This file is indexed.

/usr/include/root/Math/PdfFuncMathCore.h is in libroot-math-mathcore-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// @(#)root/mathcore:$Id$
// Authors: Andras Zsenei & Lorenzo Moneta   06/2005 

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
 *                                                                    *
 *                                                                    *
 **********************************************************************/



/**

Probability density functions, cumulative distribution functions 
and their inverses (quantiles) for various statistical distributions (continuous and discrete).
Whenever possible the conventions followed are those of the
CRC Concise Encyclopedia of Mathematics, Second Edition
(or <A HREF="http://mathworld.wolfram.com/">Mathworld</A>).
By convention the distributions are centered around 0, so for
example in the case of a Gaussian there is no parameter mu. The
user must calculate the shift himself if he wishes. 

MathCore provides the majority of the probability density functions, of the 
cumulative distributions and of the quantiles (inverses of the cumulatives). 
Additional distributions are also provided by the
<A HREF="../../MathMore/html/group__StatFunc.html">MathMore</A> library. 


@defgroup StatFunc Statistical functions

*/



#if defined(__CINT__) && !defined(__MAKECINT__)
// avoid to include header file when using CINT 
#ifndef _WIN32
#include "../lib/libMathCore.so"
#else
#include "../bin/libMathCore.dll"
#endif

#else


#ifndef ROOT_Math_PdfFuncMathCore
#define ROOT_Math_PdfFuncMathCore




namespace ROOT {
namespace Math {



  /** @defgroup PdfFunc Probability Density Functions (PDF) from MathCore      
   *   @ingroup StatFunc
   *  Probability density functions of various statistical distributions 
   *  (continuous and discrete).
   *  The probability density function returns the probability that 
   *  the variate has the value x. 
   *  In statistics the PDF is also called the frequency function.
   *  
   * 
   */

   /** @name Probability Density Functions from MathCore 
   *   Additional PDF's are provided in the MathMore library
   *   (see PDF functions from MathMore)   
   */ 

  //@{

  /**
     
  Probability density function of the beta distribution.
  
  \f[ p(x) = \frac{\Gamma (a + b) } {\Gamma(a)\Gamma(b) } x ^{a-1} (1 - x)^{b-1} \f]

  for \f$0 \leq x \leq 1 \f$. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/BetaDistribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */

  double beta_pdf(double x, double a, double b);


  /**
    
  Probability density function of the binomial distribution.

  \f[ p(k) = \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k} \f]

  for \f$ 0 \leq k \leq n \f$. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/BinomialDistribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */

  double binomial_pdf(unsigned int k, double p, unsigned int n);


  /**
    
  Probability density function of the negative binomial distribution.

  \f[ p(k) = \frac{(k+n-1)!}{k! (n-1)!} p^{n} (1-p)^{k} \f]

  For detailed description see 
  <A HREF="http://mathworld.wolfram.com/NegativeBinomialDistribution.html">
  Mathworld</A> (where $k \to x$ and $n \to r$).
  The distribution in <A HREF="http://en.wikipedia.org/wiki/Negative_binomial_distribution">
  Wikipedia</A> is defined with a $p$ corresponding to $1-p$ in this case.

  
  @ingroup PdfFunc

  */

  double negative_binomial_pdf(unsigned int k, double p, double n);



  /**

  Probability density function of Breit-Wigner distribution, which is similar, just 
  a different definition of the parameters, to the Cauchy distribution 
  (see  #cauchy_pdf )

  \f[ p(x) = \frac{1}{\pi} \frac{\frac{1}{2} \Gamma}{x^2 + (\frac{1}{2} \Gamma)^2} \f]

  
  @ingroup PdfFunc

  */

  double breitwigner_pdf(double x, double gamma, double x0 = 0);




  /**

  Probability density function of the Cauchy distribution which is also
  called Lorentzian distribution.

  
  \f[ p(x) = \frac{1}{\pi} \frac{ b }{ (x-m)^2 + b^2} \f]

  For detailed description see 
  <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
  Mathworld</A>. It is also related to the #breitwigner_pdf which 
  will call the same implementation.
  
  @ingroup PdfFunc

  */

  double cauchy_pdf(double x, double b = 1, double x0 = 0);




  /**

  Probability density function of the \f$\chi^2\f$ distribution with \f$r\f$ 
  degrees of freedom.

  \f[ p_r(x) = \frac{1}{\Gamma(r/2) 2^{r/2}} x^{r/2-1} e^{-x/2} \f]

  for \f$x \geq 0\f$. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */

  double chisquared_pdf(double x, double r, double x0 = 0);




  /**

  Probability density function of the exponential distribution.

  \f[ p(x) = \lambda e^{-\lambda x} \f]

  for x>0. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html">
  Mathworld</A>. 

  
  @ingroup PdfFunc

  */

  double exponential_pdf(double x, double lambda, double x0 = 0);




  /**

  Probability density function of the F-distribution.

  \f[ p_{n,m}(x) = \frac{\Gamma(\frac{n+m}{2})}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2})} n^{n/2} m^{m/2} x^{n/2 -1} (m+nx)^{-(n+m)/2} \f]

  for x>=0. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/F-Distribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */


  double fdistribution_pdf(double x, double n, double m, double x0 = 0);




  /**

  Probability density function of the gamma distribution.

  \f[ p(x) = {1 \over \Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x/\theta} \f]

  for x>0. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/GammaDistribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */

  double gamma_pdf(double x, double alpha, double theta, double x0 = 0);




  /**

  Probability density function of the normal (Gaussian) distribution.

  \f[ p(x) = {1 \over \sqrt{2 \pi \sigma^2}} e^{-x^2 / 2\sigma^2} \f]

  For detailed description see 
  <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
  Mathworld</A>. It can also be evaluated using #normal_pdf which will 
  call the same implementation. 

  @ingroup PdfFunc
 
  */

  double gaussian_pdf(double x, double sigma = 1, double x0 = 0);



   /**

   Probability density function of the Landau distribution:
  \f[ p(x) = \frac{1}{\xi} \phi (\lambda) \f]
   with
   \f[  \phi(\lambda) = \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} e^{\lambda s + s \log{s}} ds\f]
   where \f$\lambda = (x-x_0)/\xi\f$. For a detailed description see 
   K.S. K&ouml;lbig and B. Schorr, A program package for the Landau distribution, 
   <A HREF="http://dx.doi.org/10.1016/0010-4655(84)90085-7">Computer Phys. Comm. 31 (1984) 97-111</A>
   <A HREF="http://dx.doi.org/10.1016/j.cpc.2008.03.002">[Erratum-ibid. 178 (2008) 972]</A>. 
   The same algorithms as in 
   <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g110/top.html">
   CERNLIB</A> (DENLAN)  is used 
   
   @param x The argument \f$x\f$ 
   @param xi The width parameter \f$\xi\f$ 
   @param x0 The location parameter \f$x_0\f$ 
   
   @ingroup PdfFunc
   
   */

   double landau_pdf(double x, double xi = 1, double x0 = 0); 



  /**

  Probability density function of the lognormal distribution.

  \f[ p(x) = {1 \over x \sqrt{2 \pi s^2} } e^{-(\ln{x} - m)^2/2 s^2} \f]

  for x>0. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html">
  Mathworld</A>. 
  @param s scale parameter (not the sigma of the distribution which is not even defined)
  @param x0  location parameter, corresponds approximatly to the most probable value. For x0 = 0, sigma = 1, the x_mpv = -0.22278
  
  @ingroup PdfFunc

  */

  double lognormal_pdf(double x, double m, double s, double x0 = 0);




  /**

  Probability density function of the normal (Gaussian) distribution.

  \f[ p(x) = {1 \over \sqrt{2 \pi \sigma^2}} e^{-x^2 / 2\sigma^2} \f]

  For detailed description see 
  <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
  Mathworld</A>. It can also be evaluated using #gaussian_pdf which will call the same 
  implementation. 

  @ingroup PdfFunc
 
  */

  double normal_pdf(double x, double sigma =1, double x0 = 0);


  /**

  Probability density function of the Poisson distribution.

  \f[ p(n) = \frac{\mu^n}{n!} e^{- \mu} \f]

  For detailed description see 
  <A HREF="http://mathworld.wolfram.com/PoissonDistribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */

  double poisson_pdf(unsigned int n, double mu);




  /**

  Probability density function of Student's t-distribution.

  \f[ p_{r}(x) = \frac{\Gamma(\frac{r+1}{2})}{\sqrt{r \pi}\Gamma(\frac{r}{2})} \left( 1+\frac{x^2}{r}\right)^{-(r+1)/2}  \f]

  for \f$k \geq 0\f$. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */

  double tdistribution_pdf(double x, double r, double x0 = 0);




  /**

  Probability density function of the uniform (flat) distribution.

  \f[ p(x) = {1 \over (b-a)} \f]

  if \f$a \leq x<b\f$ and 0 otherwise. For detailed description see 
  <A HREF="http://mathworld.wolfram.com/UniformDistribution.html">
  Mathworld</A>. 
  
  @ingroup PdfFunc

  */

  double uniform_pdf(double x, double a, double b, double x0 = 0);



} // namespace Math
} // namespace ROOT



#endif // ROOT_Math_PdfFunc

#endif // if defined (__CINT__) && !defined(__MAKECINT__)