This file is indexed.

/usr/include/rheolef/csr.h is in librheolef-dev 6.5-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# ifndef _RHEOLEF_CSR_H
# define _RHEOLEF_CSR_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

#include "rheolef/vec.h"
#include "rheolef/asr.h"
#include "rheolef/vector_of_iterator.h"
#include "rheolef/scatter_message.h"
#include "rheolef/pair_util.h"

#include <boost/bind.hpp>

namespace rheolef {

// -------------------------------------------------------------
// the sequential representation
// -------------------------------------------------------------
template<class T, class M> class csr_rep {};

template<class T>
class csr_rep<T,sequential> : public vector_of_iterator<std::pair<typename std::vector<T>::size_type,T> > {
public:
    typedef typename std::vector<T>::size_type                            size_type;
    typedef T                                                             element_type;
    typedef sequential                                                    memory_type;
    typedef typename std::pair<size_type,T>                               pair_type;
    typedef typename vector_of_iterator<pair_type>::iterator              iterator;
    typedef typename vector_of_iterator<pair_type>::const_iterator        const_iterator;
    typedef typename vector_of_iterator<pair_type>::difference_type       difference_type;
    typedef typename vector_of_iterator<pair_type>::value_type            data_iterator;
    typedef typename vector_of_iterator<pair_type>::const_value_type      const_data_iterator;

    csr_rep (size_type loc_nrow1 = 0, size_type loc_ncol1 = 0, size_type loc_nnz1 = 0);
    void resize (size_type loc_nrow1 = 0, size_type loc_ncol1 = 0, size_type loc_nnz1 = 0);
    csr_rep (const distributor& row_ownership, const distributor& col_ownership, size_type nnz1 = 0);
    void resize (const distributor& row_ownership, const distributor& col_ownership, size_type nnz1 = 0);
    csr_rep (const csr_rep<T,sequential>& a);
    template<class A> void build_from_asr (const asr<T,sequential,A>& a);
    template<class A> explicit csr_rep    (const asr<T,sequential,A>& a);
    template<class A> void build_from_diag (const array_rep<T,sequential,A>& d);

    const distributor& row_ownership() const { return _row_ownership; }
    const distributor& col_ownership() const { return _col_ownership; }
    const_iterator begin() const { return vector_of_iterator<pair_type>::begin(); }
    const_iterator end()   const { return vector_of_iterator<pair_type>::end(); }
          iterator begin()       { return vector_of_iterator<pair_type>::begin(); }
          iterator end()         { return vector_of_iterator<pair_type>::end(); }
    size_type nrow() const       { return vector_of_iterator<pair_type>::size()-1; }
    size_type ncol() const { return _col_ownership.size(); }
    size_type nnz() const { return _data.size(); }
    size_type dis_nrow() const { return nrow(); }
    size_type dis_ncol() const { return ncol(); }
    size_type dis_nnz() const { return nnz(); }
    T max_abs () const;
    bool is_symmetric() const { return _is_symmetric; }
    void set_symmetry (bool is_symm) const { _is_symmetric = is_symm; }
    void set_symmetry_by_check (const T& tol = std::numeric_limits<T>::epsilon()) const;
    size_type pattern_dimension() const { return _pattern_dimension; }
    void set_pattern_dimension(size_type dim) const { _pattern_dimension = dim; }
    size_type row_first_index () const { return 0; }
    size_type row_last_index () const { return nrow(); }
    size_type col_first_index () const { return 0; }
    size_type col_last_index () const { return ncol(); }
    idiststream& get (idiststream&);
    odiststream& put (odiststream&, size_type istart = 0) const;
    odiststream& put_matrix_market (odiststream&, size_type istart = 0) const;
    odiststream& put_sparse_matlab (odiststream&, size_type istart = 0) const;
    void dump (const std::string& name, size_type istart = 0) const;
    void mult       (const vec<T,sequential>& x, vec<T,sequential>& y) const;
    void trans_mult (const vec<T,sequential>& x, vec<T,sequential>& y) const;
    csr_rep<T,sequential>& operator*= (const T& lambda);
    template <class BinaryOp>
    void assign_add (const csr_rep<T,sequential>& a, const csr_rep<T,sequential>& b, BinaryOp binop);
    void build_transpose (csr_rep<T,sequential>& b) const;
    void assign_mult (const csr_rep<T,sequential>& a, const csr_rep<T,sequential>& b);

    // accessors, only for distributed (for interface compatibility)
    size_type ext_nnz() const                { return 0; }
    size_type dis_ext_nnz() const            { return 0; }
    const_iterator ext_begin() const         { return const_iterator(); }
    const_iterator ext_end()   const         { return const_iterator(); }
    size_type jext2dis_j (size_type jext) const { return 0; }

//protected:
    distributor          		                          _row_ownership;
    distributor          		                          _col_ownership;
    std::vector<std::pair<typename std::vector<T>::size_type,T> > _data;
    mutable bool						  _is_symmetric;
    mutable size_type						  _pattern_dimension; // e.g. FEM 3d-pattern
};
template<class T>
template<class A>
inline
csr_rep<T,sequential>::csr_rep(const asr<T,sequential,A>& a)
  : vector_of_iterator<pair_type>(a.nrow()+1),
   _row_ownership (a.row_ownership()),
   _col_ownership (a.col_ownership()),
   _data(a.nnz())
{
  build_from_asr (a);
}
template<class T>
inline
idiststream&
csr_rep<T,sequential>::get (idiststream& ids)
{
  typedef std::allocator<T> A; // TODO: use heap_allocator for asr
  asr<T,sequential,A> a;
  a.get(ids);
  build_from_asr (a);
  return ids;
}
// -------------------------------------------------------------
// the distributed representation
// -------------------------------------------------------------
#ifdef _RHEOLEF_HAVE_MPI
template<class T>
class csr_rep<T,distributed> : public csr_rep<T,sequential> {
public:
    typedef csr_rep<T,sequential>              base;
    typedef distributed                        memory_type;
    typedef typename base::size_type           size_type;
    typedef typename base::element_type        element_type;
    typedef typename base::iterator            iterator;
    typedef typename base::const_iterator      const_iterator;
    typedef typename base::data_iterator       data_iterator;
    typedef typename base::const_data_iterator const_data_iterator;

    csr_rep ();
    csr_rep (const csr_rep<T,distributed>& a);
    template<class A> explicit csr_rep (const asr<T,distributed,A>& a);
    template<class A> void build_from_asr  (const asr<T,distributed,A>& a);
    void resize (const distributor& row_ownership, const distributor& col_ownership, size_type nnz1 = 0);
    template<class A> void build_from_diag (const array_rep<T,distributed,A>& d);

    const distributor& row_ownership() const { return base::_row_ownership; }
    const distributor& col_ownership() const { return base::_col_ownership; }
    const communicator& comm() const { return row_ownership().comm(); }
    const_iterator begin() const { return base::begin(); }
    const_iterator end()   const { return base::end(); }
          iterator begin()       { return base::begin(); }
          iterator end()         { return base::end(); }
    size_type      ext_nnz()   const { return _ext.nnz(); }
    const_iterator ext_begin() const { return _ext.begin(); }
    const_iterator ext_end()   const { return _ext.end(); }
          iterator ext_begin()       { return _ext.begin(); }
          iterator ext_end()         { return _ext.end(); }
    size_type nrow() const { return base::nrow(); }
    size_type ncol() const { return base::ncol(); }
    size_type nnz() const { return base::nnz(); }
    size_type dis_nrow() const { return row_ownership().dis_size(); }
    size_type dis_ncol() const { return col_ownership().dis_size(); }
    size_type dis_nnz()     const { return _dis_nnz; }
    size_type dis_ext_nnz() const { return _dis_ext_nnz; }
    T max_abs () const;
    bool is_symmetric() const { return base::is_symmetric(); }
    void set_symmetry (bool is_symm) const { base::set_symmetry(is_symm); }
    void set_symmetry_by_check (const T& tol = std::numeric_limits<T>::epsilon()) const;
    size_type pattern_dimension() const { return base::pattern_dimension(); }
    void set_pattern_dimension(size_type dim) const { base::set_pattern_dimension(dim); }
    size_type row_first_index () const { return row_ownership().first_index(); }
    size_type row_last_index ()  const { return row_ownership().last_index(); }
    size_type col_first_index () const { return col_ownership().first_index(); }
    size_type col_last_index ()  const { return col_ownership().last_index(); }
    size_type jext2dis_j (size_type jext)  const;
    idiststream& get (idiststream&);
    odiststream& put (odiststream&) const;
    void dump (const std::string& name) const;
    void mult       (const vec<T,distributed>& x, vec<T,distributed>& y) const;
    void trans_mult (const vec<T,distributed>& x, vec<T,distributed>& y) const;
    csr_rep<T,distributed>& operator*= (const T& lambda);
    template <class BinaryOp>
    void assign_add (const csr_rep<T,distributed>& a, const csr_rep<T,distributed>& b, BinaryOp binop);
    void build_transpose (csr_rep<T,distributed>& b) const;
    void assign_mult (const csr_rep<T,distributed>& a, const csr_rep<T,distributed>& b);
protected:
// data:
    // diagonal part is the basic csr_rep<seq> type
    // extra-diagonal blocs are sequential csr also:
    csr_rep<T,sequential>      		     _ext;
    std::vector<size_type>    		     _jext2dis_j;
    size_type            		     _dis_nnz;
    size_type            		     _dis_ext_nnz;
    
    // A*x internal stuff: scatter and buffer (lazy initialization):
    mutable bool                             _scatter_initialized;
    mutable scatter_message<std::vector<T> > _from;
    mutable scatter_message<std::vector<T> > _to;
    mutable std::vector<T>    		     _buffer;
// internal:
    void _scatter_init() const;
    void _scatter_init_guard() const {
	if (_scatter_initialized) return;
	_scatter_initialized = true;
        _scatter_init();
    }
};
template<class T>
inline
typename csr_rep<T,distributed>::size_type
csr_rep<T,distributed>::jext2dis_j (size_type jext)  const
{
  check_macro (jext < _jext2dis_j.size(), "jext2dis_j: jext="<<jext<<" is out of range [0:"<<_jext2dis_j.size()<<"[");
  return _jext2dis_j [jext];
}
template<class T>
template<class A>
inline
csr_rep<T,distributed>::csr_rep(const asr<T,distributed,A>& a)
  : csr_rep<T,sequential>(),
    _ext (),
    _jext2dis_j(),
    _dis_nnz(0),
    _dis_ext_nnz(0),
    _scatter_initialized(false),
    _from(),
    _to(),
    _buffer()
{
    build_from_asr (a);
}
template<class T>
inline
idiststream&
csr_rep<T,distributed>::get (idiststream& ips)
{
    typedef std::allocator<T> A; // TODO: use heap_alloc for asr
    asr<T,distributed,A> a;
    a.get (ips);
    build_from_asr (a);
    return ips;
}
#endif // _RHEOLEF_HAVE_MPI

// these classes are used for allocator from the std::initializer_list
template <class T, class M> class csr_concat_value;
template <class T, class M> class csr_concat_line;

// -------------------------------------------------------------
// the basic class with a smart pointer to representation
// the user-level class with memory-model parameter
// -------------------------------------------------------------
/*Class:csr
NAME:  @code{csr} - compressed sparse row matrix (@PACKAGE@-@VERSION@)
SYNOPSYS:       
  Distributed compressed sparse matrix container stored row by row.
DESCRIPTION:
  Sparse matrix are compressed by rows. In distributed environment, the
  distribution follows the row distributor (see @ref{distributor class}).
ALGEBRA:
  Adding or substracting two matrices writes @code{a+b} and @code{a-b}, respectively,
  and multiplying a matrix by a scalar writes @code{lambda*x}.
  Thus, any linear combination of sparse matrices is available.
 
  Matrix-vector product writes @code{a*x} where @code{x} is a vector (see @ref{vec class}).
LIMITATIONS:
  Some basic linear algebra is still under development:
  @code{a.trans_mult(x)} matrix transpose vector product,
  @code{trans(a)} matrix transpose,
  @code{a*b} matrix product.
AUTHORS: Pierre.Saramito@imag.fr
DATE:   10 february 1999
METHODS: @csr
End:
*/
template <class T, class M = rheo_default_memory_model>
class csr {
public:
    typedef M memory_type;
};
//<verbatim:
template<class T>
class csr<T,sequential> : public smart_pointer<csr_rep<T,sequential> > {
public:

// typedefs:

    typedef csr_rep<T,sequential>             rep;
    typedef smart_pointer<rep>                base;
    typedef typename rep::memory_type         memory_type;
    typedef typename rep::size_type           size_type;
    typedef typename rep::element_type        element_type;
    typedef typename rep::iterator            iterator;
    typedef typename rep::const_iterator      const_iterator;
    typedef typename rep::data_iterator       data_iterator;
    typedef typename rep::const_data_iterator const_data_iterator;

// allocators/deallocators:

    csr() : base(new_macro(rep())) {}
    template<class A>
    explicit csr(const asr<T,sequential,A>& a) : base(new_macro(rep(a))) {}
    void resize (size_type loc_nrow1 = 0, size_type loc_ncol1 = 0, size_type loc_nnz1 = 0)
        { base::data().resize(loc_nrow1, loc_ncol1, loc_nnz1); }
    void resize (const distributor& row_ownership, const distributor& col_ownership, size_type nnz1 = 0)
        { base::data().resize(row_ownership, col_ownership, nnz1); }

// allocators from initializer list (c++ 2011):

#ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST
    csr (const std::initializer_list<csr_concat_value<T,sequential> >& init_list);
    csr (const std::initializer_list<csr_concat_line<T,sequential> >&  init_list);
#endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST

// accessors:

    // global sizes
    const distributor& row_ownership() const { return base::data().row_ownership(); }
    const distributor& col_ownership() const { return base::data().col_ownership(); }
    size_type dis_nrow () const              { return row_ownership().dis_size(); }
    size_type dis_ncol () const              { return col_ownership().dis_size(); }
    size_type dis_nnz () const               { return base::data().nnz(); }
    size_type dis_ext_nnz () const           { return 0; }
    bool is_symmetric() const                { return base::data().is_symmetric(); }
    void set_symmetry (bool is_symm) const   { base::data().set_symmetry(is_symm); }
    void set_symmetry_by_check (const T& tol = std::numeric_limits<T>::epsilon()) const
                                             { base::data().set_symmetry_by_check(); }
    size_type pattern_dimension() const      { return base::data().pattern_dimension(); }
    void set_pattern_dimension(size_type dim) const { base::data().set_pattern_dimension(dim); }
    T max_abs () const                       { return base::data().max_abs(); }

    // local sizes
    size_type nrow () const		     { return base::data().nrow(); }
    size_type ncol () const		     { return base::data().ncol(); }
    size_type nnz () const		     { return base::data().nnz(); }
    
    // range on local memory
    size_type row_first_index () const       { return base::data().row_first_index(); }
    size_type row_last_index () const        { return base::data().row_last_index(); }
    size_type col_first_index () const       { return base::data().col_first_index(); }
    size_type col_last_index () const        { return base::data().col_last_index(); }

    const_iterator begin() const             { return base::data().begin(); }
    const_iterator end()   const             { return base::data().end(); }
    iterator begin_nonconst()                { return base::data().begin(); }
    iterator end_nonconst()                  { return base::data().end(); }

    // accessors, only for distributed (for interface compatibility)
    size_type ext_nnz() const                { return 0; }
    const_iterator ext_begin() const         { return const_iterator(); }
    const_iterator ext_end()   const         { return const_iterator(); }
          iterator ext_begin_nonconst()      { return iterator(); }
          iterator ext_end_nonconst()        { return iterator(); }
    size_type jext2dis_j (size_type jext) const { return 0; }

// algebra:

    // y := a*x
    void mult (const vec<element_type,sequential>& x, vec<element_type,sequential>& y) const {
      base::data().mult (x,y);
    }
    vec<element_type,sequential> operator* (const vec<element_type,sequential>& x) const {
      vec<element_type,sequential> y (row_ownership(), element_type());
      mult (x, y);
      return y;
    }
    void trans_mult (const vec<element_type,sequential>& x, vec<element_type,sequential>& y) const {
      base::data().trans_mult (x,y);
    }
    vec<element_type,sequential> trans_mult (const vec<element_type,sequential>& x) const {
      vec<element_type,sequential> y (col_ownership(), element_type());
      trans_mult (x, y);
      return y;
    }
    // a+b, a-b, a*b
    csr<T,sequential> operator+ (const csr<T,sequential>& b) const;
    csr<T,sequential> operator- (const csr<T,sequential>& b) const;
    csr<T,sequential> operator* (const csr<T,sequential>& b) const;

    // lambda*a
    csr<T,sequential>& operator*= (const T& lambda) {
      base::data().operator*= (lambda);
      return *this;
    }
// output:

    void dump (const std::string& name) const { base::data().dump(name); }
};
// lambda*a
template<class T>
inline
csr<T,sequential>
operator* (const T& lambda, const csr<T,sequential>& a)
{
  csr<T,sequential> b = a;
  b.operator*= (lambda);
  return b;
}
// -a
template<class T>
inline
csr<T,sequential>
operator- (const csr<T,sequential>& a)
{
  return T(-1)*a;
}
// trans(a)
template<class T>
inline
csr<T,sequential>
trans (const csr<T,sequential>& a)
{
  csr<T,sequential> b;
  a.data().build_transpose (b.data());
  return b;
}
//>verbatim:

#ifdef _RHEOLEF_HAVE_MPI
//<verbatim:
template<class T>
class csr<T,distributed> : public smart_pointer<csr_rep<T,distributed> > {
public:

// typedefs:

    typedef csr_rep<T,distributed>                    rep;
    typedef smart_pointer<rep>                base;
    typedef typename rep::memory_type         memory_type;
    typedef typename rep::size_type           size_type;
    typedef typename rep::element_type        element_type;
    typedef typename rep::iterator            iterator;
    typedef typename rep::const_iterator      const_iterator;
    typedef typename rep::data_iterator       data_iterator;
    typedef typename rep::const_data_iterator const_data_iterator;

// allocators/deallocators:

    csr() : base(new_macro(rep())) {}
    template<class A>
    explicit csr(const asr<T,memory_type,A>& a) : base(new_macro(rep(a))) {}
    void resize (const distributor& row_ownership, const distributor& col_ownership, size_type nnz1 = 0)
        { base::data().resize(row_ownership, col_ownership, nnz1); }

// allocators from initializer list (c++ 2011):

#ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST
    csr (const std::initializer_list<csr_concat_value<T,distributed> >& init_list);
    csr (const std::initializer_list<csr_concat_line<T,distributed> >&  init_list);
#endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST

// accessors:

    // global sizes
    const distributor& row_ownership() const { return base::data().row_ownership(); }
    const distributor& col_ownership() const { return base::data().col_ownership(); }
    size_type dis_nrow () const              { return row_ownership().dis_size(); }
    size_type dis_ncol () const              { return col_ownership().dis_size(); }
    size_type dis_nnz () const               { return base::data().dis_nnz(); }
    size_type dis_ext_nnz () const           { return base::data().dis_ext_nnz(); }
    bool is_symmetric() const                { return base::data().is_symmetric(); }
    void set_symmetry (bool is_symm) const   { base::data().set_symmetry(is_symm); }
    void set_symmetry_by_check (const T& tol = std::numeric_limits<T>::epsilon()) const
                                             { base::data().set_symmetry_by_check(); }
    size_type pattern_dimension() const      { return base::data().pattern_dimension(); }
    void set_pattern_dimension(size_type dim) const { base::data().set_pattern_dimension(dim); }
    T max_abs () const                       { return base::data().max_abs(); }

    // local sizes
    size_type nrow () const		     { return base::data().nrow(); }
    size_type ncol () const		     { return base::data().ncol(); }
    size_type nnz () const		     { return base::data().nnz(); }
    
    // range on local memory
    size_type row_first_index () const       { return base::data().row_first_index(); }
    size_type row_last_index () const        { return base::data().row_last_index(); }
    size_type col_first_index () const       { return base::data().col_first_index(); }
    size_type col_last_index () const        { return base::data().col_last_index(); }

    const_iterator begin() const             { return base::data().begin(); }
    const_iterator end()   const             { return base::data().end(); }
    iterator begin_nonconst()                { return base::data().begin(); }
    iterator end_nonconst()                  { return base::data().end(); }

    // accessors, only for distributed
    size_type ext_nnz() const                { return base::data().ext_nnz(); }
    const_iterator ext_begin() const         { return base::data().ext_begin(); }
    const_iterator ext_end()   const         { return base::data().ext_end(); }
          iterator ext_begin_nonconst()      { return base::data().ext_begin(); }
          iterator ext_end_nonconst()        { return base::data().ext_end(); }
    size_type jext2dis_j (size_type jext) const { return base::data().jext2dis_j(jext); }

// algebra:


    // y := a*x
    void mult (const vec<element_type,distributed>& x, vec<element_type,distributed>& y) const {
      base::data().mult (x,y);
    }
    vec<element_type,distributed> operator* (const vec<element_type,distributed>& x) const {
      vec<element_type,distributed> y (row_ownership(), element_type());
      mult (x, y);
      return y;
    }
    void trans_mult (const vec<element_type,distributed>& x, vec<element_type,distributed>& y) const {
      base::data().trans_mult (x,y);
    }
    vec<element_type,distributed> trans_mult (const vec<element_type,distributed>& x) const {
      vec<element_type,distributed> y (col_ownership(), element_type());
      trans_mult (x, y);
      return y;
    }
    // a+b, a-b, a*b
    csr<T,distributed> operator+ (const csr<T,distributed>& b) const;
    csr<T,distributed> operator- (const csr<T,distributed>& b) const;
    csr<T,distributed> operator* (const csr<T,distributed>& b) const;

    // lambda*a
    csr<T,distributed>& operator*= (const T& lambda) {
      base::data().operator*= (lambda);
      return *this;
    }
// output:

    void dump (const std::string& name) const { base::data().dump(name); }
};
// lambda*a
template<class T>
inline
csr<T,distributed>
operator* (const T& lambda, const csr<T,distributed>& a)
{
  csr<T,distributed> b = a;
  b.operator*= (lambda);
  return b;
}
// -a
template<class T>
inline
csr<T,distributed>
operator- (const csr<T,distributed>& a)
{
  return T(-1)*a;
}
// trans(a)
template<class T>
inline
csr<T,distributed>
trans (const csr<T,distributed>& a)
{
  csr<T,distributed> b;
  a.data().build_transpose (b.data());
  return b;
}
#endif // _RHEOLEF_HAVE_MPI

// b = f(a); f as a class-function or usual fct
template<class T, class M, class Function>
csr<T,M>
apply (Function f, const csr<T,M>& a)
{
  csr<T,M> b = a;
  typename csr<T,M>::size_type n = a.nrow(); 
  typename csr<T,M>::const_iterator dia_ia = a.begin(); 
  typename csr<T,M>::iterator       dia_ib = b.begin_nonconst(); 
  pair_transform_second (dia_ia[0], dia_ia[n], dia_ib[0], f);
  if (a.ext_nnz() != 0) {
    typename csr<T,M>::const_iterator ext_ia = a.ext_begin(); 
    typename csr<T,M>::iterator       ext_ib = b.ext_begin_nonconst(); 
    pair_transform_second (ext_ia[0], ext_ia[n], ext_ib[0], f);
  }
  return b;
}
template<class T, class M, class Function>
csr<T,M>
apply (T (*f)(const T&), const csr<T,M>& a)
{
  return apply (std::ptr_fun(f), a);
}
//>verbatim:

template<class T, class M>
csr<T,M>
diag (const vec<T,M>&);

// ------------------------------
// i/o
// ------------------------------
template <class T, class M>
inline
idiststream&
operator >> (idiststream& s,  csr<T,M>& x)
{ 
    return x.data().get(s); 
}
template <class T, class M> 
inline
odiststream&
operator << (odiststream& s, const csr<T,M>& x)
{
    return x.data().put(s); 
}
// ------------------------------
// a+b, a-b
// ------------------------------
template <class T>
inline
csr<T,sequential>
csr<T,sequential>::operator+ (const csr<T,sequential>& b) const {
  csr<T,sequential> c;
  c.data().assign_add (this->data(), b.data(), std::plus<T>());
  return c;
}
template <class T> 
inline
csr<T,sequential>
csr<T,sequential>::operator- (const csr<T,sequential>& b) const {
  csr<T,sequential> c;
  c.data().assign_add (this->data(), b.data(), std::minus<T>());
  return c;
}
#ifdef _RHEOLEF_HAVE_MPI
template <class T> 
inline
csr<T,distributed>
csr<T,distributed>::operator+ (const csr<T,distributed>& b) const {
  csr<T,distributed> c;
  c.data().assign_add (this->data(), b.data(), std::plus<T>());
  return c;
}
template <class T> 
inline
csr<T,distributed>
csr<T,distributed>::operator- (const csr<T,distributed>& b) const {
  csr<T,distributed> c;
  c.data().assign_add (this->data(), b.data(), std::minus<T>());
  return c;
}
#endif // _RHEOLEF_HAVE_MPI
  
// ------------------------------
// a*b
// ------------------------------
template <class T>
inline
csr<T,sequential>
csr<T,sequential>::operator* (const csr<T,sequential>& b) const {
  csr<T,sequential> c;
  c.data().assign_mult (this->data(), b.data());
  return c;
}
#ifdef _RHEOLEF_HAVE_MPI
template <class T> 
inline
csr<T,distributed>
csr<T,distributed>::operator* (const csr<T,distributed>& b) const {
  csr<T,distributed> c;
  c.data().assign_mult (this->data(), b.data());
  return c;
}
#endif // _RHEOLEF_HAVE_MPI

// ------------------------------
// a.max_abs
// ------------------------------
template <class T>
inline
T
csr_rep<T,sequential>::max_abs () const
{
  T val = 0;
  typename csr<T,sequential>::const_iterator ia = begin();
  for (typename csr_rep<T,sequential>::const_data_iterator iter = ia[0], last = ia[nrow()]; iter != last; ++iter) {
    val = std::max (val, abs((*iter).second));
  }
  return val;
}
#ifdef _RHEOLEF_HAVE_MPI
template <class T>
inline
T
csr_rep<T,distributed>::max_abs () const
{
  T val = csr_rep<T,sequential>::max_abs();
  val = mpi::all_reduce (comm(), val, mpi::maximum<T>());
  return val;
}
#endif // _RHEOLEF_HAVE_MPI
  
} // namespace rheolef
# endif // _RHEOLEF_CSR_H