/usr/include/ucommon/linked.h is in libucommon-dev 6.1.10-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 | // Copyright (C) 2006-2014 David Sugar, Tycho Softworks.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++. If not, see <http://www.gnu.org/licenses/>.
/**
* Linked objects, lists, templates, and containers.
* Common support for objects that might be organized as single and double
* linked lists, rings and queues, and tree oriented data structures. These
* generic classes may be used to help form anything from callback
* registration systems and indexed memory hashes to xml parsed tree nodes.
* @file ucommon/linked.h
*/
/**
* An example of the linked object classes and their use.
* @example linked.cpp
*/
#ifndef _UCOMMON_LINKED_H_
#define _UCOMMON_LINKED_H_
#ifndef _UCOMMON_CONFIG_H_
#include <ucommon/platform.h>
#endif
#ifndef _UCOMMON_OBJECT_H_
#include <ucommon/object.h>
#endif
namespace ucommon {
class OrderedObject;
/**
* Common base class for all objects that can be formed into a linked list.
* This base class is used directly for objects that can be formed into a
* single linked list. It is also used directly as a type for a pointer to the
* start of list of objects that are linked together as a list.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT LinkedObject : public ObjectProtocol
{
protected:
friend class OrderedIndex;
friend class LinkedRing;
friend class NamedObject;
friend class ObjectStack;
LinkedObject *Next;
/**
* Construct base class attached to a chain of objects.
* @param root pointer to chain of objects we are part of.
*/
LinkedObject(LinkedObject **root);
/**
* Construct base class unattached to anyone. This might be
* used to construct intermediary base classes that may form
* lists through indexing objects.
*/
LinkedObject();
public:
static const LinkedObject *nil; /**< Marker for end of linked list. */
static const LinkedObject *inv; /**< Marker for invalid list pointer */
virtual ~LinkedObject();
/**
* Release list, mark as no longer linked. Inherited from base Object.
*/
virtual void release(void);
/**
* Retain by marking as self referenced list. Inherited from base Object.
*/
virtual void retain(void);
/**
* Add our object to an existing linked list through a pointer. This
* forms a container sorted in lifo order since we become the head
* of the list, and the previous head becomes our next.
* @param root pointer to list we are adding ourselves to.
*/
void enlist(LinkedObject **root);
/**
* Locate and remove ourselves from a list of objects. This searches
* the list to locate our object and if found relinks the list around
* us.
* @param root pointer to list we are removing ourselves from.
*/
void delist(LinkedObject **root);
/**
* Search to see if we are a member of a specific list.
* @return true if we are member of the list.
*/
bool is_member(LinkedObject *list) const;
/**
* Release all objects from a list.
* @param root pointer to list we are purging.
*/
static void purge(LinkedObject *root);
/**
* Count the number of linked objects in a list.
* @param root pointer to list we are counting.
*/
static unsigned count(const LinkedObject *root);
/**
* Get member by index.
* @return indexed member in linked list.
* @param root pointer to list we are indexing.
* @param index member to find.
*/
static LinkedObject *getIndexed(LinkedObject *root, unsigned index);
/**
* Get next effective object when iterating.
* @return next linked object in list.
*/
inline LinkedObject *getNext(void) const
{return Next;}
};
/**
* Reusable objects for forming private heaps. Reusable objects are
* linked objects that may be allocated in a private heap, and are
* returned to a free list when they are no longer needed so they can
* be reused without having to be re-allocated. The free list is the
* root of a linked object chain. This is used as a base class for those
* objects that will be managed through reusable heaps.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT ReusableObject : public LinkedObject
{
friend class ReusableAllocator;
protected:
virtual void release(void);
public:
/**
* Get next effective reusable object when iterating.
* @return next reusable object in list.
*/
inline ReusableObject *getNext(void)
{return static_cast<ReusableObject*>(LinkedObject::getNext());}
};
/**
* An index container for maintaining an ordered list of objects.
* This index holds a pointer to the head and tail of an ordered list of
* linked objects. Fundamental methods for supporting iterators are
* also provided.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT OrderedIndex
{
protected:
friend class OrderedObject;
friend class DLinkedObject;
friend class LinkedList;
friend class NamedObject;
OrderedObject *head, *tail;
void copy(const OrderedIndex& source);
public:
/**
* Create and initialize an empty index.
*/
OrderedIndex();
inline OrderedIndex(const OrderedIndex& source)
{copy(source);}
/**
* Destroy index.
*/
virtual ~OrderedIndex();
/**
* Find a specific member in the ordered list.
* @param offset to member to find.
*/
LinkedObject *find(unsigned offset) const;
/**
* Count of objects this list manages.
* @return number of objects in the list.
*/
unsigned count(void) const;
/**
* Purge the linked list and then set the index to empty.
*/
void purge(void);
/**
* Reset linked list to empty without purging.
*/
void reset(void);
/**
* Used to synchronize lists managed by multiple threads. A derived
* locking method would be invoked.
*/
virtual void lock_index(void);
/**
* Used to synchronize lists managed by multiple threads. A derived
* unlocking method would be invoked.
*/
virtual void unlock_index(void);
/**
* Return a pointer to the head of the list. This allows the head
* pointer to be used like a simple root list pointer for pure
* LinkedObject based objects.
* @return LinkedIndex style object.
*/
LinkedObject **index(void) const;
/**
* Get (pull) object off the list. The start of the list is advanced to
* the next object.
* @return LinkedObject based object that was head of the list.
*/
LinkedObject *get(void);
/**
* Add an object into the ordered index.
* @param ordered object to add to the index.
*/
void add(OrderedObject *ordered);
/**
* Get an indexed member from the ordered index.
* @param index of member to fetch.
* @return LinkedObject member of index.
*/
inline LinkedObject *getIndexed(unsigned index) const
{return LinkedObject::getIndexed((LinkedObject*)head, index);}
/**
* Return first object in list for iterators.
* @return first object in list.
*/
inline LinkedObject *begin(void) const
{return (LinkedObject*)(head);}
/**
* Return last object in list for iterators.
* @return last object in list.
*/
inline LinkedObject *end(void) const
{return (LinkedObject*)(tail);}
/**
* Return head object pointer.
* @return head pointer.
*/
inline LinkedObject *operator*() const
{return (LinkedObject*)(head);}
/**
* Assign ordered index.
* @param object to copy from.
*/
OrderedIndex& operator=(const OrderedIndex& object)
{copy(object); return *this;}
/**
* Add object to our list.
* @param object to add.
*/
void operator*=(OrderedObject *object);
};
/**
* A linked object base class for ordered objects. This is used for
* objects that must be ordered and listed through the OrderedIndex
* class.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT OrderedObject : public LinkedObject
{
protected:
friend class LinkedList;
friend class OrderedIndex;
friend class DLinkedObject;
friend class ObjectQueue;
/**
* Construct an ordered object aot end of a an index.
* @param index we are listed on.
*/
OrderedObject(OrderedIndex *index);
/**
* Construct an ordered object unattached.
*/
OrderedObject();
public:
/**
* List our ordered object at end of a linked list on an index.
* @param index we are listing on.
*/
void enlistTail(OrderedIndex *index);
/**
* List our ordered object at start of a linked list on an index.
* @param index we are listing on.
*/
void enlistHead(OrderedIndex *index);
/**
* List our ordered object in default strategy mode. The default
* base class uses enlistTail.
* @param index we are listing on.
*/
virtual void enlist(OrderedIndex *index);
/**
* Remove our ordered object from an existing index.
* @param index we are listed on.
*/
void delist(OrderedIndex *index);
/**
* Get next ordered member when iterating.
* @return next ordered object.
*/
inline OrderedObject *getNext(void) const
{return static_cast<OrderedObject *>(LinkedObject::getNext());}
};
/**
* A double-linked Object, used for certain kinds of lists.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT DLinkedObject : public OrderedObject
{
public:
friend class ObjectQueue;
/**
* Construct an empty object.
*/
DLinkedObject();
protected:
/**
* Remove a cross-linked list from itself.
*/
void delist(void);
private:
DLinkedObject *Prev;
};
/**
* A linked object base class with members found by name. This class is
* used to help form named option lists and other forms of name indexed
* associative data structures. The id is assumed to be passed from a
* dupped or dynamically allocated string. If a constant string is used
* then you must not call delete for this object.
*
* Named objects are either listed on an ordered list or keyed through an
* associate hash map table. When using a hash table, the name id string is
* used to determine the slot number to use in a list of n sized linked
* object lists. Hence, a hash index refers to a specific sized array of
* object indexes.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT NamedObject : public OrderedObject
{
protected:
char *Id;
/**
* Create an empty unnamed cell object.
*/
NamedObject();
/**
* Create a named object and add to hash indexed list.
* @param hash map table to list node on.
* @param name of the object we are listing.
* @param size of hash map table used.
*/
NamedObject(NamedObject **hash, char *name, unsigned size = 1);
/**
* Created a named object on an ordered list. This is commonly used
* to form attribute lists.
* @param index to list object on.
* @param name of the object we are listing.
*/
NamedObject(OrderedIndex *index, char *name);
/**
* Destroy named object. We do not always destroy named objects, since
* we may use them in reusable pools or we may initialize a list that we
* keep permanently. If we do invoke delete for something based on
* NamedObject, then be aware the object id is assumed to be formed from
* a dup'd string which will also be freed unless clearId is overridden.
*/
~NamedObject();
/**
* The behavior of clearing id's can be overridden if they are not
* assigned as strdup's from the heap...
*/
virtual void clearId(void);
public:
/**
* Add object to hash indexed list.
* @param hash map table to list node on.
* @param name of the object we are listing.
* @param size of hash map table used.
*/
void add(NamedObject **hash, char *name, unsigned size = 1);
/**
* Purge a hash indexed table of named objects.
* @param hash map table to purge.
* @param size of hash map table used.
*/
static void purge(NamedObject **hash, unsigned size);
/**
* Convert a hash index into a linear object pointer array. The
* object pointer array is created from the heap and must be deleted
* when no longer used.
* @param hash map table of objects to index.
* @param size of hash map table used.
* @return array of named object pointers.
*/
static NamedObject **index(NamedObject **hash, unsigned size);
/**
* Count the total named objects in a hash table.
* @param hash map table of objects to index.
* @param size of hash map table used.
*/
static unsigned count(NamedObject **hash, unsigned size);
/**
* Find a named object from a simple list. This may also use the
* begin() member of an ordered index of named objects.
* @param root node of named object list.
* @param name of object to find.
* @return object pointer or NULL if not found.
*/
static NamedObject *find(NamedObject *root, const char *name);
/**
* Remove a named object from a simple list.
* @param root node of named object list.
* @param name of object to find.
* @return object pointer or NULL if not found.
*/
static NamedObject *remove(NamedObject **root, const char *name);
/**
* Find a named object through a hash map table.
* @param hash map table of objects to search.
* @param name of object to find.
* @param size of hash map table.
* @return object pointer or NULL if not found.
*/
static NamedObject *map(NamedObject **hash, const char *name, unsigned size);
/**
* Remove an object from a hash map table.
* @param hash map table of object to remove from.
* @param name of object to remove.
* @param size of hash map table.
* @return object that is removed or NULL if not found.
*/
static NamedObject *remove(NamedObject **hash, const char *name, unsigned size);
/**
* Iterate through a hash map table.
* @param hash map table to iterate.
* @param current named object we iterated or NULL to find start of list.
* @param size of map table.
* @return next named object in hash map or NULL if no more objects.
*/
static NamedObject *skip(NamedObject **hash, NamedObject *current, unsigned size);
/**
* Internal function to convert a name to a hash index number.
* @param name to convert into index.
* @param size of map table.
*/
static unsigned keyindex(const char *name, unsigned size);
/**
* Sort an array of named objects in alphabetical order. This would
* typically be used to sort a list created and returned by index().
* @param list of named objects to sort.
* @param count of objects in the list or 0 to find by NULL pointer.
* @return list in sorted order.
*/
static NamedObject **sort(NamedObject **list, size_t count = 0);
/**
* Get next effective object when iterating.
* @return next linked object in list.
*/
inline NamedObject *getNext(void) const
{return static_cast<NamedObject*>(LinkedObject::getNext());}
/**
* Get the named id string of this object.
* @return name id.
*/
inline char *getId(void) const
{return Id;};
/**
* Compare the name of our object to see if equal. This is a virtual
* so that it can be overridden when using named lists or hash lookups
* that must be case insensitive.
* @param name to compare our name to.
* @return 0 if effectivily equal, used for sorting keys.
*/
virtual int compare(const char *name) const;
/**
* Equal function which calls compare.
* @param name to compare our name to.
* @return true if equal.
*/
inline bool equal(const char *name) const
{return (compare(name) == 0);}
/**
* Comparison operator between our name and a string.
* @param name to compare with.
* @return true if equal.
*/
inline bool operator==(const char *name) const
{return compare(name) == 0;}
/**
* Comparison operator between our name and a string.
* @param name to compare with.
* @return true if not equal.
*/
inline bool operator!=(const char *name) const
{return compare(name) != 0;}
};
/**
* The named tree class is used to form a tree oriented list of associated
* objects. Typical uses for such data structures might be to form a
* parsed XML document, or for forming complex configuration management
* systems or for forming system resource management trees.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT NamedTree : public NamedObject
{
protected:
NamedTree *Parent;
OrderedIndex Child;
/**
* Create a stand-alone or root tree node, with an optional name.
* @param name for this node.
*/
NamedTree(char *name = NULL);
/**
* Create a tree node as a child of an existing node.
* @param parent node we are listed under.
* @param name of our node.
*/
NamedTree(NamedTree *parent, char *name);
/**
* Construct a copy of the tree.
* @param source object to copy from.
*/
NamedTree(const NamedTree& source);
/**
* Delete node in a tree. If we delete a node, we must delist it from
* it's parent. We must also delink any child nodes. This is done by
* calling the purge() member.
*/
virtual ~NamedTree();
/**
* Performs object destruction. Note, if we delete a named tree object
* the name of our member object is assumed to be a dynamically allocated
* string that will also be free'd.
*/
void purge(void);
public:
/**
* Find a child node of our object with the specified name. This will
* also recursivily search all child nodes that have children until
* the named node can be found. This seeks a child node that has
* children.
* @param name to search for.
* @return tree object found or NULL.
*/
NamedTree *find(const char *name) const;
/**
* Find a subnode by a dot separated list of node names. If one or
* more lead dots are used, then the search will go through parent
* node levels of our node. The dot separated list could be thought
* of as a kind of pathname where dot is used like slash. This implies
* that individual nodes can never use names which contain dot's if
* the path function will be used.
* @param path name string being sought.
* @return tree node object found at the path or NULL.
*/
NamedTree *path(const char *path) const;
/**
* Find a child leaf node of our object with the specified name. This
* will recursively search all our child nodes until it can find a leaf
* node containing the specified id but that holds no further children.
* @param name of leaf node to search for.
* @return tree node object found or NULL.
*/
NamedTree *leaf(const char *name) const;
/**
* Find a direct child of our node which matches the specified name.
* @param name of child node to find.
* @return tree node object of child or NULL.
*/
NamedTree *getChild(const char *name) const;
/**
* Find a direct leaf node on our node. A leaf node is a node that has
* no children of it's own. This does not perform a recursive search.
* @param name of leaf child node to find.
* @return tree node object of leaf or NULL.
*/
NamedTree *getLeaf(const char *name) const;
/**
* Get first child node in our ordered list of children. This might
* be used to iterate child nodes. This may also be used to get
* unamed child nodes.
* @return first child node or NULL if no children.
*/
inline NamedTree *getFirst(void) const
{return static_cast<NamedTree *>(Child.begin());}
/**
* Get parent node we are listed as a child on.
* @return parent node or NULL if none.
*/
inline NamedTree *getParent(void) const
{return Parent;};
/**
* Get child by index number.
* @param index of child to fetch.
* @return indexed child node.
*/
inline NamedTree *getIndexed(unsigned index) const
{return static_cast<NamedTree *>(Child.getIndexed(index));}
/**
* Get the ordered index of our child nodes.
* @return ordered index of our children.
*/
inline OrderedIndex *getIndex(void) const
{return const_cast<OrderedIndex*>(&Child);}
/**
* Test if this node has a name.
* @return true if name is set.
*/
inline operator bool() const
{return (Id != NULL);}
/**
* Test if this node is unnamed.
* @return false if name is set.
*/
inline bool operator!() const
{return (Id == NULL);}
/**
* Set or replace the name id of this node. This will free the string
* if a name had already been set.
* @param name for this node to set.
*/
void setId(char *name);
/**
* Remove our node from our parent list. The name is set to NULL to
* keep delete from freeing the name string.
*/
void remove(void);
/**
* Test if node has children.
* @return true if node contains child nodes.
*/
inline bool is_leaf(void) const
{return (Child.begin() == NULL);}
/**
* Test if node is root node.
* @return true if node is root node.
*/
inline bool is_root(void) const
{return (Parent == NULL);}
/**
* Add leaf to a trunk, by order. If NULL, just remove.
* @param trunk we add leaf node to.
*/
void relistTail(NamedTree *trunk);
/**
* Add leaf to a trunk, by reverse order. If NULL, just remove.
* @param trunk we add leaf node to.
*/
void relistHead(NamedTree *trunk);
/**
* Default relist is by tail...
* @param trunk we add leaf node to, NULL to delist.
*/
inline void relist(NamedTree *trunk = NULL)
{relistTail(trunk);}
};
/**
* A double linked list object. This is used as a base class for objects
* that will be organized through ordered double linked lists which allow
* convenient insertion and deletion of list members anywhere in the list.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT LinkedList : public OrderedObject
{
protected:
friend class ObjectQueue;
LinkedList *Prev;
OrderedIndex *Root;
/**
* Construct and add our object to an existing double linked list at end.
* @param index of linked list we are listed in.
*/
LinkedList(OrderedIndex *index);
/**
* Construct an unlinked object.
*/
LinkedList();
/**
* Delete linked list object. If it is a member of a list of objects,
* then the list is reformed around us.
*/
virtual ~LinkedList();
public:
/**
* Remove our object from the list it is currently part of.
*/
void delist(void);
/**
* Attach our object to the start of a linked list though an ordered index.
* If we are already attached to a list we are delisted first.
* @param index of linked list we are joining.
*/
void enlistHead(OrderedIndex *index);
/**
* Attach our object to the end of a linked list though an ordered index.
* If we are already attached to a list we are delisted first.
* @param index of linked list we are joining.
*/
void enlistTail(OrderedIndex *index);
/**
* Attach our object to a linked list. The default strategy is to add
* to tail.
* @param index of linked list we are joining.
*/
void enlist(OrderedIndex *index);
/**
* Test if we are at the head of a list.
* @return true if we are the first node in a list.
*/
inline bool is_head(void) const
{return Root->head == (OrderedObject *)this;}
/**
* Test if we are at the end of a list.
* @return true if we are the last node in a list.
*/
inline bool is_tail(void) const
{return Root->tail == (OrderedObject *)this;}
/**
* Get previous node in the list for reverse iteration.
* @return previous node in list.
*/
inline LinkedList *getPrev(void) const
{return Prev;}
/**
* Get next node in the list when iterating.
* @return next node in list.
*/
inline LinkedList *getNext(void) const
{return static_cast<LinkedList*>(LinkedObject::getNext());}
/**
* Insert object behind our object.
* @param object to add to list.
*/
void insertTail(LinkedList *object);
/**
* Insert object in front of our object.
* @param object to add to list.
*/
void insertHead(LinkedList *object);
/**
* Insert object, method in derived object.
* @param object to add to list.
*/
virtual void insert(LinkedList *object);
/**
* Insert object behind our object.
* @param object to add to list.
*/
inline void operator+=(LinkedList *object)
{insertTail(object);}
/**
* Insert object in front of our object.
* @param object to add to list.
*/
inline void operator-=(LinkedList *object)
{insertHead(object);}
/**
* Insert object in list with our object.
* @param object to add to list.
*/
inline void operator*=(LinkedList *object)
{insert(object);}
};
/**
* A queue of double linked object. This uses the linkedlist class to
* form a basic queue of objects.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT ObjectQueue : public OrderedIndex
{
public:
/**
* Create an empty object queue.
*/
ObjectQueue();
/**
* Add an object to the end of the queue.
* @param object to add.
*/
void add(DLinkedObject *object);
/**
* Push an object to the front of the queue.
* @param object to push.
*/
void push(DLinkedObject *object);
/**
* Pull an object from the front of the queue.
* @return object pulled or NULL if empty.
*/
DLinkedObject *pull(void);
/**
* Pop an object from the end of the queue.
* @return object popped or NULL if empty.
*/
DLinkedObject *pop(void);
};
class __EXPORT ObjectStack
{
protected:
LinkedObject *root;
public:
/**
* Create an empty stack.
*/
ObjectStack();
/**
* Create a stack from an existing list of objects.
* @param list of already linked objects.
*/
ObjectStack(LinkedObject *list);
/**
* Push an object onto the stack.
* @param object to push.
*/
void push(LinkedObject *object);
/**
* Pull an object from the stack.
* @return object popped from stack or NULL if empty.
*/
LinkedObject *pull(void);
/**
* Pop an object from the stack.
* @return object popped from stack or NULL if empty.
*/
inline LinkedObject *pop(void)
{return ObjectStack::pull();}
};
/**
* A multipath linked list where membership is managed in multiple
* lists.
* @author David Sugar <dyfet@gnutelephony.org>
*/
class __EXPORT MultiMap : public ReusableObject
{
private:
typedef struct {
const char *key;
size_t keysize;
MultiMap *next;
MultiMap **root;
} link_t;
unsigned paths;
link_t *links;
protected:
/**
* Initialize a multilist object.
* @param count of link paths.
*/
MultiMap(unsigned count);
/**
* Destroy a multilist object.
*/
virtual ~MultiMap();
/**
* Modifiable interface for key matching.
* @param path to check.
* @param key to check.
* @param size of key to check or 0 if NULL terminated string.
* @return true if matches key.
*/
virtual bool equal(unsigned path, caddr_t key, size_t size) const;
public:
/**
* Enlist on a single linked list.
* @param path to attach through.
* @param root of list to attach.
*/
void enlist(unsigned path, MultiMap **root);
/**
* Enlist binary key on a single map path.
* @param path to attach through.
* @param index to attach to.
* @param key value to use.
* @param size of index.
* @param keysize of key or 0 if NULL terminated string.
*/
void enlist(unsigned path, MultiMap **index, caddr_t key, unsigned size, size_t keysize = 0);
/**
* De-list from a single map path.
* @param path to detach from.
*/
void delist(unsigned path);
/**
* Get next node from single chain.
* @param path to follow.
*/
MultiMap *next(unsigned path) const;
/**
* Compute binary key index.
* @param key memory to compute.
* @param max size of index.
* @param size of key or 0 if NULL terminated string.
* @return associated hash value.
*/
static unsigned keyindex(caddr_t key, unsigned max, size_t size = 0);
/**
* Find a multikey node.
* @return node that is found or NULL if none.
* @param path of table.
* @param index of hash table.
* @param key to locate.
* @param max size of index.
* @param size of key or 0 if NULL terminated string.
*/
static MultiMap *find(unsigned path, MultiMap **index, caddr_t key, unsigned max, size_t size = 0);
};
/**
* Template value class to embed data structure into a named list.
* This is used to form a class which can be searched by name and that
* contains a member value object. Most of the core logic for this
* template is found in and derived from the object_value template.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <typename T, class O=NamedObject>
class named_value : public object_value<T, O>
{
public:
/**
* Construct embedded named object on a linked list.
* @param root node or pointer for list.
* @param name of our object.
*/
inline named_value(LinkedObject **root, char *name)
{LinkedObject::enlist(root); O::id = name;}
/**
* Assign embedded value from related type.
* @param typed_value to assign.
*/
inline void operator=(const T& typed_value)
{this->set(typed_value);}
/**
* Find embedded object in chain by name.
* @param first object in list to search from.
* @param name to search for.
* @return composite object found by name or NULL if not found.
*/
inline static named_value find(named_value *first, const char *name)
{return static_cast<named_value *>(NamedObject::find(first, name));}
};
/**
* Template value class to embed data structure into a linked list.
* This is used to form a class which can be linked together using
* either an ordered index or simple linked pointer chain and that
* contains a member value object. Most of the core logic for this
* template is found in and derived from the object_value template.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <typename T, class O=OrderedObject>
class linked_value : public object_value<T, O>
{
public:
/**
* Create embedded value object unlinked.
*/
inline linked_value() {}
/**
* Construct embedded object on a linked list.
* @param root node or pointer for list.
*/
inline linked_value(LinkedObject **root)
{LinkedObject::enlist(root);}
/**
* Construct embedded object on an ordered list.
* @param index pointer for the ordered list.
*/
inline linked_value(OrderedIndex *index)
{O::enlist(index);}
/**
* Assign embedded value from related type and link to list.
* @param root node or pointer for list.
* @param typed_value to assign.
*/
inline linked_value(LinkedObject **root, const T& typed_value)
{LinkedObject::enlist(root); this->set(typed_value);}
/**
* Assign embedded value from related type and add to list.
* @param index to list our object on.
* @param typed_value to assign.
*/
inline linked_value(OrderedIndex *index, const T& typed_value)
{O::enlist(index); this->set(typed_value);}
/**
* Assign embedded value from related type.
* @param typed_value to assign.
*/
inline void operator=(const T& typed_value)
{this->set(typed_value);}
};
/**
* Template for typesafe basic object stack container. The object type, T,
* that is contained in the stack must be derived from LinkedObject.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <class T>
class objstack : public ObjectStack
{
public:
/**
* Create a new object stack.
*/
inline objstack() : ObjectStack() {}
/**
* Create an object stack from a list of objects.
*/
inline objstack(T *list) : ObjectStack(list) {}
/**
* Push an object onto the object stack.
* @param object of specified type to push.
*/
inline void push(T *object)
{ObjectStack::push(object);}
/**
* Add an object onto the object stack.
* @param object of specified type to push.
*/
inline void add(T *object)
{ObjectStack::push(object);}
/**
* Pull an object from the object stack.
* @return object of specified type or NULL if empty.
*/
inline T *pull(void)
{return (T *)ObjectStack::pull();}
/**
* Pull (pop) an object from the object stack.
* @return object of specified type or NULL if empty.
*/
inline T *pop(void)
{return (T *)ObjectStack::pull();}
};
/**
* Template for typesafe basic object fifo container. The object type, T,
* that is contained in the fifo must be derived from OrderedObject or
* LinkedObject.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <class T>
class objfifo : public OrderedIndex
{
public:
/**
* Create a new object stack.
*/
inline objfifo() : OrderedIndex() {}
/**
* Push an object onto the object fifo.
* @param object of specified type to push.
*/
inline void push(T *object)
{OrderedIndex::add((OrderedObject *)object);}
/**
* Add an object onto the object fifo.
* @param object of specified type to push.
*/
inline void add(T *object)
{OrderedIndex::add((OrderedObject *)object);}
/**
* Pull an object from the object stack.
* @return object of specified type or NULL if empty.
*/
inline T *pull(void)
{return (T *)OrderedIndex::get();}
/**
* Pull (pop) an object from the object stack.
* @return object of specified type or NULL if empty.
*/
inline T *pop(void)
{return (T *)OrderedIndex::get();}
};
/**
* Template for typesafe basic object queue container. The object type, T,
* that is contained in the fifo must be derived from DLinkedObject.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <class T>
class objqueue : public ObjectQueue
{
public:
/**
* Create a new object stack.
*/
inline objqueue() : ObjectQueue() {}
/**
* Push an object to start of queue.
* @param object of specified type to push.
*/
inline void push(T *object)
{ObjectQueue::push((DLinkedObject *)object);}
/**
* Add an object to the end of the object queue.
* @param object of specified type to add.
*/
inline void add(T *object)
{ObjectQueue::add((DLinkedObject *)object);}
/**
* Pull an object from the start of the object queue.
* @return object of specified type or NULL if empty.
*/
inline T *pull(void)
{return (T *)ObjectQueue::pull();}
/**
* Pop an object from the end of the object queue.
* @return object of specified type or NULL if empty.
*/
inline T *pop(void)
{return (T *)ObjectQueue::pop();}
};
/**
* A smart pointer template for iterating linked lists. This class allows
* one to access a list of single or double linked objects and iterate
* through each member of a list.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <class T>
class linked_pointer
{
private:
T *ptr;
public:
/**
* Create a linked pointer and assign to start of a list.
* @param pointer to first member of a linked list.
*/
inline linked_pointer(T *pointer)
{ptr = pointer;}
/**
* Create a copy of an existing linked pointer.
* @param pointer to copy from.
*/
inline linked_pointer(const linked_pointer &pointer)
{ptr = pointer.ptr;}
/**
* Create a linked pointer assigned from a raw linked object pointer.
* @param pointer to linked object.
*/
inline linked_pointer(LinkedObject *pointer)
{ptr = static_cast<T*>(pointer);}
inline linked_pointer(const LinkedObject *pointer)
{ptr = static_cast<T*>(pointer);}
/**
* Create a linked pointer to examine an ordered index.
* @param index of linked objects to iterate through.
*/
inline linked_pointer(OrderedIndex *index)
{ptr = static_cast<T*>(index->begin());}
/**
* Create a linked pointer not attached to a list.
*/
inline linked_pointer()
{ptr = NULL;}
/**
* Assign our typed iterative pointer from a matching typed object.
* @param pointer to typed object.
*/
inline void operator=(T *pointer)
{ptr = pointer;}
/**
* Assign our pointer from another pointer.
* @param pointer to assign from.
*/
inline void operator=(linked_pointer &pointer)
{ptr = pointer.ptr;}
/**
* Assign our pointer from the start of an ordered index.
* @param index to assign pointer from.
*/
inline void operator=(OrderedIndex *index)
{ptr = static_cast<T*>(index->begin());}
/**
* Assign our pointer from a generic linked object pointer.
* @param pointer of linked list.
*/
inline void operator=(LinkedObject *pointer)
{ptr = static_cast<T*>(pointer);}
/**
* Return member from typed object our pointer references.
* @return evaluated member of object we point to.
*/
inline T* operator->() const
{return ptr;}
/**
* Return object we currently point to.
* @return object linked pointer references.
*/
inline T* operator*() const
{return ptr;}
/**
* Return object we point to by casting.
* @return object linked pointer references.
*/
inline operator T*() const
{return ptr;}
/**
* Move (iterate) pointer to previous member in double linked list.
*/
inline void prev(void)
{ptr = static_cast<T*>(ptr->getPrev());}
/**
* Move (iterate) pointer to next member in linked list.
*/
inline void next(void)
{ptr = static_cast<T*>(ptr->getNext());}
/**
* Get the next member in linked list. Do not change who we point to.
* @return next member in list or NULL if end of list.
*/
inline T *getNext(void) const
{return static_cast<T*>(ptr->getNext());}
/**
* Get the previous member in double linked list. Do not change who we
* point to.
* @return previous member in list or NULL if start of list.
*/
inline T *getPrev(void) const
{return static_cast<T*>(ptr->getPrev());}
/**
* Move (iterate) pointer to next member in linked list.
*/
inline void operator++()
{ptr = static_cast<T*>(ptr->getNext());}
/**
* Move (iterate) pointer to previous member in double linked list.
*/
inline void operator--()
{ptr = static_cast<T*>(ptr->getPrev());}
/**
* Test for next member in linked list.
* @return true if there is more members after current one.
*/
inline bool is_next(void) const
{return (ptr->getNext() != NULL);}
/**
* Test for previous member in double linked list.
* @return true if there is more members before current one.
*/
inline bool is_prev(void) const
{return (ptr->getPrev() != NULL);}
/**
* Test if linked pointer is set/we are not at end of list.
* @return true if we are not at end of list.
*/
inline operator bool() const
{return (ptr != NULL);}
/**
* Test if linked list is empty/we are at end of list.
* @return true if we are at end of list.
*/
inline bool operator!() const
{return (ptr == NULL);}
/**
* Return pointer to our linked pointer to use as root node of a chain.
* @return our object pointer as a root index.
*/
inline LinkedObject **root(void) const
{T **r = &ptr; return (LinkedObject**)r;}
};
/**
* Embed data objects into a multipap structured memory database. This
* can be used to form multi-key hash nodes. Embedded values can either be
* of direct types that are then stored as part of the template object, or
* of class types that are data pointers.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <typename T, unsigned P>
class multimap : public MultiMap
{
protected:
T value;
public:
/**
* Construct a multimap node.
*/
inline multimap() : MultiMap(P) {}
/**
* Destroy a multimap object.
*/
inline ~multimap() {}
/**
* Return the typed value of this node.
* @return reference to value of node.
*/
inline T &get(void) const
{return value;}
/**
* Return next multimap typed object.
* @param path to follow.
* @return multimap typed.
*/
inline multimap *next(unsigned path)
{return static_cast<multimap*>(MultiMap::next(path));}
/**
* Return typed value of this node by pointer reference.
* @return value of node.
*/
inline T& operator*() const
{return value;}
/**
* Set the pointer of a pointer based value tree.
* @param pointer to set.
*/
inline void setPointer(const T pointer)
{value = pointer;}
/**
* Set the value of a data based value tree.
* @param reference to value to copy into node.
*/
inline void set(const T &reference)
{value = reference;}
/**
* Assign the value of our node.
* @param data value to assign.
*/
inline void operator=(const T& data)
{value = data;}
/**
* Find multimap key entry.
* @param path to search through.
* @param index of associated keys.
* @param key to search for, binary or NULL terminated string.
* @param size of index used.
* @param keysize or 0 if NULL terminated string.
* @return multipath typed object.
*/
inline static multimap *find(unsigned path, MultiMap **index, caddr_t key, unsigned size, unsigned keysize = 0)
{return static_cast<multimap*>(MultiMap::find(path, index, key, size, keysize));}
};
/**
* Embed data objects into a tree structured memory database. This can
* be used to form XML document trees or other data structures that
* can be organized in trees. The NamedTree class is used to manage
* the structure of the tree, and the type specified is embedded as a
* data value object which can be manipulated. Name identifiers are
* assumed to be dynamically allocated if tree node elements are deletable.
*
* Embedded values can either be of direct types that are then stored as
* part of the template object, or of class types that are data pointers.
* The latter might be used for trees that contain data which might be
* parsed dynamically from a document and/or saved on a heap. Pointer trees
* assume that NULL pointers are for nodes that are empty, and that NULL data
* value nodes with children are trunk nodes. Generally data values are then
* allocated with a pointer stored in pure leaf nodes.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <typename T>
class treemap : public NamedTree
{
protected:
T value;
public:
/**
* Construct a typed root node for the tree. The root node may be
* named as a stand-alone node or unnamed.
* @param name of the node we are creating.
*/
inline treemap(char *name = NULL) : NamedTree(name) {}
/**
* Construct a copy of the treemap object.
* @param source of copy for new object.
*/
inline treemap(const treemap& source) : NamedTree(source)
{value = source.value;};
/**
* Construct a child node on an existing tree.
* @param parent of this node to attach.
* @param name of this node.
*/
inline treemap(treemap *parent, char *name) : NamedTree(parent, name) {}
/**
* Construct a child node on an existing tree and assign it's value.
* @param parent of this node to attach.
* @param name of this node.
* @param reference to value to assign to this node.
*/
inline treemap(treemap *parent, char *name, T& reference) :
NamedTree(parent, name) {value = reference;}
/**
* Return the typed value of this node.
* @return reference to value of node.
*/
inline const T& get(void) const
{return value;}
/**
* Return typed value of this node by pointer reference.
* @return value of node.
*/
inline const T& operator*() const
{return value;}
/**
* Return value from tree element when value is a pointer.
* @param node in our typed tree.
* @return value of node.
*/
static inline T getPointer(treemap *node)
{return (node == NULL) ? NULL : node->value;}
/**
* Test if this node is a leaf node for a tree pointer table.
* @return true if value pointer is not NULL and there are no children.
*/
inline bool is_attribute(void) const
{return (!Child.begin() && value != NULL);}
/**
* Get the pointer of a pointer based value tree.
* @return value pointer of node.
*/
inline const T getPointer(void) const
{return value;}
/**
* Get the data value of a data based value tree.
* @return data value of node.
*/
inline const T& getData(void) const
{return value;}
/**
* Set the pointer of a pointer based value tree.
* @param pointer to set.
*/
inline void setPointer(const T pointer)
{value = pointer;}
/**
* Set the value of a data based value tree.
* @param reference to value to copy into node.
*/
inline void set(const T& reference)
{value = reference;}
/**
* Assign the value of our node.
* @param data value to assign.
*/
inline void operator=(const T& data)
{value = data;}
/**
* Get child member node by index.
* @param index of child member.
* @return node or NULL if past end.
*/
inline treemap *getIndexed(unsigned index) const
{return static_cast<treemap*>(Child.getIndexed(index));}
/**
* Get the typed parent node for our node.
* @return parent node or NULL if root of tree.
*/
inline treemap *getParent(void) const
{return static_cast<treemap*>(Parent);}
/**
* Get direct typed child node of our node of specified name. This
* does not perform a recursive search.
* @param name of child node.
* @return typed child node pointer or NULL if not found.
*/
inline treemap *getChild(const char *name) const
{return static_cast<treemap*>(NamedTree::getChild(name));}
/**
* Find a direct typed leaf node on our node. A leaf node is a node that
* has no children of it's own. This does not perform a recursive search.
* @param name of leaf child node to find.
* @return typed leaf node object of leaf or NULL.
*/
inline treemap *getLeaf(const char *name) const
{return static_cast<treemap*>(NamedTree::getLeaf(name));}
/**
* Get the value pointer of a leaf node of a pointer tree. This allows
* one to find a leaf node and return it's pointer value in a single
* operation.
* @param name of leaf node.
* @return value of leaf pointer if found and contains value, or NULL.
*/
inline T getValue(const char *name) const
{return getPointer(getLeaf(name));}
/**
* Find a subnode from our node by name. This performs a recursive
* search.
* @param name to search for.
* @return typed node that is found or NULL if none is found.
*/
inline treemap *find(const char *name) const
{return static_cast<treemap*>(NamedTree::find(name));}
/**
* Find a subnode by pathname. This is the same as the NamedTree
* path member function.
* @param path name to search for node.
* @return typed node that is found at path or NULL.
*/
inline treemap *path(const char *path) const
{return static_cast<treemap*>(NamedTree::path(path));}
/**
* Search for a leaf node of our node. This performs a recursive
* search.
* @param name to search for.
* @return typed not that is found or NULL if none is found.
*/
inline treemap *leaf(const char *name) const
{return static_cast<treemap*>(NamedTree::leaf(name));}
/**
* Get first child of our node. This is useful for iterating children.
* @return first child or NULL.
*/
inline treemap *getFirst(void) const
{return static_cast<treemap*>(NamedTree::getFirst());}
};
/**
* A template class for a hash map. This provides a has map index object as
* a chain of keyindex selected linked pointers of a specified size. This
* is used for the index and size values for NamedObject's which are listed
* on a hash map.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <class T, unsigned M = 177>
class keymap
{
private:
NamedObject *idx[M];
public:
/**
* Destroy the hash map by puring the index chains.
*/
inline ~keymap()
{NamedObject::purge(idx, M);}
/**
* Retrieve root of index to use in NamedObject constructors.
* @return root node of index.
*/
inline NamedObject **root(void) const
{return idx;}
/**
* Retrieve key size to use in NamedObject constructors.
* @return key size of hash map.
*/
inline unsigned limit(void) const
{return M;}
/**
* Find a typed object derived from NamedObject in the hash map by name.
* @param name to search for.
* @return typed object if found through map or NULL.
*/
inline T *get(const char *name) const
{return static_cast<T*>(NamedObject::map(idx, name, M));}
/**
* Find a typed object derived from NamedObject in the hash map by name.
* @param name to search for.
* @return typed object if found through map or NULL.
*/
inline T& operator[](const char *name) const
{return static_cast<T*>(NamedObject::map(idx, name, M));}
/**
* Add a typed object derived from NamedObject to the hash map by name.
* @param name to add.
* @param object to add.
*/
inline void add(const char *name, T& object)
{object.NamedObject::add(idx, name, M);}
/**
* Add a typed object derived from NamedObject to the hash map by name.
* @param name to add.
* @param object to add.
*/
inline void add(const char *name, T *object)
{object->NamedObject::add(idx, name, M);}
/**
* Remove a typed object derived from NamedObject to the hash map by name.
* @param name to remove.
* @return object removed if found or NULL.
*/
inline T *remove(const char *name)
{return static_cast<T*>(NamedObject::remove(idx, name, M));}
/**
* Find first typed object in hash map to iterate.
* @return first typed object or NULL if nothing in list.
*/
inline T *begin(void) const
{return static_cast<T*>(NamedObject::skip(idx, NULL, M));}
/**
* Find next typed object in hash map for iteration.
* @param current typed object we are referencing.
* @return next iterative object or NULL if past end of map.
*/
inline T *next(T *current) const
{return static_cast<T*>(NamedObject::skip(idx, current, M));}
/**
* Count the number of typed objects in our hash map.
* @return count of typed objects.
*/
inline unsigned count(void) const
{return NamedObject::count(idx, M);}
/**
* Convert our hash map into a linear object pointer array. The
* object pointer array is created from the heap and must be deleted
* when no longer used.
* @return array of typed named object pointers.
*/
inline T **index(void) const
{return NamedObject::index(idx, M);}
/**
* Convert our hash map into an alphabetically sorted linear object
* pointer array. The object pointer array is created from the heap
* and must be deleted when no longer used.
* @return sorted array of typed named object pointers.
*/
inline T **sort(void) const
{return NamedObject::sort(NamedObject::index(idx, M));}
/**
* Convenience typedef for iterative pointer.
*/
typedef linked_pointer<T> iterator;
};
/**
* A template for ordered index of typed name key mapped objects.
* This is used to hold an iterable linked list of typed named objects
* where we can find objects by their name as well as through iteration.
* @author David Sugar <dyfet@gnutelephony.org>
*/
template <class T>
class keylist : public OrderedIndex
{
public:
/**
* Return a root node pointer to use in NamedObject constructors.
* @return pointer to index root.
*/
inline NamedObject **root(void)
{return static_cast<NamedObject**>(&head);}
/**
* Return first item in ordered list. This is commonly used to
* iterate the list.
* @return first item in list or NULL if empty.
*/
inline T *begin(void)
{return static_cast<T*>(head);}
/**
* Return last item in ordered list. This is commonly used to determine
* end of list iteration.
* @return last item in list or NULL if empty.
*/
inline T *end(void)
{return static_cast<T*>(tail);}
/**
* Create a new typed named object with default constructor.
* This creates a new object which can be deleted.
* @param name of object to create.
* @return typed named object.
*/
inline T *create(const char *name)
{return new T(this, name);}
/**
* Iterate next object in list.
* @param current object we are referencing.
* @return next logical object in linked list or NULL if end.
*/
inline T *next(LinkedObject *current)
{return static_cast<T*>(current->getNext());}
/**
* Find a specific object by name.
* @param name to search for.
* @return type named object that matches or NULL if not found.
*/
inline T *find(const char *name)
{return static_cast<T*>(NamedObject::find(begin(), name));}
inline T *offset(unsigned offset)
{return static_cast<T*>(OrderedIndex::find(offset));}
/**
* Retrieve a specific object by position in list.
* @param offset in list for object we want.
* @return type named object or NULL if past end of list.
*/
inline T& operator[](unsigned offset)
{return static_cast<T&>(OrderedIndex::find(offset));}
inline T& operator[](const char *name)
{return static_cast<T&>(NamedObject::find(begin(), name));}
/**
* Convert our linked list into a linear object pointer array. The
* object pointer array is created from the heap and must be deleted
* when no longer used.
* @return array of typed named object pointers.
*/
inline T **index(void)
{return static_cast<T**>(OrderedIndex::index());}
/**
* Convert our linked list into an alphabetically sorted linear object
* pointer array. The object pointer array is created from the heap
* and must be deleted when no longer used.
* @return array of typed named object pointers.
*/
inline T **sort(void)
{return static_cast<T**>(NamedObject::sort(index()));}
/**
* Convenience typedef for iterative pointer.
*/
typedef linked_pointer<T> iterator;
};
/**
* Convenience typedef for root pointers of single linked lists.
*/
typedef LinkedObject *LinkedIndex;
/**
* Convenience type for a stack of linked objects.
*/
typedef ObjectStack objstack_t;
/**
* Convenience type for a fifo of linked objects.
*/
typedef OrderedIndex objfifo_t;
/**
* Convenience type for a queue of linked objects.
*/
typedef ObjectQueue objqueue_t;
} // namespace ucommon
#endif
|