This file is indexed.

/usr/include/deal.II/lac/solver_gmres.h is in libdeal.ii-dev 8.1.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
// ---------------------------------------------------------------------
// $Id: solver_gmres.h 31349 2013-10-20 19:07:06Z maier $
//
// Copyright (C) 1998 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__solver_gmres_h
#define __deal2__solver_gmres_h



#include <deal.II/base/config.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/logstream.h>
#include <deal.II/lac/householder.h>
#include <deal.II/lac/solver.h>
#include <deal.II/lac/solver_control.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/vector.h>

#include <vector>
#include <cmath>

DEAL_II_NAMESPACE_OPEN

/*!@addtogroup Solvers */
/*@{*/

namespace internal
{
  /**
   * A namespace for a helper class to the GMRES solver.
   */
  namespace SolverGMRES
  {
    /**
     * Class to hold temporary vectors.  This class automatically allocates a
     * new vector, once it is needed.
     *
     * A future version should also be able to shift through vectors
     * automatically, avoiding restart.
     */

    template <class VECTOR>
    class TmpVectors
    {
    public:
      /**
       * Constructor. Prepares an array of @p VECTOR of length @p max_size.
       */
      TmpVectors(const unsigned int    max_size,
                 VectorMemory<VECTOR> &vmem);

      /**
       * Delete all allocated vectors.
       */
      ~TmpVectors();

      /**
       * Get vector number @p i. If this vector was unused before, an error
       * occurs.
       */
      VECTOR &operator[] (const unsigned int i) const;

      /**
       * Get vector number @p i. Allocate it if necessary.
       *
       * If a vector must be allocated, @p temp is used to reinit it to the
       * proper dimensions.
       */
      VECTOR &operator() (const unsigned int i,
                          const VECTOR      &temp);

    private:
      /**
       * Pool were vectors are obtained from.
       */
      VectorMemory<VECTOR> &mem;

      /**
       * Field for storing the vectors.
       */
      std::vector<VECTOR *> data;

      /**
       * Offset of the first vector. This is for later when vector rotation
       * will be implemented.
       */
      unsigned int offset;
    };
  }
}

/**
 * Implementation of the Restarted Preconditioned Direct Generalized
 * Minimal Residual Method. The stopping criterion is the norm of the
 * residual.
 *
 * The AdditionalData structure contains the number of temporary
 * vectors used. The size of the Arnoldi basis is this number minus
 * three. Additionally, it allows you to choose between right or left
 * preconditioning. The default is left preconditioning. Finally it
 * includes a flag indicating whether or not the default residual is
 * used as stopping criterion.

 * <h3>Left versus right preconditioning</h3>
 *
 * @p AdditionalData allows you to choose between left and right
 * preconditioning. As expected, this switches between solving for the
 * systems <i>P<sup>-1</sup>A</i> and <i>AP<sup>-1</sup></i>,
 * respectively.
 *
 * A second consequence is the type of residual which is used to
 * measure convergence. With left preconditioning, this is the
 * <b>preconditioned</b> residual, while with right preconditioning,
 * it is the residual of the unpreconditioned system.
 *
 * Optionally, this behavior can be overridden by using the flag
 * AdditionalData::use_default_residual. A <tt>true</tt> value refers
 * to the behavior described in the previous paragraph, while
 * <tt>false</tt> reverts it. Be aware though that additional
 * residuals have to be computed in this case, impeding the overall
 * performance of the solver.
 *
 * <h3>The size of the Arnoldi basis</h3>
 *
 * The maximal basis size is controlled by
 * AdditionalData::max_n_tmp_vectors, and it is this number minus 2.
 * If the number of iteration steps exceeds this number, all basis
 * vectors are discarded and the iteration starts anew from the
 * approximation obtained so far.
 *
 * Note that the minimizing property of GMRes only pertains to the
 * Krylov space spanned by the Arnoldi basis. Therefore, restarted
 * GMRes is <b>not</b> minimizing anymore. The choice of the basis
 * length is a trade-off between memory consumption and convergence
 * speed, since a longer basis means minimization over a larger
 * space.
 *
 * For the requirements on matrices and vectors in order to work with
 * this class, see the documentation of the Solver base class.
 *
 * @author Wolfgang Bangerth, Guido Kanschat, Ralf Hartmann.
 */
template <class VECTOR = Vector<double> >
class SolverGMRES : public Solver<VECTOR>
{
public:
  /**
   * Standardized data struct to pipe additional data to the solver.
   */
  struct AdditionalData
  {
    /**
     * Constructor. By default, set the number of temporary vectors to 30,
     * i.e. do a restart every 28 iterations. Also set preconditioning from
     * left, the residual of the stopping criterion to the default
     * residual, and re-orthogonalization only if necessary.
     */
    AdditionalData (const unsigned int max_n_tmp_vectors = 30,
                    const bool right_preconditioning = false,
                    const bool use_default_residual = true,
                    const bool force_re_orthogonalization = false);

    /**
     * Maximum number of temporary vectors. This parameter controls the size
     * of the Arnoldi basis, which for historical reasons is
     * #max_n_tmp_vectors-2.
     */
    unsigned int    max_n_tmp_vectors;

    /**
     * Flag for right preconditioning.
     *
     * @note Change between left and right preconditioning will also change
     * the way residuals are evaluated. See the corresponding section in the
     * SolverGMRES.
     */
    bool right_preconditioning;

    /**
     * Flag for the default residual that is used to measure convergence.
     */
    bool use_default_residual;

    /**
     * Flag to force re-orthogonalization of orthonormal basis in every
     * step. If set to false, the solver automatically checks for loss of
     * orthogonality every 5 iterations and enables re-orthogonalization only
     * if necessary.
     */
    bool force_re_orthogonalization;
  };

  /**
   * Constructor.
   */
  SolverGMRES (SolverControl        &cn,
               VectorMemory<VECTOR> &mem,
               const AdditionalData &data=AdditionalData());

  /**
   * Constructor. Use an object of type GrowingVectorMemory as a default to
   * allocate memory.
   */
  SolverGMRES (SolverControl        &cn,
               const AdditionalData &data=AdditionalData());

  /**
   * Solve the linear system $Ax=b$ for x.
   */
  template<class MATRIX, class PRECONDITIONER>
  void
  solve (const MATRIX         &A,
         VECTOR               &x,
         const VECTOR         &b,
         const PRECONDITIONER &precondition);

  DeclException1 (ExcTooFewTmpVectors,
                  int,
                  << "The number of temporary vectors you gave ("
                  << arg1 << ") is too small. It should be at least 10 for "
                  << "any results, and much more for reasonable ones.");

protected:
  /**
   * Includes the maximum number of tmp vectors.
   */
  AdditionalData additional_data;

  /**
   * Implementation of the computation of the norm of the residual.
   */
  virtual double criterion();

  /**
   * Transformation of an upper Hessenberg matrix into tridiagonal structure
   * by givens rotation of the last column
   */
  void givens_rotation (Vector<double> &h,  Vector<double> &b,
                        Vector<double> &ci, Vector<double> &si,
                        int col) const;

  /**
   * Orthogonalize the vector @p vv against the @p dim (orthogonal) vectors
   * given by the first argument using the modified Gram-Schmidt
   * algorithm. The factors used for orthogonalization are stored in @p h. The
   * boolean @p re_orthogonalize specifies whether the modified Gram-Schmidt
   * algorithm should be applied twice. The algorithm checks loss of
   * orthogonality in the procedure every fifth step and sets the flag to true
   * in that case. All subsequent iterations use re-orthogonalization.
   */
  static double
  modified_gram_schmidt (const internal::SolverGMRES::TmpVectors<VECTOR> &orthogonal_vectors,
                         const unsigned int  dim,
                         const unsigned int  accumulated_iterations,
                         VECTOR             &vv,
                         Vector<double>     &h,
                         bool               &re_orthogonalize);

  /**
   * Projected system matrix
   */
  FullMatrix<double> H;

  /**
   * Auxiliary matrix for inverting @p H
   */
  FullMatrix<double> H1;


private:
  /**
   * No copy constructor.
   */
  SolverGMRES (const SolverGMRES<VECTOR> &);
};

/**
 * Implementation of the Generalized minimal residual method with flexible
 * preconditioning method.
 *
 * This version of the GMRES method allows for the use of a different
 * preconditioner in each iteration step. Therefore, it is also more
 * robust with respect to inaccurate evaluation of the
 * preconditioner. An important application is also the use of a
 * Krylov space method inside the preconditioner.
 *
 * FGMRES needs two vectors in each iteration steps yielding a total
 * of <tt>2 * SolverFGMRESAdditionalData::max_basis_size+1</tt>
 * auxiliary vectors.
 *
 * Caveat: documentation of this class is not up to date. There are
 * also a few parameters of GMRES we would like to introduce here.
 *
 * @author Guido Kanschat, 2003
 */
template <class VECTOR = Vector<double> >
class SolverFGMRES : public Solver<VECTOR>
{
public:
  /**
   * Standardized data struct to pipe additional data to the solver.
   */
  struct AdditionalData
  {
    /**
     * Constructor. By default, set the number of temporary vectors to 30,
     * preconditioning from left and the residual of the stopping criterion to
     * the default residual (cf. class documentation).
     */
    AdditionalData(const unsigned int max_basis_size = 30,
                   const bool /*use_default_residual*/ = true)
      :
      max_basis_size(max_basis_size)
    {}

    /**
     * Maximum number of tmp vectors.
     */
    unsigned int    max_basis_size;
  };

  /**
   * Constructor.
   */
  SolverFGMRES (SolverControl        &cn,
                VectorMemory<VECTOR> &mem,
                const AdditionalData &data=AdditionalData());

  /**
   * Constructor. Use an object of type GrowingVectorMemory as a default to
   * allocate memory.
   */
  SolverFGMRES (SolverControl        &cn,
                const AdditionalData &data=AdditionalData());

  /**
   * Solve the linear system $Ax=b$ for x.
   */
  template<class MATRIX, class PRECONDITIONER>
  void
  solve (const MATRIX         &A,
         VECTOR               &x,
         const VECTOR         &b,
         const PRECONDITIONER &precondition);

private:
  /**
   * Additional flags.
   */
  AdditionalData additional_data;
  /**
   * Projected system matrix
   */
  FullMatrix<double> H;
  /**
   * Auxiliary matrix for inverting @p H
   */
  FullMatrix<double> H1;
};

/*@}*/
/* --------------------- Inline and template functions ------------------- */


#ifndef DOXYGEN
namespace internal
{
  namespace SolverGMRES
  {
    template <class VECTOR>
    inline
    TmpVectors<VECTOR>::
    TmpVectors (const unsigned int    max_size,
                VectorMemory<VECTOR> &vmem)
      :
      mem(vmem),
      data (max_size, 0),
      offset(0)
    {}


    template <class VECTOR>
    inline
    TmpVectors<VECTOR>::~TmpVectors ()
    {
      for (typename std::vector<VECTOR *>::iterator v = data.begin();
           v != data.end(); ++v)
        if (*v != 0)
          mem.free(*v);
    }


    template <class VECTOR>
    inline VECTOR &
    TmpVectors<VECTOR>::operator[] (const unsigned int i) const
    {
      Assert (i+offset<data.size(),
              ExcIndexRange(i, -offset, data.size()-offset));

      Assert (data[i-offset] != 0, ExcNotInitialized());
      return *data[i-offset];
    }


    template <class VECTOR>
    inline VECTOR &
    TmpVectors<VECTOR>::operator() (const unsigned int i,
                                    const VECTOR      &temp)
    {
      Assert (i+offset<data.size(),
              ExcIndexRange(i,-offset, data.size()-offset));
      if (data[i-offset] == 0)
        {
          data[i-offset] = mem.alloc();
          data[i-offset]->reinit(temp);
        }
      return *data[i-offset];
    }
  }
}



template <class VECTOR>
inline
SolverGMRES<VECTOR>::AdditionalData::
AdditionalData (const unsigned int max_n_tmp_vectors,
                const bool         right_preconditioning,
                const bool         use_default_residual,
                const bool         force_re_orthogonalization)
  :
  max_n_tmp_vectors(max_n_tmp_vectors),
  right_preconditioning(right_preconditioning),
  use_default_residual(use_default_residual),
  force_re_orthogonalization(force_re_orthogonalization)
{}


template <class VECTOR>
SolverGMRES<VECTOR>::SolverGMRES (SolverControl        &cn,
                                  VectorMemory<VECTOR> &mem,
                                  const AdditionalData &data)
  :
  Solver<VECTOR> (cn,mem),
  additional_data(data)
{}



template <class VECTOR>
SolverGMRES<VECTOR>::SolverGMRES (SolverControl        &cn,
                                  const AdditionalData &data) :
  Solver<VECTOR> (cn),
  additional_data(data)
{}



template <class VECTOR>
inline
void
SolverGMRES<VECTOR>::givens_rotation (Vector<double> &h,
                                      Vector<double> &b,
                                      Vector<double> &ci,
                                      Vector<double> &si,
                                      int     col) const
{
  for (int i=0 ; i<col ; i++)
    {
      const double s = si(i);
      const double c = ci(i);
      const double dummy = h(i);
      h(i)   =  c*dummy + s*h(i+1);
      h(i+1) = -s*dummy + c*h(i+1);
    };

  const double r = 1./std::sqrt(h(col)*h(col) + h(col+1)*h(col+1));
  si(col) = h(col+1) *r;
  ci(col) = h(col)   *r;
  h(col)  =  ci(col)*h(col) + si(col)*h(col+1);
  b(col+1)= -si(col)*b(col);
  b(col) *=  ci(col);
}



template <class VECTOR>
inline
double
SolverGMRES<VECTOR>::modified_gram_schmidt (const internal::SolverGMRES::TmpVectors<VECTOR> &orthogonal_vectors,
                                            const unsigned int  dim,
                                            const unsigned int  accumulated_iterations,
                                            VECTOR             &vv,
                                            Vector<double>     &h,
                                            bool               &re_orthogonalize)
{
  const unsigned int inner_iteration = dim - 1;

  // need initial norm for detection of re-orthogonalization, see below
  double norm_vv_start = 0;
  if (re_orthogonalize == false && inner_iteration % 5 == 4)
    norm_vv_start = vv.l2_norm();

  // Orthogonalization
  for (unsigned int i=0 ; i<dim ; ++i)
    {
      h(i) = vv * orthogonal_vectors[i];
      vv.add(-h(i), orthogonal_vectors[i]);
    };

  // Re-orthogonalization if loss of orthogonality detected. For the test, use
  // a strategy discussed in C. T. Kelley, Iterative Methods for Linear and
  // Nonlinear Equations, SIAM, Philadelphia, 1995: Compare the norm of vv
  // after orthogonalization with its norm when starting the
  // orthogonalization. If vv became very small (here: less than the square
  // root of the machine precision times 10), it is almost in the span of the
  // previous vectors, which indicates loss of precision.
  if (re_orthogonalize == false && inner_iteration % 5 == 4)
    {
      const double norm_vv = vv.l2_norm();
      if (norm_vv > 10. * norm_vv_start *
          std::sqrt(std::numeric_limits<typename VECTOR::value_type>::epsilon()))
        return norm_vv;

      else
        {
          re_orthogonalize = true;
          deallog << "Re-orthogonalization enabled at step "
                  << accumulated_iterations << std::endl;
        }
    }

  if (re_orthogonalize == true)
    for (unsigned int i=0 ; i<dim ; ++i)
      {
        double htmp = vv * orthogonal_vectors[i];
        h(i) += htmp;
        vv.add(-htmp, orthogonal_vectors[i]);
      }

  return vv.l2_norm();
}



template<class VECTOR>
template<class MATRIX, class PRECONDITIONER>
void
SolverGMRES<VECTOR>::solve (const MATRIX         &A,
                            VECTOR               &x,
                            const VECTOR         &b,
                            const PRECONDITIONER &precondition)
{
  // this code was written a very long time ago by people not associated with
  // deal.II. we don't make any guarantees to its optimality or that it even
  // works as expected...

//TODO:[?] Check, why there are two different start residuals.
//TODO:[GK] Make sure the parameter in the constructor means maximum basis size

  deallog.push("GMRES");
  const unsigned int n_tmp_vectors = additional_data.max_n_tmp_vectors;

  // Generate an object where basis vectors are stored.
  internal::SolverGMRES::TmpVectors<VECTOR> tmp_vectors (n_tmp_vectors, this->memory);

  // number of the present iteration; this
  // number is not reset to zero upon a
  // restart
  unsigned int accumulated_iterations = 0;

  // matrix used for the orthogonalization process later
  H.reinit(n_tmp_vectors, n_tmp_vectors-1);

  // some additional vectors, also used in the orthogonalization
  dealii::Vector<double>
  gamma(n_tmp_vectors),
        ci   (n_tmp_vectors-1),
        si   (n_tmp_vectors-1),
        h    (n_tmp_vectors-1);


  unsigned int dim = 0;

  SolverControl::State iteration_state = SolverControl::iterate;

  // switch to determine whether we want a left or a right preconditioner. at
  // present, left is default, but both ways are implemented
  const bool left_precondition = !additional_data.right_preconditioning;

  // Per default the left preconditioned GMRes uses the preconditioned
  // residual and the right preconditioned GMRes uses the unpreconditioned
  // residual as stopping criterion.
  const bool use_default_residual = additional_data.use_default_residual;

  // define two aliases
  VECTOR &v = tmp_vectors(0, x);
  VECTOR &p = tmp_vectors(n_tmp_vectors-1, x);

  // Following vectors are needed
  // when not the default residuals
  // are used as stopping criterion
  VECTOR *r=0;
  VECTOR *x_=0;
  dealii::Vector<double> *gamma_=0;
  if (!use_default_residual)
    {
      r=this->memory.alloc();
      x_=this->memory.alloc();
      r->reinit(x);
      x_->reinit(x);

      gamma_ = new dealii::Vector<double> (gamma.size());
    }

  bool re_orthogonalize = additional_data.force_re_orthogonalization;

  ///////////////////////////////////////////////////////////////////////////
  // outer iteration: loop until we either reach convergence or the maximum
  // number of iterations is exceeded. each cycle of this loop amounts to one
  // restart
  do
    {
      // reset this vector to the right size
      h.reinit (n_tmp_vectors-1);

      if (left_precondition)
        {
          A.vmult(p,x);
          p.sadd(-1.,1.,b);
          precondition.vmult(v,p);
        }
      else
        {
          A.vmult(v,x);
          v.sadd(-1.,1.,b);
        };

      double rho = v.l2_norm();

      // check the residual here as well since it may be that we got the exact
      // (or an almost exact) solution vector at the outset. if we wouldn't
      // check here, the next scaling operation would produce garbage
      if (use_default_residual)
        {
          iteration_state = this->control().check (
                              accumulated_iterations, rho);

          if (iteration_state != SolverControl::iterate)
            break;
        }
      else
        {
          deallog << "default_res=" << rho << std::endl;

          if (left_precondition)
            {
              A.vmult(*r,x);
              r->sadd(-1.,1.,b);
            }
          else
            precondition.vmult(*r,v);

          double res = r->l2_norm();
          iteration_state = this->control().check (
                              accumulated_iterations, res);

          if (iteration_state != SolverControl::iterate)
            {
              this->memory.free(r);
              this->memory.free(x_);

              delete gamma_;
              break;
            }
        }

      gamma(0) = rho;

      v *= 1./rho;

      // inner iteration doing at most as many steps as there are temporary
      // vectors. the number of steps actually been done is propagated outside
      // through the @p dim variable
      for (unsigned int inner_iteration=0;
           ((inner_iteration < n_tmp_vectors-2)
            &&
            (iteration_state==SolverControl::iterate));
           ++inner_iteration)
        {
          ++accumulated_iterations;
          // yet another alias
          VECTOR &vv = tmp_vectors(inner_iteration+1, x);

          if (left_precondition)
            {
              A.vmult(p, tmp_vectors[inner_iteration]);
              precondition.vmult(vv,p);
            }
          else
            {
              precondition.vmult(p, tmp_vectors[inner_iteration]);
              A.vmult(vv,p);
            };

          dim = inner_iteration+1;

          const double s = modified_gram_schmidt(tmp_vectors, dim,
                                                 accumulated_iterations,
                                                 vv, h, re_orthogonalize);
          h(inner_iteration+1) = s;

          //s=0 is a lucky breakdown, the solver will reach convergence,
          //but we must not divide by zero here.
          if (numbers::is_finite(1./s))
            vv *= 1./s;

          //  Transformation into triagonal structure
          givens_rotation(h,gamma,ci,si,inner_iteration);

          //  append vector on matrix
          for (unsigned int i=0; i<dim; ++i)
            H(i,inner_iteration) = h(i);

          //  default residual
          rho = std::fabs(gamma(dim));

          if (use_default_residual)
            iteration_state = this->control().check (
                                accumulated_iterations, rho);
          else
            {
              deallog << "default_res=" << rho << std::endl;

              dealii::Vector<double> h_(dim);
              *x_=x;
              *gamma_=gamma;
              H1.reinit(dim+1,dim);

              for (unsigned int i=0; i<dim+1; ++i)
                for (unsigned int j=0; j<dim; ++j)
                  H1(i,j) = H(i,j);

              H1.backward(h_,*gamma_);

              if (left_precondition)
                for (unsigned int i=0 ; i<dim; ++i)
                  x_->add(h_(i), tmp_vectors[i]);
              else
                {
                  p = 0.;
                  for (unsigned int i=0; i<dim; ++i)
                    p.add(h_(i), tmp_vectors[i]);
                  precondition.vmult(*r,p);
                  x_->add(1.,*r);
                };
              A.vmult(*r,*x_);
              r->sadd(-1.,1.,b);
              // Now *r contains the unpreconditioned residual!!
              if (left_precondition)
                {
                  const double res=r->l2_norm();

                  iteration_state = this->control().check (
                                      accumulated_iterations, res);
                }
              else
                {
                  precondition.vmult(*x_, *r);
                  const double preconditioned_res=x_->l2_norm();

                  iteration_state = this->control().check (
                                      accumulated_iterations, preconditioned_res);
                }
            }
        };
      // end of inner iteration. now calculate the solution from the temporary
      // vectors
      h.reinit(dim);
      H1.reinit(dim+1,dim);

      for (unsigned int i=0; i<dim+1; ++i)
        for (unsigned int j=0; j<dim; ++j)
          H1(i,j) = H(i,j);

      H1.backward(h,gamma);

      if (left_precondition)
        for (unsigned int i=0 ; i<dim; ++i)
          x.add(h(i), tmp_vectors[i]);
      else
        {
          p = 0.;
          for (unsigned int i=0; i<dim; ++i)
            p.add(h(i), tmp_vectors[i]);
          precondition.vmult(v,p);
          x.add(1.,v);
        };
      // end of outer iteration. restart if no convergence and the number of
      // iterations is not exceeded
    }
  while (iteration_state == SolverControl::iterate);

  if (!use_default_residual)
    {
      this->memory.free(r);
      this->memory.free(x_);

      delete gamma_;
    }

  deallog.pop();
  // in case of failure: throw exception
  if (this->control().last_check() != SolverControl::success)
    AssertThrow(false, SolverControl::NoConvergence (this->control().last_step(),
                                                     this->control().last_value()));
  // otherwise exit as normal
}



template<class VECTOR>
double
SolverGMRES<VECTOR>::criterion ()
{
  // dummy implementation. this function is not needed for the present
  // implementation of gmres
  Assert (false, ExcInternalError());
  return 0;
}


//----------------------------------------------------------------------//

template <class VECTOR>
SolverFGMRES<VECTOR>::SolverFGMRES (SolverControl        &cn,
                                    VectorMemory<VECTOR> &mem,
                                    const AdditionalData &data)
  :
  Solver<VECTOR> (cn, mem),
  additional_data(data)
{}



template <class VECTOR>
SolverFGMRES<VECTOR>::SolverFGMRES (SolverControl        &cn,
                                    const AdditionalData &data)
  :
  Solver<VECTOR> (cn),
  additional_data(data)
{}



template<class VECTOR>
template<class MATRIX, class PRECONDITIONER>
void
SolverFGMRES<VECTOR>::solve (
  const MATRIX &A,
  VECTOR &x,
  const VECTOR &b,
  const PRECONDITIONER &precondition)
{
  deallog.push("FGMRES");

  SolverControl::State iteration_state = SolverControl::iterate;

  const unsigned int basis_size = additional_data.max_basis_size;

  // Generate an object where basis vectors are stored.
  typename internal::SolverGMRES::TmpVectors<VECTOR> v (basis_size, this->memory);
  typename internal::SolverGMRES::TmpVectors<VECTOR> z (basis_size, this->memory);

  // number of the present iteration; this number is not reset to zero upon a
  // restart
  unsigned int accumulated_iterations = 0;

  // matrix used for the orthogonalization process later
  H.reinit(basis_size+1, basis_size);

  // Vectors for projected system
  Vector<double> projected_rhs;
  Vector<double> y;

  // Iteration starts here

  VECTOR *aux = this->memory.alloc();
  aux->reinit(x);
  do
    {
      A.vmult(*aux, x);
      aux->sadd(-1., 1., b);

      double beta = aux->l2_norm();
      if (this->control().check(accumulated_iterations,beta)
          == SolverControl::success)
        break;

      H.reinit(basis_size+1, basis_size);
      double a = beta;

      for (unsigned int j=0; j<basis_size; ++j)
        {
          if (numbers::is_finite(1./a)) // treat lucky breakdown
            v(j,x).equ(1./a, *aux);
          else
            v(j,x) = 0.;


          precondition.vmult(z(j,x), v[j]);
          A.vmult(*aux, z[j]);

          // Gram-Schmidt
          for (unsigned int i=0; i<=j; ++i)
            {
              H(i,j) = *aux * v[i];
              aux->add(-H(i,j), v[i]);
            }
          H(j+1,j) = a = aux->l2_norm();

          // Compute projected solution

          if (j>0)
            {
              H1.reinit(j+1,j);
              projected_rhs.reinit(j+1);
              y.reinit(j);
              projected_rhs(0) = beta;
              H1.fill(H);
              Householder<double> house(H1);
              double res = house.least_squares(y, projected_rhs);
              iteration_state = this->control().check(++accumulated_iterations, res);
              if (iteration_state != SolverControl::iterate)
                break;
            }
        }
      // Update solution vector
      for (unsigned int j=0; j<y.size(); ++j)
        x.add(y(j), z[j]);

    }
  while (iteration_state == SolverControl::iterate);

  this->memory.free(aux);

  deallog.pop();
  // in case of failure: throw exception
  if (this->control().last_check() != SolverControl::success)
    AssertThrow(false, SolverControl::NoConvergence (this->control().last_step(),
                                                     this->control().last_value()));
}

#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif