This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/ocl_azim_CSR.cl is in pyfai 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
 *   Project: Azimuthal regroupping OpenCL kernel for PyFAI.
 *            Kernel with full pixel-split using a CSR sparse matrix
 *
 *
 *   Copyright (C) 2012-2014 European Synchrotron Radiation Facility
 *                           Grenoble, France
 *
 *   Principal authors: J. Kieffer (kieffer@esrf.fr)
 *   Last revision: 10/10/2014
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/**
 * \file
 * \brief OpenCL kernels for 1D azimuthal integration using CSR sparse matrix representation
 * 
 * Constant to be provided at build time:
 *   WORKGROUP_SIZE
 */





/**
 * \brief Performs 1d azimuthal integration with full pixel splitting based on a LUT in CSR form
 *
 * An image intensity value is spread across the bins according to the positions stored in the LUT.
 * The lut is represented by a set of 3 arrays (coefs, row_ind, col_ptr)
 * Values of 0 in the mask are processed and values of 1 ignored as per PyFAI
 *
 * This implementation is especially efficient on CPU where each core reads adjacent memory.
 * the use of local pointer can help on the CPU.
 *
 * @param weights     Float pointer to global memory storing the input image.
 * @param coefs       Float pointer to global memory holding the coefficient part of the LUT
 * @param row_ind     Integer pointer to global memory holding the corresponding index of the coefficient
 * @param col_ptr     Integer pointer to global memory holding the pointers to the coefs and row_ind for the CSR matrix
 * @param do_dummy    Bool/int: shall the dummy pixel be checked. Dummy pixel are pixels marked as bad and ignored
 * @param dummy       Float: value for bad pixels
 * @param outData     Float pointer to the output 1D array with the weighted histogram
 * @param outCount    Float pointer to the output 1D array with the unweighted histogram
 * @param outMerged   Float pointer to the output 1D array with the diffractogram
 *
 */
__kernel void
csr_integrate(  const   __global    float   *weights,
                const   __global    float   *coefs,
                const   __global    int     *row_ind,
                const   __global    int     *col_ptr,
                const               int      do_dummy,
                const               float    dummy,
                        __global    float   *outData,
                        __global    float   *outCount,
                        __global    float   *outMerge
             )
{
    int thread_id_loc = get_local_id(0);
    int bin_num = get_group_id(0); // each workgroup of size=warp is assigned to 1 bin
    int2 bin_bounds;
//    bin_bounds = (int2) *(col_ptr+bin_num);  // cool stuff!
    bin_bounds.x = col_ptr[bin_num];
    bin_bounds.y = col_ptr[bin_num+1];
    int bin_size = bin_bounds.y-bin_bounds.x;
    float sum_data = 0.0f;
    float sum_count = 0.0f;
    float cd = 0.0f;
    float cc = 0.0f;
    float t, y;
    const float epsilon = 1e-10f;
    float coef, data;
    int idx, k, j;

    for (j=bin_bounds.x;j<bin_bounds.y;j+=WORKGROUP_SIZE)
    {
        k = j+thread_id_loc;
        if (k < bin_bounds.y)     // I don't like conditionals!!
        {
               coef = coefs[k];
               idx = row_ind[k];
               data = weights[idx];
               if( (!do_dummy) || (data!=dummy) )
               {
                   //sum_data +=  coef * data;
                   //sum_count += coef;
                   //Kahan summation allows single precision arithmetics with error compensation
                   //http://en.wikipedia.org/wiki/Kahan_summation_algorithm
                   y = coef*data - cd;
                   t = sum_data + y;
                   cd = (t - sum_data) - y;
                   sum_data = t;
                   y = coef - cc;
                   t = sum_count + y;
                   cc = (t - sum_count) - y;
                   sum_count = t;
               };//end if dummy
       } //end if k < bin_bounds.y
       };//for j
/*
 * parallel reduction
 */

// REMEMBER TO PASS WORKGROUP_SIZE AS A CPP DEF
    __local float super_sum_data[WORKGROUP_SIZE];
    __local float super_sum_data_correction[WORKGROUP_SIZE];
    __local float super_sum_count[WORKGROUP_SIZE];
    __local float super_sum_count_correction[WORKGROUP_SIZE];
    
    float super_sum_temp = 0.0f;
    int index, active_threads = WORKGROUP_SIZE;
    
    if (bin_size < WORKGROUP_SIZE)
    {
        if (thread_id_loc < bin_size)
        {
            super_sum_data_correction[thread_id_loc] = cd;
            super_sum_count_correction[thread_id_loc] = cc;
            super_sum_data[thread_id_loc] = sum_data;
            super_sum_count[thread_id_loc] = sum_count;
        }
        else
        {
            super_sum_data_correction[thread_id_loc] = 0.0f;
            super_sum_count_correction[thread_id_loc] = 0.0f;
            super_sum_data[thread_id_loc] = 0.0f;
            super_sum_count[thread_id_loc] = 0.0f;
        }
    }
    else
    {
        super_sum_data_correction[thread_id_loc] = cd;
        super_sum_count_correction[thread_id_loc] = cc;
        super_sum_data[thread_id_loc] = sum_data;
        super_sum_count[thread_id_loc] = sum_count;
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    cd = 0;
    cc = 0;

    while (active_threads != 1)
    {
        active_threads /= 2;
        if (thread_id_loc < active_threads)
        {
            index = thread_id_loc+active_threads;
            cd = super_sum_data_correction[thread_id_loc] + super_sum_data_correction[index];
            super_sum_temp = super_sum_data[thread_id_loc];
            y = super_sum_data[index] - cd;
            t = super_sum_temp + y;
            super_sum_data_correction[thread_id_loc] = (t - super_sum_temp) - y;
            super_sum_data[thread_id_loc] = t;

            cc = super_sum_count_correction[thread_id_loc] + super_sum_count_correction[index];
            super_sum_temp = super_sum_count[thread_id_loc];
            y = super_sum_count[index] - cc;
            t = super_sum_temp + y;
            super_sum_count_correction[thread_id_loc]  = (t - super_sum_temp) - y;
            super_sum_count[thread_id_loc] = t;
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    if (thread_id_loc == 0)
    {
        outData[bin_num] = super_sum_data[0];
        outCount[bin_num] = super_sum_count[0];
        if (outCount[bin_num] > epsilon)
            outMerge[bin_num] =  outData[bin_num] / outCount[bin_num];
        else
            outMerge[bin_num] = dummy;
    }
};//end kernel

/**
 * \brief Performs 1d azimuthal integration with full pixel splitting based on a LUT in CSR form
 *
 * An image intensity value is spread across the bins according to the positions stored in the LUT.
 * The lut is represented by a set of 3 arrays (coefs, row_ind, col_ptr)
 * Values of 0 in the mask are processed and values of 1 ignored as per PyFAI
 *
 * This kernel is ment to be ran with padded data (the span of each bin must be a multiple of the workgroup size)
 *
 * @param weights     Float pointer to global memory storing the input image.
 * @param coefs       Float pointer to global memory holding the coefficient part of the LUT
 * @param row_ind     Integer pointer to global memory holding the corresponding index of the coefficient
 * @param col_ptr     Integer pointer to global memory holding the pointers to the coefs and row_ind for the CSR matrix
 * @param do_dummy    Bool/int: shall the dummy pixel be checked. Dummy pixel are pixels marked as bad and ignored
 * @param dummy       Float: value for bad pixels
 * @param outData     Float pointer to the output 1D array with the weighted histogram
 * @param outCount    Float pointer to the output 1D array with the unweighted histogram
 * @param outMerged   Float pointer to the output 1D array with the diffractogram
 *
 */
__kernel void
csr_integrate_padded(   const   __global    float   *weights,
                        const   __global    float   *coefs,
                        const   __global    int     *row_ind,
                        const   __global    int     *col_ptr,
                        const               int      do_dummy,
                        const               float    dummy,
                                __global    float   *outData,
                                __global    float   *outCount,
                                __global    float   *outMerge
                    )
{
    int thread_id_loc = get_local_id(0);
    int bin_num = get_group_id(0); // each workgroup of size=warp is assinged to 1 bin
    int2 bin_bounds;
//    bin_bounds = (int2) *(col_ptr+bin_num);  // cool stuff!
    bin_bounds.x = col_ptr[bin_num];
    bin_bounds.y = col_ptr[bin_num+1];
    float sum_data = 0.0f;
    float sum_count = 0.0f;
    float cd = 0.0f;
    float cc = 0.0f;
    float t, y;
    const float epsilon = 1e-10f;
    float coef, data;
    int idx, k, j;

    for (j=bin_bounds.x;j<bin_bounds.y;j+=WORKGROUP_SIZE)
    {
        k = j+thread_id_loc;
           coef = coefs[k];
        idx = row_ind[k];
           data = weights[idx];
           if( (!do_dummy) || (data!=dummy) )
           {
               //sum_data +=  coef * data;
               //sum_count += coef;
               //Kahan summation allows single precision arithmetics with error compensation
               //http://en.wikipedia.org/wiki/Kahan_summation_algorithm
               y = coef*data - cd;
               t = sum_data + y;
               cd = (t - sum_data) - y;
            sum_data = t;
            y = coef - cc;
            t = sum_count + y;
            cc = (t - sum_count) - y;
            sum_count = t;
        };//end if dummy
    };//for j
/*
 * parallel reduction
 */

// REMEMBER TO PASS WORKGROUP_SIZE AS A CPP DEF
    __local float super_sum_data[WORKGROUP_SIZE];
    __local float super_sum_data_correction[WORKGROUP_SIZE];
    __local float super_sum_count[WORKGROUP_SIZE];
    __local float super_sum_count_correction[WORKGROUP_SIZE];
    super_sum_data[thread_id_loc] = sum_data;
    super_sum_count[thread_id_loc] = sum_count;
    super_sum_data_correction[thread_id_loc] = cd;
    super_sum_count_correction[thread_id_loc] = cc;
    barrier(CLK_LOCAL_MEM_FENCE);

    float super_sum_temp = 0.0f;
    int index, active_threads = WORKGROUP_SIZE;
    cd = 0;
    cc = 0;
    
    while (active_threads != 1)
    {
        active_threads /= 2;
        if (thread_id_loc < active_threads)
        {
            index = thread_id_loc+active_threads;
            cd = super_sum_data_correction[thread_id_loc] + super_sum_data_correction[index];
            super_sum_temp = super_sum_data[thread_id_loc];
            y = super_sum_data[index] - cd;
            t = super_sum_temp + y;
            super_sum_data_correction[thread_id_loc] = (t - super_sum_temp) - y;
            super_sum_data[thread_id_loc] = t;
            
            cc = super_sum_count_correction[thread_id_loc] + super_sum_count_correction[index];
            super_sum_temp = super_sum_count[thread_id_loc];
            y = super_sum_count[index] - cc;
            t = super_sum_temp + y;
            super_sum_count_correction[thread_id_loc]  = (t - super_sum_temp) - y;
            super_sum_count[thread_id_loc] = t;
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    if (thread_id_loc == 0)
    {
        outData[bin_num] = super_sum_data[0];
        outCount[bin_num] = super_sum_count[0];
        if (outCount[bin_num] > epsilon)
            outMerge[bin_num] =  outData[bin_num] / outCount[bin_num];
        else
            outMerge[bin_num] = dummy;
    }
};//end kernel

/**
 * \brief Performs distortion corrections on an image using a LUT in CSR form
 *
 * @param weights     Float pointer to global memory storing the input image.
 * @param coefs       Float pointer to global memory holding the coeficient part of the LUT
 * @param row_ind     Integer pointer to global memory holding the corresponding index of the coeficient
 * @param col_ptr     Integer pointer to global memory holding the pointers to the coefs and row_ind for the CSR matrix
 * @param outData     Float pointer to the output 1D array with the corrected image
 *
 */

__kernel void
csr_integrate_dis(  const   __global    float   *weights,
                    const   __global    float   *coefs,
                    const   __global    int     *row_ind,
                    const   __global    int     *col_ptr,
                    const               int     do_dummy,
                    const               float   dummy,
                            __global    float   *outData,
                            __global    float   *outCount,
                            __global    float   *outMerge
                )
{
    int thread_id_loc = get_local_id(0);
    int bin_num = get_group_id(0); // each workgroup of size=warp is assinged to 1 bin
    int2 bin_bounds;
//    bin_bounds = (int2) *(col_ptr+bin_num);  // cool stuff!
    bin_bounds.x = col_ptr[bin_num];
    bin_bounds.y = col_ptr[bin_num+1];
    int bin_size = bin_bounds.y-bin_bounds.x;
    float sum_data = 0.0f;
    float cd = 0.0f;
    float t, y;
    float coef, data;
    int idx, k, j;

    for (j=bin_bounds.x;j<bin_bounds.y;j+=WORKGROUP_SIZE)
    {
        k = j+thread_id_loc;
        if (k < bin_bounds.y)     // I don't like conditionals!!
        {
            coef = coefs[k];
            idx = row_ind[k];
            data = weights[idx];
            if( (!do_dummy) || (data!=dummy) )
            {
                //sum_data +=  coef * data;
                //sum_count += coef;
                //Kahan summation allows single precision arithmetics with error compensation
                //http://en.wikipedia.org/wiki/Kahan_summation_algorithm
                y = coef*data - cd;
                t = sum_data + y;
                cd = (t - sum_data) - y;
                sum_data = t;
             };//end if dummy
       } //end if k < bin_bounds.y
    };//for j
/*
 * parallel reduction
 */

// REMEMBER TO PASS WORKGROUP_SIZE AS A CPP DEF
    __local float super_sum_data[WORKGROUP_SIZE];
    __local float super_sum_data_correction[WORKGROUP_SIZE];
    float super_sum_temp = 0.0f;
    int index, active_threads = WORKGROUP_SIZE;
    
    
    
    if (bin_size < WORKGROUP_SIZE)
    {
        if (thread_id_loc < bin_size)
        {
            super_sum_data_correction[thread_id_loc] = cd;
            super_sum_data[thread_id_loc] = sum_data;
        }
        else
        {
            super_sum_data_correction[thread_id_loc] = 0.0f;
            super_sum_data[thread_id_loc] = 0.0f;
        }
    }
    else
    {
        super_sum_data_correction[thread_id_loc] = cd;
        super_sum_data[thread_id_loc] = sum_data;
    }
    barrier(CLK_LOCAL_MEM_FENCE);
   
    cd = 0;
    
    while (active_threads != 1)
    {
        active_threads /= 2;
        if (thread_id_loc < active_threads)
        {
            index = thread_id_loc+active_threads;

            super_sum_temp = super_sum_data[thread_id_loc];
            y = super_sum_data[index] - cd;
            t = super_sum_temp + y;
            cd = (t - super_sum_temp) - y;
            super_sum_data[thread_id_loc] = t;
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    if (thread_id_loc == 0)
    {
        outData[bin_num] = super_sum_data[0];
    }


};//end kernel