This file is indexed.

/usr/include/rheolef/numeric_limits.h is in librheolef-dev 6.5-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#ifndef _SKIT_NUMERIC_LIMITS_H
#define _SKIT_NUMERIC_LIMITS_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

#ifdef _RHEOLEF_HAVE_LIMITS
#include <limits>
#else
// avoid conflicts with previous def.
#define numeric_limits rheo_numeric_limits

#undef FLT_MANT_DIG
#undef FLT_DIG
#undef FLT_ROUNDS
#undef FLT_EPSILON
#undef FLT_MIN_EXP
#undef FLT_MIN
#undef FLT_MIN_10_EXP
#undef FLT_MAX_EXP
#undef FLT_MAX
#undef FLT_MAX_10_EXP
#undef DBL_MANT_DIG
#undef DBL_DIG
#undef DBL_EPSILON
#undef DBL_MIN_EXP
#undef DBL_MIN
#undef DBL_MIN_10_EXP
#undef DBL_MAX_EXP
#undef DBL_MAX
#undef DBL_MAX_10_EXP
#undef LDBL_MANT_DIG
#undef LDBL_DIG
#undef LDBL_EPSILON
#undef LDBL_MIN_EXP
#undef LDBL_MIN
#undef LDBL_MIN_10_EXP
#undef LDBL_MAX_EXP
#undef LDBL_MAX
#undef LDBL_MAX_10_EXP
#include <float.h>
#include <limits.h>

enum float_round_style {
     round_indeterminate       = -1,
     round_toward_zero         =  0,
     round_to_nearest          =  1,
     round_toward_infinity     =  2,
     round_toward_neg_infinity =  3
};

template<class T> 
class numeric_limits {
public:
    static const bool is_specialized = false;
    static T min() throw() {return T();}
    static T max() throw() {return T();}
    static const int  digits = 0;
    static const int  digits10 = 0;
    static const bool is_signed = false;
    static const bool is_integer = false;
    static const bool is_exact = false;
    static const int  radix = 0;
    static T epsilon() throw() {return T();}
    static T round_error() throw() {return T();}

    static const int  min_exponent = 0;
    static const int  min_exponent10 = 0;
    static const int  max_exponent = 0;
    static const int  max_exponent10 = 0;

    static const bool has_infinity = false;
    static const bool has_quiet_NaN = false;
    static const bool has_signaling_NaN = false;
    static const bool has_denorm = false;
    static const bool has_denorm_loss = false;

    // Sept. 1996 draft is vague on how these can be guaranteed to return
    // value without throwing an exception.  
    static T infinity() throw() {return T();};
    static T quiet_NaN() throw() {return T();}
    static T signaling_NaN() throw() {return T();}
    static T denorm_min() throw() {return T();}

    static const bool is_iec559 = false;
    static const bool is_bounded = false;
    static const bool is_modulo = false;

    static const bool traps = false;
    static const bool tinyness_before = false;
    static const float_round_style round_style = round_toward_zero;
};
// obsolete
#ifdef _RHEOLEF_HAVE_STATIC_DATA_MEMBER
template<class T> const bool numeric_limits<T>::is_specialized;
template<class T> const int  numeric_limits<T>::digits;
template<class T> const int  numeric_limits<T>::digits10;
template<class T> const bool numeric_limits<T>::is_signed;
template<class T> const bool numeric_limits<T>::is_integer;
template<class T> const bool numeric_limits<T>::is_exact;
template<class T> const int  numeric_limits<T>::radix;
template<class T> const int  numeric_limits<T>::min_exponent;
template<class T> const int  numeric_limits<T>::min_exponent10;
template<class T> const int  numeric_limits<T>::max_exponent;
template<class T> const int  numeric_limits<T>::max_exponent10;
template<class T> const bool numeric_limits<T>::has_infinity;
template<class T> const bool numeric_limits<T>::has_quiet_NaN;
template<class T> const bool numeric_limits<T>::has_signaling_NaN;
template<class T> const bool numeric_limits<T>::has_denorm;
template<class T> const bool numeric_limits<T>::has_denorm_loss;
template<class T> const bool numeric_limits<T>::is_iec559;
template<class T> const bool numeric_limits<T>::is_bounded;
template<class T> const bool numeric_limits<T>::is_modulo;
template<class T> const bool numeric_limits<T>::traps;
template<class T> const bool numeric_limits<T>::tinyness_before;
template<class T> const float_round_style numeric_limits<T>::round_style;
#endif // _RHEOLEF_HAVE_STATIC_DATA_MEMBER

// The specializations for floating-point types use the following macro 
// to factor out commonality.  They presume IEEE arithmetic.
#define __NUMERIC_LIMITS_FLOAT(T)		\
    static const bool is_specialized = true;	\
    static const int  radix = 2;		\
						\
    static const bool is_signed = true;		\
    static const bool is_integer = false;	\
    static const bool is_exact = false;		\
						\
    static const bool has_infinity = true;	\
    static const bool has_quiet_NaN = true;	\
    static const bool has_signaling_NaN = true;	\
    static const bool has_denorm = false;	\
    static const bool has_denorm_loss = false;	\
						\
    static const bool is_iec559 = sizeof(T)<=8;	\
    static const bool is_bounded = true;	\
    static const bool is_modulo = false;	\
    static const bool traps = true;		\
    static const bool tinyness_before = true;	\
 						\
    static T round_error ()   { return (T)0.5F; }    	\
    static const float_round_style round_style = round_to_nearest;	\
    static T infinity ()      {return *(T*)(void*)data.value[0];}\
    static T quiet_NaN ()     {return *(T*)(void*)data.value[1];}\
    static T signaling_NaN () {return *(T*)(void*)data.value[2];}\
private:					\
    static const struct data_t {		\
	T align;				\
	int value[3][sizeof(T)/sizeof(int) == 0 ? 1 : sizeof(T)/sizeof(int)];	\
    } data;					\
public:						\

template<>
class numeric_limits <float> {
public:
    static const int  digits = FLT_MANT_DIG;
    static const int  digits10 = FLT_DIG;
    static const int  min_exponent = FLT_MIN_EXP;
    static const int  max_exponent = FLT_MAX_EXP;
    static const int  min_exponent10 = FLT_MIN_10_EXP;
    static const int  max_exponent10 = FLT_MAX_10_EXP;

    __NUMERIC_LIMITS_FLOAT(float)

    static float min ()          { return FLT_MIN; }
    static float max ()          { return FLT_MAX; }
    static float epsilon ()      { return FLT_EPSILON; }
    static float denorm_min ()   { return FLT_MIN; }
};

template<>
class numeric_limits <double> {
public:
    static const int  digits = DBL_MANT_DIG;
    static const int  digits10 = DBL_DIG;
    static const int  min_exponent = DBL_MIN_EXP;
    static const int  max_exponent = DBL_MAX_EXP;
    static const int  min_exponent10 = DBL_MIN_10_EXP;
    static const int  max_exponent10 = DBL_MAX_10_EXP;

    __NUMERIC_LIMITS_FLOAT(double)

    static double min ()          { return DBL_MIN; }
    static double max ()          { return DBL_MAX; }
    static double epsilon ()      { return DBL_EPSILON; }
    static double denorm_min ()   { return min (); }
};

template<>
class numeric_limits <long double> {
public:
    static const int  digits = LDBL_MANT_DIG;
    static const int  digits10 = LDBL_DIG;
    static const int  min_exponent = LDBL_MIN_EXP;
    static const int  max_exponent = LDBL_MAX_EXP;
    static const int  min_exponent10 = LDBL_MIN_10_EXP;
    static const int  max_exponent10 = LDBL_MAX_10_EXP;

    __NUMERIC_LIMITS_FLOAT(long double)

    static long double min ()          { return LDBL_MIN; }
    static long double max ()          { return LDBL_MAX; }
    static long double epsilon ()      { return LDBL_EPSILON; }
    static long double denorm_min ()   { return min (); }
};
#endif // _RHEOLEF_HAVE_LIMITS

// The specializations for integral types use three macros to factor out
// commonality.
//
// 	__NUMERIC_LIMITS_INTEGRAL declares members of numeric_limits<T>
// 	whose value does not depend on the signdness of T. 
//
//	__NUMERIC_LIMITS_SIGNED(T) declares members dependent on
//	knowing that T is signed.
//
//	__NUMERIC_LIMITS_UNSIGNED(T) declares members dependent on
//	knowing that T is unsigned.
//
// We could have been real cutesy and come up with definitions that would
// work for both signed and unsigned types, but doing so does not seem
// to be worth the additional obfuscation and overhead for constant folding.
//
// The definitions are not intended to be universally portable.

#define __NUMERIC_LIMITS_INTEGRAL(T)			\
    static const bool is_specialized = true;			\
								\
    static const int radix = 2;					\
    static const int min_exponent = 0;				\
    static const int max_exponent = 0;				\
    static const int min_exponent10 = 0;			\
    static const int max_exponent10 = 0;			\
								\
    static const bool is_integer = true;			\
    static const bool is_exact = true;				\
								\
    static const bool has_infinity = false;			\
    static const bool has_quiet_NaN = false;			\
    static const bool has_signaling_NaN = false;		\
    static const bool has_denorm = false;			\
    static const bool has_denorm_loss = false;			\
								\
    static const bool is_iec559 = false;			\
    static const bool is_bounded = true;			\
    static const bool is_modulo = true;				\
    static const bool traps = false;				\
    static const bool tinyness_before = false;			\
								\
    static T infinity ()       { return 0; }	\
    static T quiet_NaN ()      { return 0; }	\
    static T signaling_NaN () { return 0; }		\
    static T epsilon ()     { return 1; }		\
    static T denorm_min ()  { return min (); }	\
    static T round_error () { return 0; }		\
								\
    static const float_round_style round_style = round_toward_zero;

#define __NUMERIC_LIMITS_SIGNED(T) 				\
    static const int digits = 8*sizeof(T)-1;			\
    /* Following presumes 8, 16, 32, or 64-bit T. */		\
    static const int digits10 = 7*sizeof(T)/3; 			\
    static const bool is_signed = true;				

#define __NUMERIC_LIMITS_UNSIGNED(T) 			\
    static const int digits = 8*sizeof(T);			\
    /* Following presumes 8, 16, 32, or 64-bit T. */		\
    static const int digits10 = 12*sizeof(T)/5;  		\
    static const bool is_signed = false;				

#ifndef _RHEOLEF_HAVE_LIMITS
template<>
class numeric_limits <int> {
public:
    __NUMERIC_LIMITS_INTEGRAL(int)
    __NUMERIC_LIMITS_SIGNED(int)
    static int min() { return INT_MIN; }
    static int max() { return INT_MAX; }
};
template<>
class numeric_limits <unsigned int> {
public:
    __NUMERIC_LIMITS_INTEGRAL(unsigned int)
    __NUMERIC_LIMITS_UNSIGNED(unsigned int)
    static unsigned int min() { return 0; }
    static unsigned int max() { return UINT_MAX; }
};

template<>
class numeric_limits <long> {
public:
    __NUMERIC_LIMITS_INTEGRAL(long)
    __NUMERIC_LIMITS_SIGNED(long)
    static long min() { return LONG_MIN; }
    static long max() { return LONG_MAX; }
};

template<>
class numeric_limits <unsigned long> {
public:
    __NUMERIC_LIMITS_INTEGRAL(unsigned long)
    __NUMERIC_LIMITS_UNSIGNED(unsigned long)
    static unsigned long min() { return 0; }
    static unsigned long max() { return ULONG_MAX; }
};

template<>
class numeric_limits <short> {
public:
    __NUMERIC_LIMITS_INTEGRAL(short)
    __NUMERIC_LIMITS_SIGNED(short)
    static short min () { return SHRT_MIN; }
    static short max () { return SHRT_MAX; }
};

template<>
class numeric_limits <unsigned short> {
public:
    __NUMERIC_LIMITS_INTEGRAL(unsigned short)
    __NUMERIC_LIMITS_UNSIGNED(unsigned short)
    static unsigned short min () { return 0; }
    static unsigned short max () { return USHRT_MAX; }
};

template<>
class numeric_limits <char> {
public:
    __NUMERIC_LIMITS_INTEGRAL(char)
    static const int digits = CHAR_MIN<0 ? 7 : 8;
    static const int digits10 = 2;
    static const bool is_signed = CHAR_MIN<0;				
    static char min () { return CHAR_MIN; }
    static char max () { return CHAR_MAX; }
};

template<>
class numeric_limits <signed char> {
public:
    __NUMERIC_LIMITS_INTEGRAL(signed char)
    __NUMERIC_LIMITS_SIGNED(signed char)
    static signed char min ()         { return SCHAR_MIN; }
    static signed char max ()         { return SCHAR_MAX; }
};

template<>
class numeric_limits <unsigned char> {
public:
    __NUMERIC_LIMITS_INTEGRAL(unsigned char)
    __NUMERIC_LIMITS_UNSIGNED(unsigned char)
    static unsigned char min ()         { return 0; }
    static unsigned char max ()         { return UCHAR_MAX; }
};
// obsolete:
#ifdef _RHEOLEF_HAVE_WCHART
template<>
class numeric_limits <wchar_t> {
public:
    __NUMERIC_LIMITS_INTEGRAL(wchar_t)
    static const bool is_signed = (wchar_t)-1<0;
    static const int digits = 8*sizeof(wchar_t) - is_signed;
    // Following assumes that wchar_t is 8, 16, or 32-bit, 
    // either signed or unsigned.
    static const int digits10 = 7*sizeof(T)/3;
    static char min () { return CHAR_MIN; }
    static char max () { return CHAR_MAX; }
};
#endif /* _RHEOLEF_HAVE_WCHART */

#ifdef _BOOL
template<>
class numeric_limits <bool> {
public:
    static const bool is_specialized = true;

    static const int radix = 2;
    static const int min_exponent = 0;
    static const int max_exponent = 0;
    static const int min_exponent10 = 0;
    static const int max_exponent10 = 0;

    static const bool is_integer = false;
    static const bool is_exact = true;

    static const bool has_infinity = false;
    static const bool has_quiet_NaN = false;
    static const bool has_signaling_NaN = false;
    static const bool has_denorm = false;
    static const bool has_denorm_loss = false;

    static const bool is_iec559 = false;
    static const bool is_bounded = true;
    static const bool is_modulo = false;
    static const bool traps = false;
    static const bool tinyness_before = false;

    static bool infinity ()       { return false; }
    static bool quiet_NaN ()      { return false; }
    static bool signaling_NaN () { return false; }
    static bool epsilon ()     { return false; }
    static bool denorm_min ()  { return min (); }
    static bool round_error () { return false; }
								
    static const float_round_style round_style = round_toward_zero;

    static const int digits = 1;
    static const int digits10 = 0;
    static const bool is_signed = false;

    static bool min ()         { return false; }
    static bool max ()         { return true; }
};
#endif	/* _BOOL */
#endif // ! _RHEOLEF_HAVE_LIMITS

#endif /* _SKIT_NUMERIC_LIMITS_H */