/usr/include/suitesparse/cholmod_cholesky.h is in libsuitesparse-dev 1:4.2.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | /* ========================================================================== */
/* === Include/cholmod_cholesky.h =========================================== */
/* ========================================================================== */
/* -----------------------------------------------------------------------------
* CHOLMOD/Include/cholmod_cholesky.h. Copyright (C) 2005-2013, Timothy A. Davis
* CHOLMOD/Include/cholmod_cholesky.h is licensed under Version 2.1 of the GNU
* Lesser General Public License. See lesser.txt for a text of the license.
* CHOLMOD is also available under other licenses; contact authors for details.
* http://www.suitesparse.com
* -------------------------------------------------------------------------- */
/* CHOLMOD Cholesky module.
*
* Sparse Cholesky routines: analysis, factorization, and solve.
*
* The primary routines are all that a user requires to order, analyze, and
* factorize a sparse symmetric positive definite matrix A (or A*A'), and
* to solve Ax=b (or A*A'x=b). The primary routines rely on the secondary
* routines, the CHOLMOD Core module, and the AMD and COLAMD packages. They
* make optional use of the CHOLMOD Supernodal and Partition modules, the
* METIS package, and the CCOLAMD package.
*
* Primary routines:
* -----------------
*
* cholmod_analyze order and analyze (simplicial or supernodal)
* cholmod_factorize simplicial or supernodal Cholesky factorization
* cholmod_solve solve a linear system (simplicial or supernodal)
* cholmod_solve2 like cholmod_solve, but reuse workspace
* cholmod_spsolve solve a linear system (sparse x and b)
*
* Secondary routines:
* ------------------
*
* cholmod_analyze_p analyze, with user-provided permutation or f set
* cholmod_factorize_p factorize, with user-provided permutation or f
* cholmod_analyze_ordering analyze a fill-reducing ordering
* cholmod_etree find the elimination tree
* cholmod_rowcolcounts compute the row/column counts of L
* cholmod_amd order using AMD
* cholmod_colamd order using COLAMD
* cholmod_rowfac incremental simplicial factorization
* cholmod_rowfac_mask rowfac, specific to LPDASA
* cholmod_row_subtree find the nonzero pattern of a row of L
* cholmod_resymbol recompute the symbolic pattern of L
* cholmod_resymbol_noperm recompute the symbolic pattern of L, no L->Perm
* cholmod_postorder postorder a tree
*
* Requires the Core module, and two packages: AMD and COLAMD.
* Optionally uses the Supernodal and Partition modules.
* Required by the Partition module.
*/
#ifndef CHOLMOD_CHOLESKY_H
#define CHOLMOD_CHOLESKY_H
#include "cholmod_config.h"
#include "cholmod_core.h"
#ifndef NPARTITION
#include "cholmod_partition.h"
#endif
#ifndef NSUPERNODAL
#include "cholmod_supernodal.h"
#endif
/* -------------------------------------------------------------------------- */
/* cholmod_analyze: order and analyze (simplicial or supernodal) */
/* -------------------------------------------------------------------------- */
/* Orders and analyzes A, AA', PAP', or PAA'P' and returns a symbolic factor
* that can later be passed to cholmod_factorize. */
cholmod_factor *cholmod_analyze
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to order and analyze */
/* --------------- */
cholmod_common *Common
) ;
cholmod_factor *cholmod_l_analyze (cholmod_sparse *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_analyze_p: analyze, with user-provided permutation or f set */
/* -------------------------------------------------------------------------- */
/* Orders and analyzes A, AA', PAP', PAA'P', FF', or PFF'P and returns a
* symbolic factor that can later be passed to cholmod_factorize, where
* F = A(:,fset) if fset is not NULL and A->stype is zero.
* UserPerm is tried if non-NULL. */
cholmod_factor *cholmod_analyze_p
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to order and analyze */
int *UserPerm, /* user-provided permutation, size A->nrow */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
/* --------------- */
cholmod_common *Common
) ;
cholmod_factor *cholmod_l_analyze_p (cholmod_sparse *, SuiteSparse_long *,
SuiteSparse_long *, size_t, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_analyze_p2: analyze for sparse Cholesky or sparse QR */
/* -------------------------------------------------------------------------- */
cholmod_factor *cholmod_analyze_p2
(
/* ---- input ---- */
int for_cholesky, /* if TRUE, then analyze for Cholesky; else for QR */
cholmod_sparse *A, /* matrix to order and analyze */
int *UserPerm, /* user-provided permutation, size A->nrow */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
/* --------------- */
cholmod_common *Common
) ;
cholmod_factor *cholmod_l_analyze_p2 (int, cholmod_sparse *, SuiteSparse_long *,
SuiteSparse_long *, size_t, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_factorize: simplicial or supernodal Cholesky factorization */
/* -------------------------------------------------------------------------- */
/* Factorizes PAP' (or PAA'P' if A->stype is 0), using a factor obtained
* from cholmod_analyze. The analysis can be re-used simply by calling this
* routine a second time with another matrix. A must have the same nonzero
* pattern as that passed to cholmod_analyze. */
int cholmod_factorize
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to factorize */
/* ---- in/out --- */
cholmod_factor *L, /* resulting factorization */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_factorize (cholmod_sparse *, cholmod_factor *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_factorize_p: factorize, with user-provided permutation or fset */
/* -------------------------------------------------------------------------- */
/* Same as cholmod_factorize, but with more options. */
int cholmod_factorize_p
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to factorize */
double beta [2], /* factorize beta*I+A or beta*I+A'*A */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
/* ---- in/out --- */
cholmod_factor *L, /* resulting factorization */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_factorize_p (cholmod_sparse *, double *, SuiteSparse_long *,
size_t, cholmod_factor *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_solve: solve a linear system (simplicial or supernodal) */
/* -------------------------------------------------------------------------- */
/* Solves one of many linear systems with a dense right-hand-side, using the
* factorization from cholmod_factorize (or as modified by any other CHOLMOD
* routine). D is identity for LL' factorizations. */
#define CHOLMOD_A 0 /* solve Ax=b */
#define CHOLMOD_LDLt 1 /* solve LDL'x=b */
#define CHOLMOD_LD 2 /* solve LDx=b */
#define CHOLMOD_DLt 3 /* solve DL'x=b */
#define CHOLMOD_L 4 /* solve Lx=b */
#define CHOLMOD_Lt 5 /* solve L'x=b */
#define CHOLMOD_D 6 /* solve Dx=b */
#define CHOLMOD_P 7 /* permute x=Px */
#define CHOLMOD_Pt 8 /* permute x=P'x */
cholmod_dense *cholmod_solve /* returns the solution X */
(
/* ---- input ---- */
int sys, /* system to solve */
cholmod_factor *L, /* factorization to use */
cholmod_dense *B, /* right-hand-side */
/* --------------- */
cholmod_common *Common
) ;
cholmod_dense *cholmod_l_solve (int, cholmod_factor *, cholmod_dense *,
cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_solve2: like cholmod_solve, but with reusable workspace */
/* -------------------------------------------------------------------------- */
int cholmod_solve2 /* returns TRUE on success, FALSE on failure */
(
/* ---- input ---- */
int sys, /* system to solve */
cholmod_factor *L, /* factorization to use */
cholmod_dense *B, /* right-hand-side */
cholmod_sparse *Bset,
/* ---- output --- */
cholmod_dense **X_Handle, /* solution, allocated if need be */
cholmod_sparse **Xset_Handle,
/* ---- workspace */
cholmod_dense **Y_Handle, /* workspace, or NULL */
cholmod_dense **E_Handle, /* workspace, or NULL */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_solve2 (int, cholmod_factor *, cholmod_dense *, cholmod_sparse *,
cholmod_dense **, cholmod_sparse **, cholmod_dense **, cholmod_dense **,
cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_spsolve: solve a linear system with a sparse right-hand-side */
/* -------------------------------------------------------------------------- */
cholmod_sparse *cholmod_spsolve
(
/* ---- input ---- */
int sys, /* system to solve */
cholmod_factor *L, /* factorization to use */
cholmod_sparse *B, /* right-hand-side */
/* --------------- */
cholmod_common *Common
) ;
cholmod_sparse *cholmod_l_spsolve (int, cholmod_factor *, cholmod_sparse *,
cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_etree: find the elimination tree of A or A'*A */
/* -------------------------------------------------------------------------- */
int cholmod_etree
(
/* ---- input ---- */
cholmod_sparse *A,
/* ---- output --- */
int *Parent, /* size ncol. Parent [j] = p if p is the parent of j */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_etree (cholmod_sparse *, SuiteSparse_long *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_rowcolcounts: compute the row/column counts of L */
/* -------------------------------------------------------------------------- */
int cholmod_rowcolcounts
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to analyze */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int *Parent, /* size nrow. Parent [i] = p if p is the parent of i */
int *Post, /* size nrow. Post [k] = i if i is the kth node in
* the postordered etree. */
/* ---- output --- */
int *RowCount, /* size nrow. RowCount [i] = # entries in the ith row of
* L, including the diagonal. */
int *ColCount, /* size nrow. ColCount [i] = # entries in the ith
* column of L, including the diagonal. */
int *First, /* size nrow. First [i] = k is the least postordering
* of any descendant of i. */
int *Level, /* size nrow. Level [i] is the length of the path from
* i to the root, with Level [root] = 0. */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_rowcolcounts (cholmod_sparse *, SuiteSparse_long *, size_t,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_analyze_ordering: analyze a fill-reducing ordering */
/* -------------------------------------------------------------------------- */
int cholmod_analyze_ordering
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to analyze */
int ordering, /* ordering method used */
int *Perm, /* size n, fill-reducing permutation to analyze */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
/* ---- output --- */
int *Parent, /* size n, elimination tree */
int *Post, /* size n, postordering of elimination tree */
int *ColCount, /* size n, nnz in each column of L */
/* ---- workspace */
int *First, /* size nworkspace for cholmod_postorder */
int *Level, /* size n workspace for cholmod_postorder */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_analyze_ordering (cholmod_sparse *, int, SuiteSparse_long *,
SuiteSparse_long *, size_t, SuiteSparse_long *, SuiteSparse_long *,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_amd: order using AMD */
/* -------------------------------------------------------------------------- */
/* Finds a permutation P to reduce fill-in in the factorization of P*A*P'
* or P*A*A'P' */
int cholmod_amd
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to order */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
/* ---- output --- */
int *Perm, /* size A->nrow, output permutation */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_amd (cholmod_sparse *, SuiteSparse_long *, size_t,
SuiteSparse_long *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_colamd: order using COLAMD */
/* -------------------------------------------------------------------------- */
/* Finds a permutation P to reduce fill-in in the factorization of P*A*A'*P'.
* Orders F*F' where F = A (:,fset) if fset is not NULL */
int cholmod_colamd
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to order */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int postorder, /* if TRUE, follow with a coletree postorder */
/* ---- output --- */
int *Perm, /* size A->nrow, output permutation */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_colamd (cholmod_sparse *, SuiteSparse_long *, size_t, int,
SuiteSparse_long *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_rowfac: incremental simplicial factorization */
/* -------------------------------------------------------------------------- */
/* Partial or complete simplicial factorization. Rows and columns kstart:kend-1
* of L and D must be initially equal to rows/columns kstart:kend-1 of the
* identity matrix. Row k can only be factorized if all descendants of node
* k in the elimination tree have been factorized. */
int cholmod_rowfac
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to factorize */
cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,fset)' */
double beta [2], /* factorize beta*I+A or beta*I+A'*A */
size_t kstart, /* first row to factorize */
size_t kend, /* last row to factorize is kend-1 */
/* ---- in/out --- */
cholmod_factor *L,
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_rowfac (cholmod_sparse *, cholmod_sparse *, double *, size_t,
size_t, cholmod_factor *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_rowfac_mask: incremental simplicial factorization */
/* -------------------------------------------------------------------------- */
/* cholmod_rowfac_mask is a version of cholmod_rowfac that is specific to
* LPDASA. It is unlikely to be needed by any other application. */
int cholmod_rowfac_mask
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to factorize */
cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,fset)' */
double beta [2], /* factorize beta*I+A or beta*I+A'*A */
size_t kstart, /* first row to factorize */
size_t kend, /* last row to factorize is kend-1 */
int *mask, /* if mask[i] >= 0, then set row i to zero */
int *RLinkUp, /* link list of rows to compute */
/* ---- in/out --- */
cholmod_factor *L,
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_rowfac_mask (cholmod_sparse *, cholmod_sparse *, double *, size_t,
size_t, SuiteSparse_long *, SuiteSparse_long *, cholmod_factor *,
cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_row_subtree: find the nonzero pattern of a row of L */
/* -------------------------------------------------------------------------- */
/* Find the nonzero pattern of x for the system Lx=b where L = (0:k-1,0:k-1)
* and b = kth column of A or A*A' (rows 0 to k-1 only) */
int cholmod_row_subtree
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to analyze */
cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,fset)' */
size_t k, /* row k of L */
int *Parent, /* elimination tree */
/* ---- output --- */
cholmod_sparse *R, /* pattern of L(k,:), n-by-1 with R->nzmax >= n */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_row_subtree (cholmod_sparse *, cholmod_sparse *, size_t,
SuiteSparse_long *, cholmod_sparse *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_lsolve_pattern: find the nonzero pattern of x=L\b */
/* -------------------------------------------------------------------------- */
int cholmod_lsolve_pattern
(
/* ---- input ---- */
cholmod_sparse *B, /* sparse right-hand-side (a single sparse column) */
cholmod_factor *L, /* the factor L from which parent(i) is derived */
/* ---- output --- */
cholmod_sparse *X, /* pattern of X=L\B, n-by-1 with X->nzmax >= n */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_lsolve_pattern (cholmod_sparse *, cholmod_factor *,
cholmod_sparse *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_row_lsubtree: find the nonzero pattern of a row of L */
/* -------------------------------------------------------------------------- */
/* Identical to cholmod_row_subtree, except that it finds the elimination tree
* from L itself. */
int cholmod_row_lsubtree
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to analyze */
int *Fi, size_t fnz, /* nonzero pattern of kth row of A', not required
* for the symmetric case. Need not be sorted. */
size_t k, /* row k of L */
cholmod_factor *L, /* the factor L from which parent(i) is derived */
/* ---- output --- */
cholmod_sparse *R, /* pattern of L(k,:), n-by-1 with R->nzmax >= n */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_row_lsubtree (cholmod_sparse *, SuiteSparse_long *, size_t,
size_t, cholmod_factor *, cholmod_sparse *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_resymbol: recompute the symbolic pattern of L */
/* -------------------------------------------------------------------------- */
/* Remove entries from L that are not in the factorization of P*A*P', P*A*A'*P',
* or P*F*F'*P' (depending on A->stype and whether fset is NULL or not).
*
* cholmod_resymbol is the same as cholmod_resymbol_noperm, except that it
* first permutes A according to L->Perm. A can be upper/lower/unsymmetric,
* in contrast to cholmod_resymbol_noperm (which can be lower or unsym). */
int cholmod_resymbol
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to analyze */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int pack, /* if TRUE, pack the columns of L */
/* ---- in/out --- */
cholmod_factor *L, /* factorization, entries pruned on output */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_resymbol (cholmod_sparse *, SuiteSparse_long *, size_t, int,
cholmod_factor *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_resymbol_noperm: recompute the symbolic pattern of L, no L->Perm */
/* -------------------------------------------------------------------------- */
/* Remove entries from L that are not in the factorization of A, A*A',
* or F*F' (depending on A->stype and whether fset is NULL or not). */
int cholmod_resymbol_noperm
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to analyze */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int pack, /* if TRUE, pack the columns of L */
/* ---- in/out --- */
cholmod_factor *L, /* factorization, entries pruned on output */
/* --------------- */
cholmod_common *Common
) ;
int cholmod_l_resymbol_noperm (cholmod_sparse *, SuiteSparse_long *, size_t, int,
cholmod_factor *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_rcond: compute rough estimate of reciprocal of condition number */
/* -------------------------------------------------------------------------- */
double cholmod_rcond /* return min(diag(L)) / max(diag(L)) */
(
/* ---- input ---- */
cholmod_factor *L,
/* --------------- */
cholmod_common *Common
) ;
double cholmod_l_rcond (cholmod_factor *, cholmod_common *) ;
/* -------------------------------------------------------------------------- */
/* cholmod_postorder: Compute the postorder of a tree */
/* -------------------------------------------------------------------------- */
SuiteSparse_long cholmod_postorder /* return # of nodes postordered */
(
/* ---- input ---- */
int *Parent, /* size n. Parent [j] = p if p is the parent of j */
size_t n,
int *Weight_p, /* size n, optional. Weight [j] is weight of node j */
/* ---- output --- */
int *Post, /* size n. Post [k] = j is kth in postordered tree */
/* --------------- */
cholmod_common *Common
) ;
SuiteSparse_long cholmod_l_postorder (SuiteSparse_long *, size_t,
SuiteSparse_long *, SuiteSparse_long *, cholmod_common *) ;
#endif
|