)
    {}

    void reinit (const size_type n_local_rows)
    {
      total_row_indices.resize(n_local_rows);
      for (unsigned int i=0; i<n_local_rows; ++i)
        total_row_indices[i].constraint_position = numbers::invalid_size_type;
      n_active_rows = n_local_rows;
      n_inhomogeneous_rows = 0;
      data_cache.reinit();
    }

    // implemented below
    void insert_index (const size_type global_row,
                       const size_type local_row,
                       const double       constraint_value);
    void sort ();

    // Print object for debugging purpose
    void print(std::ostream &os)
    {
      os << "Active rows " << n_active_rows << std::endl
         << "Constr rows " << n_constraints() << std::endl
         << "Inhom  rows " << n_inhomogeneous_rows << std::endl
         << "Local: ";
      for (size_type i=0 ; i<total_row_indices.size() ; ++i)
        os << ' ' << std::setw(4) << total_row_indices[i].local_row;
      os << std::endl
         << "Global:";
      for (size_type i=0 ; i<total_row_indices.size() ; ++i)
        os << ' ' << std::setw(4) << total_row_indices[i].global_row;
      os << std::endl
         << "ConPos:";
      for (size_type i=0 ; i<total_row_indices.size() ; ++i)
        os << ' ' << std::setw(4) << total_row_indices[i].constraint_position;
      os << std::endl;
    }


    // return all kind of information on the constraints

    // returns the number of global indices in the struct
    size_type size () const
    {
      return n_active_rows;
    }

    // returns the number of constraints that are associated to the
    // counter_index-th entry in the list
    size_type size (const size_type counter_index) const
    {
      return (total_row_indices[counter_index].constraint_position ==
              numbers::invalid_size_type ?
              0 :
              data_cache.get_size(total_row_indices[counter_index].
                                  constraint_position));
    }

    // returns the global row of the counter_index-th entry in the list
    size_type global_row (const size_type counter_index) const
    {
      return total_row_indices[counter_index].global_row;
    }

    // returns the global row of the counter_index-th entry in the list
    size_type &global_row (const size_type counter_index)
    {
      return total_row_indices[counter_index].global_row;
    }

    // returns the local row in the cell matrix associated with the
    // counter_index-th entry in the list. Returns invalid_size_type for
    // constrained rows
    size_type local_row (const size_type counter_index) const
    {
      return total_row_indices[counter_index].local_row;
    }

    // writable index
    size_type &local_row (const size_type counter_index)
    {
      return total_row_indices[counter_index].local_row;
    }

    // returns the local row in the cell matrix associated with the
    // counter_index-th entry in the list in the index_in_constraint-th
    // position of constraints
    size_type local_row (const size_type counter_index,
                         const size_type index_in_constraint) const
    {
      return (data_cache.get_entry(total_row_indices[counter_index].constraint_position)
              [index_in_constraint]).first;
    }

    // returns the value of the constraint in the counter_index-th entry in
    // the list in the index_in_constraint-th position of constraints
    double constraint_value (const size_type counter_index,
                             const size_type index_in_constraint) const
    {
      return (data_cache.get_entry(total_row_indices[counter_index].constraint_position)
              [index_in_constraint]).second;
    }

    // returns whether there is one row with indirect contributions (i.e.,
    // there has been at least one constraint with non-trivial ConstraintLine)
    bool have_indirect_rows () const
    {
      return data_cache.individual_size.empty() == false;
    }

    // append an entry that is constrained. This means that there is one less
    // nontrivial row
    void insert_constraint (const size_type constrained_local_dof)
    {
      --n_active_rows;
      total_row_indices[n_active_rows].local_row = constrained_local_dof;
      total_row_indices[n_active_rows].global_row = numbers::invalid_size_type;
    }

    // returns the number of constrained dofs in the structure. Constrained
    // dofs do not contribute directly to the matrix, but are needed in order
    // to set matrix diagonals and resolve inhomogeneities
    size_type n_constraints () const
    {
      return total_row_indices.size()-n_active_rows;
    }

    // returns the number of constrained dofs in the structure that have an
    // inhomogeneity
    size_type n_inhomogeneities () const
    {
      return n_inhomogeneous_rows;
    }

    // tells the structure that the ith constraint is
    // inhomogeneous. inhomogeneous constraints contribute to right hand
    // sides, so to have fast access to them, put them before homogeneous
    // constraints
    void set_ith_constraint_inhomogeneous (const size_type i)
    {
      Assert (i >= n_inhomogeneous_rows, ExcInternalError());
      std::swap (total_row_indices[n_active_rows+i],
                 total_row_indices[n_active_rows+n_inhomogeneous_rows]);
      n_inhomogeneous_rows++;
    }

    // the local row where constraint number i was detected, to find that row
    // easily when the GlobalRowsToLocal has been set up
    size_type constraint_origin (size_type i) const
    {
      return total_row_indices[n_active_rows+i].local_row;
    }

    // a vector that contains all the global ids and the corresponding local
    // ids as well as a pointer to that data where we store how to resolve
    // constraints.
    std::vector<Distributing> total_row_indices;

  private:
    // holds the actual data from the constraints
    DataCache                 data_cache;

    // how many rows there are, constraints disregarded
    size_type                 n_active_rows;

    // the number of rows with inhomogeneous constraints
    size_type                 n_inhomogeneous_rows;
  };

  // a function that appends an additional row to the list of values, or
  // appends a value to an already existing row. Similar functionality as for
  // std::map<size_type,Distributing>, but here done for a
  // std::vector<Distributing>, much faster for short lists as we have them
  // here
  inline
  void
  GlobalRowsFromLocal::insert_index (const size_type global_row,
                                     const size_type local_row,
                                     const double    constraint_value)
  {
    typedef std::vector<Distributing>::iterator index_iterator;
    index_iterator pos, pos1;
    Distributing row_value (global_row);
    std::pair<size_type,double> constraint (local_row, constraint_value);

    // check whether the list was really sorted before entering here
    for (size_type i=1; i<n_active_rows; ++i)
      Assert (total_row_indices[i-1] < total_row_indices[i], ExcInternalError());

    pos = Utilities::lower_bound (total_row_indices.begin(),
                                  total_row_indices.begin()+n_active_rows,
                                  row_value);
    if (pos->global_row == global_row)
      pos1 = pos;
    else
      {
        pos1 = total_row_indices.insert(pos, row_value);
        ++n_active_rows;
      }

    if (pos1->constraint_position == numbers::invalid_size_type)
      pos1->constraint_position = data_cache.insert_new_index (constraint);
    else
      data_cache.append_index (pos1->constraint_position, constraint);
  }

  // this sort algorithm sorts std::vector<Distributing>, but does not take
  // the constraints into account. this means that in case that constraints
  // are already inserted, this function does not work as expected. Use
  // shellsort, which is very fast in case the indices are already sorted
  // (which is the usual case with DG elements), and not too slow in other
  // cases
  inline
  void
  GlobalRowsFromLocal::sort ()
  {
    size_type i, j, j2, temp, templ, istep;
    size_type step;

    // check whether the constraints are really empty.
    const size_type length = size();

    // make sure that we are in the range of the vector
    AssertIndexRange (length, total_row_indices.size()+1);
    for (size_type i=0; i<length; ++i)
      Assert (total_row_indices[i].constraint_position ==
              numbers::invalid_size_type,
              ExcInternalError());

    step = length/2;
    while (step > 0)
      {
        for (i=step; i < length; i++)
          {
            istep = step;
            j = i;
            j2 = j-istep;
            temp = total_row_indices[i].global_row;
            templ = total_row_indices[i].local_row;
            if (total_row_indices[j2].global_row > temp)
              {
                while ((j >= istep) && (total_row_indices[j2].global_row > temp))
                  {
                    total_row_indices[j].global_row = total_row_indices[j2].global_row;
                    total_row_indices[j].local_row = total_row_indices[j2].local_row;
                    j = j2;
                    j2 -= istep;
                  }
                total_row_indices[j].global_row = temp;
                total_row_indices[j].local_row = templ;
              }
          }
        step = step>>1;
      }
  }



  /**
   * Scratch data that is used during calls to distribute_local_to_global and
   * add_entries_local_to_global. In order to avoid frequent memory
   * allocation, we keep the data alive from one call to the next in a static
   * variable. Since we want to allow for different number types in matrices,
   * this is a template.
   *
   * Since each thread gets its private version of scratch data out of the
   * ThreadLocalStorage, no conflicting access can occur. For this to be
   * valid, we need to make sure that no call within
   * distribute_local_to_global is made that by itself can spawn
   * tasks. Otherwise, we might end up in a situation where several threads
   * fight for the data.
   *
   * Access to the scratch data is only through the accessor class which
   * handles the access as well as marking the data as used.
   */
  template <typename Number>
  class ConstraintMatrixData
  {
  public:
    struct ScratchData
    {
      /**
       * Constructor, does nothing.
       */
      ScratchData ()
        :
        in_use (false)
      {}

      /**
       * Copy constructor, does nothing
       */
      ScratchData (const ScratchData &)
        :
        in_use (false)
      {}

      /**
       * Stores whether the data is currently in use.
       */
      bool in_use;

      /**
       * Temporary array for column indices
       */
      std::vector<size_type> columns;

      /**
       * Temporary array for column values
       */
      std::vector<Number>    values;

      /**
       * Temporary array for block start indices
       */
      std::vector<size_type> block_starts;

      /**
       * Temporary array for vector indices
       */
      std::vector<size_type> vector_indices;

      /**
       * Data array for reorder row/column indices. Use a shared ptr to
       * global_rows to avoid defining in the .h file
       */
      GlobalRowsFromLocal global_rows;

      /**
       * Data array for reorder row/column indices. Use a shared ptr to
       * global_rows to avoid defining in the .h file
       */
      GlobalRowsFromLocal global_columns;
    };

    /**
     * Accessor class to guard access to scratch_data
     */
    class ScratchDataAccessor
    {
    public:
      /**
       * Constructor. Grabs a scratch data object on the current thread and
       * mark it as used
       */
      ScratchDataAccessor()
        :
        my_scratch_data(&ConstraintMatrixData::scratch_data.get())
      {
        Assert(my_scratch_data->in_use == false,
               ExcMessage("Access to thread-local scratch data tried, but it is already "
                          "in use"));
        my_scratch_data->in_use = true;
      }

      /**
       * Destructor. Mark scratch data as available again.
       */
      ~ScratchDataAccessor()
      {
        my_scratch_data->in_use = false;
      }

      /**
       * Dereferencing operator.
       */
      ScratchData &operator* ()
      {
        return *my_scratch_data;
      }

      /**
       * Dereferencing operator.
       */
      ScratchData *operator-> ()
      {
        return my_scratch_data;
      }

    private:
      ScratchData *my_scratch_data;
    };

  private:
    /**
     * The actual data object that contains a scratch data for each thread.
     */
    static Threads::ThreadLocalStorage<ScratchData> scratch_data;
  };



  // function for block matrices: Find out where in the list of local dofs
  // (sorted according to global ids) the individual blocks start. Transform
  // the global indices to block-local indices in order to be able to use
  // functions like vector.block(1)(block_local_id), instead of
  // vector(global_id). This avoids transforming indices one-by-one later on.
  template <class BlockType>
  inline
  void
  make_block_starts (const BlockType        &block_object,
                     GlobalRowsFromLocal    &global_rows,
                     std::vector<size_type> &block_starts)
  {
    AssertDimension (block_starts.size(), block_object.n_block_rows()+1);

    typedef std::vector<Distributing>::iterator row_iterator;
    row_iterator block_indices = global_rows.total_row_indices.begin();

    const size_type num_blocks = block_object.n_block_rows();
    const size_type n_active_rows = global_rows.size();

    // find end of rows.
    block_starts[0] = 0;
    for (size_type i=1; i<num_blocks; ++i)
      {
        row_iterator first_block =
          Utilities::lower_bound (block_indices,
                                  global_rows.total_row_indices.begin()+n_active_rows,
                                  Distributing(block_object.get_row_indices().block_start(i)));
        block_starts[i] = first_block - global_rows.total_row_indices.begin();
        block_indices = first_block;
      }
    block_starts[num_blocks] = n_active_rows;

    // transform row indices to block-local index space
    for (size_type i=block_starts[1]; i<n_active_rows; ++i)
      global_rows.global_row(i) = block_object.get_row_indices().
                                  global_to_local(global_rows.global_row(i)).second;
  }



  // same as before, but for std::vector<uint> instead of
  // GlobalRowsFromLocal. Used in functions for sparsity patterns.
  template <class BlockType>
  inline
  void
  make_block_starts (const BlockType        &block_object,
                     std::vector<size_type> &row_indices,
                     std::vector<size_type> &block_starts)
  {
    AssertDimension (block_starts.size(), block_object.n_block_rows()+1);

    typedef std::vector<size_type>::iterator row_iterator;
    row_iterator col_indices = row_indices.begin();

    const size_type num_blocks = block_object.n_block_rows();

    // find end of rows.
    block_starts[0] = 0;
    for (size_type i=1; i<num_blocks; ++i)
      {
        row_iterator first_block =
          Utilities::lower_bound (col_indices,
                                  row_indices.end(),
                                  block_object.get_row_indices().block_start(i));
        block_starts[i] = first_block - row_indices.begin();
        col_indices = first_block;
      }
    block_starts[num_blocks] = row_indices.size();

    // transform row indices to local index space
    for (size_type i=block_starts[1]; i<row_indices.size(); ++i)
      row_indices[i] = block_object.get_row_indices().
                       global_to_local(row_indices[i]).second;
  }



  // resolves constraints of one column at the innermost loop. goes through
  // the origin of each global entry and finds out which data we need to
  // collect.
  static inline
  double resolve_matrix_entry (const GlobalRowsFromLocal &global_rows,
                               const GlobalRowsFromLocal &global_cols,
                               const size_type            i,
                               const size_type            j,
                               const size_type            loc_row,
                               const FullMatrix<double> &local_matrix)
  {
    const size_type loc_col = global_cols.local_row(j);
    double col_val;

    // case 1: row has direct contribution in local matrix. decide whether col
    // has a direct contribution. if not, set the value to zero.
    if (loc_row != numbers::invalid_size_type)
      {
        col_val = ((loc_col != numbers::invalid_size_type) ?
                   local_matrix(loc_row, loc_col) : 0);

        // account for indirect contributions by constraints in column
        for (size_type p=0; p<global_cols.size(j); ++p)
          col_val += (local_matrix(loc_row, global_cols.local_row(j,p)) *
                      global_cols.constraint_value(j,p));
      }

    // case 2: row has no direct contribution in local matrix
    else
      col_val = 0;

    // account for indirect contributions by constraints in row, going trough
    // the direct and indirect references in the given column.
    for (size_type q=0; q<global_rows.size(i); ++q)
      {
        double add_this = (loc_col != numbers::invalid_size_type)
                          ? local_matrix(global_rows.local_row(i,q), loc_col) : 0;

        for (size_type p=0; p<global_cols.size(j); ++p)
          add_this += (local_matrix(global_rows.local_row(i,q),
                                    global_cols.local_row(j,p))
                       *
                       global_cols.constraint_value(j,p));
        col_val += add_this * global_rows.constraint_value(i,q);
      }
    return col_val;
  }



  // computes all entries that need to be written into global_rows[i]. Lists
  // the resulting values in val_ptr, and the corresponding column indices in
  // col_ptr.
  template <typename number>
  inline
  void
  resolve_matrix_row (const GlobalRowsFromLocal &global_rows,
                      const GlobalRowsFromLocal &global_cols,
                      const size_type            i,
                      const size_type            column_start,
                      const size_type            column_end,
                      const FullMatrix<double>  &local_matrix,
                      size_type                *&col_ptr,
                      number                   *&val_ptr)
  {
    if (column_end == column_start)
      return;

    AssertIndexRange (column_end-1, global_cols.size());
    const size_type loc_row = global_rows.local_row(i);

    // fast function if there are no indirect references to any of the local
    // rows at all on this set of dofs (saves a lot of checks). the only check
    // we actually need to perform is whether the matrix element is zero.
    if (global_rows.have_indirect_rows() == false &&
        global_cols.have_indirect_rows() == false)
      {
        AssertIndexRange(loc_row, local_matrix.m());
        const double *matrix_ptr = &local_matrix(loc_row, 0);

        for (size_type j=column_start; j<column_end; ++j)
          {
            const size_type loc_col = global_cols.local_row(j);
            AssertIndexRange(loc_col, local_matrix.n());
            const double col_val = matrix_ptr[loc_col];
            if (col_val != 0.)
              {
                *val_ptr++ = static_cast<number> (col_val);
                *col_ptr++ = global_cols.global_row(j);
              }
          }
      }

    // more difficult part when there are indirect references and when we need
    // to do some more checks.
    else
      {
        for (size_type j=column_start; j<column_end; ++j)
          {
            double col_val = resolve_matrix_entry (global_rows, global_cols, i, j,
                                                   loc_row, local_matrix);

            // if we got some nontrivial value, append it to the array of
            // values.
            if (col_val != 0.)
              {
                *val_ptr++ = static_cast<number> (col_val);
                *col_ptr++ = global_cols.global_row(j);
              }
          }
      }
  }



  // specialized function that can write into the row of a
  // SparseMatrix<number>.
  namespace dealiiSparseMatrix
  {
    template <typename SparseMatrixIterator>
    static inline
    void add_value (const double          value,
                    const size_type       row,
                    const size_type       column,
                    SparseMatrixIterator &matrix_values)
    {
      if (value != 0.)
        {
          while (matrix_values->column() < column)
            ++matrix_values;
          Assert (matrix_values->column() == column,
                  typename SparseMatrix<typename SparseMatrixIterator::MatrixType::value_type>::ExcInvalidIndex(row, column));
          matrix_values->value() += value;
        }
    }
  }


  // similar as before, now with shortcut for deal.II sparse matrices. this
  // lets us avoid using extra arrays, and does all the operations just in
  // place, i.e., in the respective matrix row
  template <typename number>
  inline
  void
  resolve_matrix_row (const GlobalRowsFromLocal &global_rows,
                      const size_type            i,
                      const size_type            column_start,
                      const size_type            column_end,
                      const FullMatrix<double>  &local_matrix,
                      SparseMatrix<number>      *sparse_matrix)
  {
    if (column_end == column_start)
      return;

    AssertIndexRange (column_end-1, global_rows.size());
    const SparsityPattern &sparsity = sparse_matrix->get_sparsity_pattern();

    if (sparsity.n_nonzero_elements() == 0)
      return;

    const size_type row = global_rows.global_row(i);
    const size_type loc_row = global_rows.local_row(i);

    typename SparseMatrix<number>::iterator
    matrix_values = sparse_matrix->begin(row);
    const bool optimize_diagonal = sparsity.n_rows() == sparsity.n_cols();

    // distinguish three cases about what can happen for checking whether the
    // diagonal is the first element of the row. this avoids if statements at
    // the innermost loop positions

    if (!optimize_diagonal) // case 1: no diagonal optimization in matrix
      {
        if (global_rows.have_indirect_rows() == false)
          {
            AssertIndexRange (loc_row, local_matrix.m());
            const double *matrix_ptr = &local_matrix(loc_row, 0);

            for (size_type j=column_start; j<column_end; ++j)
              {
                const size_type loc_col = global_rows.local_row(j);
                const double col_val = matrix_ptr[loc_col];
                dealiiSparseMatrix::add_value (col_val, row,
                                               global_rows.global_row(j),
                                               matrix_values);
              }
          }
        else
          {
            for (size_type j=column_start; j<column_end; ++j)
              {
                double col_val = resolve_matrix_entry (global_rows, global_rows, i, j,
                                                       loc_row, local_matrix);
                dealiiSparseMatrix::add_value (col_val, row,
                                               global_rows.global_row(j),
                                               matrix_values);
              }
          }
      }
    else if (i>=column_start && i<column_end) // case 2: can split loop
      {
        ++matrix_values; // jump over diagonal element
        if (global_rows.have_indirect_rows() == false)
          {
            AssertIndexRange (loc_row, local_matrix.m());
            const double *matrix_ptr = &local_matrix(loc_row, 0);

            sparse_matrix->begin(row)->value() += matrix_ptr[loc_row];
            for (size_type j=column_start; j<i; ++j)
              {
                const size_type loc_col = global_rows.local_row(j);
                const double col_val = matrix_ptr[loc_col];
                dealiiSparseMatrix::add_value(col_val, row,
                                              global_rows.global_row(j),
                                              matrix_values);
              }
            for (size_type j=i+1; j<column_end; ++j)
              {
                const size_type loc_col = global_rows.local_row(j);
                const double col_val = matrix_ptr[loc_col];
                dealiiSparseMatrix::add_value(col_val, row,
                                              global_rows.global_row(j),
                                              matrix_values);
              }
          }
        else
          {
            sparse_matrix->begin(row)->value() +=
              resolve_matrix_entry (global_rows, global_rows, i, i,
                                    loc_row, local_matrix);
            for (size_type j=column_start; j<i; ++j)
              {
                double col_val = resolve_matrix_entry (global_rows, global_rows, i, j,
                                                       loc_row, local_matrix);
                dealiiSparseMatrix::add_value (col_val, row,
                                               global_rows.global_row(j),
                                               matrix_values);
              }
            for (size_type j=i+1; j<column_end; ++j)
              {
                double col_val = resolve_matrix_entry (global_rows, global_rows, i, j,
                                                       loc_row, local_matrix);
                dealiiSparseMatrix::add_value (col_val, row,
                                               global_rows.global_row(j),
                                               matrix_values);
              }
          }
      }
    // case 3: can't say - need to check inside the loop
    else if (global_rows.have_indirect_rows() == false)
      {
        ++matrix_values; // jump over diagonal element
        AssertIndexRange (loc_row, local_matrix.m());
        const double *matrix_ptr = &local_matrix(loc_row, 0);

        for (size_type j=column_start; j<column_end; ++j)
          {
            const size_type loc_col = global_rows.local_row(j);
            const double col_val = matrix_ptr[loc_col];
            if (row==global_rows.global_row(j))
              sparse_matrix->begin(row)->value() += col_val;
            else
              dealiiSparseMatrix::add_value(col_val, row,
                                            global_rows.global_row(j),
                                            matrix_values);
          }
      }
    else
      {
        ++matrix_values; // jump over diagonal element
        for (size_type j=column_start; j<column_end; ++j)
          {
            double col_val = resolve_matrix_entry (global_rows, global_rows, i,
                                                   j, loc_row, local_matrix);
            if (row==global_rows.global_row(j))
              sparse_matrix->begin(row)->value() += col_val;
            else
              dealiiSparseMatrix::add_value (col_val, row,
                                             global_rows.global_row(j),
                                             matrix_values);
          }
      }
  }



  // Same function to resolve all entries that will be added to the given
  // global row global_rows[i] as before, now for sparsity pattern
  inline
  void
  resolve_matrix_row (const GlobalRowsFromLocal     &global_rows,
                      const size_type                i,
                      const size_type                column_start,
                      const size_type                column_end,
                      const Table<2,bool>           &dof_mask,
                      std::vector<size_type>::iterator &col_ptr)
  {
    if (column_end == column_start)
      return;

    const size_type loc_row = global_rows.local_row(i);

    // fast function if there are no indirect references to any of the local
    // rows at all on this set of dofs
    if (global_rows.have_indirect_rows() == false)
      {
        Assert(loc_row < dof_mask.n_rows(),
               ExcInternalError());

        for (size_type j=column_start; j<column_end; ++j)
          {
            const size_type loc_col = global_rows.local_row(j);
            Assert(loc_col < dof_mask.n_cols(), ExcInternalError());

            if (dof_mask(loc_row,loc_col) == true)
              *col_ptr++ = global_rows.global_row(j);
          }
      }

    // slower functions when there are indirect references and when we need to
    // do some more checks.
    else
      {
        for (size_type j=column_start; j<column_end; ++j)
          {
            const size_type loc_col = global_rows.local_row(j);
            if (loc_row != numbers::invalid_size_type)
              {
                Assert (loc_row < dof_mask.n_rows(), ExcInternalError());
                if (loc_col != numbers::invalid_size_type)
                  {
                    Assert (loc_col < dof_mask.n_cols(), ExcInternalError());
                    if (dof_mask(loc_row,loc_col) == true)
                      goto add_this_index;
                  }

                for (size_type p=0; p<global_rows.size(j); ++p)
                  if (dof_mask(loc_row,global_rows.local_row(j,p)) == true)
                    goto add_this_index;
              }

            for (size_type q=0; q<global_rows.size(i); ++q)
              {
                if (loc_col != numbers::invalid_size_type)
                  {
                    Assert (loc_col < dof_mask.n_cols(), ExcInternalError());
                    if (dof_mask(global_rows.local_row(i,q),loc_col) == true)
                      goto add_this_index;
                  }

                for (size_type p=0; p<global_rows.size(j); ++p)
                  if (dof_mask(global_rows.local_row(i,q),
                               global_rows.local_row(j,p)) == true)
                    goto add_this_index;
              }

            continue;
            // if we got some nontrivial value, append it to the array of
            // values.
add_this_index:
            *col_ptr++ = global_rows.global_row(j);
          }
      }
  }



  // to make sure that the global matrix remains invertible, we need to do
  // something with the diagonal elements. add the absolute value of the local
  // matrix, so the resulting entry will always be positive and furthermore be
  // in the same order of magnitude as the other elements of the matrix
  //
  // note that this also captures the special case that a dof is both
  // constrained and fixed (this can happen for hanging nodes in 3d that also
  // happen to be on the boundary). in that case, following the program flow
  // in distribute_local_to_global, it is realized that when distributing the
  // row and column no elements of the matrix are actually touched if all the
  // degrees of freedom to which this dof is constrained are also constrained
  // (the usual case with hanging nodes in 3d). however, in the line below, we
  // do actually do something with this dof
  template <typename MatrixType, typename VectorType>
  inline void
  set_matrix_diagonals (const internals::GlobalRowsFromLocal &global_rows,
                        const std::vector<size_type>         &local_dof_indices,
                        const FullMatrix<double>             &local_matrix,
                        const ConstraintMatrix               &constraints,
                        MatrixType                           &global_matrix,
                        VectorType                           &global_vector,
                        bool                                 use_inhomogeneities_for_rhs)
  {
    if (global_rows.n_constraints() > 0)
      {
        double average_diagonal = 0;
        for (size_type i=0; i<local_matrix.m(); ++i)
          average_diagonal += std::fabs (local_matrix(i,i));
        average_diagonal /= static_cast<double>(local_matrix.m());

        for (size_type i=0; i<global_rows.n_constraints(); i++)
          {
            const size_type local_row = global_rows.constraint_origin(i);
            const size_type global_row = local_dof_indices[local_row];
            const typename MatrixType::value_type new_diagonal
              = (std::fabs(local_matrix(local_row,local_row)) != 0 ?
                 std::fabs(local_matrix(local_row,local_row)) : average_diagonal);
            global_matrix.add(global_row, global_row, new_diagonal);

            // if the use_inhomogeneities_for_rhs flag is set to true, the
            // inhomogeneities are used to create the global vector. instead
            // of fill in a zero in the ith components with an inhomogeneity,
            // we set those to: inhomogeneity(i)*global_matrix (i,i).
            if (use_inhomogeneities_for_rhs == true)
              global_vector(global_row) += constraints.get_inhomogeneity(global_row) * new_diagonal;
          }
      }
  }



  // similar function as the one above for setting matrix diagonals, but now
  // doing that for sparsity patterns when setting them up using
  // add_entries_local_to_global. In case we keep constrained entries, add all
  // the rows and columns related to the constrained dof, otherwise just add
  // the diagonal
  template <typename SparsityType>
  inline void
  set_sparsity_diagonals (const internals::GlobalRowsFromLocal &global_rows,
                          const std::vector<size_type>         &local_dof_indices,
                          const Table<2,bool>                  &dof_mask,
                          const bool                            keep_constrained_entries,
                          SparsityType                         &sparsity_pattern)
  {
    // if we got constraints, need to add the diagonal element and, if the
    // user requested so, also the rest of the entries in rows and columns
    // that have been left out above
    if (global_rows.n_constraints() > 0)
      {
        for (size_type i=0; i<global_rows.n_constraints(); i++)
          {
            const size_type local_row = global_rows.constraint_origin(i);
            const size_type global_row = local_dof_indices[local_row];
            if (keep_constrained_entries == true)
              {
                for (size_type j=0; j<local_dof_indices.size(); ++j)
                  {
                    if (dof_mask(local_row,j) == true)
                      sparsity_pattern.add(global_row,
                                           local_dof_indices[j]);
                    if (dof_mask(j,local_row) == true)
                      sparsity_pattern.add(local_dof_indices[j],
                                           global_row);
                  }
              }
            else
              // don't keep constrained entries - just add the diagonal.
              sparsity_pattern.add(global_row,global_row);
          }
      }
  }

} // end of namespace internals



// Basic idea of setting up a list of
// all global dofs: first find all rows and columns
// that we are going to write touch,
// and then go through the
// lines and collect all the local rows that
// are related to it.
void
ConstraintMatrix::
make_sorted_row_list (const std::vector<size_type>   &local_dof_indices,
                      internals::GlobalRowsFromLocal &global_rows) const
{
  const size_type n_local_dofs = local_dof_indices.size();
  AssertDimension (n_local_dofs, global_rows.size());

  // when distributing the local data to the global matrix, we can quite
  // cheaply sort the indices (obviously, this introduces the need for
  // allocating some memory on the way, but we need to do this only for rows,
  // whereas the distribution process itself goes over rows and columns). This
  // has the advantage that when writing into the global matrix, we can make
  // use of the sortedness.

  // so the first step is to create a sorted list of all row values that are
  // possible. these values are either the rows from unconstrained dofs, or
  // some indices introduced by dofs constrained to a combination of some
  // other dofs. regarding the data type, choose an STL vector of a pair of
  // unsigned ints (for global columns) and internal data (containing local
  // columns + possible jumps from constraints). Choosing an STL map or
  // anything else M.K. knows of would be much more expensive here!

  // cache whether we have to resolve any indirect rows generated from
  // resolving constrained dofs.
  size_type added_rows = 0;

  // first add the indices in an unsorted way and only keep track of the
  // constraints that appear. They are resolved in a second step.
  for (size_type i = 0; i<n_local_dofs; ++i)
    {
      if (is_constrained(local_dof_indices[i]) == false)
        {
          global_rows.global_row(added_rows)  = local_dof_indices[i];
          global_rows.local_row(added_rows++) = i;
        }
      else
        global_rows.insert_constraint(i);
    }
  global_rows.sort();

  const size_type n_constrained_rows = n_local_dofs-added_rows;
  for (size_type i=0; i<n_constrained_rows; ++i)
    {
      const size_type local_row = global_rows.constraint_origin(i);
      AssertIndexRange(local_row, n_local_dofs);
      const size_type global_row = local_dof_indices[local_row];
      Assert (is_constrained(global_row), ExcInternalError());
      const ConstraintLine &position =
        lines[lines_cache[calculate_line_index(global_row)]];
      if (position.inhomogeneity != 0)
        global_rows.set_ith_constraint_inhomogeneous (i);
      for (size_type q=0; q<position.entries.size(); ++q)
        global_rows.insert_index (position.entries[q].first,
                                  local_row,
                                  position.entries[q].second);
    }
}



// Same function as before, but now do only extract the global indices that
// come from the local ones without storing their origin. Used for sparsity
// pattern generation.
inline
void
ConstraintMatrix::
make_sorted_row_list (const std::vector<size_type> &local_dof_indices,
                      std::vector<size_type>       &active_dofs) const
{
  const size_type n_local_dofs = local_dof_indices.size();
  size_type added_rows = 0;
  for (size_type i = 0; i<n_local_dofs; ++i)
    {
      if (is_constrained(local_dof_indices[i]) == false)
        {
          active_dofs[added_rows++] = local_dof_indices[i];
          continue;
        }

      active_dofs[n_local_dofs-i+added_rows-1] = i;
    }
  std::sort (active_dofs.begin(), active_dofs.begin()+added_rows);

  const size_type n_constrained_dofs = n_local_dofs-added_rows;
  for (size_type i=n_constrained_dofs; i>0; --i)
    {
      const size_type local_row = active_dofs.back();

      // remove constrained entry since we are going to resolve it in place
      active_dofs.pop_back();
      const size_type global_row = local_dof_indices[local_row];
      const ConstraintLine &position =
        lines[lines_cache[calculate_line_index(global_row)]];
      for (size_type q=0; q<position.entries.size(); ++q)
        {
          const size_type new_index = position.entries[q].first;
          if (active_dofs[active_dofs.size()-i] < new_index)
            active_dofs.insert(active_dofs.end()-i+1,new_index);

          // make binary search to find where to put the new index in order to
          // keep the list sorted
          else
            {
              std::vector<size_type>::iterator it =
                Utilities::lower_bound(active_dofs.begin(),
                                       active_dofs.end()-i+1,
                                       new_index);
              if (*it != new_index)
                active_dofs.insert(it, new_index);
            }
        }
    }
}



// Resolve the constraints from the vector and apply inhomogeneities.
inline
double
ConstraintMatrix::
resolve_vector_entry (const size_type                       i,
                      const internals::GlobalRowsFromLocal &global_rows,
                      const Vector<double>                 &local_vector,
                      const std::vector<size_type>         &local_dof_indices,
                      const FullMatrix<double>             &local_matrix) const
{
  const size_type loc_row = global_rows.local_row(i);
  const size_type n_inhomogeneous_rows = global_rows.n_inhomogeneities();
  double val = 0;
  // has a direct contribution from some local entry. If we have inhomogeneous
  // constraints, compute the contribution of the inhomogeneity in the current
  // row.
  if (loc_row != numbers::invalid_size_type)
    {
      val = local_vector(loc_row);
      for (size_type i=0; i<n_inhomogeneous_rows; ++i)
        val -= (lines[lines_cache[calculate_line_index(local_dof_indices
                                                       [global_rows.constraint_origin(i)])]].
                inhomogeneity *
                local_matrix(loc_row, global_rows.constraint_origin(i)));
    }

  // go through the indirect contributions
  for (size_type q=0; q<global_rows.size(i); ++q)
    {
      const size_type loc_row_q = global_rows.local_row(i,q);
      double add_this = local_vector (loc_row_q);
      for (size_type k=0; k<n_inhomogeneous_rows; ++k)
        add_this -= (lines[lines_cache[calculate_line_index
                                       (local_dof_indices
                                        [global_rows.constraint_origin(k)])]].
                     inhomogeneity *
                     local_matrix(loc_row_q,global_rows.constraint_origin(k)));
      val += add_this * global_rows.constraint_value(i,q);
    }
  return val;
}


// internal implementation for distribute_local_to_global for standard
// (non-block) matrices
template <typename MatrixType, typename VectorType>
void
ConstraintMatrix::distribute_local_to_global (
  const FullMatrix<double>        &local_matrix,
  const Vector<double>            &local_vector,
  const std::vector<size_type>    &local_dof_indices,
  MatrixType                      &global_matrix,
  VectorType                      &global_vector,
  bool                            use_inhomogeneities_for_rhs,
  internal::bool2type<false>) const
{
  // check whether we work on real vectors or we just used a dummy when
  // calling the other function above.
  const bool use_vectors = (local_vector.size() == 0 &&
                            global_vector.size() == 0) ? false : true;
  typedef typename MatrixType::value_type number;
  const bool use_dealii_matrix =
    types_are_equal<MatrixType,SparseMatrix<number> >::value;

  AssertDimension (local_matrix.n(), local_dof_indices.size());
  AssertDimension (local_matrix.m(), local_dof_indices.size());
  Assert (global_matrix.m() == global_matrix.n(), ExcNotQuadratic());
  if (use_vectors == true)
    {
      AssertDimension (local_matrix.m(), local_vector.size());
      AssertDimension (global_matrix.m(), global_vector.size());
    }
  Assert (lines.empty() || sorted == true, ExcMatrixNotClosed());

  const size_type n_local_dofs = local_dof_indices.size();

  typename internals::ConstraintMatrixData<number>::ScratchDataAccessor
  scratch_data;

  internals::GlobalRowsFromLocal &global_rows = scratch_data->global_rows;
  global_rows.reinit(n_local_dofs);
  make_sorted_row_list (local_dof_indices, global_rows);

  const size_type n_actual_dofs = global_rows.size();

  // create arrays for the column data (indices and values) that will then be
  // written into the matrix. Shortcut for deal.II sparse matrix. We can use
  // the scratch data if we have a double matrix. Otherwise, we need to create
  // an array in any case since we cannot know about the actual data type in
  // the ConstraintMatrix class (unless we do cast). This involves a little
  // bit of logic to determine the type of the matrix value.
  std::vector<size_type> &cols = scratch_data->columns;
  std::vector<number>     &vals = scratch_data->values;
  SparseMatrix<number> *sparse_matrix
    = dynamic_cast<SparseMatrix<number> *>(&global_matrix);
  if (use_dealii_matrix == false)
    {
      cols.resize (n_actual_dofs);
      vals.resize (n_actual_dofs);
    }
  else
    Assert (sparse_matrix != 0, ExcInternalError());

  // now do the actual job. go through all the global rows that we will touch
  // and call resolve_matrix_row for each of those.
  for (size_type i=0; i<n_actual_dofs; ++i)
    {
      const size_type row = global_rows.global_row(i);

      // calculate all the data that will be written into the matrix row.
      if (use_dealii_matrix == false)
        {
          size_type *col_ptr = &cols[0];
          // cast is uncritical here and only used to avoid compiler
          // warnings. We never access a non-double array
          number *val_ptr = &vals[0];
          internals::resolve_matrix_row (global_rows, global_rows, i, 0,
                                         n_actual_dofs,
                                         local_matrix, col_ptr, val_ptr);
          const size_type n_values = col_ptr - &cols[0];
          if (n_values > 0)
            global_matrix.add(row, n_values, &cols[0], &vals[0], false,
                              true);
        }
      else
        internals::resolve_matrix_row (global_rows, i, 0, n_actual_dofs,
                                       local_matrix, sparse_matrix);

      // now to the vectors. besides doing the same job as we did above (i.e.,
      // distribute the content of the local vector into the global one), need
      // to account for inhomogeneities here: thie corresponds to eliminating
      // the respective column in the local matrix with value on the right
      // hand side.
      if (use_vectors == true)
        {
          const double val = resolve_vector_entry (i, global_rows,
                                                   local_vector,
                                                   local_dof_indices,
                                                   local_matrix);

          if (val != 0)
            global_vector(row) += static_cast<typename VectorType::value_type>(val);
        }
    }

  internals::set_matrix_diagonals (global_rows, local_dof_indices,
                                   local_matrix, *this,
                                   global_matrix, global_vector, use_inhomogeneities_for_rhs);
}



template <typename MatrixType>
void
ConstraintMatrix::distribute_local_to_global (
  const FullMatrix<double>     &local_matrix,
  const std::vector<size_type> &row_indices,
  const std::vector<size_type> &col_indices,
  MatrixType                   &global_matrix) const
{
  typedef double number;

  AssertDimension (local_matrix.m(), row_indices.size());
  AssertDimension (local_matrix.n(), col_indices.size());
  //Assert (sorted == true, ExcMatrixNotClosed());

  const size_type n_local_row_dofs = row_indices.size();
  const size_type n_local_col_dofs = col_indices.size();

  typename internals::ConstraintMatrixData<number>::ScratchDataAccessor
  scratch_data;
  internals::GlobalRowsFromLocal &global_rows = scratch_data->global_rows;
  global_rows.reinit(n_local_row_dofs);
  internals::GlobalRowsFromLocal &global_cols = scratch_data->global_columns;
  global_cols.reinit(n_local_col_dofs);
  make_sorted_row_list (row_indices, global_rows);
  make_sorted_row_list (col_indices, global_cols);

  const size_type n_actual_row_dofs = global_rows.size();
  const size_type n_actual_col_dofs = global_cols.size();

  // create arrays for the column data (indices and values) that will then be
  // written into the matrix. Shortcut for deal.II sparse matrix
  std::vector<size_type> &cols = scratch_data->columns;
  std::vector<number>     &vals = scratch_data->values;
  cols.resize(n_actual_col_dofs);
  vals.resize(n_actual_col_dofs);

  // now do the actual job.
  for (size_type i=0; i<n_actual_row_dofs; ++i)
    {
      const size_type row = global_rows.global_row(i);

      // calculate all the data that will be written into the matrix row.
      size_type *col_ptr = &cols[0];
      number    *val_ptr = &vals[0];
      internals::resolve_matrix_row (global_rows, global_cols, i, 0,
                                     n_actual_col_dofs,
                                     local_matrix, col_ptr, val_ptr);
      const size_type n_values = col_ptr - &cols[0];
      if (n_values > 0)
        global_matrix.add(row, n_values, &cols[0], &vals[0], false, true);
    }
}


// similar function as above, but now specialized for block matrices. See the
// other function for additional comments.
template <typename MatrixType, typename VectorType>
void
ConstraintMatrix::
distribute_local_to_global (const FullMatrix<double>     &local_matrix,
                            const Vector<double>         &local_vector,
                            const std::vector<size_type> &local_dof_indices,
                            MatrixType                   &global_matrix,
                            VectorType                   &global_vector,
                            bool                          use_inhomogeneities_for_rhs,
                            internal::bool2type<true>) const
{
  const bool use_vectors = (local_vector.size() == 0 &&
                            global_vector.size() == 0) ? false : true;
  typedef typename MatrixType::value_type number;
  const bool use_dealii_matrix =
    types_are_equal<MatrixType,BlockSparseMatrix<number> >::value;

  AssertDimension (local_matrix.n(), local_dof_indices.size());
  AssertDimension (local_matrix.m(), local_dof_indices.size());
  Assert (global_matrix.m() == global_matrix.n(), ExcNotQuadratic());
  Assert (global_matrix.n_block_rows() == global_matrix.n_block_cols(),
          ExcNotQuadratic());
  if (use_vectors == true)
    {
      AssertDimension (local_matrix.m(), local_vector.size());
      AssertDimension (global_matrix.m(), global_vector.size());
    }
  Assert (sorted == true, ExcMatrixNotClosed());

  typename internals::ConstraintMatrixData<number>::ScratchDataAccessor
  scratch_data;

  const size_type n_local_dofs = local_dof_indices.size();
  internals::GlobalRowsFromLocal &global_rows = scratch_data->global_rows;
  global_rows.reinit(n_local_dofs);

  make_sorted_row_list (local_dof_indices, global_rows);
  const size_type n_actual_dofs = global_rows.size();

  std::vector<size_type> &global_indices = scratch_data->vector_indices;
  if (use_vectors == true)
    {
      global_indices.resize(n_actual_dofs);
      for (size_type i=0; i<n_actual_dofs; ++i)
        global_indices[i] = global_rows.global_row(i);
    }

  // additional construct that also takes care of block indices.
  const size_type num_blocks   = global_matrix.n_block_rows();
  std::vector<size_type> &block_starts = scratch_data->block_starts;
  block_starts.resize(num_blocks+1);
  internals::make_block_starts (global_matrix, global_rows, block_starts);

  std::vector<size_type> &cols = scratch_data->columns;
  std::vector<number>     &vals = scratch_data->values;
  if (use_dealii_matrix == false)
    {
      cols.resize (n_actual_dofs);
      vals.resize (n_actual_dofs);
    }

  // the basic difference to the non-block variant from now onwards is that we
  // go through the blocks of the matrix separately, which allows us to set
  // the block entries individually
  for (size_type block=0; block<num_blocks; ++block)
    {
      const size_type next_block = block_starts[block+1];
      for (size_type i=block_starts[block]; i<next_block; ++i)
        {
          const size_type row = global_rows.global_row(i);

          for (size_type block_col=0; block_col<num_blocks; ++block_col)
            {
              const size_type start_block = block_starts[block_col],
                              end_block = block_starts[block_col+1];
              if (use_dealii_matrix == false)
                {
                  size_type *col_ptr = &cols[0];
                  number *val_ptr = &vals[0];
                  internals::resolve_matrix_row (global_rows, global_rows, i,
                                                 start_block, end_block,
                                                 local_matrix, col_ptr, val_ptr);
                  const size_type n_values = col_ptr - &cols[0];
                  if (n_values > 0)
                    global_matrix.block(block, block_col).add(row, n_values,
                                                              &cols[0], &vals[0],
                                                              false, true);
                }
              else
                {
                  SparseMatrix<number> *sparse_matrix
                    = dynamic_cast<SparseMatrix<number> *>(&global_matrix.block(block,
                                                           block_col));
                  Assert (sparse_matrix != 0, ExcInternalError());
                  internals::resolve_matrix_row (global_rows, i, start_block,
                                                 end_block, local_matrix, sparse_matrix);
                }
            }

          if (use_vectors == true)
            {
              const double val = resolve_vector_entry (i, global_rows,
                                                       local_vector,
                                                       local_dof_indices,
                                                       local_matrix);

              if (val != 0)
                global_vector(global_indices[i]) +=
                  static_cast<typename VectorType::value_type>(val);
            }
        }
    }

  internals::set_matrix_diagonals (global_rows, local_dof_indices,
                                   local_matrix, *this,
                                   global_matrix, global_vector, use_inhomogeneities_for_rhs);
}



template <typename SparsityType>
void
ConstraintMatrix::
add_entries_local_to_global (const std::vector<size_type> &local_dof_indices,
                             SparsityType                 &sparsity_pattern,
                             const bool                    keep_constrained_entries,
                             const Table<2,bool>          &dof_mask,
                             internal::bool2type<false> ) const
{
  Assert (sparsity_pattern.n_rows() == sparsity_pattern.n_cols(), ExcNotQuadratic());

  const size_type n_local_dofs = local_dof_indices.size();
  bool dof_mask_is_active = false;
  if (dof_mask.n_rows() == n_local_dofs)
    {
      dof_mask_is_active = true;
      AssertDimension (dof_mask.n_cols(), n_local_dofs);
    }

  internals::ConstraintMatrixData<double>::ScratchDataAccessor scratch_data;

  // if the dof mask is not active, all we have to do is to add some indices
  // in a matrix format. To do this, we first create an array of all the
  // indices that are to be added. these indices are the local dof indices
  // plus some indices that come from constraints.
  if (dof_mask_is_active == false)
    {
      std::vector<size_type> &actual_dof_indices = scratch_data->columns;
      actual_dof_indices.resize(n_local_dofs);
      make_sorted_row_list (local_dof_indices, actual_dof_indices);
      const size_type n_actual_dofs = actual_dof_indices.size();

      // now add the indices we collected above to the sparsity pattern. Very
      // easy here - just add the same array to all the rows...
      for (size_type i=0; i<n_actual_dofs; ++i)
        sparsity_pattern.add_entries(actual_dof_indices[i],
                                     actual_dof_indices.begin(),
                                     actual_dof_indices.end(),
                                     true);

      // need to add the whole row and column structure in case we keep
      // constrained entries. Unfortunately, we can't use the nice matrix
      // structure we use elsewhere, so manually add those indices one by one.
      for (size_type i=0; i<n_local_dofs; i++)
        if (is_constrained(local_dof_indices[i]))
          {
            if (keep_constrained_entries == true)
              for (size_type j=0; j<n_local_dofs; j++)
                {
                  sparsity_pattern.add (local_dof_indices[i], local_dof_indices[j]);
                  sparsity_pattern.add (local_dof_indices[j], local_dof_indices[i]);
                }
            else
              sparsity_pattern.add (local_dof_indices[i], local_dof_indices[i]);
          }

      return;
    }


  // complicated case: we need to filter out some indices. then the function
  // gets similar to the function for distributing matrix entries, see there
  // for additional comments.
  internals::GlobalRowsFromLocal &global_rows = scratch_data->global_rows;
  global_rows.reinit(n_local_dofs);
  make_sorted_row_list (local_dof_indices, global_rows);
  const size_type n_actual_dofs = global_rows.size();

  // create arrays for the column indices that will then be written into the
  // sparsity pattern.
  std::vector<size_type> &cols = scratch_data->columns;
  cols.resize(n_actual_dofs);

  for (size_type i=0; i<n_actual_dofs; ++i)
    {
      std::vector<size_type>::iterator col_ptr = cols.begin();
      const size_type row = global_rows.global_row(i);
      internals::resolve_matrix_row (global_rows, i, 0, n_actual_dofs,
                                     dof_mask, col_ptr);

      // finally, write all the information that accumulated under the given
      // process into the global matrix row and into the vector
      if (col_ptr != cols.begin())
        sparsity_pattern.add_entries(row, cols.begin(), col_ptr,
                                     true);
    }
  internals::set_sparsity_diagonals (global_rows, local_dof_indices,
                                     dof_mask, keep_constrained_entries,
                                     sparsity_pattern);
}




template <typename SparsityType>
void
ConstraintMatrix::
add_entries_local_to_global (const std::vector<size_type> &row_indices,
                             const std::vector<size_type> &col_indices,
                             SparsityType                 &sparsity_pattern,
                             const bool                    keep_constrained_entries,
                             const Table<2,bool>          &dof_mask) const
{
  const size_type n_local_rows = row_indices.size();
  const size_type n_local_cols = col_indices.size();
  bool dof_mask_is_active = false;
  if (dof_mask.n_rows() == n_local_rows && dof_mask.n_cols() == n_local_cols)
    dof_mask_is_active = true;

  // if the dof mask is not active, all we have to do is to add some indices
  // in a matrix format. To do this, we first create an array of all the
  // indices that are to be added. these indices are the local dof indices
  // plus some indices that come from constraints.
  if (dof_mask_is_active == false)
    {
      std::vector<size_type> actual_row_indices (n_local_rows);
      std::vector<size_type> actual_col_indices (n_local_cols);
      make_sorted_row_list (row_indices, actual_row_indices);
      make_sorted_row_list (col_indices, actual_col_indices);
      const size_type n_actual_rows = actual_row_indices.size();

      // now add the indices we collected above to the sparsity pattern. Very
      // easy here - just add the same array to all the rows...
      for (size_type i=0; i<n_actual_rows; ++i)
        sparsity_pattern.add_entries(actual_row_indices[i],
                                     actual_col_indices.begin(),
                                     actual_col_indices.end(),
                                     true);
      return;
    }

  // if constrained entries should be kept, need to add rows and columns of
  // those to the sparsity pattern
  if (keep_constrained_entries == true)
    {
      for (size_type i=0; i<row_indices.size(); i++)
        if (is_constrained(row_indices[i]))
          for (size_type j=0; j<col_indices.size(); j++)
            sparsity_pattern.add (row_indices[i], col_indices[j]);
      for (size_type i=0; i<col_indices.size(); i++)
        if (is_constrained(col_indices[i]))
          for (size_type j=0; j<row_indices.size(); j++)
            sparsity_pattern.add (row_indices[j], col_indices[i]);
    }


  // TODO: implement this
  Assert (false, ExcNotImplemented());
}




template <typename SparsityType>
void
ConstraintMatrix::
add_entries_local_to_global (const std::vector<size_type> &local_dof_indices,
                             SparsityType                 &sparsity_pattern,
                             const bool                    keep_constrained_entries,
                             const Table<2,bool>          &dof_mask,
                             internal::bool2type<true> ) const
{
  // just as the other add_entries_local_to_global function, but now
  // specialized for block matrices.
  Assert (sparsity_pattern.n_rows() == sparsity_pattern.n_cols(), ExcNotQuadratic());
  Assert (sparsity_pattern.n_block_rows() == sparsity_pattern.n_block_cols(),
          ExcNotQuadratic());

  const size_type n_local_dofs = local_dof_indices.size();
  const size_type num_blocks = sparsity_pattern.n_block_rows();

  internals::ConstraintMatrixData<double>::ScratchDataAccessor scratch_data;

  bool dof_mask_is_active = false;
  if (dof_mask.n_rows() == n_local_dofs)
    {
      dof_mask_is_active = true;
      AssertDimension (dof_mask.n_cols(), n_local_dofs);
    }

  if (dof_mask_is_active == false)
    {
      std::vector<size_type> &actual_dof_indices = scratch_data->columns;
      actual_dof_indices.resize(n_local_dofs);
      make_sorted_row_list (local_dof_indices, actual_dof_indices);
      const size_type n_actual_dofs = actual_dof_indices.size();

      // additional construct that also takes care of block indices.
      std::vector<size_type> &block_starts = scratch_data->block_starts;
      block_starts.resize(num_blocks+1);
      internals::make_block_starts (sparsity_pattern, actual_dof_indices,
                                    block_starts);

      for (size_type block=0; block<num_blocks; ++block)
        {
          const size_type next_block = block_starts[block+1];
          for (size_type i=block_starts[block]; i<next_block; ++i)
            {
              Assert (i<n_actual_dofs, ExcInternalError());
              const size_type row = actual_dof_indices[i];
              Assert (row < sparsity_pattern.block(block,0).n_rows(),
                      ExcInternalError());
              std::vector<size_type>::iterator index_it = actual_dof_indices.begin();
              for (size_type block_col = 0; block_col<num_blocks; ++block_col)
                {
                  const size_type next_block_col = block_starts[block_col+1];
                  sparsity_pattern.block(block,block_col).
                  add_entries(row,
                              index_it,
                              actual_dof_indices.begin() + next_block_col,
                              true);
                  index_it = actual_dof_indices.begin() + next_block_col;
                }
            }
        }

      for (size_type i=0; i<n_local_dofs; i++)
        if (is_constrained(local_dof_indices[i]))
          {
            if (keep_constrained_entries == true)
              for (size_type j=0; j<n_local_dofs; j++)
                {
                  sparsity_pattern.add (local_dof_indices[i], local_dof_indices[j]);
                  sparsity_pattern.add (local_dof_indices[j], local_dof_indices[i]);
                }
            else
              sparsity_pattern.add (local_dof_indices[i], local_dof_indices[i]);
          }

      return;
    }

  // difficult case with dof_mask, similar to the distribute_local_to_global
  // function for block matrices
  internals::GlobalRowsFromLocal &global_rows = scratch_data->global_rows;
  global_rows.reinit(n_local_dofs);
  make_sorted_row_list (local_dof_indices, global_rows);
  const size_type n_actual_dofs = global_rows.size();

  // additional construct that also takes care of block indices.
  std::vector<size_type> &block_starts = scratch_data->block_starts;
  block_starts.resize(num_blocks+1);
  internals::make_block_starts(sparsity_pattern, global_rows, block_starts);

  std::vector<size_type> &cols = scratch_data->columns;
  cols.resize(n_actual_dofs);

  // the basic difference to the non-block variant from now onwards is that we
  // go through the blocks of the matrix separately.
  for (size_type block=0; block<num_blocks; ++block)
    {
      const size_type next_block = block_starts[block+1];
      for (size_type i=block_starts[block]; i<next_block; ++i)
        {
          const size_type row = global_rows.global_row(i);
          for (size_type block_col=0; block_col<num_blocks; ++block_col)
            {
              const size_type begin_block = block_starts[block_col],
                              end_block = block_starts[block_col+1];
              std::vector<size_type>::iterator col_ptr = cols.begin();
              internals::resolve_matrix_row (global_rows, i, begin_block,
                                             end_block, dof_mask, col_ptr);

              sparsity_pattern.block(block, block_col).add_entries(row,
                                                                   cols.begin(),
                                                                   col_ptr,
                                                                   true);
            }
        }
    }

  internals::set_sparsity_diagonals (global_rows, local_dof_indices,
                                     dof_mask, keep_constrained_entries,
                                     sparsity_pattern);
}


DEAL_II_NAMESPACE_CLOSE

#endif