This file is indexed.

/usr/include/rheolef/form_vf_expr.h is in librheolef-dev 6.5-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#ifndef _RHEOLEF_FORM_VF_EXPR_H
#define _RHEOLEF_FORM_VF_EXPR_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
/// =========================================================================
//
// form_vf_expr: used for expressions in variationnal formulations
//
#include "rheolef/vf_tag.h"
#include <boost/numeric/ublas/matrix.hpp> // ublas::matrix

namespace rheolef {
namespace ublas = boost::numeric::ublas;

// ---------------------------------------------------------------------------
// wrapper
// ---------------------------------------------------------------------------
template<class RawExpr>
class form_vf_expr {
public:
// typedefs:

  typedef typename RawExpr::size_type            size_type;
  typedef typename RawExpr::memory_type          memory_type;
  typedef typename RawExpr::value_type           value_type;
  typedef typename RawExpr::scalar_type          scalar_type;
  typedef typename RawExpr::float_type           float_type;
  typedef typename RawExpr::space_type           space_type;
  typedef typename RawExpr::vf_tag_type          vf_tag_type;
  typedef typename RawExpr::vf_dual_tag_type     vf_dual_tag_type;
  typedef form_vf_expr<RawExpr>                  self_type;
  typedef form_vf_expr<typename RawExpr::dual_self_type> 
                                                 dual_self_type;
  typedef typename RawExpr::maybe_symmetric 	 maybe_symmetric;

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_vf_expr (const RawExpr& raw_expr) 
    : _raw_expr(raw_expr) {}

// accessors:

  const space_type& get_test_space() const  { return _raw_expr.get_test_space(); }
  const space_type& get_trial_space() const { return _raw_expr.get_trial_space(); }
  size_type n_derivative() const            { return _raw_expr.n_derivative(); }

// mutable modifiers:
  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const {
    _raw_expr.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _raw_expr.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _raw_expr.element_initialize (K);
  }
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<scalar_type>& value) const {
    _raw_expr.basis_evaluate (hat_K, q, value);
  }
  template<class ValueType>
  void valued_check() const {
    static const bool status = details::is_equal<ValueType,scalar_type>::value;
    check_macro (status, "unexpected result_type"); 
    _raw_expr.valued_check<ValueType>();
  }

protected:
// data:
  RawExpr   _raw_expr;
};
// ---------------------------------------------------------------------------
// binary function call: (f field_expr1 field_expr2) -> form_expr
// example: integrate(u*v)
// ---------------------------------------------------------------------------
template<class BinaryFunction, class Expr1, class Expr2>
class form_vf_expr_bf_field {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename Expr1::memory_type,typename Expr2::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename Expr1::value_type
         ,typename Expr2::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename details::bf_vf_tag<BinaryFunction,
	typename Expr1::vf_tag_type,
	typename Expr2::vf_tag_type>::type              vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_vf_expr_bf_field<BinaryFunction,Expr1,Expr2>   self_type;
  typedef form_vf_expr_bf_field<BinaryFunction,typename Expr1::dual_self_type,typename Expr2::dual_self_type>
                                                        dual_self_type;
  typedef typename mpl::and_<typename details::generic_binary_traits<BinaryFunction>::is_symmetric::type,
		             typename details::is_equal<
				Expr1,
				typename Expr2::dual_self_type>::type>::type 
	                                                maybe_symmetric;

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_vf_expr_bf_field (const BinaryFunction& f, 
		    const Expr1&    expr1,
                    const Expr2&    expr2)
    : _f(f), _expr1(expr1), _expr2(expr2) {}

// accessors:

  const space_type&  get_test_space()  const { 
    return (details::is_equal<typename Expr1::vf_tag_type, details::vf_tag_01>::value) ?
	_expr1.get_vf_space() : _expr2.get_vf_space();
  }
  const space_type&  get_trial_space() const {
    return (details::is_equal<typename Expr1::vf_tag_type, details::vf_tag_10>::value) ?
	_expr1.get_vf_space() : _expr2.get_vf_space();
  }

  size_type n_derivative() const             { return _expr1.n_derivative() + _expr2.n_derivative(); }

// mutable modifiers:

  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _expr1.initialize (dom, quad, ignore_sys_coord);
    _expr2.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _expr1.initialize (gh, quad, ignore_sys_coord);
    _expr2.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr1.element_initialize (K);
    _expr2.element_initialize (K);
  }
  template<class ValueType, class Arg1, class Arg2>
  void evaluate_call (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    if (details::is_equal<typename Expr2::vf_tag_type, details::vf_tag_01>::value) {
      // expr1 is trial and expr2 is test
      std::vector<Arg2> v_test  (value.size1()); _expr2.basis_evaluate (hat_K, q, v_test);
      std::vector<Arg1> u_trial (value.size2()); _expr1.basis_evaluate (hat_K, q, u_trial);
      for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
      for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
        value(i,j) = _f (u_trial[j], v_test[i]);
      }}
    } else {
      // expr2 is trial and expr1 is test
      std::vector<Arg2> v_test  (value.size1()); _expr1.basis_evaluate (hat_K, q, v_test);
      std::vector<Arg1> u_trial (value.size2()); _expr2.basis_evaluate (hat_K, q, u_trial);
      for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
      for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
        value(i,j) = _f (u_trial[j], v_test[i]);
      }}
    }
  }
  // when both args are defined at compile time:
  template<class This, class ValueType,
        class Arg1,        space_constant::valued_type Arg1Tag,
        class Arg2,        space_constant::valued_type Arg2Tag>
  struct evaluate_switch {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
      obj.template evaluate_call<ValueType, Arg1, Arg2> (hat_K, q, value);
    }
  };
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::first_argument_type   first_argument_type;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::second_argument_type second_argument_type;
    static const space_constant::valued_type  first_argument_tag = space_constant::valued_tag_traits<first_argument_type>::value;
    static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<second_argument_type>::value;
    evaluate_switch <self_type, ValueType,
        first_argument_type,   first_argument_tag,
        second_argument_type, second_argument_tag>   eval;
    eval (*this, hat_K, q, value);
  }
  template<class ValueType>
  void valued_check() const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::first_argument_type   A1;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::second_argument_type A2;
    if (! is_undeterminated<A1>::value) _expr1.valued_check<A1>();
    if (! is_undeterminated<A2>::value) _expr2.valued_check<A2>();
  }
protected:
// data:
  BinaryFunction  _f;
  Expr1           _expr1;
  Expr2           _expr2;
};
// ---------------------------------------------------------------------------
// unary function call: (f form_expr) -> form_expr
// example: -(u*v), 2*(u*v), (u*v)/2
// ---------------------------------------------------------------------------
template<class UnaryFunction, class Expr>
class form_vf_expr_uf {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename Expr::memory_type                    memory_type;
  typedef typename details::generic_unary_traits<UnaryFunction>::template result_hint<
          typename Expr::value_type>::type              result_hint;
  typedef typename details::generic_unary_traits<UnaryFunction>::template hint<
	  typename Expr::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type;
  typedef typename Expr::vf_tag_type                    vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_vf_expr_uf<UnaryFunction,Expr>           self_type;
  typedef form_vf_expr_uf<UnaryFunction, typename Expr::dual_self_type>
                                                        dual_self_type;
  typedef typename Expr::maybe_symmetric::type          maybe_symmetric;

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_vf_expr_uf (const UnaryFunction& f, const Expr& expr)
    : _f(f), _expr(expr) {}

// accessors:

  const space_type&  get_trial_space() const { return _expr.get_trial_space(); }
  const space_type&  get_test_space()  const { return _expr.get_test_space(); }
  size_type n_derivative() const             { return _expr.n_derivative(); }

// mutable modifiers:

  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _expr.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _expr.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr.element_initialize (K);
  }
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    // ValueType is float_type in general: elementary matrix
    typedef ValueType A1;
    ublas::matrix<A1> value1 (value.size1(), value.size2());
    _expr.basis_evaluate (hat_K, q, value1);
    for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
    for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
      value(i,j) = _f (value1(i,j));
    }}
  }
  template<class ValueType>
  void valued_check() const {
    typedef ValueType A1;
    if (! is_undeterminated<A1>::value) _expr.valued_check<A1>();
  }
protected:
// data:
  UnaryFunction  _f;
  Expr           _expr;
};
// ---------------------------------------------------------------------------
// binary function call: (f form_expr1 form_expr2) -> form_expr
// example: operator+ between two forms as in
//	    (u*v) + dot(grad(u),grad(v))
// ---------------------------------------------------------------------------
template<class BinaryFunction, class Expr1, class Expr2>
class form_vf_expr_bf {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename Expr1::memory_type,typename Expr2::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename Expr1::value_type
         ,typename Expr2::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename details::bf_vf_tag<BinaryFunction,
	typename Expr1::vf_tag_type,
	typename Expr2::vf_tag_type>::type              vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_vf_expr_bf<BinaryFunction,Expr1,Expr2>         self_type;
  typedef form_vf_expr_bf<BinaryFunction,typename Expr1::dual_self_type,
                                        typename Expr2::dual_self_type>
                                                        dual_self_type;
  typedef typename mpl::and_<typename Expr1::maybe_symmetric::type,
		             typename Expr2::maybe_symmetric::type>::type
	                                                maybe_symmetric;

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_vf_expr_bf (const BinaryFunction& f, 
		    const Expr1&    expr1,
                    const Expr2&    expr2)
    : _f(f), _expr1(expr1), _expr2(expr2) {}

// accessors:

  const space_type&  get_trial_space() const { return _expr1.get_trial_space(); }
  const space_type&  get_test_space()  const { return _expr1.get_test_space(); }
  size_type n_derivative() const             { return std::max(_expr1.n_derivative(), _expr2.n_derivative()); }

// mutable modifiers:

  // TODO: at init, check that exp1 & expr2 has the same test & trial spaces
  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _expr1.initialize (dom, quad, ignore_sys_coord);
    _expr2.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _expr1.initialize (gh, quad, ignore_sys_coord);
    _expr2.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr1.element_initialize (K);
    _expr2.element_initialize (K);
  }
  // ValueType is float_type in general: elementary matrix
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    // for f=operator+ => sum of two elementary matrix of the same type
    // TODO: otherwise ValueType1 and 2 could be obtained from the hint<> helper
    typedef ValueType A1;
    typedef ValueType A2;
    ublas::matrix<A1> value1 (value.size1(), value.size2());
    ublas::matrix<A2> value2 (value.size1(), value.size2());
    _expr1.basis_evaluate (hat_K, q, value1);
    _expr2.basis_evaluate (hat_K, q, value2);
    for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
    for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
      value(i,j) = _f (value1(i,j), value2(i,j));
    }}
  }
  template<class ValueType>
  void valued_check() const {
    typedef ValueType A1;
    typedef ValueType A2;
    if (! is_undeterminated<A1>::value) _expr1.valued_check<A1>();
    if (! is_undeterminated<A2>::value) _expr2.valued_check<A2>();
  }
protected:
// data:
  BinaryFunction  _f;
  Expr1           _expr1;
  Expr2           _expr2;
};
// ---------------------------------------------------------------------------
// binary function call: (f nl_field_expr vf_form_expr) -> form_expr
// example: integrate(eta_h*(u*v))
// ---------------------------------------------------------------------------
template<class BinaryFunction, class NLExpr, class VFExpr>
class form_vf_expr_binded_bf {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename NLExpr::memory_type,typename VFExpr::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename NLExpr::value_type
         ,typename VFExpr::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename NLExpr::value_type
	 ,typename VFExpr::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename details::bf_vf_tag<BinaryFunction,
	details::vf_tag_00,
	typename VFExpr::vf_tag_type>::type             vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_vf_expr_binded_bf<BinaryFunction,NLExpr,VFExpr>         self_type;
  typedef form_vf_expr_binded_bf<BinaryFunction,NLExpr,typename VFExpr::dual_self_type>
                                                        dual_self_type;
  typedef typename VFExpr::maybe_symmetric::type	maybe_symmetric;
  // TODO: symmetry: works only when eta_h is scalar
  // TODO: problem when ddot(eta_h,otimes(u,v)) when eta_h is unsymmetric tensor 
  // and "unsymmetric tensor" is not known at compile time

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_vf_expr_binded_bf (const BinaryFunction& f, 
		    const NLExpr&    nl_expr,
                    const VFExpr&    vf_expr)
    : _f(f), 
      _nl_expr(nl_expr),
      _vf_expr(vf_expr),
      _scalar_nl_value_quad(),
      _vector_nl_value_quad(),
      _tensor_nl_value_quad(),
      _tensor3_nl_value_quad(),
      _tensor4_nl_value_quad()
    {}

// accessors:

  const space_type&  get_trial_space() const { return _vf_expr.get_trial_space(); }
  const space_type&  get_test_space()  const { return _vf_expr.get_test_space(); }
  size_type n_derivative() const             { return _vf_expr.n_derivative(); }

// mutable modifiers:

  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _nl_expr.initialize (dom, quad);
    _vf_expr.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _nl_expr.initialize (gh.level_set(), quad);
    _vf_expr.initialize (gh,             quad, ignore_sys_coord);
  }
  // ---------------------------------------------
  // element initialize: evaluate nl_expr
  // ---------------------------------------------
  void element_initialize (const geo_element& K) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
          typename NLExpr::value_type
         ,typename VFExpr::value_type
         ,value_type>::first_argument_type   first_argument_type;
    nl_switch<self_type,first_argument_type> nl_helper;
    nl_helper.element_initialize (*this, K);
    _vf_expr.element_initialize (K);
  }
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    typedef ValueType Arg1; // TODO: switch
    typedef ValueType Arg2; // TODO: switch ; is float_type in general, as elementary matrix
    nl_switch<self_type,Arg1> nl_helper;
    const Arg1& value1 = nl_helper.get_nl_value (*this, q);
    ublas::matrix<Arg2> value2 (value.size1(), value.size2());
    _vf_expr.basis_evaluate (hat_K, q, value2);
    for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
    for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
      value(i,j) = _f (value1, value2(i,j));
    }}
  }
  template<class ValueType>
  void valued_check() const {
    typedef ValueType A1;
    typedef ValueType A2;
    if (! is_undeterminated<A1>::value) _nl_expr.valued_check<A1>();
    if (! is_undeterminated<A2>::value) _vf_expr.valued_check<A2>();
  }
//protected:
// data:
  BinaryFunction  _f;
  NLExpr          _nl_expr;
  VFExpr          _vf_expr;
  mutable std::vector<scalar_type>                 _scalar_nl_value_quad;
  mutable std::vector<point_basic<scalar_type> >   _vector_nl_value_quad;
  mutable std::vector<tensor_basic<scalar_type> >  _tensor_nl_value_quad;
  mutable std::vector<tensor3_basic<scalar_type> > _tensor3_nl_value_quad;
  mutable std::vector<tensor4_basic<scalar_type> > _tensor4_nl_value_quad;
};
#ifndef TODO
#endif // TODO

} // namespace rheolef
#endif // _RHEOLEF_FIELD_VF_EXPR_H