This file is indexed.

/usr/include/Pythia8/Pythia8/Analysis.h is in libpythia8-dev 8.1.86-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
// Analysis.h is a part of the PYTHIA event generator.
// Copyright (C) 2014 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.

// Header file for the Sphericity, Thrust, ClusterJet and CellJet classes.
// Sphericity: sphericity analysis of the event.
// Thrust: thrust analysis of the event.
// ClusterJet: clustering jet finder.
// CellJet: calorimetric cone jet finder.
// SlowJet: recombination algorithm; lightweight version of FastJet.

#ifndef Pythia8_Analysis_H
#define Pythia8_Analysis_H

#include "Pythia8/Basics.h"
#include "Pythia8/Event.h"
#include "Pythia8/PythiaStdlib.h"

namespace Pythia8 {

//==========================================================================

// Sphericity class.
// This class performs (optionally modified) sphericity analysis on an event.

class Sphericity {

public:

  // Constructor.
  Sphericity(double powerIn = 2., int selectIn = 2) : power(powerIn),
    select(selectIn), nFew(0) {powerInt = 0;
    if (abs(power - 1.) < 0.01) powerInt = 1;
    if (abs(power - 2.) < 0.01) powerInt = 2;
    powerMod = 0.5 * power - 1.;}
  
  // Analyze event.
  bool analyze(const Event& event, ostream& os = cout);

  // Return info on results of analysis.
  double sphericity()      const {return 1.5 * (eVal2 + eVal3);}
  double aplanarity()      const {return 1.5 * eVal3;}
  double eigenValue(int i) const {return (i < 2) ? eVal1 :
    ( (i < 3) ? eVal2 : eVal3 ) ;}
  Vec4 eventAxis(int i)    const {return (i < 2) ? eVec1 :
    ( (i < 3) ? eVec2 : eVec3 ) ;}

  // Provide a listing of the info.
  void list(ostream& os = cout) const;

  // Tell how many events could not be analyzed.
  int nError() const {return nFew;}

private:

  // Constants: could only be changed in the code itself.
  static const int    NSTUDYMIN, TIMESTOPRINT;
  static const double P2MIN, EIGENVALUEMIN;

  // Properties of analysis.
  double power;
  int    select, powerInt;
  double powerMod;

  // Outcome of analysis.
  double eVal1, eVal2, eVal3;
  Vec4   eVec1, eVec2, eVec3;

  // Error statistics;
  int    nFew;

};

//==========================================================================

// Thrust class.
// This class performs thrust analysis on an event.

class Thrust {

public:

  // Constructor.
  Thrust(int selectIn = 2) : select(selectIn), nFew(0) {}
  
  // Analyze event.
  bool analyze(const Event& event, ostream& os = cout);

  // Return info on results of analysis.
  double thrust()       const {return eVal1;}
  double tMajor()       const {return eVal2;}
  double tMinor()       const {return eVal3;}
  double oblateness()   const {return eVal2 - eVal3;}
  Vec4 eventAxis(int i) const {return (i < 2) ? eVec1 :
    ( (i < 3) ? eVec2 : eVec3 ) ;}

  // Provide a listing of the info.
  void list(ostream& os = cout) const;

  // Tell how many events could not be analyzed.
  int nError() const {return nFew;}

private:

  // Constants: could only be changed in the code itself.
  static const int    NSTUDYMIN, TIMESTOPRINT;
  static const double MAJORMIN;

  // Properties of analysis.
  int    select;

  // Outcome of analysis.
  double eVal1, eVal2, eVal3;
  Vec4   eVec1, eVec2, eVec3;

  // Error statistics;
  int    nFew;

};

//==========================================================================

// SingleClusterJet class.
// Simple helper class to ClusterJet for a jet and its contents.

class SingleClusterJet {

public:

  // Constructors.
  SingleClusterJet(Vec4 pJetIn = 0., int motherIn = 0) :
    pJet(pJetIn), mother(motherIn), daughter(0), multiplicity(1),
    isAssigned(false) {pAbs = max( PABSMIN, pJet.pAbs());}
  SingleClusterJet& operator=(const SingleClusterJet& j) { if (this != &j)
    { pJet = j.pJet;  mother = j.mother; daughter = j.daughter;
    multiplicity = j.multiplicity; pAbs = j.pAbs;
    isAssigned = j.isAssigned;} return *this; }

  // Properties of jet.
  // Note: mother, daughter and isAssigned only used for original
  // particles, multiplicity and pTemp only for reconstructed jets.
  Vec4   pJet;
  int    mother, daughter, multiplicity;
  bool   isAssigned;
  double pAbs;
  Vec4   pTemp;

  // Distance measures (Lund, JADE, Durham) with friend.
  friend double dist2Fun(int measure, const SingleClusterJet& j1,
    const SingleClusterJet& j2);

private:

  // Constants: could only be changed in the code itself.
  static const double PABSMIN;

} ;

//--------------------------------------------------------------------------

// Namespace function declarations; friend of SingleClusterJet.

// Distance measures (Lund, JADE, Durham) with friend.
double dist2Fun(int measure, const SingleClusterJet& j1,
  const SingleClusterJet& j2);

//==========================================================================

// ClusterJet class.
// This class performs a jet clustering according to different
// distance measures: Lund, JADE or Durham.

class ClusterJet {

public:

  // Constructor.
  ClusterJet(string measureIn = "Lund", int selectIn = 2, int massSetIn = 2,
    bool preclusterIn = false, bool reassignIn = false) : measure(1),
    select(selectIn), massSet(massSetIn), doPrecluster(preclusterIn),
    doReassign(reassignIn), nFew(0) {
    char firstChar = toupper(measureIn[0]);
    if (firstChar == 'J') measure = 2;
    if (firstChar == 'D') measure = 3;
  }
      
  // Analyze event.
  bool analyze(const Event& event, double yScaleIn, double pTscaleIn,
    int nJetMinIn = 1, int nJetMaxIn = 0, ostream& os = cout);

  // Return info on jets produced.
  int  size()      const {return jets.size();}
  Vec4 p(int i)    const {return jets[i].pJet;}
  int  mult(int i) const {return jets[i].multiplicity;}

  // Return belonging of particle to one of the jets (-1 if none).
  int jetAssignment(int i) const {
    for (int iP = 0; iP < int(particles.size()); ++iP)
    if (particles[iP].mother == i) return particles[iP].daughter;
    return -1;}

  // Provide a listing of the info.
  void list(ostream& os = cout) const;

  // Return info on clustering values.
  int    distanceSize() const {return distances.size();}
  double distance(int i) const {
    return (i < distanceSize()) ? distances[i] : 0.; }

  // Tell how many events could not be analyzed.
  int nError() const {return nFew;}

private:

  // Constants: could only be changed in the code itself.
  static const int    TIMESTOPRINT;
  static const double PIMASS, PABSMIN, PRECLUSTERFRAC, PRECLUSTERSTEP;

  // Properties of analysis.
  int    measure, select, massSet;
  bool   doPrecluster, doReassign;
  double yScale, pTscale;
  int    nJetMin, nJetMax;

  // Temporary results.
  double dist2Join, dist2BigMin, distPre, dist2Pre;
  vector<SingleClusterJet> particles;
  int    nParticles;

  // Error statistics;
  int    nFew;

  // Member functions for some operations (for clarity).
  void precluster();
  void reassign();

  // Outcome of analysis: ET-ordered list of jets.
  vector<SingleClusterJet> jets;

  // Outcome of analysis: the distance values where the jets were merged.
  deque<double> distances;

};

//==========================================================================

// SingleCell class.
// Simple helper class to CellJet for a cell and its contents.

class SingleCell {

public:

  // Constructor.
  SingleCell(int iCellIn = 0, double etaCellIn = 0., double phiCellIn = 0.,
    double eTcellIn = 0., int multiplicityIn = 0) : iCell(iCellIn),
    etaCell(etaCellIn), phiCell(phiCellIn), eTcell(eTcellIn),
    multiplicity(multiplicityIn), canBeSeed(true), isUsed(false),
    isAssigned(false) {}

  // Properties of cell.
  int    iCell;
  double etaCell, phiCell, eTcell;
  int    multiplicity;
  bool   canBeSeed, isUsed, isAssigned;

} ;

//==========================================================================

// SingleCellJet class.
// Simple helper class to CellJet for a jet and its contents.

class SingleCellJet {

public:

  // Constructor.
  SingleCellJet(double eTjetIn = 0., double etaCenterIn = 0.,
    double phiCenterIn = 0., double etaWeightedIn = 0.,
    double phiWeightedIn = 0., int multiplicityIn = 0,
    Vec4 pMassiveIn = 0.) : eTjet(eTjetIn), etaCenter(etaCenterIn),
    phiCenter(phiCenterIn), etaWeighted(etaWeightedIn),
    phiWeighted(phiWeightedIn), multiplicity(multiplicityIn),
    pMassive(pMassiveIn) {}

  // Properties of jet.
  double eTjet, etaCenter, phiCenter, etaWeighted, phiWeighted;
  int    multiplicity;
  Vec4   pMassive;

} ;

//==========================================================================

// CellJet class.
// This class performs a cone jet search in (eta, phi, E_T) space.

class CellJet {

public:

  // Constructor.
  CellJet(double etaMaxIn = 5., int nEtaIn = 50, int nPhiIn = 32,
    int selectIn = 2, int smearIn = 0, double resolutionIn = 0.5,
    double upperCutIn = 2., double thresholdIn = 0., Rndm* rndmPtrIn = 0)
    : etaMax(etaMaxIn), nEta(nEtaIn), nPhi(nPhiIn), select(selectIn),
    smear(smearIn), resolution(resolutionIn), upperCut(upperCutIn),
    threshold(thresholdIn), nFew(0), rndmPtr(rndmPtrIn) { }
  
  // Analyze event.
  bool analyze(const Event& event, double eTjetMinIn = 20.,
    double coneRadiusIn = 0.7, double eTseedIn = 1.5, ostream& os = cout);

  // Return info on results of analysis.
  int    size()              const {return jets.size();}
  double eT(int i)           const {return jets[i].eTjet;}
  double etaCenter(int i)    const {return jets[i].etaCenter;}
  double phiCenter(int i)    const {return jets[i].phiCenter;}
  double etaWeighted(int i)  const {return jets[i].etaWeighted;}
  double phiWeighted(int i)  const {return jets[i].phiWeighted;}
  int    multiplicity(int i) const {return jets[i].multiplicity;}
  Vec4   pMassless(int i)    const {return jets[i].eTjet * Vec4(
           cos(jets[i].phiWeighted),  sin(jets[i].phiWeighted),
          sinh(jets[i].etaWeighted), cosh(jets[i].etaWeighted) );}
  Vec4   pMassive(int i)     const {return jets[i].pMassive;}
  double m(int i)            const {return jets[i].pMassive.mCalc();}

  // Provide a listing of the info.
  void list(ostream& os = cout) const;

  // Tell how many events could not be analyzed: so far never.
  int nError() const {return nFew;}

private:

  // Constants: could only be changed in the code itself.
  static const int    TIMESTOPRINT;

  // Properties of analysis.
  double etaMax;
  int    nEta, nPhi, select, smear;
  double resolution, upperCut, threshold;
  double eTjetMin, coneRadius, eTseed;

  // Error statistics;
  int    nFew;

  // Outcome of analysis: ET-ordered list of jets.
  vector<SingleCellJet> jets;

  // Pointer to the random number generator (needed for energy smearing).
  Rndm* rndmPtr;

};

//==========================================================================

// SlowJetHook class.
// Base class, used to derive your own class with your selection criteria.

class SlowJetHook {

public:

  // Destructor.
  virtual ~SlowJetHook() { }

  // Method to be overloaded.
  // It will be called for all final-state particles, one at a time, and
  // should return true if the particle should be analyzed, false if not.
  // The particle is in location iSel of the event record.
  // If you wish you can also modify the four-momentum and mass that will
  //  be used in the analysis, without affecting the event record itself,
  // by changing pSel and mSel. Remember to respect E^2 - p^2 = m^2.
  virtual bool include(int iSel, const Event& event, Vec4& pSel,
    double& mSel) = 0;

};

//==========================================================================

// SingleSlowJet class.
// Simple helper class to SlowJet for a jet and its contents.

class SingleSlowJet {

public:

  // Constructors.
  SingleSlowJet( Vec4 pIn = 0., double pT2In = 0., double yIn = 0.,
      double phiIn = 0., int idxIn = 0) : p(pIn), pT2(pT2In), y(yIn),
      phi(phiIn), mult(1) { idx.insert(idxIn); }
  SingleSlowJet(const SingleSlowJet& ssj) : p(ssj.p), pT2(ssj.pT2),
    y(ssj.y), phi(ssj.phi), mult(ssj.mult), idx(ssj.idx) { }
  SingleSlowJet& operator=(const SingleSlowJet& ssj) { if (this != &ssj)
    { p = ssj.p; pT2 = ssj.pT2; y = ssj.y; phi = ssj.phi;
    mult = ssj.mult; idx = ssj.idx; } return *this; }

  // Properties of jet.
  Vec4     p;
  double   pT2, y, phi;
  int      mult;
  set<int> idx;

};

//==========================================================================

// SlowJet class.
// This class performs a recombination jet search in (y, phi, pT) space.

class SlowJet {

public:

  // Constructor.
  SlowJet(int powerIn, double Rin, double pTjetMinIn = 0.,
    double etaMaxIn = 25., int selectIn = 2, int massSetIn = 2,
    SlowJetHook* sjHookPtrIn = 0, bool useFJcoreIn = true,
    bool useStandardRin = true) : power(powerIn), R(Rin),
    pTjetMin(pTjetMinIn), etaMax(etaMaxIn), select(selectIn),
    massSet(massSetIn), sjHookPtr(sjHookPtrIn), useFJcore(useFJcoreIn),
    useStandardR(useStandardRin) { isAnti = (power < 0); isKT = (power > 0);
    R2 = R*R; pT2jetMin = pTjetMin*pTjetMin; cutInEta = (etaMax <= 20.);
    chargedOnly = (select > 2); visibleOnly = (select == 2);
    modifyMass = (massSet < 2); noHook = (sjHookPtr == 0);}
  
  // Analyze event, all in one go.
  bool analyze(const Event& event) {
    if ( !setup(event) ) return false;
    if (useFJcore) return clusterFJ();
    while (clSize > 0) doStep(); return true; }

  // Set up list of particles to analyze, and initial distances.
  bool setup(const Event& event);

  // Do one recombination step, possibly giving a jet.
  bool doStep();

  // Do several recombinations steps, if possible.
  bool doNSteps(int nStep) { if (useFJcore) return false;
    while(nStep > 0 && clSize > 0) { doStep(); --nStep;}
    return (nStep == 0); }

  // Do recombinations until fixed numbers of clusters and jets remain.
  bool stopAtN(int nStop) { if (useFJcore) return false;
    while (clSize + jtSize > nStop && clSize > 0) doStep();
    return (clSize + jtSize == nStop); }

  // Return info on jet (+cluster) results of analysis.
  int    sizeOrig()          const {return origSize;}
  int    sizeJet()           const {return jtSize;}
  int    sizeAll()           const {return jtSize + clSize;}
  double pT(int i)           const {return (i < jtSize)
    ? sqrt(jets[i].pT2) : sqrt(clusters[i - jtSize].pT2);}
  double y(int i)            const {return (i < jtSize)
    ? jets[i].y : clusters[i - jtSize].y;}
  double phi(int i)          const {return (i < jtSize)
    ? jets[i].phi : clusters[i - jtSize].phi;}
  Vec4   p(int i)            const {return (i < jtSize)
    ? jets[i].p : clusters[i - jtSize].p;}
  double m(int i)            const {return (i < jtSize)
    ? jets[i].p.mCalc() : clusters[i - jtSize].p.mCalc();}
  int    multiplicity(int i) const {return (i < jtSize)
    ? jets[i].mult : clusters[i - jtSize].mult;}

  // Return info on next step to be taken.
  int    iNext() const {return (iMin == -1) ? -1 : iMin + jtSize;}
  int    jNext() const {return (jMin == -1) ? -1 : jMin + jtSize;}
  double dNext() const {return dMin;}

  // Provide a listing of the info.
  void list(bool listAll = false, ostream& os = cout) const;

  // Give a list of all particles in the jet.
  vector<int> constituents(int j) { vector<int> cTemp;
    for (set<int>::iterator idxTmp = jets[j].idx.begin();
       idxTmp != jets[j].idx.end(); ++idxTmp)
       cTemp.push_back( *idxTmp); return cTemp;
  }

  // Give a list of all particles in the cluster.
  vector<int> clusConstituents(int j) { vector<int> cTemp;
    for (set<int>::iterator idxTmp = clusters[j].idx.begin();
       idxTmp != clusters[j].idx.end(); ++idxTmp)
       cTemp.push_back( *idxTmp); return cTemp;
  }

  // Give the index of the jet that the particle i of the event record
  // belongs to. Returns -1 if particle i is not found in a jet.
  int jetAssignment(int i) {
    for (int j = 0; j < sizeJet(); ++j)
      if (jets[j].idx.find(i) != jets[j].idx.end()) return j;
    return -1;
  }

  // Remove a jet.
  void removeJet(int i) {
    if (i < 0 || i >= jtSize) return;
    jets.erase(jets.begin() + i);
    jtSize--;
  }

private:

  // Constants: could only be changed in the code itself.
  static const int    TIMESTOPRINT;
  static const double PIMASS, TINY;

  // Properties of analysis as such.
  int    power;
  double R, pTjetMin, etaMax, R2, pT2jetMin;
  int    select, massSet;
  // SlowJetHook can be used to tailor particle selection step.
  SlowJetHook* sjHookPtr;
  bool   useFJcore, useStandardR, isAnti, isKT, cutInEta, chargedOnly,
         visibleOnly, modifyMass, noHook;

  // Intermediate clustering objects and final jet objects.
  vector<SingleSlowJet> clusters;
  vector<SingleSlowJet> jets;

  // Intermediate clustering distances.
  vector<double> diB;
  vector<double> dij;

  // Other intermediate variables.
  int    origSize, clSize, clLast, jtSize, iMin, jMin;
  double dPhi, dijTemp, dMin;

  // Find next cluster pair to join.
  void findNext();

  // Use FJcore interface to perform clustering.
  bool clusterFJ();

};

//==========================================================================

} // end namespace Pythia8

#endif // end Pythia8_Analysis_H