This file is indexed.

/usr/share/gocode/src/github.com/hashicorp/serf/coordinate/coordinate.go is in golang-github-hashicorp-serf-dev 0.7.0~ds1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
package coordinate

import (
	"math"
	"math/rand"
	"time"
)

// Coordinate is a specialized structure for holding network coordinates for the
// Vivaldi-based coordinate mapping algorithm. All of the fields should be public
// to enable this to be serialized. All values in here are in units of seconds.
type Coordinate struct {
	// Vec is the Euclidean portion of the coordinate. This is used along
	// with the other fields to provide an overall distance estimate. The
	// units here are seconds.
	Vec []float64

	// Err reflects the confidence in the given coordinate and is updated
	// dynamically by the Vivaldi Client. This is dimensionless.
	Error float64

	// Adjustment is a distance offset computed based on a calculation over
	// observations from all other nodes over a fixed window and is updated
	// dynamically by the Vivaldi Client. The units here are seconds.
	Adjustment float64

	// Height is a distance offset that accounts for non-Euclidean effects
	// which model the access links from nodes to the core Internet. The access
	// links are usually set by bandwidth and congestion, and the core links
	// usually follow distance based on geography.
	Height float64
}

const (
	// secondsToNanoseconds is used to convert float seconds to nanoseconds.
	secondsToNanoseconds = 1.0e9

	// zeroThreshold is used to decide if two coordinates are on top of each
	// other.
	zeroThreshold = 1.0e-6
)

// ErrDimensionalityConflict will be panic-d if you try to perform operations
// with incompatible dimensions.
type DimensionalityConflictError struct{}

// Adds the error interface.
func (e DimensionalityConflictError) Error() string {
	return "coordinate dimensionality does not match"
}

// NewCoordinate creates a new coordinate at the origin, using the given config
// to supply key initial values.
func NewCoordinate(config *Config) *Coordinate {
	return &Coordinate{
		Vec:        make([]float64, config.Dimensionality),
		Error:      config.VivaldiErrorMax,
		Adjustment: 0.0,
		Height:     config.HeightMin,
	}
}

// Clone creates an independent copy of this coordinate.
func (c *Coordinate) Clone() *Coordinate {
	vec := make([]float64, len(c.Vec))
	copy(vec, c.Vec)
	return &Coordinate{
		Vec:        vec,
		Error:      c.Error,
		Adjustment: c.Adjustment,
		Height:     c.Height,
	}
}

// IsCompatibleWith checks to see if the two coordinates are compatible
// dimensionally. If this returns true then you are guaranteed to not get
// any runtime errors operating on them.
func (c *Coordinate) IsCompatibleWith(other *Coordinate) bool {
	return len(c.Vec) == len(other.Vec)
}

// ApplyForce returns the result of applying the force from the direction of the
// other coordinate.
func (c *Coordinate) ApplyForce(config *Config, force float64, other *Coordinate) *Coordinate {
	if !c.IsCompatibleWith(other) {
		panic(DimensionalityConflictError{})
	}

	ret := c.Clone()
	unit, mag := unitVectorAt(c.Vec, other.Vec)
	ret.Vec = add(ret.Vec, mul(unit, force))
	if mag > zeroThreshold {
		ret.Height = (ret.Height+other.Height)*force/mag + ret.Height
		ret.Height = math.Max(ret.Height, config.HeightMin)
	}
	return ret
}

// DistanceTo returns the distance between this coordinate and the other
// coordinate, including adjustments.
func (c *Coordinate) DistanceTo(other *Coordinate) time.Duration {
	if !c.IsCompatibleWith(other) {
		panic(DimensionalityConflictError{})
	}

	dist := c.rawDistanceTo(other)
	adjustedDist := dist + c.Adjustment + other.Adjustment
	if adjustedDist > 0.0 {
		dist = adjustedDist
	}
	return time.Duration(dist * secondsToNanoseconds)
}

// rawDistanceTo returns the Vivaldi distance between this coordinate and the
// other coordinate in seconds, not including adjustments. This assumes the
// dimensions have already been checked to be compatible.
func (c *Coordinate) rawDistanceTo(other *Coordinate) float64 {
	return magnitude(diff(c.Vec, other.Vec)) + c.Height + other.Height
}

// add returns the sum of vec1 and vec2. This assumes the dimensions have
// already been checked to be compatible.
func add(vec1 []float64, vec2 []float64) []float64 {
	ret := make([]float64, len(vec1))
	for i, _ := range ret {
		ret[i] = vec1[i] + vec2[i]
	}
	return ret
}

// diff returns the difference between the vec1 and vec2. This assumes the
// dimensions have already been checked to be compatible.
func diff(vec1 []float64, vec2 []float64) []float64 {
	ret := make([]float64, len(vec1))
	for i, _ := range ret {
		ret[i] = vec1[i] - vec2[i]
	}
	return ret
}

// mul returns vec multiplied by a scalar factor.
func mul(vec []float64, factor float64) []float64 {
	ret := make([]float64, len(vec))
	for i, _ := range vec {
		ret[i] = vec[i] * factor
	}
	return ret
}

// magnitude computes the magnitude of the vec.
func magnitude(vec []float64) float64 {
	sum := 0.0
	for i, _ := range vec {
		sum += vec[i] * vec[i]
	}
	return math.Sqrt(sum)
}

// unitVectorAt returns a unit vector pointing at vec1 from vec2. If the two
// positions are the same then a random unit vector is returned. We also return
// the distance between the points for use in the later height calculation.
func unitVectorAt(vec1 []float64, vec2 []float64) ([]float64, float64) {
	ret := diff(vec1, vec2)

	// If the coordinates aren't on top of each other we can normalize.
	if mag := magnitude(ret); mag > zeroThreshold {
		return mul(ret, 1.0/mag), mag
	}

	// Otherwise, just return a random unit vector.
	for i, _ := range ret {
		ret[i] = rand.Float64() - 0.5
	}
	if mag := magnitude(ret); mag > zeroThreshold {
		return mul(ret, 1.0/mag), 0.0
	}

	// And finally just give up and make a unit vector along the first
	// dimension. This should be exceedingly rare.
	ret = make([]float64, len(ret))
	ret[0] = 1.0
	return ret, 0.0
}