This file is indexed.

/usr/include/rheolef/array.h is in librheolef-dev 6.5-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
#ifndef _RHEO_ARRAY_H
#define _RHEO_ARRAY_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

#include "rheolef/distributed.h"
#include "rheolef/distributor.h"
#include "rheolef/diststream.h"
#include "rheolef/heap_allocator.h"
#include "rheolef/msg_util.h"
#include "rheolef/container_traits.h"
#ifdef _RHEOLEF_HAVE_MPI
#include "rheolef/mpi_pair_datatype.h"
#endif // _RHEOLEF_HAVE_MPI

#include <boost/mpl/bool.hpp>
#include <boost/type_traits/remove_const.hpp>

namespace rheolef {
/// @brief array element output helper
template <class T>
struct _array_put_element_type {
  std::ostream& operator() (std::ostream& os, const T& x) { return os << x; }
};
template <class T>
struct _array_put_matlab_type {
  std::ostream& operator() (std::ostream& os, const T& x) { return os << x << ";"; }
};
/// @brief array element input helper
template <class T>
struct _array_get_element_type {
  std::istream& operator() (std::istream& is, T& x) { return is >> x; }
};
} // namespace rheolef
// -------------------------------------------------------------
// the sequential representation
// -------------------------------------------------------------
namespace rheolef {

template <class T, class M, class A> class array_rep {};

template <class T, class A>
class array_rep<T,sequential,A> : public std::vector<T,A> {
public:
    typedef T                                         value_type;
    typedef A                                         allocator_type;
    typedef typename A::difference_type               difference_type;
    typedef std::vector<T,A>                          base;
    typedef typename base::size_type                  size_type;
    typedef typename base::iterator                   iterator;
    typedef typename base::const_iterator             const_iterator;
    typedef typename base::const_reference            const_reference;
    typedef typename base::reference                  reference;
    typedef reference	                              dis_reference;
    typedef distributor::communicator_type            communicator_type;
    typedef sequential                                memory_type;

    explicit array_rep (const A& alloc = A());
    array_rep (const distributor& ownership, const T& init_val = T(), const A& alloc = A());
    void resize   (const distributor& ownership, const T& init_val = T());
    array_rep (size_type loc_size = 0,       const T& init_val = T(), const A& alloc = A());
    void resize   (size_type loc_size = 0,       const T& init_val = T());
    array_rep (const array_rep<T,sequential,A>& x);

    A get_allocator() const { return base::get_allocator(); }
    size_type size() const { return base::size(); }
    iterator begin() { return base::begin(); }
    const_iterator begin() const { return base::begin(); }
    iterator end() { return base::end(); }
    const_iterator end() const { return base::end(); }
    const distributor& ownership() const { return _ownership; }

    reference       operator[] (size_type i)       { return base::operator[] (i); }
    const_reference operator[] (size_type i) const { return base::operator[] (i); }
    const_reference dis_at (size_type dis_i) const { return operator[] (dis_i); }
   
    size_type dis_size () const { return base::size(); }
    size_type first_index () const { return 0; }
    size_type last_index () const { return base::size(); }
    reference dis_entry     (size_type dis_i) { return operator[](dis_i); }
    void reset_dis_indexes() const {}
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_begin (SetOp = SetOp()) {}
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_end (SetOp = SetOp()) {}
    void repartition (					      // old_numbering for *this
        const array_rep<size_type,sequential,A>& partition,	      // old_ownership
        array_rep<T,sequential,A>&               new_array,	      // new_ownership (created)
        array_rep<size_type,sequential,A>&       old_numbering,      // new_ownership
        array_rep<size_type,sequential,A>&       new_numbering) const // old_ownership
    {
	error_macro ("not yet");
    }
    template<class A2>
    void reverse_permutation (                                // old_ownership for *this=iold2dis_inew
        array_rep<size_type,sequential,A2>& inew2dis_iold) const;    // new_ownership

    idiststream& get_values (idiststream& s);
    odiststream& put_values (odiststream& s) const;
    odiststream& put_matlab (odiststream& s) const;
    template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
    template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;
    void dump (std::string name) const;
protected:
// data:
    distributor      _ownership;
};
// -------------------------------------------------------------
// the distributed representation
// -------------------------------------------------------------
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
class array_rep<T,distributed,A> : public array_rep<T,sequential,A> {
public:

// typedefs:

    typedef array_rep<T,sequential,A>     	base;
    typedef typename base::value_type     	value_type;
    typedef typename base::size_type      	size_type;
    typedef typename base::difference_type      difference_type;
    typedef typename base::reference      	reference;
    typedef typename base::const_reference      const_reference;
    typedef typename base::iterator       	iterator;
    typedef typename base::const_iterator 	const_iterator;
    typedef distributor::communicator_type      communicator_type;
    typedef distributed                         memory_type;
    typedef std::map <size_type, T, std::less<size_type>, heap_allocator<std::pair<size_type,T> > > 
						scatter_map_type;

    struct dis_reference {
      dis_reference (array_rep<T,distributed,A>& x, size_type dis_i)
       : _x(x), _dis_i(dis_i) {}

      dis_reference& operator= (const T& value) {
        _x.set_dis_entry (_dis_i, value);
        return *this;
      }
      template<class U>
      dis_reference& operator+= (const U& value) {
        _x.set_add_dis_entry (_dis_i, value);
        return *this;
      }
    // data:
    protected:
      array_rep<T,distributed,A>& _x;
      size_type           _dis_i;
    };

// allocators:

    array_rep (const distributor& ownership, const T&  init_val = T(), const A& alloc = A());
    void resize   (const distributor& ownership, const T&  init_val = T());
    array_rep (const array_rep<T,distributed,A>& x);

    A get_allocator() const        { return base::get_allocator(); }
    size_type size() const         { return base::size(); }
    const_iterator begin() const   { return base::begin(); }
    const_iterator end() const     { return base::end(); }
    iterator begin()               { return base::begin(); }
    iterator end()                 { return base::end(); }

    const distributor& ownership() const  { return base::_ownership; }
    const mpi::communicator& comm() const { return ownership().comm(); }
    size_type first_index () const        { return ownership().first_index(); }
    size_type last_index () const         { return ownership().last_index(); }
    size_type dis_size () const           { return ownership().dis_size(); }

    dis_reference dis_entry (size_type dis_i) { return dis_reference (*this, dis_i); }

    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_begin (SetOp my_set_op = SetOp());
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_end   (SetOp my_set_op = SetOp());
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly       (SetOp my_set_op = SetOp())
   		{ dis_entry_assembly_begin (my_set_op); dis_entry_assembly_end (my_set_op); }

    template<class Set, class Map>
    void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const;

    template<class Set, class Map>
    void get_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const {
    	    ext_idx_map.clear();
    	    append_dis_entry (ext_idx_set, ext_idx_map);
	}

    template<class Set>
    void append_dis_indexes (const Set& ext_idx_set) const { append_dis_entry (ext_idx_set, _ext_x); }

    template<class Set>
    void set_dis_indexes    (const Set& ext_idx_set) const { get_dis_entry    (ext_idx_set, _ext_x); }
    void reset_dis_indexes() const;

    const_reference dis_at (size_type dis_i) const;

    // get all external pairs (dis_i, values):
    const scatter_map_type& get_dis_map_entries() const { return _ext_x; }

    template<class A2>
    void repartition (					      // old_numbering for *this
        const array_rep<size_type,distributed,A2>& partition,	      // old_ownership
        array_rep<T,distributed,A>&                new_array,	      // new_ownership (created)
        array_rep<size_type,distributed,A2>&       old_numbering,     // new_ownership
        array_rep<size_type,distributed,A2>&       new_numbering) const; // old_ownership

    template<class A2>
    void permutation_apply (		 		       // old_numbering for *this
        const array_rep<size_type,distributed,A2>& new_numbering,      // old_ownership
        array_rep<T,distributed,A>&                new_array) const;   // new_ownership (already allocated)

    template<class A2>
    void reverse_permutation (                                // old_ownership for *this=iold2dis_inew
        array_rep<size_type,distributed,A2>& inew2dis_iold) const;    // new_ownership

    idiststream& get_values (idiststream& s);
    odiststream& put_values (odiststream& s) const;
    odiststream& put_matlab (odiststream& s) const;
    template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
    template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;
    template <class PutFunction, class A2> odiststream& permuted_put_values (odiststream& ops, const array_rep<size_type,distributed,A2>& perm,
		PutFunction put_element) const;
    void dump (std::string name) const;
protected:
    void set_dis_entry (size_type dis_i, const T& val);
    template<class U>
    void set_add_dis_entry (size_type dis_i, const U& val);
// typedefs:
    /** 1) stash: store data before assembly() communications:
      *   select multimap<U> when T=set<U> and map<T> otherwise
      */
    template<class Pair>
    struct remove_const_in_pair {
        typedef Pair type;
    };
    template<class T1, class T2>
    struct remove_const_in_pair<std::pair<T1,T2> > {
        typedef std::pair<typename boost::remove_const<T1>::type,
                          typename boost::remove_const<T2>::type> type;
    };
    template<class U, class IsContainer> struct stash_traits {};
    template<class U>
    struct stash_traits<U,boost::mpl::false_> {
        typedef U mapped_type;
        typedef std::map <size_type, U, std::less<size_type>, heap_allocator<std::pair<size_type,U> > >   map_type;
    };
    template<class U>
    struct stash_traits<U,boost::mpl::true_> {
        typedef typename remove_const_in_pair<typename U::value_type>::type mapped_type;
        typedef std::multimap <size_type, mapped_type, std::less<size_type>, heap_allocator<std::pair<size_type,mapped_type> > >   map_type;
    };
    typedef typename is_container_of_mpi_datatype<T>::type is_container;
    typedef typename stash_traits<T,is_container>::mapped_type stash_value;
    typedef typename stash_traits<T,is_container>::map_type    stash_map_type;

    /** 2) message: for communication during assembly_begin(), assembly_end()
      */
    struct message_type {
        std::list<std::pair<size_type,mpi::request>,A>    waits;
        std::vector<std::pair<size_type,stash_value>,A>   data;
    };
    /** 3) scatter (get_entry): specialized versions for T=container and T=simple type
      */
    template<class Set, class Map>
    void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map, boost::mpl::true_) const;
    template<class Set, class Map>
    void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map, boost::mpl::false_) const;

// data:
    stash_map_type   _stash;		// for assembly msgs:
    message_type     _send;
    message_type     _receive;
    size_type        _receive_max_size;
    mutable scatter_map_type _ext_x;		// for ext values (scatter)
};
#endif // _RHEOLEF_HAVE_MPI
// -------------------------------------------------------------
// the basic class with a smart pointer to representation
// the user-level class with memory-model parameter
// -------------------------------------------------------------
/*Class:array
NAME:  @code{array} - container in distributed environment (@PACKAGE@-@VERSION@)
SYNOPSYS:       
  STL-like vector container for a distributed memory machine model.
EXAMPLE:
   A sample usage of the class is:
   @example
     int main(int argc, char**argv) @{
        environment distributed(argc, argv);
        array<double> x(distributor(100), 3.14);
        dout << x << endl;
     @}
   @end example
   The array<T> interface is similar to those of the std::vector<T> with the 
   addition of some communication features in the distributed case:
   write accesses with entry/assembly and read access with dis_at.

DISTRIBUTED WRITE ACCESS:
   Loop on any @code{dis_i} that is not managed by the current processor:
   @example
	x.dis_entry (dis_i) = value;
   @end example
   and then, after loop, perform all communication:
   @example
	x.dis_entry_assembly();
   @end example
   After this command, each value is stored in the array, available the processor
   associated to @code{dis_i}.
DISTRIBUTED READ ACCESS:
   First, define the set of indexes:
   @example
 	std::set<size_t> ext_idx_set; 
   @end example
   Then, loop on @code{dis_i} indexes that are not managed by the current processor:
   @example
	ext_idx_set.insert (dis_i);
   @end example
   After the loop, performs the communications:
   @example
        x.set_dis_indexes (ext_idx_set);
   @end example
   After this command, each values associated to the @code{dis_i} index,
   and that belongs to the index set, is now available also on the
   current processor as:
   @example
        value = x.dis_at (dis_i);
   @end example
   For convenience, if @code{dis_i} is managed by the current processor, this
   function returns also the value.
NOTE:
  The class takes two template parameters: one for the type T and the second
  for the memory model M, that could be either M=distributed or M=sequential.
  The two cases are associated to two diferent implementations, but proposes
  exactly the same interface. The sequential interface propose also a supplementary
  constructor:
   @example
        array<double,sequential> x(local_size, init_val);
   @end example
   This constructor is a STL-like one but could be consufused in the distributed case,
   since there are two sizes: a local one and a global one. In that case, the use
   of the distributor, as a generalization of the size concept, clarify the situation
   (@pxref{distributor class}).
 
IMPLEMENTATION NOTE:
  "scatter" via "get_dis_entry".

  "gather" via "dis_entry(dis_i) = value"
  or "dis_entry(dis_i) += value". Note that += applies when T=idx_set where
  idx_set is a wrapper class of std::set<size_t> ; the += operator represents the
  union of a set. The operator= is used when T=double or others simple T types
  without algebra. If there is a conflict, i.e. several processes set the dis_i
  index, then the result of operator+= depends upon the order of the process at
  each run and is not deterministic. Such ambiguous behavior is not detected
  yet at run time.

AUTHOR: Pierre.Saramito@imag.fr
End:
*/
template <class T, class M = rheo_default_memory_model, class A = std::allocator<T> >
class array {
public:
    typedef M memory_type;
    typedef typename std::vector<T,A>::size_type      size_type;
    typedef typename std::vector<T,A>::iterator       iterator;
    typedef typename std::vector<T,A>::const_iterator const_iterator;
};
//<verbatim:
template <class T, class A>
class array<T,sequential,A> : public smart_pointer<array_rep<T,sequential,A> > {
public:

// typedefs:

    typedef array_rep<T,sequential,A>  	  rep;
    typedef smart_pointer<rep> 		  base;

    typedef sequential 			  memory_type;
    typedef typename rep::size_type 	  size_type;
    typedef typename rep::difference_type difference_type;
    typedef typename rep::value_type 	  value_type;
    typedef typename rep::reference 	  reference;
    typedef typename rep::dis_reference   dis_reference;
    typedef typename rep::iterator 	  iterator;
    typedef typename rep::const_reference const_reference;
    typedef typename rep::const_iterator  const_iterator;

// allocators:


    array       (size_type loc_size = 0,       const T& init_val = T(), const A& alloc = A());
    void resize (size_type loc_size = 0,       const T& init_val = T());
    array       (const distributor& ownership, const T& init_val = T(), const A& alloc = A());
    void resize (const distributor& ownership, const T& init_val = T());

// local accessors & modifiers:

    A get_allocator() const              { return base::data().get_allocator(); }
    size_type     size () const          { return base::data().size(); }
    size_type dis_size () const          { return base::data().dis_size(); }
    const distributor& ownership() const { return base::data().ownership(); }
    const communicator& comm() const     { return ownership().comm(); }

    reference       operator[] (size_type i)       { return base::data().operator[] (i); }
    const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
    reference       operator() (size_type i)       { return base::data().operator[] (i); }
    const_reference operator() (size_type i) const { return base::data().operator[] (i); }
    const_reference dis_at (size_type dis_i) const { return operator[] (dis_i); }

          iterator begin()       { return base::data().begin(); }
    const_iterator begin() const { return base::data().begin(); }
          iterator end()         { return base::data().end(); }
    const_iterator end() const   { return base::data().end(); }

// global modifiers (for compatibility with distributed interface):

    dis_reference dis_entry (size_type dis_i) { return base::data().dis_entry(dis_i); }
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly (SetOp my_set_op = SetOp()) {}
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_begin (SetOp my_set_op = SetOp()) {}
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_end (SetOp my_set_op = SetOp()) {}

    void dis_entry_assembly_begin() {}
    void dis_entry_assembly_end()   {}
    void dis_entry_assembly()       {}

    void reset_dis_indexes() const {}
    template<class Set> void set_dis_indexes    (const Set& ext_idx_set) const {}
    template<class Set> void append_dis_indexes (const Set& ext_idx_set) const {}
    template<class Set, class Map> void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const {}
    template<class Set, class Map> void get_dis_entry    (const Set& ext_idx_set, Map& ext_idx_map) const {}

// apply a partition:
 
    template<class RepSize>
    void repartition (			             // old_numbering for *this
        const RepSize&         partition,	     // old_ownership
        array<T,sequential,A>& new_array,	     // new_ownership (created)
        RepSize&               old_numbering,	     // new_ownership
        RepSize&               new_numbering) const  // old_ownership
        { return base::data().repartition (partition, new_array, old_numbering, new_numbering); }

    template<class RepSize>
    void permutation_apply (                       // old_numbering for *this
        const RepSize&          new_numbering,     // old_ownership
        array<T,sequential,A>&  new_array) const   // new_ownership (already allocated)
        { return base::data().permutation_apply (new_numbering, new_array); }

    void reverse_permutation (                                 // old_ownership for *this=iold2dis_inew
        array<size_type,sequential,A>& inew2dis_iold) const   // new_ownership
        { base::data().reverse_permutation (inew2dis_iold.data()); }

// i/o:

    odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
    idiststream& get_values (idiststream& ips)       { return base::data().get_values(ips); }
    template <class GetFunction>
    idiststream& get_values (idiststream& ips, GetFunction get_element)       { return base::data().get_values(ips, get_element); }
    template <class PutFunction>
    odiststream& put_values (odiststream& ops, PutFunction put_element) const { return base::data().put_values(ops, put_element); }
    void dump (std::string name) const { return base::data().dump(name); }
};
//>verbatim:
template <class T, class A>
inline
array<T,sequential,A>::array (
    	size_type loc_size,
	const T&  init_val,
        const A&  alloc)
 : base(new_macro(rep(loc_size,init_val,alloc)))
{
}
template <class T, class A>
inline
array<T,sequential,A>::array (
    	const distributor& ownership,
	const T&           init_val,
        const A&           alloc)
 : base(new_macro(rep(ownership,init_val,alloc)))
{
}
template <class T, class A>
inline
void
array<T,sequential,A>::resize (
    	size_type loc_size,
	const T&  init_val)
{
  base::data().resize (loc_size,init_val);
}
template <class T, class A>
inline
void
array<T,sequential,A>::resize (
    	const distributor& ownership,
	const T&           init_val)
{
  base::data().resize (ownership,init_val);
}
#ifdef _RHEOLEF_HAVE_MPI
//<verbatim:
template <class T, class A>
class array<T,distributed,A> : public smart_pointer<array_rep<T,distributed,A> > {
public:

// typedefs:

    typedef array_rep<T,distributed,A>    rep;
    typedef smart_pointer<rep> 		  base;

    typedef distributed 		  memory_type;
    typedef typename rep::size_type 	  size_type;
    typedef typename rep::difference_type difference_type;
    typedef typename rep::value_type 	  value_type;
    typedef typename rep::reference 	  reference;
    typedef typename rep::dis_reference   dis_reference;
    typedef typename rep::iterator 	  iterator;
    typedef typename rep::const_reference const_reference;
    typedef typename rep::const_iterator  const_iterator;
    typedef typename rep::scatter_map_type scatter_map_type;

// allocators:

    array       (const distributor& ownership = distributor(), const T& init_val = T(), const A& alloc = A());
    void resize (const distributor& ownership = distributor(), const T& init_val = T());

// local accessors & modifiers:

    A get_allocator() const              { return base::data().get_allocator(); }
    size_type     size () const          { return base::data().size(); }
    size_type dis_size () const          { return base::data().dis_size(); }
    const distributor& ownership() const { return base::data().ownership(); }
    const communicator& comm() const     { return base::data().comm(); }

    reference       operator[] (size_type i)       { return base::data().operator[] (i); }
    const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
    reference       operator() (size_type i)       { return base::data().operator[] (i); }
    const_reference operator() (size_type i) const { return base::data().operator[] (i); }

          iterator begin()       { return base::data().begin(); }
    const_iterator begin() const { return base::data().begin(); }
          iterator end()         { return base::data().end(); }
    const_iterator end() const   { return base::data().end(); }

// global accessor:

    template<class Set, class Map>
    void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().append_dis_entry (ext_idx_set, ext_idx_map); }

    template<class Set, class Map>
    void get_dis_entry    (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().get_dis_entry (ext_idx_set, ext_idx_map); }

    template<class Set>
    void append_dis_indexes (const Set& ext_idx_set) const { base::data().append_dis_indexes (ext_idx_set); }
    void reset_dis_indexes() const { base::data().reset_dis_indexes(); }

    template<class Set>
    void set_dis_indexes    (const Set& ext_idx_set) const { base::data().set_dis_indexes (ext_idx_set); }

    const T& dis_at (size_type dis_i) const { return base::data().dis_at (dis_i); }

    // get all external pairs (dis_i, values):
    const scatter_map_type& get_dis_map_entries() const { return base::data().get_dis_map_entries(); }

// global modifiers (for compatibility with distributed interface):

    dis_reference dis_entry (size_type dis_i) { return base::data().dis_entry(dis_i); }

    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_begin (SetOp my_set_op = SetOp()) { base::data().dis_entry_assembly_begin (my_set_op); }
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly_end   (SetOp my_set_op = SetOp()) { base::data().dis_entry_assembly_end   (my_set_op); }
    template<class SetOp = typename default_set_op<T>::type>
    void dis_entry_assembly       (SetOp my_set_op = SetOp()) { base::data().dis_entry_assembly       (my_set_op); }

    void dis_entry_assembly_begin() { base::data().template dis_entry_assembly_begin<typename default_set_op<T>::type>(); }
    void dis_entry_assembly_end()   { base::data().template dis_entry_assembly_end<typename default_set_op<T>::type>(); }
    void dis_entry_assembly()       { dis_entry_assembly_begin(); dis_entry_assembly_end(); }

// apply a partition:
 
    template<class RepSize>
    void repartition (			            // old_numbering for *this
        const RepSize&        partition,            // old_ownership
        array<T,distributed>& new_array,            // new_ownership (created)
        RepSize&              old_numbering,        // new_ownership
        RepSize&              new_numbering) const  // old_ownership
        { return base::data().repartition (partition.data(), new_array.data(), old_numbering.data(), new_numbering.data()); }

    template<class RepSize>
    void permutation_apply (                       // old_numbering for *this
        const RepSize&          new_numbering,     // old_ownership
        array<T,distributed,A>& new_array) const   // new_ownership (already allocated)
        { base::data().permutation_apply (new_numbering.data(), new_array.data()); }

    void reverse_permutation (                                 // old_ownership for *this=iold2dis_inew
        array<size_type,distributed,A>& inew2dis_iold) const   // new_ownership
        { base::data().reverse_permutation (inew2dis_iold.data()); }

// i/o:

    odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
    idiststream& get_values (idiststream& ips)       { return base::data().get_values(ips); }
    void dump (std::string name) const 	    { return base::data().dump(name); }

    template <class GetFunction>
    idiststream& get_values (idiststream& ips, GetFunction get_element)       { return base::data().get_values(ips, get_element); }
    template <class PutFunction>
    odiststream& put_values (odiststream& ops, PutFunction put_element) const { return base::data().put_values(ops, put_element); }
    template <class PutFunction, class A2> odiststream& permuted_put_values (
		odiststream& ops, const array<size_type,distributed,A2>& perm, PutFunction put_element) const 
								     { return base::data().permuted_put_values (ops, perm.data(), put_element); }
};
//>verbatim:
template <class T, class A>
inline
array<T,distributed,A>::array (
    	const distributor& ownership,
	const T&           init_val,
        const A&           alloc)
 : base(new_macro(rep(ownership,init_val,alloc)))
{
}
template <class T, class A>
inline
void
array<T,distributed,A>::resize (
    	const distributor& ownership,
	const T         &  init_val)
{
  base::data().resize (ownership,init_val);
}
#endif // _RHEOLEF_HAVE_MPI

// -------------------------------------------------------------
// i/o with operator<< & >>
// -------------------------------------------------------------
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips,  array<T,sequential,A>& x)
{ 
    return x.get_values(ips); 
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const array<T,sequential,A>& x)
{
    return x.put_values(ops);
}
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips,  array<T,distributed,A>& x)
{ 
    return x.get_values(ips); 
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const array<T,distributed,A>& x)
{
    return x.put_values(ops);
}
#endif // _RHEOLEF_HAVE_MPI
} // namespace rheolef
// -------------------------------------------------------------
// not inlined : longer code
// -------------------------------------------------------------
#include "rheolef/array_seq.icc"
#include "rheolef/array_mpi.icc"
#endif // _RHEO_ARRAY_H