This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/ocl_lut_pixelsplit_test.cl is in pyfai 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
/*
 *   Project: Azimuthal regroupping OpenCL kernel for PyFAI.
 *            Scatter to Gather transformation
 *
 *
 *   Copyright (C) 2014 European Synchrotron Radiation Facility
 *                           Grenoble, France
 *
 *   Principal authors: Giannis Ashiotis <giannis.ashiotis@gmail.com>
 *   					J. Kieffer (kieffer@esrf.fr)
 *   Last revision: 20/10/2014
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

//#pragma OPENCL EXTENSION cl_amd_printf : enable
//#pragma OPENCL EXTENSION cl_intel_printf : enable


float area4(float a0, float a1, float b0, float b1, float c0, float c1, float d0, float d1)
{
    return 0.5 * fabs(((c0 - a0) * (d1 - b1)) - ((c1 - a1) * (d0 - b0)));
}


float integrate_line( float A0, float B0, float2 AB)
{
    return (A0==B0) ? 0.0 : AB.s0*(B0*B0 - A0*A0)*0.5 + AB.s1*(B0-A0);
}


float getBinNr(float x0, float delta, float pos0_min)
{
    return (x0 - pos0_min) / delta;
}


float min4f(float a, float b, float c, float d)
{
    return fmin(fmin(a,b),fmin(c,d));
}


float max4f(float a, float b, float c, float d)
{
    return fmax(fmax(a,b),fmax(c,d));
}


void AtomicAdd(volatile __global float *source, const float operand) 
{
    union {
        unsigned int intVal;
        float floatVal;
    } newVal;
    union {
        unsigned int intVal;
        float floatVal;
    } prevVal;
    do {
        prevVal.floatVal = *source;
        newVal.floatVal = prevVal.floatVal + operand;
    } while (atomic_cmpxchg((volatile __global unsigned int *)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);
}


/**
 * \brief cast values of an array of uint16 into a float output array.
 *
 * @param array_u16: Pointer to global memory with the input data as unsigned16 array
 * @param array_float:  Pointer to global memory with the output data as float array
 */
__kernel void
u16_to_float(__global unsigned short  *array_u16,
             __global float *array_float
)
{
  int i = get_global_id(0);
  //Global memory guard for padding
  if(i < NIMAGE)
    array_float[i]=(float)array_u16[i];
}


/**
 * \brief convert values of an array of int32 into a float output array.
 *
 * @param array_int:  Pointer to global memory with the data in int
 * @param array_float:  Pointer to global memory with the data in float
 */
__kernel void
s32_to_float(   __global int  *array_int,
                __global float  *array_float
        )
{
  int i = get_global_id(0);
  //Global memory guard for padding
  if(i < NIMAGE)
    array_float[i] = (float)(array_int[i]);
}



/**
 * \brief Sets the values of 3 float output arrays to zero.
 *
 * Gridsize = size of arrays + padding.
 *
 * @param array0: float Pointer to global memory with the outMerge array
 * @param array1: float Pointer to global memory with the outCount array
 * @param array2: float Pointer to global memory with the outData array
 */
__kernel void
memset_out(__global float *array0,
           __global float *array1,
           __global float *array2
)
{
  int i = get_global_id(0);
  //Global memory guard for padding
  if(i < BINS)
  {
    array0[i]=0.0f;
    array1[i]=0.0f;
    array2[i]=0.0f;
  }
}


/**
 * \brief Sets the values of 3 float output arrays to zero.
 *
 * Gridsize = size of arrays + padding.
 *
 * @param array0: int Pointer to global memory with the outMax array
 */
__kernel void
memset_out_int(__global int *array0)
{
    int i = get_global_id(0);
    //Global memory guard for padding
    if(i < BINS)
        array0[i]=0;
}





__kernel
void reduce1(__global float2* buffer,
             __const int length,
             __global float4* preresult) {
    
    
    int global_index = get_global_id(0);
    int global_size  = get_global_size(0);
    float4 accumulator;
    accumulator.x = INFINITY;
    accumulator.y = -INFINITY;
    accumulator.z = INFINITY;
    accumulator.w = -INFINITY;
    
    // Loop sequentially over chunks of input vector
    while (global_index < length/2) {
        float2 element = buffer[global_index];
        accumulator.x = (accumulator.x < element.s0) ? accumulator.x : element.s0;
        accumulator.y = (accumulator.y > element.s0) ? accumulator.y : element.s0;
        accumulator.z = (accumulator.z < element.s1) ? accumulator.z : element.s1;
        accumulator.w = (accumulator.w > element.s1) ? accumulator.w : element.s1;
        global_index += global_size;
    }
    
    __local float4 scratch[WORKGROUP_SIZE];

    // Perform parallel reduction
    int local_index = get_local_id(0);
    
    scratch[local_index] = accumulator;
    barrier(CLK_LOCAL_MEM_FENCE);
    
    int active_threads = get_local_size(0);
    
    while (active_threads != 1)
    {
        active_threads /= 2;
        if (local_index < active_threads)
        {
            float4 other = scratch[local_index + active_threads];
            float4 mine  = scratch[local_index];
            mine.x = (mine.x < other.x) ? mine.x : other.x;
            mine.y = (mine.y > other.y) ? mine.y : other.y;
            mine.z = (mine.z < other.z) ? mine.z : other.z;
            mine.w = (mine.w > other.w) ? mine.w : other.w;
            /*
            float2 tmp;
            tmp.x = (mine.x < other.x) ? mine.x : other.x;
            tmp.y = (mine.y > other.y) ? mine.y : other.y;
            scratch[local_index] = tmp;
            */
            scratch[local_index] = mine;
       }
        barrier(CLK_LOCAL_MEM_FENCE);
    }
    if (local_index == 0) {
        preresult[get_group_id(0)] = scratch[0];
    }
}




__kernel
void reduce2(__global float4* preresult,
             __global float4* result) {
    
    
    __local float4 scratch[WORKGROUP_SIZE];

    int local_index = get_local_id(0);
    
    scratch[local_index] = preresult[local_index];
    barrier(CLK_LOCAL_MEM_FENCE);
    
    int active_threads = get_local_size(0);
    
    while (active_threads != 1)
    {
        active_threads /= 2;
        if (local_index < active_threads)
        {
            float4 other = scratch[local_index + active_threads];
            float4 mine  = scratch[local_index];
            mine.x = (mine.x < other.x) ? mine.x : other.x;
            mine.y = (mine.y > other.y) ? mine.y : other.y;
            mine.z = (mine.z < other.z) ? mine.z : other.z;
            mine.w = (mine.w > other.w) ? mine.w : other.w;
            /*
            float2 tmp;
            tmp.x = (mine.x < other.x) ? mine.x : other.x;
            tmp.y = (mine.y > other.y) ? mine.y : other.y;
            scratch[local_index] = tmp;
            */
            scratch[local_index] = mine;
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }
    

    if (local_index == 0) {
        result[0] = scratch[0];
    }
}


/**
 * \brief Performs Normalization of input image
 *
 * Intensities of images are corrected by:
 *  - dark (read-out) noise subtraction
 *  - Solid angle correction (division)
 *  - polarization correction (division)
 *  - flat fiels correction (division)
 * Corrections are made in place unless the pixel is dummy.
 * Dummy pixels are left untouched so that they remain dummy
 *
 * @param image           Float pointer to global memory storing the input image.
 * @param do_dark         Bool/int: shall dark-current correction be applied ?
 * @param dark            Float pointer to global memory storing the dark image.
 * @param do_flat         Bool/int: shall flat-field correction be applied ?
 * @param flat            Float pointer to global memory storing the flat image.
 * @param do_solidangle   Bool/int: shall flat-field correction be applied ?
 * @param solidangle      Float pointer to global memory storing the solid angle of each pixel.
 * @param do_polarization Bool/int: shall flat-field correction be applied ?
 * @param polarization    Float pointer to global memory storing the polarization of each pixel.
 * @param do_dummy        Bool/int: shall the dummy pixel be checked. Dummy pixel are pixels marked as bad and ignored
 * @param dummy           Float: value for bad pixels
 * @param delta_dummy     Float: precision for bad pixel value
 *
**/
__kernel void
corrections(        __global float  *image,
            const            int    do_dark,
            const   __global float  *dark,
            const            int    do_flat,
            const   __global float  *flat,
            const            int    do_solidangle,
            const   __global float  *solidangle,
            const            int    do_polarization,
            const   __global float  *polarization,
            const            int    do_dummy,
            const            float  dummy,
            const            float  delta_dummy
            )
{
    float data;
    int i= get_global_id(0);
    if(i < NIMAGE)
    {
        data = image[i];
        int dummy_condition = ((!do_dummy) || ((delta_dummy!=0.0f) && (fabs(data-dummy) > delta_dummy)) || ((delta_dummy==0.0f) && (data!=dummy)));
        data -= do_dark         ? dark[i]           : 0;
        data *= do_flat         ? 1/flat[i]         : 1;
        data *= do_solidangle   ? 1/solidangle[i]   : 1;
        data *= do_polarization ? 1/polarization[i] : 1;
        image[i] = dummy_condition ? data : dummy;
    };//end if NIMAGE
};//end kernel




__kernel
void lut1(__global float8* pos,
//             __global int*    mask,
//             __const  int     check_mask,
          __global float4* minmax,
          const    int     length,
//                   float2  pos0Range,
//                   float2  pos1Range,
          __global int*  outMax)
{
    int global_index = get_global_id(0);
    if (global_index < length)
    {
//         float pos0_min = fmax(fmin(pos0Range.x,pos0Range.y),minmax[0].s0);
//         float pos0_max = fmin(fmax(pos0Range.x,pos0Range.y),minmax[0].s1);
        float pos0_min = minmax[0].s0;
        float pos0_maxin = minmax[0].s1;
        float pos0_max = pos0_maxin*( 1 + EPS);
        
        float delta = (pos0_max - pos0_min) / BINS;
        
        int local_index = get_local_id(0);
        
        float8 pixel = pos[global_index];
        
        pixel.s0 = getBinNr(pixel.s0, delta, pos0_min);
        pixel.s2 = getBinNr(pixel.s2, delta, pos0_min);
        pixel.s4 = getBinNr(pixel.s4, delta, pos0_min);
        pixel.s6 = getBinNr(pixel.s6, delta, pos0_min);
        
        float min0 = min4f(pixel.s0, pixel.s2, pixel.s4, pixel.s6);
        float max0 = max4f(pixel.s0, pixel.s2, pixel.s4, pixel.s6);
        
        int bin0_min = floor(min0);
        int bin0_max = floor(max0);
        
        for (int bin=bin0_min; bin < bin0_max+1; bin++)
        {
            atomic_add(&outMax[bin], 1);
        }
    }
}

// to be run with global_size = local_size
__kernel
void lut2(__global int*  outMax,
          __global int*  idx_ptr,
          __global int*  lutsize)
{
    int local_index = get_local_id(0);
//    int local_size  = get_local_size(0);
    
    if (local_index == 0)
    {
        idx_ptr[0] = 0;
        for (int i=0; i<BINS; i++)
            idx_ptr[i+1] = idx_ptr[i] + outMax[i];
        lutsize[0] = idx_ptr[BINS];
    }
                     
// for future memory access optimizations
//
//      __local int scratch1[WORKGROUP_SIZE];
//      
//      scratch1[local_index] = 0
//      
//     // Loop sequentially over chunks of input vector
//     for (int i=local_index; i < BINS; i += local_size)
//     {
//         scratch1[i] = outMax[i];
//         barrier(CLK_LOCAL_MEM_FENCE);
//         
//         if (local_index == 0)
//         {
//             for (int j=0; j<local_size; j++)
//             {
//                 if ((i+j) < BINS)
//                     outMaxCum[i+j+1] = outMaxCum[i+j] + scratch1[j];
//             }
//         }
//     }
}


__kernel
void lut3(__global float8* pos,
//             __global int*    mask,
//             __const  int     check_mask,
          __global float4* minmax,
          const    int     length,
//                   float2  pos0Range,
//                   float2  pos1Range,
          __global int*    outMax,
          __global int*    idx_ptr,
          __global int*    indices,
          __global float*  data)
{
    int global_index = get_global_id(0);
    if (global_index < length)
    {
//         float pos0_min = fmax(fmin(pos0Range.x,pos0Range.y),minmax[0].s0);
//         float pos0_max = fmin(fmax(pos0Range.x,pos0Range.y),minmax[0].s1);
        float pos0_min = minmax[0].s0;
        float pos0_max = minmax[0].s1;
        pos0_max *= 1 + EPS;
        
        float delta = (pos0_max - pos0_min) / BINS;
        
        int local_index  = get_local_id(0);
        
        float8 pixel = pos[global_index];
        
        pixel.s0 = getBinNr(pixel.s0, delta, pos0_min);
        pixel.s2 = getBinNr(pixel.s2, delta, pos0_min);
        pixel.s4 = getBinNr(pixel.s4, delta, pos0_min);
        pixel.s6 = getBinNr(pixel.s6, delta, pos0_min);
        
        float min0 = min4f(pixel.s0, pixel.s2, pixel.s4, pixel.s6);
        float max0 = max4f(pixel.s0, pixel.s2, pixel.s4, pixel.s6);
        
        int bin0_min = floor(min0);
        int bin0_max = floor(max0);
        
        float2 AB, BC, CD, DA;
        
        AB.x=(pixel.s3-pixel.s1)/(pixel.s2-pixel.s0);
        AB.y= pixel.s1 - AB.x*pixel.s0;
        BC.x=(pixel.s5-pixel.s3)/(pixel.s4-pixel.s2);
        BC.y= pixel.s3 - BC.x*pixel.s2;
        CD.x=(pixel.s7-pixel.s5)/(pixel.s6-pixel.s4);
        CD.y= pixel.s5 - CD.x*pixel.s4;
        DA.x=(pixel.s1-pixel.s7)/(pixel.s0-pixel.s6);
        DA.y= pixel.s7 - DA.x*pixel.s6;
        
        float A_lim = pixel.s0;
        float B_lim = pixel.s2;
        float C_lim = pixel.s4;
        float D_lim = pixel.s6;
        float areaPixel = integrate_line(A_lim, B_lim, AB);
        areaPixel += integrate_line(B_lim, C_lim, BC);
        areaPixel += integrate_line(C_lim, D_lim, CD);
        areaPixel += integrate_line(D_lim, A_lim, DA);
        areaPixel = fabs(areaPixel);
        float areaPixel2 = area4(pixel.s0, pixel.s1, pixel.s2, pixel.s3, pixel.s4, pixel.s5, pixel.s6, pixel.s7);
        printf("%d\t%f\t%f\t%f\t%f \n", global_index, areaPixel, areaPixel2, fabs(areaPixel-areaPixel2), fabs(areaPixel-areaPixel2)/areaPixel);
        float oneOverPixelArea = 1.0 / areaPixel;
        for (int bin=bin0_min; bin < bin0_max+1; bin++)
        {
            float A_lim = (pixel.s0<=bin)*(pixel.s0<=(bin+1))*bin + (pixel.s0>bin)*(pixel.s0<=(bin+1))*pixel.s0 + (pixel.s0>bin)*(pixel.s0>(bin+1))*(bin+1);
            float B_lim = (pixel.s2<=bin)*(pixel.s2<=(bin+1))*bin + (pixel.s2>bin)*(pixel.s2<=(bin+1))*pixel.s2 + (pixel.s2>bin)*(pixel.s2>(bin+1))*(bin+1);
            float C_lim = (pixel.s4<=bin)*(pixel.s4<=(bin+1))*bin + (pixel.s4>bin)*(pixel.s4<=(bin+1))*pixel.s4 + (pixel.s4>bin)*(pixel.s4>(bin+1))*(bin+1);
            float D_lim = (pixel.s6<=bin)*(pixel.s6<=(bin+1))*bin + (pixel.s6>bin)*(pixel.s6<=(bin+1))*pixel.s6 + (pixel.s6>bin)*(pixel.s6>(bin+1))*(bin+1);
            float partialArea = integrate_line(A_lim, B_lim, AB);
            partialArea += integrate_line(B_lim, C_lim, BC);
            partialArea += integrate_line(C_lim, D_lim, CD);
            partialArea += integrate_line(D_lim, A_lim, DA);
            float tmp = fabs(partialArea) * oneOverPixelArea;
            int k = atomic_add(&outMax[bin],1);
            indices[idx_ptr[bin]+k] = global_index;
            data[idx_ptr[bin]+k] = (bin0_min==bin0_max) ? 1 : tmp; // The 2 methods of calculating area give slightly different results. This complicated things when pixel splitting doesn't occur
        }
    }
}



/**
 * \brief Performs 1d azimuthal integration with full pixel splitting based on a LUT in CSR form
 *
 * An image instensity value is spread across the bins according to the positions stored in the LUT.
 * The lut is represented by a set of 3 arrays (coefs, row_ind, col_ptr)
 * Values of 0 in the mask are processed and values of 1 ignored as per PyFAI
 *
 * This implementation is especially efficient on CPU where each core reads adjacents memory.
 * the use of local pointer can help on the CPU.
 *
 * @param weights     Float pointer to global memory storing the input image.
 * @param coefs       Float pointer to global memory holding the coeficient part of the LUT
 * @param row_ind     Integer pointer to global memory holding the corresponding index of the coeficient
 * @param col_ptr     Integer pointer to global memory holding the pointers to the coefs and row_ind for the CSR matrix
 * @param do_dummy    Bool/int: shall the dummy pixel be checked. Dummy pixel are pixels marked as bad and ignored
 * @param dummy       Float: value for bad pixels
 * @param outData     Float pointer to the output 1D array with the weighted histogram
 * @param outCount    Float pointer to the output 1D array with the unweighted histogram
 * @param outMerged   Float pointer to the output 1D array with the diffractogram
 *
 */
__kernel void
csr_integrate(  const   __global    float   *weights,
                const   __global    float   *coefs,
                const   __global    int     *row_ind,
                const   __global    int     *col_ptr,
                        __global    float   *outData,
                        __global    float   *outCount,
                        __global    float   *outMerge
             )
{
    int thread_id_loc = get_local_id(0);
    int bin_num = get_group_id(0); // each workgroup of size=warp is assinged to 1 bin
    int2 bin_bounds;
//    bin_bounds = (int2) *(col_ptr+bin_num);  // cool stuff!
    bin_bounds.x = col_ptr[bin_num];
    bin_bounds.y = col_ptr[bin_num+1];
    int bin_size = bin_bounds.y-bin_bounds.x;
    float sum_data = 0.0f;
    float sum_count = 0.0f;
    float cd = 0.0f;
    float cc = 0.0f;
    float t, y;
    const float epsilon = 1e-10f;
    float coef, data;
    int idx, k, j;

    for (j=bin_bounds.x;j<bin_bounds.y;j+=WORKGROUP_SIZE)
    {
        k = j+thread_id_loc;
        if (k < bin_bounds.y)     // I don't like conditionals!!
        {
            coef = coefs[k];
            idx = row_ind[k];
            data = weights[idx];
            //sum_data +=  coef * data;
            //sum_count += coef;
            //Kahan summation allows single precision arithmetics with error compensation
            //http://en.wikipedia.org/wiki/Kahan_summation_algorithm
            y = coef*data - cd;
            t = sum_data + y;
            cd = (t - sum_data) - y;
            sum_data = t;
            y = coef - cc;
            t = sum_count + y;
            cc = (t - sum_count) - y;
            sum_count = t;
       } //end if k < bin_bounds.y
    };//for j
/*
 * parallel reduction
 */

// REMEMBER TO PASS WORKGROUP_SIZE AS A CPP DEF
    __local float super_sum_data[WORKGROUP_SIZE];
    __local float super_sum_data_correction[WORKGROUP_SIZE];
    __local float super_sum_count[WORKGROUP_SIZE];
    __local float super_sum_count_correction[WORKGROUP_SIZE];
    
    float super_sum_temp = 0.0f;
    int index, active_threads = WORKGROUP_SIZE;
    
    if (bin_size < WORKGROUP_SIZE)
    {
        if (thread_id_loc < bin_size)
        {
            super_sum_data_correction[thread_id_loc] = cd;
            super_sum_count_correction[thread_id_loc] = cc;
            super_sum_data[thread_id_loc] = sum_data;
            super_sum_count[thread_id_loc] = sum_count;
        }
        else
        {
            super_sum_data_correction[thread_id_loc] = 0.0f;
            super_sum_count_correction[thread_id_loc] = 0.0f;
            super_sum_data[thread_id_loc] = 0.0f;
            super_sum_count[thread_id_loc] = 0.0f;
        }
    }
    else
    {
        super_sum_data_correction[thread_id_loc] = cd;
        super_sum_count_correction[thread_id_loc] = cc;
        super_sum_data[thread_id_loc] = sum_data;
        super_sum_count[thread_id_loc] = sum_count;
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    cd = 0;
    cc = 0;
    
    while (active_threads != 1)
    {
        active_threads /= 2;
        if (thread_id_loc < active_threads)
        {
            index = thread_id_loc+active_threads;
            cd = super_sum_data_correction[thread_id_loc] + super_sum_data_correction[index];
            super_sum_temp = super_sum_data[thread_id_loc];
            y = super_sum_data[index] - cd;
            t = super_sum_temp + y;
            super_sum_data_correction[thread_id_loc] = (t - super_sum_temp) - y;
            super_sum_data[thread_id_loc] = t;
            
            cc = super_sum_count_correction[thread_id_loc] + super_sum_count_correction[index];
            super_sum_temp = super_sum_count[thread_id_loc];
            y = super_sum_count[index] - cc;
            t = super_sum_temp + y;
            super_sum_count_correction[thread_id_loc]  = (t - super_sum_temp) - y;
            super_sum_count[thread_id_loc] = t;
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    if (thread_id_loc == 0)
    {
        outData[bin_num] = super_sum_data[0];
        outCount[bin_num] = super_sum_count[0];
        outMerge[bin_num] =  outData[bin_num] / outCount[bin_num];
    }
};//end kernel