This file is indexed.

/usr/include/rheolef/field_nonlinear_expr_terminal.h is in librheolef-dev 6.5-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
#ifndef _RHEOLEF_FIELD_NONLINEAR_EXPR_TERMINAL_H
#define _RHEOLEF_FIELD_NONLINEAR_EXPR_TERMINAL_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
/// =========================================================================
//
// field_nonlinear_expr_terminal: terminals of nonn-linear expressions
// 1) class-function
//    1.1) base class for the class-function family
//    1.2) general function or class-function
//    1.3) normal to a surface
//    1.4) h_local
//    1.5) penalty
// 2) field and such
//    2.1) base class for the field family
//    2.2) field
//    2.3) grad of a field
//    2.4)  div of a field
//    2.5) curl of a field
//    2.6) jump of a field
// 3) convected field, as compose(uh,X) where X is a characteristic
//
#include "rheolef/field_nonlinear_expr.h"
#include "rheolef/field_evaluate.h"
#include "rheolef/characteristic.h"
#include "rheolef/test.h"

#include <boost/functional.hpp>

namespace rheolef {
// ---------------------------------------------------------------------------
// 1) class-function
// ---------------------------------------------------------------------------

template<class Function> class field_expr_terminal_function;

// wrapper, for backward compatibility:
template<class Function>
field_expr_terminal_function<Function>
field_function (const Function& f) {
  return field_expr_terminal_function<Function>(f);
}
// ---------------------------------------------------------------------------
// 1.1) base class for the class-function family
// ---------------------------------------------------------------------------
template<class T>
class field_expr_terminal_function_base_rep {
public:
// typedefs:

  typedef geo_element::size_type                                size_type;
  typedef rheo_default_memory_model                             memory_type; // TODO: deduce it
  typedef T                                                     scalar_type;
  typedef T                                                     float_type;

// allocators:

  field_expr_terminal_function_base_rep ();
  field_expr_terminal_function_base_rep (const field_expr_terminal_function_base_rep<T>&);

// accessors:

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const;
  void initialize (const space_basic<float_type,memory_type>& Xh) const;
  void evaluate_initialize (const geo_element& K) const;
  const geo_element& get_side (const geo_element& K, const side_information_type& sid) const;

// data:
protected:
  mutable geo_basic<float_type,memory_type> _omega;
  mutable basis_on_pointset<float_type>     _piola_ops;
  mutable std::vector<size_type>            _dis_inod; // working data:
};
// ---------------------------------------------------------------------------
// 1.2) general function or class-function
// ---------------------------------------------------------------------------
template<class Function>
class field_expr_terminal_function_rep 
 : field_expr_terminal_function_base_rep<typename float_traits<typename boost::unary_traits<Function>::result_type>::type>
{
public:
// typedefs:

  typedef geo_element::size_type                                size_type;
  typedef rheo_default_memory_model                             memory_type; // TODO: how to deduce it ?
  typedef typename boost::unary_traits<Function>::function_type function_type;
  typedef typename boost::unary_traits<Function>::result_type   result_type;
  typedef typename boost::unary_traits<Function>::argument_type argument_type;
  typedef typename scalar_traits<result_type>::type             scalar_type;
  typedef typename  float_traits<result_type>::type             float_type;
  typedef result_type                                           value_type;
  typedef field_expr_terminal_function_base_rep<float_type>     base;

// alocators:

  field_expr_terminal_function_rep(const Function& f) : base(), _f(f) {}

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<result_type>::value;

  space_constant::valued_type valued_tag() const {
      return space_constant::valued_tag_traits<result_type>::value; }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& quad) const {
    base::initialize (omega, quad);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
    base::initialize (Xh);
    return true;
  }
  void evaluate (const geo_element& K, std::vector<result_type>& value) const {
    base::evaluate_initialize (K);
    reference_element hat_K = K.variant();
    value.resize (base::_piola_ops.size(hat_K));
    size_type q = 0;
    for (typename std::vector<result_type>::iterator
	  iter = value.begin(),
	  last = value.end(); iter != last; ++iter, ++q) {
      point_basic<float_type> xq = piola_transformation (base::_omega, base::_piola_ops, K, base::_dis_inod, q);
      *iter = _f (xq);
    }
  }
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<result_type>& value) const {
    evaluate (base::get_side(L,sid), value);
  }
  template<class ValueType>
  void valued_check() const {
    static const bool status = details::is_equal<ValueType,result_type>::value;
    check_macro (status, "unexpected result_type");
  }
// data:
protected:
  function_type  _f;
};
template<class Function>
class field_expr_terminal_function : public smart_pointer<field_expr_terminal_function_rep<Function> >
{
public:
// typedefs:

  typedef field_expr_terminal_function_rep<Function> rep;
  typedef smart_pointer<rep>                    base;
  typedef typename rep::size_type               size_type;
  typedef typename rep::memory_type             memory_type;
  typedef typename rep::result_type             result_type;
  typedef typename rep::argument_type           argument_type;
  typedef typename rep::value_type              value_type;
  typedef typename rep::scalar_type             scalar_type;
  typedef typename rep::float_type              float_type;
  static const space_constant::valued_type valued_hint = rep::valued_hint;

// alocators:

  explicit field_expr_terminal_function (const Function& f) : base(new_macro(rep(f))) {} 

// accessors:

  space_constant::valued_type valued_tag() const { return base::data().valued_tag(); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
  	base::data().initialize(omega,hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
  	return base::data().initialize(Xh);
  }
  void evaluate (const geo_element& K, std::vector<result_type>& value) const {
  	base::data().evaluate (K, value); }
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<result_type>& value) const {
  	base::data().evaluate_on_side (L, sid, value); }
  template<class ValueType>
  void valued_check() const {
  	base::data().valued_check<ValueType>(); }
};
// ---------------------------------------------------------------------------
// 1.3) normal to a surface
// ---------------------------------------------------------------------------
// the special class-function, used in nonlinear field expressions:
template<class T>
struct normal_pseudo_function : std::unary_function <point_basic<T>, point_basic<T> > {
  point_basic<T> operator() (const point_basic<T>&) const {
    fatal_macro ("special normal() class-function should not be directly evaluated");
    return point_basic<T>();
  }
};

template<class T>
class field_expr_terminal_function_rep<normal_pseudo_function<T> >
 : field_expr_terminal_function_base_rep<T> {
public:
// typedefs:

  typedef field_expr_terminal_function_base_rep<T>              base;
  typedef geo_element::size_type                                size_type;
  typedef rheo_default_memory_model                             memory_type; // TODO: deduce it
  typedef typename boost::unary_traits<normal_pseudo_function<T> >::function_type function_type;
  typedef point_basic<T>                                        result_type;
  typedef point_basic<T>                                        argument_type;
  typedef T                                                     scalar_type;
  typedef T                                                     float_type;
  typedef result_type                                           value_type;

// alocators:

  field_expr_terminal_function_rep (const function_type&);
  field_expr_terminal_function_rep (const field_expr_terminal_function_rep<normal_pseudo_function<T> >&);

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::vector;

  space_constant::valued_type valued_tag() const { return space_constant::vector; }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;

  void evaluate         (const geo_element& K,                                   std::vector<point_basic<T> >& value) const;
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<point_basic<T> >& value) const;

  template<class ValueType>
  void valued_check() const {
    static const bool status = details::is_equal<ValueType,result_type>::value;
    check_macro (status, "unexpected result_type");
  }
};
// ---------------------------------------------------------------------------
// 1.4) h_local
// ---------------------------------------------------------------------------
// the special class-function, used in nonlinear field expressions:
template<class T>
struct h_local_pseudo_function : std::unary_function <point_basic<T>, T> {
  T operator() (const point_basic<T>&) const {
    fatal_macro ("special h_local() class-function should not be directly evaluated");
    return 0;
  }
};

template<class T>
class field_expr_terminal_function_rep<h_local_pseudo_function<T> >
 : field_expr_terminal_function_base_rep<T> {
public:
// typedefs:

  typedef field_expr_terminal_function_base_rep<T>              base;
  typedef geo_element::size_type                                size_type;
  typedef rheo_default_memory_model                             memory_type; // TODO: deduce it
  typedef typename boost::unary_traits<h_local_pseudo_function<T> >::function_type function_type;
  typedef T                                                     result_type;
  typedef point_basic<T>                                        argument_type;
  typedef T                                                     scalar_type;
  typedef T                                                     float_type;
  typedef result_type                                           value_type;

// alocators:

  field_expr_terminal_function_rep (const function_type&);
  field_expr_terminal_function_rep (const field_expr_terminal_function_rep<h_local_pseudo_function<T> >&);

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::scalar;

  space_constant::valued_type valued_tag() const { return space_constant::scalar; }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;

  void evaluate         (const geo_element& K,                                   std::vector<result_type>& value) const;
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<result_type>& value) const;

  template<class ValueType>
  void valued_check() const {
    static const bool status = details::is_equal<ValueType,result_type>::value;
    check_macro (status, "unexpected result_type");
  }
};
// ---------------------------------------------------------------------------
// 1.5) penalty
// ---------------------------------------------------------------------------
// the special class-function, used in nonlinear field expressions:
template<class T>
struct penalty_pseudo_function : std::unary_function <point_basic<T>, T> {
  T operator() (const point_basic<T>&) const {
    fatal_macro ("special penalty() class-function should not be directly evaluated");
    return 0;
  }
};

template<class T>
class field_expr_terminal_function_rep<penalty_pseudo_function<T> >
 : field_expr_terminal_function_base_rep<T> {
public:
// typedefs:

  typedef field_expr_terminal_function_base_rep<T>              base;
  typedef geo_element::size_type                                size_type;
  typedef rheo_default_memory_model                             memory_type; // TODO: deduce it
  typedef typename boost::unary_traits<penalty_pseudo_function<T> >::function_type function_type;
  typedef T                                                     result_type;
  typedef point_basic<T>                                        argument_type;
  typedef T                                                     scalar_type;
  typedef T                                                     float_type;
  typedef result_type                                           value_type;

// alocators:

  field_expr_terminal_function_rep (const function_type&);
  field_expr_terminal_function_rep (const field_expr_terminal_function_rep<penalty_pseudo_function<T> >&);

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::scalar;

  space_constant::valued_type valued_tag() const { return space_constant::scalar; }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;

  void evaluate         (const geo_element& K,                                   std::vector<result_type>& value) const;
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<result_type>& value) const;

  template<class ValueType>
  void valued_check() const {
    static const bool status = details::is_equal<ValueType,result_type>::value;
    check_macro (status, "unexpected result_type");
  }
protected:
// internal:
  T evaluate_measure  (const geo_element& K) const;
  void evaluate_internal (const geo_element& K, const geo_element& L, std::vector<result_type>& value) const;
};
// ---------------------------------------------------------------------------
// 2) field and such
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// 2.1) base class for the field family
// ---------------------------------------------------------------------------
template<class T, class M>
class field_expr_terminal_field_base_rep {
public:
// typedefs:

  typedef geo_element::size_type          size_type;

// alocators:

  field_expr_terminal_field_base_rep (const field_basic<T,M>& uh)
    : _uh(uh),   _omega(), _bops(), _use_dom2bgd(false), _use_bgd2dom(false), 
      _have_dg_on_sides(false), _tilde_L(), _dis_idof() {}

  template <class Expr>
  explicit field_expr_terminal_field_base_rep (const field_expr<Expr>& expr) 
    : _uh(expr), _omega(), _bops(), _use_dom2bgd(false), _use_bgd2dom(false), 
      _have_dg_on_sides(false), _tilde_L(), _dis_idof() {}

// accessors:

  const geo_basic<T,M>& get_geo() const { return _omega; }
  const geo_element& get_side (const geo_element& K, const side_information_type& sid) const;

  void initialize (const geo_basic<T,M>& omega, const quadrature<T>& quad) const;
  bool initialize (const space_basic<T,M>& Xh) const;
  void evaluate_initialize (const geo_element& K) const;
  void evaluate_on_side_initialize (const geo_element& L, const side_information_type& sid) const;

// data:
//protected:
  field_basic<T,M>                 _uh;
  mutable geo_basic<T,M>           _omega;
  mutable basis_on_pointset<T>     _bops;
  mutable bool                     _use_dom2bgd;
  mutable bool                     _use_bgd2dom;
  mutable bool                     _have_dg_on_sides;
  mutable reference_element        _tilde_L;
// working data:
  mutable std::vector<size_type>   _dis_idof;
};
// ---------------------------------------------------------------------------
// 2.2) field 
// ---------------------------------------------------------------------------
template<class T, class M>
class field_expr_terminal_field_rep : public field_expr_terminal_field_base_rep<T,M> {
public:
// typedefs:

  typedef field_expr_terminal_field_base_rep<T,M> base;
  typedef geo_element::size_type          size_type;
  typedef M                               memory_type;
  typedef undeterminated_basic<T>         result_type;
  typedef result_type                     value_type;
  typedef T                               scalar_type;
  typedef typename float_traits<T>::type  float_type;

// alocators:

  field_expr_terminal_field_rep (const field_basic<T,M>& uh) 
   : base(uh) {}

  template <class Expr>
  explicit field_expr_terminal_field_rep(const field_expr<Expr>& expr) 
    : base(expr) {}

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::last_valued;

  space_constant::valued_type valued_tag() const { return base::_uh.valued_tag(); }

  const geo_basic<T,M>& get_geo() const { return base::get_geo(); }
  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& quad) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;
  template<class ValueType>
  void evaluate (const geo_element& K, std::vector<ValueType>& value) const;
  template<class ValueType>
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<ValueType>& value) const;
  template<class ValueType>
  void valued_check() const {
    space_constant::valued_type valued_tag = space_constant::valued_tag_traits<ValueType>::value;
    check_macro ((base::_uh.valued_tag() == valued_tag) ||
                 (base::_uh.valued_tag() == space_constant::unsymmetric_tensor &&
                  valued_tag             == space_constant::tensor),
           "unexpected "<< base::_uh.valued()
        << "-valued field while a " << space_constant::valued_name(valued_tag)
        << "-valued one is expected in expression");
  }
};
template<class T, class M>
class field_expr_terminal_field : public smart_pointer<field_expr_terminal_field_rep<T,M> >
{
public:
// typedefs:

  typedef field_expr_terminal_field_rep<T,M>    rep;
  typedef smart_pointer<rep>                    base;
  typedef typename rep::size_type               size_type;
  typedef typename rep::memory_type             memory_type;
  typedef typename rep::result_type             result_type;
  typedef typename rep::float_type              float_type;
  typedef typename rep::scalar_type             scalar_type;
  typedef typename rep::value_type              value_type;
  static const space_constant::valued_type valued_hint = rep::valued_hint;

// alocators:

  field_expr_terminal_field(const field_basic<T,M>& uh)
    : base(new_macro(rep(uh))) {} 

  template <class Expr>
  explicit field_expr_terminal_field(const field_expr<Expr>& expr) 
    : base(new_macro(rep(expr))) {} 

// accessors:

  space_constant::valued_type valued_tag() const { return base::data().valued_tag(); }

  const geo_basic<T,M>& get_geo() const { return base::data().get_geo(); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
  	base::data().initialize(omega,hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
  	return base::data().initialize(Xh);
  }
  template<class ValueType>
  void valued_check() const {
  	base::data().valued_check<ValueType>();
  }
  template<class ValueType>
  void evaluate (const geo_element& K, std::vector<ValueType>& value) const {
  	base::data().evaluate(K,value);
  } 
  template<class ValueType>
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<ValueType>& value) const {
  	base::data().evaluate_on_side (L, sid, value); }
};
// ---------------------------------------------------------------------------
// 2.3) grad of a field
// ---------------------------------------------------------------------------
template<class T, class M>
class field_expr_terminal_field_grad_rep : public field_expr_terminal_field_base_rep<T,M> {
public:
// typedefs:

  typedef field_expr_terminal_field_base_rep<T,M> base;
  typedef geo_element::size_type          size_type;
  typedef M                               memory_type;
  typedef undeterminated_basic<T>         result_type;
  typedef result_type                     value_type;
  typedef T                               scalar_type;
  typedef typename float_traits<T>::type  float_type;

// alocators:

  field_expr_terminal_field_grad_rep (const field_basic<T,M>& expr, const details::grad_option_type& opt)
    : base(expr), 
      _opt(opt), 
      _u_test(base::_uh.get_space())
    {}

  template <class Expr>
  explicit field_expr_terminal_field_grad_rep (const field_expr<Expr>& expr, const details::grad_option_type& opt) 
    : base(expr), 
      _opt(opt), 
      _u_test(base::_uh.get_space())
    {}

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::last_valued;

  space_constant::valued_type valued_tag() const;

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& quad) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;
  template<class ValueType>
  void evaluate (const geo_element& K, std::vector<ValueType>& value) const;
  template<class ValueType>
  void valued_check() const { _u_test.template grad_valued_check<ValueType>(); }
protected:
// data:
  details::grad_option_type          _opt;
  test_basic<T,M,details::vf_tag_01> _u_test;
};

template<class T, class M>
class field_expr_terminal_field_grad : public smart_pointer<field_expr_terminal_field_grad_rep<T,M> >
{
public:
// typedefs:

  typedef field_expr_terminal_field_grad_rep<T,M>    rep;
  typedef smart_pointer<rep>                    base;
  typedef typename rep::size_type               size_type;
  typedef typename rep::memory_type             memory_type;
  typedef typename rep::result_type             result_type;
  typedef typename rep::float_type              float_type;
  typedef typename rep::scalar_type             scalar_type;
  typedef typename rep::value_type              value_type;
  static const space_constant::valued_type valued_hint = rep::valued_hint;

// alocators:

  field_expr_terminal_field_grad (const field_basic<T,M>& uh, const details::grad_option_type& opt = details::grad_option_type())
    : base(new_macro(rep(uh,opt))) {} 

  template <class Expr>
  explicit field_expr_terminal_field_grad (const field_expr<Expr>& expr, const details::grad_option_type& opt = details::grad_option_type()) 
    : base(new_macro(rep(expr,opt))) {} 

// accessors:

  space_constant::valued_type valued_tag() const { return base::data().valued_tag(); }

  template<class Result>
  void evaluate (const geo_element& K, std::vector<Result>& value) const {
  	base::data().evaluate(K,value); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
  	base::data().initialize(omega,hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
  	return base::data().initialize(Xh);
  }
  template<class ValueType>
  void valued_check() const {
  	base::data().valued_check<ValueType>();
  }
};
// ---------------------------------------------------------------------------
// 2.4) div of a field
// ---------------------------------------------------------------------------
template<class T, class M>
class field_expr_terminal_field_div_rep : public field_expr_terminal_field_base_rep<T,M> {
public:
// typedefs:


  typedef field_expr_terminal_field_base_rep<T,M> base;
  typedef geo_element::size_type          size_type;
  typedef M                               memory_type;
#ifdef TODO
  typedef undeterminated_basic<T>         result_type; // div(tensor) -> vector : TODO
#endif // TODO
  typedef T		                  result_type; // div(vector) -> scalar
  typedef result_type                     value_type;
  typedef T                               scalar_type;
  typedef typename float_traits<T>::type  float_type;

// alocators:

  field_expr_terminal_field_div_rep (const field_basic<T,M>& expr, const details::grad_option_type& opt)
    : base(expr),
      _opt(opt), 
      _u_test(base::_uh.get_space())
    {}

  template <class Expr>
  explicit field_expr_terminal_field_div_rep (const field_expr<Expr>& expr, const details::grad_option_type& opt) 
    : base(expr),
      _opt(opt), 
      _u_test(base::_uh.get_space())
    {}

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::last_valued;

  space_constant::valued_type valued_tag() const;

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& quad) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;
  template<class ValueType>
  void evaluate (const geo_element& K, std::vector<ValueType>& value) const;

  template<class ValueType>
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<ValueType>& value) const {
    base::evaluate_on_side_initialize (L, sid);
    evaluate (L, value);
  }
  template<class ValueType>
  void valued_check() const { _u_test.template div_valued_check<ValueType>(); }
// data:
  details::grad_option_type          _opt;
  test_basic<T,M,details::vf_tag_01> _u_test;
};

template<class T, class M>
class field_expr_terminal_field_div : public smart_pointer<field_expr_terminal_field_div_rep<T,M> >
{
public:
// typedefs:

  typedef field_expr_terminal_field_div_rep<T,M>    rep;
  typedef smart_pointer<rep>                    base;
  typedef typename rep::size_type               size_type;
  typedef typename rep::memory_type             memory_type;
  typedef typename rep::result_type             result_type;
  typedef typename rep::float_type              float_type;
  typedef typename rep::scalar_type             scalar_type;
  typedef typename rep::value_type              value_type;
  static const space_constant::valued_type valued_hint = rep::valued_hint;

// alocators:

  field_expr_terminal_field_div (const field_basic<T,M>& uh, const details::grad_option_type& opt = details::grad_option_type())
    : base(new_macro(rep(uh,opt))) {} 

  template <class Expr>
  explicit field_expr_terminal_field_div (const field_expr<Expr>& expr, const details::grad_option_type& opt = details::grad_option_type()) 
    : base(new_macro(rep(expr,opt))) {} 

// accessors:

  space_constant::valued_type valued_tag() const { return base::data().valued_tag(); }

  template<class Result>
  void evaluate (const geo_element& K, std::vector<Result>& value) const {
  	base::data().evaluate(K,value); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
  	base::data().initialize(omega,hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
  	return base::data().initialize(Xh);
  }
  template<class ValueType>
  void evaluate_on_side (const geo_element& L, const side_information_type& sid, std::vector<ValueType>& value) const {
  	base::data().evaluate_on_side (L, sid, value);
  }
  template<class ValueType>
  void valued_check() const {
  	base::data().valued_check<ValueType>();
  }
};
// ---------------------------------------------------------------------------
// 2.5) curl of a field
// ---------------------------------------------------------------------------
template<class T, class M>
class field_expr_terminal_field_curl_rep : public field_expr_terminal_field_base_rep<T,M> {
public:
// typedefs:

  typedef field_expr_terminal_field_base_rep<T,M> base;
  typedef geo_element::size_type          size_type;
  typedef M                               memory_type;
  typedef undeterminated_basic<T>         result_type;
  typedef result_type                     value_type;
  typedef T                               scalar_type;
  typedef typename float_traits<T>::type  float_type;

// alocators:

  field_expr_terminal_field_curl_rep (const field_basic<T,M>& expr, const details::grad_option_type& opt)
   : base(expr),
     _opt(opt), 
     _u_test(base::_uh.get_space())
    {}

  template <class Expr>
  explicit field_expr_terminal_field_curl_rep (const field_expr<Expr>& expr, const details::grad_option_type& opt) 
   : base(expr),
     _opt(opt), 
     _u_test(base::_uh.get_space())
    {}

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::last_valued;

  space_constant::valued_type valued_tag() const;

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& quad) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;
  template<class ValueType>
  void evaluate (const geo_element& K, std::vector<ValueType>& value) const;
  template<class ValueType>
  void valued_check() const { _u_test.template curl_valued_check<ValueType>(); }
// data:
  details::grad_option_type          _opt;
  test_basic<T,M,details::vf_tag_01> _u_test;
};

template<class T, class M>
class field_expr_terminal_field_curl : public smart_pointer<field_expr_terminal_field_curl_rep<T,M> >
{
public:
// typedefs:

  typedef field_expr_terminal_field_curl_rep<T,M>    rep;
  typedef smart_pointer<rep>                    base;
  typedef typename rep::size_type               size_type;
  typedef typename rep::memory_type             memory_type;
  typedef typename rep::result_type             result_type;
  typedef typename rep::float_type              float_type;
  typedef typename rep::scalar_type             scalar_type;
  typedef typename rep::value_type              value_type;
  static const space_constant::valued_type valued_hint = rep::valued_hint;

// alocators:

  field_expr_terminal_field_curl (const field_basic<T,M>& uh, const details::grad_option_type& opt = details::grad_option_type())
    : base(new_macro(rep(uh,opt))) {} 

  template <class Expr>
  explicit field_expr_terminal_field_curl (const field_expr<Expr>& expr, const details::grad_option_type& opt = details::grad_option_type()) 
    : base(new_macro(rep(expr,opt))) {} 

// accessors:

  space_constant::valued_type valued_tag() const { return base::data().valued_tag(); }

  template<class Result>
  void evaluate (const geo_element& K, std::vector<Result>& value) const {
  	base::data().evaluate(K,value); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
  	base::data().initialize(omega,hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
  	return base::data().initialize(Xh);
  }
  template<class ValueType>
  void valued_check() const {
  	base::data().valued_check<ValueType>();
  }
};
// ----------------------------------------------------------------------------
// 2.6) jump of a field
// ----------------------------------------------------------------------------
template<class T, class M>
class field_expr_terminal_field_dg_rep {
public:
// typedefs:

  typedef geo_element::size_type          size_type;
  typedef M                               memory_type;
  typedef undeterminated_basic<T>         result_type;
  typedef result_type                     value_type;
  typedef T                               scalar_type;
  typedef typename float_traits<T>::type  float_type;

// alocators:

  field_expr_terminal_field_dg_rep (const field_basic<T,M>& uh, const float_type& c0, const float_type& c1)
   : _expr0(uh), _expr1(uh),
     _c0(c0), _c1(c1)
   {}

  template <class Expr>
  explicit field_expr_terminal_field_dg_rep(const field_expr<Expr>& expr, const float_type& c0, const float_type& c1)
   : _expr0(expr), _expr1(expr),
     _c0(c0), _c1(c1)
   {}

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::last_valued;

  space_constant::valued_type valued_tag() const { return _expr0.valued_tag(); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& quad) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;
  template<class ValueType>
  void evaluate (const geo_element& K, std::vector<ValueType>& value) const;
  template<class ValueType>
  void valued_check() const {
    space_constant::valued_type valued_tag = space_constant::valued_tag_traits<ValueType>::value;
    check_macro (_expr0.valued_tag() == valued_tag,
 	              "unexpected "<<  space_constant::valued_name(_expr0.valued_tag())
        << "-valued field while a " << space_constant::valued_name(valued_tag)
        << "-valued one is expected in expression");
  }
// data:
protected:
  field_expr_terminal_field<T,M> _expr0, _expr1;
  float_type                     _c0,    _c1;
};

template<class T, class M>
class field_expr_terminal_field_dg : public smart_pointer<field_expr_terminal_field_dg_rep<T,M> >
{
public:
// typedefs:

  typedef field_expr_terminal_field_dg_rep<T,M> rep;
  typedef smart_pointer<rep>                    base;
  typedef typename rep::size_type               size_type;
  typedef typename rep::memory_type             memory_type;
  typedef typename rep::result_type             result_type;
  typedef typename rep::float_type              float_type;
  typedef typename rep::scalar_type             scalar_type;
  typedef typename rep::value_type              value_type;
  static const space_constant::valued_type valued_hint = rep::valued_hint;

// alocators:

  field_expr_terminal_field_dg (const field_basic<T,M>& uh, const float_type& c0, const float_type& c1)
    : base(new_macro(rep(uh,c0,c1))) {} 

  template <class Expr>
  explicit field_expr_terminal_field_dg(const field_expr<Expr>& expr, const float_type& c0, const float_type& c1)
    : base(new_macro(rep(expr,c0,c1))) {} 

// accessors:

  space_constant::valued_type valued_tag() const { return base::data().valued_tag(); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
  	base::data().initialize(omega,hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
  	return base::data().initialize(Xh);
  }
  template<class ValueType>
  void valued_check() const {
  	base::data().valued_check<ValueType>();
  }
  template<class Result>
  void evaluate (const geo_element& K, std::vector<Result>& value) const {
  	base::data().evaluate(K,value);
  } 
};
// ---------------------------------------------------------------------------
// 3) convected field, as compose(uh,X) where X is a characteristic
// ---------------------------------------------------------------------------
template<class T, class M>
class field_expr_terminal_field_o_characteristic_rep {
public:
// typedefs:

  typedef geo_element::size_type          size_type;
  typedef M                               memory_type;
  typedef undeterminated_basic<T>         result_type;
#ifdef TO_CLEAN
  typedef T                               result_type;
#endif // TO_CLEAN
  typedef result_type                     value_type;
  typedef T                               scalar_type;
  typedef typename float_traits<T>::type  float_type;

// alocators:

  field_expr_terminal_field_o_characteristic_rep (const field_o_characteristic<T,M>& uoX);
  field_expr_terminal_field_o_characteristic_rep (const field_basic<T,M>& uh, const characteristic_basic<T,M>& X);

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::last_valued;

  space_constant::valued_type valued_tag() const { return _uh.valued_tag(); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const;
  bool initialize (const space_basic<float_type,memory_type>& Xh) const;

  template<class Result>
  void evaluate (const geo_element& K, std::vector<Result>& value) const;

  template<class ValueType>
  void valued_check() const {
    space_constant::valued_type valued_tag = space_constant::valued_tag_traits<ValueType>::value;
    check_macro (_uh.valued_tag() == valued_tag, "unexpected "<<_uh.valued()
        << "-valued field while a " << space_constant::valued_name(valued_tag)
        << "-valued one is expected in expression");
  }

// internal:
  template<class Result>
  void _check () const;

// data:
  field_basic<T,M>                            _uh;
  characteristic_basic<T,M>                   _X;
  mutable bool                                _is_initialized;
  mutable quadrature<T>                       _quad;
  mutable basis_on_pointset<T>                _bops;
  mutable array<T,M>                          _uq;
  mutable typename array<T,M>::const_iterator _uq_K;
  mutable size_type                           _start_q;
};

template<class T, class M>
class field_expr_terminal_field_o_characteristic : 
  public smart_pointer<field_expr_terminal_field_o_characteristic_rep<T,M> >
{
public:
// typedefs:

  typedef field_expr_terminal_field_o_characteristic_rep<T,M>    rep;
  typedef smart_pointer<rep>                    base;
  typedef typename rep::size_type               size_type;
  typedef typename rep::memory_type             memory_type;
  typedef typename rep::result_type             result_type;
  typedef typename rep::float_type              float_type;
  typedef typename rep::scalar_type             scalar_type;
  typedef typename rep::value_type              value_type;
  static const space_constant::valued_type valued_hint = rep::valued_hint;

// alocators:

  field_expr_terminal_field_o_characteristic (const field_o_characteristic<T,M>& uoX)
    : base(new_macro(rep(uoX))) {} 

  field_expr_terminal_field_o_characteristic (const field_basic<T,M>& uh, const characteristic_basic<T,M>& X)
    : base(new_macro(rep(uh,X))) {} 

// accessors:

  space_constant::valued_type valued_tag() const { return base::data().valued_tag(); }

  void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
  	base::data().initialize(omega,hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
  	return base::data().initialize(Xh);
  }
  template<class Result>
  void evaluate (const geo_element& K, std::vector<Result>& value) const {
  	base::data().evaluate(K,value); }

  template<class ValueType>
  void valued_check() const {
  	base::data().valued_check<ValueType>();
  }
};

} // namespace rheolef
#endif // _RHEOLEF_FIELD_NONLINEAR_EXPR_TERMINAL_H