This file is indexed.

/usr/share/doc/libghc-basic-prelude-doc/html/basic-prelude.txt is in libghc-basic-prelude-doc 0.6.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | An enhanced core prelude; a common foundation for alternate preludes.
--   
--   The premise of <tt>basic-prelude</tt> is that there are a lot of very
--   commonly desired features missing from the standard <tt>Prelude</tt>,
--   such as commonly used operators (<tt>&lt;$&gt;</tt> and
--   <tt>&gt;=&gt;</tt>, for instance) and imports for common datatypes
--   (e.g., <tt>ByteString</tt> and <tt>Vector</tt>). At the same time,
--   there are lots of other components which are more debatable, such as
--   providing polymorphic versions of common functions.
--   
--   So <tt>basic-prelude</tt> is intended to give a common foundation for
--   a number of alternate preludes. The package provides two modules:
--   <tt>CorePrelude</tt> provides the common ground for other preludes to
--   build on top of, while <tt>BasicPrelude</tt> exports
--   <tt>CorePrelude</tt> together with commonly used list functions to
--   provide a drop-in replacement for the standard <tt>Prelude</tt>.
--   
--   Users wishing to have an improved <tt>Prelude</tt> can use
--   <tt>BasicPrelude</tt>. Developers wishing to create a new prelude
--   should use <tt>CorePrelude</tt>.
@package basic-prelude
@version 0.6.1

module CorePrelude

-- | Application operator. This operator is redundant, since ordinary
--   application <tt>(f x)</tt> means the same as <tt>(f <a>$</a> x)</tt>.
--   However, <a>$</a> has low, right-associative binding precedence, so it
--   sometimes allows parentheses to be omitted; for example:
--   
--   <pre>
--   f $ g $ h x  =  f (g (h x))
--   </pre>
--   
--   It is also useful in higher-order situations, such as <tt><a>map</a>
--   (<a>$</a> 0) xs</tt>, or <tt><a>zipWith</a> (<a>$</a>) fs xs</tt>.
($) :: (a -> b) -> a -> b
infixr 0 $

-- | Strict (call-by-value) application operator. It takes a function and
--   an argument, evaluates the argument to weak head normal form (WHNF),
--   then calls the function with that value.
($!) :: (a -> b) -> a -> b
infixr 0 $!

-- | Boolean "and"
(&&) :: Bool -> Bool -> Bool
infixr 3 &&

-- | Boolean "or"
(||) :: Bool -> Bool -> Bool
infixr 2 ||

-- | morphism composition
(.) :: Category k cat => forall (b :: k) (c :: k) (a :: k). cat b c -> cat a b -> cat a c

-- | Boolean "not"
not :: Bool -> Bool

-- | <a>otherwise</a> is defined as the value <a>True</a>. It helps to make
--   guards more readable. eg.
--   
--   <pre>
--   f x | x &lt; 0     = ...
--       | otherwise = ...
--   </pre>
otherwise :: Bool

-- | Extract the first component of a pair.
fst :: (a, b) -> a

-- | Extract the second component of a pair.
snd :: (a, b) -> b

-- | the identity morphism
id :: Category k cat => forall (a :: k). cat a a

-- | The <a>maybe</a> function takes a default value, a function, and a
--   <a>Maybe</a> value. If the <a>Maybe</a> value is <a>Nothing</a>, the
--   function returns the default value. Otherwise, it applies the function
--   to the value inside the <a>Just</a> and returns the result.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; maybe False odd (Just 3)
--   True
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; maybe False odd Nothing
--   False
--   </pre>
--   
--   Read an integer from a string using <tt>readMaybe</tt>. If we succeed,
--   return twice the integer; that is, apply <tt>(*2)</tt> to it. If
--   instead we fail to parse an integer, return <tt>0</tt> by default:
--   
--   <pre>
--   &gt;&gt;&gt; import Text.Read ( readMaybe )
--   
--   &gt;&gt;&gt; maybe 0 (*2) (readMaybe "5")
--   10
--   
--   &gt;&gt;&gt; maybe 0 (*2) (readMaybe "")
--   0
--   </pre>
--   
--   Apply <tt>show</tt> to a <tt>Maybe Int</tt>. If we have <tt>Just
--   n</tt>, we want to show the underlying <a>Int</a> <tt>n</tt>. But if
--   we have <a>Nothing</a>, we return the empty string instead of (for
--   example) "Nothing":
--   
--   <pre>
--   &gt;&gt;&gt; maybe "" show (Just 5)
--   "5"
--   
--   &gt;&gt;&gt; maybe "" show Nothing
--   ""
--   </pre>
maybe :: b -> (a -> b) -> Maybe a -> b

-- | Case analysis for the <a>Either</a> type. If the value is
--   <tt><a>Left</a> a</tt>, apply the first function to <tt>a</tt>; if it
--   is <tt><a>Right</a> b</tt>, apply the second function to <tt>b</tt>.
--   
--   <h4><b>Examples</b></h4>
--   
--   We create two values of type <tt><a>Either</a> <a>String</a>
--   <a>Int</a></tt>, one using the <a>Left</a> constructor and another
--   using the <a>Right</a> constructor. Then we apply "either" the
--   <tt>length</tt> function (if we have a <a>String</a>) or the
--   "times-two" function (if we have an <a>Int</a>):
--   
--   <pre>
--   &gt;&gt;&gt; let s = Left "foo" :: Either String Int
--   
--   &gt;&gt;&gt; let n = Right 3 :: Either String Int
--   
--   &gt;&gt;&gt; either length (*2) s
--   3
--   
--   &gt;&gt;&gt; either length (*2) n
--   6
--   </pre>
either :: (a -> c) -> (b -> c) -> Either a b -> c

-- | <tt><a>flip</a> f</tt> takes its (first) two arguments in the reverse
--   order of <tt>f</tt>.
flip :: (a -> b -> c) -> b -> a -> c

-- | <tt>const x</tt> is a unary function which evaluates to <tt>x</tt> for
--   all inputs.
--   
--   For instance,
--   
--   <pre>
--   &gt;&gt;&gt; map (const 42) [0..3]
--   [42,42,42,42]
--   </pre>
const :: a -> b -> a

-- | <a>error</a> stops execution and displays an error message.
error :: HasCallStack => [Char] -> a
putStr :: MonadIO m => Text -> m ()
putStrLn :: MonadIO m => Text -> m ()
print :: (MonadIO m, Show a) => a -> m ()
getArgs :: MonadIO m => m [Text]

-- | <tt>error</tt> applied to <tt>Text</tt>
--   
--   Since 0.4.1
terror :: Text -> a
odd :: Integral a => a -> Bool
even :: Integral a => a -> Bool

-- | <a>uncurry</a> converts a curried function to a function on pairs.
uncurry :: (a -> b -> c) -> (a, b) -> c

-- | <a>curry</a> converts an uncurried function to a curried function.
curry :: ((a, b) -> c) -> a -> b -> c

-- | Swap the components of a pair.
swap :: (a, b) -> (b, a)

-- | <tt><a>until</a> p f</tt> yields the result of applying <tt>f</tt>
--   until <tt>p</tt> holds.
until :: (a -> Bool) -> (a -> a) -> a -> a

-- | <a>asTypeOf</a> is a type-restricted version of <a>const</a>. It is
--   usually used as an infix operator, and its typing forces its first
--   argument (which is usually overloaded) to have the same type as the
--   second.
asTypeOf :: a -> a -> a

-- | A special case of <a>error</a>. It is expected that compilers will
--   recognize this and insert error messages which are more appropriate to
--   the context in which <a>undefined</a> appears.
undefined :: HasCallStack => a

-- | The value of <tt>seq a b</tt> is bottom if <tt>a</tt> is bottom, and
--   otherwise equal to <tt>b</tt>. <tt>seq</tt> is usually introduced to
--   improve performance by avoiding unneeded laziness.
--   
--   A note on evaluation order: the expression <tt>seq a b</tt> does
--   <i>not</i> guarantee that <tt>a</tt> will be evaluated before
--   <tt>b</tt>. The only guarantee given by <tt>seq</tt> is that the both
--   <tt>a</tt> and <tt>b</tt> will be evaluated before <tt>seq</tt>
--   returns a value. In particular, this means that <tt>b</tt> may be
--   evaluated before <tt>a</tt>. If you need to guarantee a specific order
--   of evaluation, you must use the function <tt>pseq</tt> from the
--   "parallel" package.
seq :: a -> b -> b

-- | The <a>Ord</a> class is used for totally ordered datatypes.
--   
--   Instances of <a>Ord</a> can be derived for any user-defined datatype
--   whose constituent types are in <a>Ord</a>. The declared order of the
--   constructors in the data declaration determines the ordering in
--   derived <a>Ord</a> instances. The <a>Ordering</a> datatype allows a
--   single comparison to determine the precise ordering of two objects.
--   
--   Minimal complete definition: either <a>compare</a> or <a>&lt;=</a>.
--   Using <a>compare</a> can be more efficient for complex types.
class Eq a => Ord a
compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
max :: a -> a -> a
min :: a -> a -> a

-- | The <a>Eq</a> class defines equality (<a>==</a>) and inequality
--   (<a>/=</a>). All the basic datatypes exported by the <a>Prelude</a>
--   are instances of <a>Eq</a>, and <a>Eq</a> may be derived for any
--   datatype whose constituents are also instances of <a>Eq</a>.
--   
--   Minimal complete definition: either <a>==</a> or <a>/=</a>.
class Eq a
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

-- | The <a>Bounded</a> class is used to name the upper and lower limits of
--   a type. <a>Ord</a> is not a superclass of <a>Bounded</a> since types
--   that are not totally ordered may also have upper and lower bounds.
--   
--   The <a>Bounded</a> class may be derived for any enumeration type;
--   <a>minBound</a> is the first constructor listed in the <tt>data</tt>
--   declaration and <a>maxBound</a> is the last. <a>Bounded</a> may also
--   be derived for single-constructor datatypes whose constituent types
--   are in <a>Bounded</a>.
class Bounded a
minBound :: a
maxBound :: a

-- | Class <a>Enum</a> defines operations on sequentially ordered types.
--   
--   The <tt>enumFrom</tt>... methods are used in Haskell's translation of
--   arithmetic sequences.
--   
--   Instances of <a>Enum</a> may be derived for any enumeration type
--   (types whose constructors have no fields). The nullary constructors
--   are assumed to be numbered left-to-right by <a>fromEnum</a> from
--   <tt>0</tt> through <tt>n-1</tt>. See Chapter 10 of the <i>Haskell
--   Report</i> for more details.
--   
--   For any type that is an instance of class <a>Bounded</a> as well as
--   <a>Enum</a>, the following should hold:
--   
--   <ul>
--   <li>The calls <tt><a>succ</a> <a>maxBound</a></tt> and <tt><a>pred</a>
--   <a>minBound</a></tt> should result in a runtime error.</li>
--   <li><a>fromEnum</a> and <a>toEnum</a> should give a runtime error if
--   the result value is not representable in the result type. For example,
--   <tt><a>toEnum</a> 7 :: <a>Bool</a></tt> is an error.</li>
--   <li><a>enumFrom</a> and <a>enumFromThen</a> should be defined with an
--   implicit bound, thus:</li>
--   </ul>
--   
--   <pre>
--   enumFrom     x   = enumFromTo     x maxBound
--   enumFromThen x y = enumFromThenTo x y bound
--     where
--       bound | fromEnum y &gt;= fromEnum x = maxBound
--             | otherwise                = minBound
--   </pre>
class Enum a

-- | the successor of a value. For numeric types, <a>succ</a> adds 1.
succ :: a -> a

-- | the predecessor of a value. For numeric types, <a>pred</a> subtracts
--   1.
pred :: a -> a

-- | Convert from an <a>Int</a>.
toEnum :: Int -> a

-- | Convert to an <a>Int</a>. It is implementation-dependent what
--   <a>fromEnum</a> returns when applied to a value that is too large to
--   fit in an <a>Int</a>.
fromEnum :: a -> Int

-- | Used in Haskell's translation of <tt>[n..]</tt>.
enumFrom :: a -> [a]

-- | Used in Haskell's translation of <tt>[n,n'..]</tt>.
enumFromThen :: a -> a -> [a]

-- | Used in Haskell's translation of <tt>[n..m]</tt>.
enumFromTo :: a -> a -> [a]

-- | Used in Haskell's translation of <tt>[n,n'..m]</tt>.
enumFromThenTo :: a -> a -> a -> [a]

-- | Conversion of values to readable <a>String</a>s.
--   
--   Derived instances of <a>Show</a> have the following properties, which
--   are compatible with derived instances of <a>Read</a>:
--   
--   <ul>
--   <li>The result of <a>show</a> is a syntactically correct Haskell
--   expression containing only constants, given the fixity declarations in
--   force at the point where the type is declared. It contains only the
--   constructor names defined in the data type, parentheses, and spaces.
--   When labelled constructor fields are used, braces, commas, field
--   names, and equal signs are also used.</li>
--   <li>If the constructor is defined to be an infix operator, then
--   <a>showsPrec</a> will produce infix applications of the
--   constructor.</li>
--   <li>the representation will be enclosed in parentheses if the
--   precedence of the top-level constructor in <tt>x</tt> is less than
--   <tt>d</tt> (associativity is ignored). Thus, if <tt>d</tt> is
--   <tt>0</tt> then the result is never surrounded in parentheses; if
--   <tt>d</tt> is <tt>11</tt> it is always surrounded in parentheses,
--   unless it is an atomic expression.</li>
--   <li>If the constructor is defined using record syntax, then
--   <a>show</a> will produce the record-syntax form, with the fields given
--   in the same order as the original declaration.</li>
--   </ul>
--   
--   For example, given the declarations
--   
--   <pre>
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   </pre>
--   
--   the derived instance of <a>Show</a> is equivalent to
--   
--   <pre>
--   instance (Show a) =&gt; Show (Tree a) where
--   
--          showsPrec d (Leaf m) = showParen (d &gt; app_prec) $
--               showString "Leaf " . showsPrec (app_prec+1) m
--            where app_prec = 10
--   
--          showsPrec d (u :^: v) = showParen (d &gt; up_prec) $
--               showsPrec (up_prec+1) u .
--               showString " :^: "      .
--               showsPrec (up_prec+1) v
--            where up_prec = 5
--   </pre>
--   
--   Note that right-associativity of <tt>:^:</tt> is ignored. For example,
--   
--   <ul>
--   <li><tt><a>show</a> (Leaf 1 :^: Leaf 2 :^: Leaf 3)</tt> produces the
--   string <tt>"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"</tt>.</li>
--   </ul>
class Show a

-- | Parsing of <a>String</a>s, producing values.
--   
--   Derived instances of <a>Read</a> make the following assumptions, which
--   derived instances of <a>Show</a> obey:
--   
--   <ul>
--   <li>If the constructor is defined to be an infix operator, then the
--   derived <a>Read</a> instance will parse only infix applications of the
--   constructor (not the prefix form).</li>
--   <li>Associativity is not used to reduce the occurrence of parentheses,
--   although precedence may be.</li>
--   <li>If the constructor is defined using record syntax, the derived
--   <a>Read</a> will parse only the record-syntax form, and furthermore,
--   the fields must be given in the same order as the original
--   declaration.</li>
--   <li>The derived <a>Read</a> instance allows arbitrary Haskell
--   whitespace between tokens of the input string. Extra parentheses are
--   also allowed.</li>
--   </ul>
--   
--   For example, given the declarations
--   
--   <pre>
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   </pre>
--   
--   the derived instance of <a>Read</a> in Haskell 2010 is equivalent to
--   
--   <pre>
--   instance (Read a) =&gt; Read (Tree a) where
--   
--           readsPrec d r =  readParen (d &gt; app_prec)
--                            (\r -&gt; [(Leaf m,t) |
--                                    ("Leaf",s) &lt;- lex r,
--                                    (m,t) &lt;- readsPrec (app_prec+1) s]) r
--   
--                         ++ readParen (d &gt; up_prec)
--                            (\r -&gt; [(u:^:v,w) |
--                                    (u,s) &lt;- readsPrec (up_prec+1) r,
--                                    (":^:",t) &lt;- lex s,
--                                    (v,w) &lt;- readsPrec (up_prec+1) t]) r
--   
--             where app_prec = 10
--                   up_prec = 5
--   </pre>
--   
--   Note that right-associativity of <tt>:^:</tt> is unused.
--   
--   The derived instance in GHC is equivalent to
--   
--   <pre>
--   instance (Read a) =&gt; Read (Tree a) where
--   
--           readPrec = parens $ (prec app_prec $ do
--                                    Ident "Leaf" &lt;- lexP
--                                    m &lt;- step readPrec
--                                    return (Leaf m))
--   
--                        +++ (prec up_prec $ do
--                                    u &lt;- step readPrec
--                                    Symbol ":^:" &lt;- lexP
--                                    v &lt;- step readPrec
--                                    return (u :^: v))
--   
--             where app_prec = 10
--                   up_prec = 5
--   
--           readListPrec = readListPrecDefault
--   </pre>
class Read a

-- | The <a>Functor</a> class is used for types that can be mapped over.
--   Instances of <a>Functor</a> should satisfy the following laws:
--   
--   <pre>
--   fmap id  ==  id
--   fmap (f . g)  ==  fmap f . fmap g
--   </pre>
--   
--   The instances of <a>Functor</a> for lists, <a>Maybe</a> and <a>IO</a>
--   satisfy these laws.
class Functor (f :: * -> *)
fmap :: (a -> b) -> f a -> f b

-- | Replace all locations in the input with the same value. The default
--   definition is <tt><a>fmap</a> . <a>const</a></tt>, but this may be
--   overridden with a more efficient version.
(<$) :: a -> f b -> f a

-- | The <a>Monad</a> class defines the basic operations over a
--   <i>monad</i>, a concept from a branch of mathematics known as
--   <i>category theory</i>. From the perspective of a Haskell programmer,
--   however, it is best to think of a monad as an <i>abstract datatype</i>
--   of actions. Haskell's <tt>do</tt> expressions provide a convenient
--   syntax for writing monadic expressions.
--   
--   Instances of <a>Monad</a> should satisfy the following laws:
--   
--   <ul>
--   <li><pre><a>return</a> a <a>&gt;&gt;=</a> k = k a</pre></li>
--   <li><pre>m <a>&gt;&gt;=</a> <a>return</a> = m</pre></li>
--   <li><pre>m <a>&gt;&gt;=</a> (x -&gt; k x <a>&gt;&gt;=</a> h) = (m
--   <a>&gt;&gt;=</a> k) <a>&gt;&gt;=</a> h</pre></li>
--   </ul>
--   
--   Furthermore, the <a>Monad</a> and <a>Applicative</a> operations should
--   relate as follows:
--   
--   <ul>
--   <li><pre><a>pure</a> = <a>return</a></pre></li>
--   <li><pre>(<a>&lt;*&gt;</a>) = <a>ap</a></pre></li>
--   </ul>
--   
--   The above laws imply:
--   
--   <ul>
--   <li><pre><a>fmap</a> f xs = xs <a>&gt;&gt;=</a> <a>return</a> .
--   f</pre></li>
--   <li><pre>(<a>&gt;&gt;</a>) = (<a>*&gt;</a>)</pre></li>
--   </ul>
--   
--   and that <a>pure</a> and (<a>&lt;*&gt;</a>) satisfy the applicative
--   functor laws.
--   
--   The instances of <a>Monad</a> for lists, <a>Maybe</a> and <a>IO</a>
--   defined in the <a>Prelude</a> satisfy these laws.
class Applicative m => Monad (m :: * -> *)

-- | Sequentially compose two actions, passing any value produced by the
--   first as an argument to the second.
(>>=) :: m a -> (a -> m b) -> m b

-- | Sequentially compose two actions, discarding any value produced by the
--   first, like sequencing operators (such as the semicolon) in imperative
--   languages.
(>>) :: m a -> m b -> m b

-- | Inject a value into the monadic type.
return :: a -> m a

-- | Fail with a message. This operation is not part of the mathematical
--   definition of a monad, but is invoked on pattern-match failure in a
--   <tt>do</tt> expression.
--   
--   As part of the MonadFail proposal (MFP), this function is moved to its
--   own class <tt>MonadFail</tt> (see <a>Control.Monad.Fail</a> for more
--   details). The definition here will be removed in a future release.
fail :: String -> m a

-- | Same as <a>&gt;&gt;=</a>, but with the arguments interchanged.
(=<<) :: Monad m => (a -> m b) -> m a -> m b
infixr 1 =<<

-- | Class for string-like datastructures; used by the overloaded string
--   extension (-XOverloadedStrings in GHC).
class IsString a
fromString :: String -> a

-- | Basic numeric class.
class Num a
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a

-- | Unary negation.
negate :: a -> a

-- | Absolute value.
abs :: a -> a

-- | Sign of a number. The functions <a>abs</a> and <a>signum</a> should
--   satisfy the law:
--   
--   <pre>
--   abs x * signum x == x
--   </pre>
--   
--   For real numbers, the <a>signum</a> is either <tt>-1</tt> (negative),
--   <tt>0</tt> (zero) or <tt>1</tt> (positive).
signum :: a -> a

-- | Conversion from an <a>Integer</a>. An integer literal represents the
--   application of the function <a>fromInteger</a> to the appropriate
--   value of type <a>Integer</a>, so such literals have type
--   <tt>(<a>Num</a> a) =&gt; a</tt>.
fromInteger :: Integer -> a
class (Num a, Ord a) => Real a

-- | the rational equivalent of its real argument with full precision
toRational :: a -> Rational

-- | Integral numbers, supporting integer division.
class (Real a, Enum a) => Integral a

-- | integer division truncated toward zero
quot :: a -> a -> a

-- | integer remainder, satisfying
--   
--   <pre>
--   (x `quot` y)*y + (x `rem` y) == x
--   </pre>
rem :: a -> a -> a

-- | integer division truncated toward negative infinity
div :: a -> a -> a

-- | integer modulus, satisfying
--   
--   <pre>
--   (x `div` y)*y + (x `mod` y) == x
--   </pre>
mod :: a -> a -> a

-- | simultaneous <a>quot</a> and <a>rem</a>
quotRem :: a -> a -> (a, a)

-- | simultaneous <a>div</a> and <a>mod</a>
divMod :: a -> a -> (a, a)

-- | conversion to <a>Integer</a>
toInteger :: a -> Integer

-- | Fractional numbers, supporting real division.
class Num a => Fractional a

-- | fractional division
(/) :: a -> a -> a

-- | reciprocal fraction
recip :: a -> a

-- | Conversion from a <a>Rational</a> (that is <tt><a>Ratio</a>
--   <a>Integer</a></tt>). A floating literal stands for an application of
--   <a>fromRational</a> to a value of type <a>Rational</a>, so such
--   literals have type <tt>(<a>Fractional</a> a) =&gt; a</tt>.
fromRational :: Rational -> a

-- | Trigonometric and hyperbolic functions and related functions.
class Fractional a => Floating a
pi :: a
exp :: a -> a
log :: a -> a
sqrt :: a -> a
(**) :: a -> a -> a
logBase :: a -> a -> a
sin :: a -> a
cos :: a -> a
tan :: a -> a
asin :: a -> a
acos :: a -> a
atan :: a -> a
sinh :: a -> a
cosh :: a -> a
tanh :: a -> a
asinh :: a -> a
acosh :: a -> a
atanh :: a -> a

-- | Extracting components of fractions.
class (Real a, Fractional a) => RealFrac a

-- | The function <a>properFraction</a> takes a real fractional number
--   <tt>x</tt> and returns a pair <tt>(n,f)</tt> such that <tt>x =
--   n+f</tt>, and:
--   
--   <ul>
--   <li><tt>n</tt> is an integral number with the same sign as <tt>x</tt>;
--   and</li>
--   <li><tt>f</tt> is a fraction with the same type and sign as
--   <tt>x</tt>, and with absolute value less than <tt>1</tt>.</li>
--   </ul>
--   
--   The default definitions of the <a>ceiling</a>, <a>floor</a>,
--   <a>truncate</a> and <a>round</a> functions are in terms of
--   <a>properFraction</a>.
properFraction :: Integral b => a -> (b, a)

-- | <tt><a>truncate</a> x</tt> returns the integer nearest <tt>x</tt>
--   between zero and <tt>x</tt>
truncate :: Integral b => a -> b

-- | <tt><a>round</a> x</tt> returns the nearest integer to <tt>x</tt>; the
--   even integer if <tt>x</tt> is equidistant between two integers
round :: Integral b => a -> b

-- | <tt><a>ceiling</a> x</tt> returns the least integer not less than
--   <tt>x</tt>
ceiling :: Integral b => a -> b

-- | <tt><a>floor</a> x</tt> returns the greatest integer not greater than
--   <tt>x</tt>
floor :: Integral b => a -> b

-- | Efficient, machine-independent access to the components of a
--   floating-point number.
class (RealFrac a, Floating a) => RealFloat a

-- | a constant function, returning the radix of the representation (often
--   <tt>2</tt>)
floatRadix :: a -> Integer

-- | a constant function, returning the number of digits of
--   <a>floatRadix</a> in the significand
floatDigits :: a -> Int

-- | a constant function, returning the lowest and highest values the
--   exponent may assume
floatRange :: a -> (Int, Int)

-- | The function <a>decodeFloat</a> applied to a real floating-point
--   number returns the significand expressed as an <a>Integer</a> and an
--   appropriately scaled exponent (an <a>Int</a>). If
--   <tt><a>decodeFloat</a> x</tt> yields <tt>(m,n)</tt>, then <tt>x</tt>
--   is equal in value to <tt>m*b^^n</tt>, where <tt>b</tt> is the
--   floating-point radix, and furthermore, either <tt>m</tt> and
--   <tt>n</tt> are both zero or else <tt>b^(d-1) &lt;= <a>abs</a> m &lt;
--   b^d</tt>, where <tt>d</tt> is the value of <tt><a>floatDigits</a>
--   x</tt>. In particular, <tt><a>decodeFloat</a> 0 = (0,0)</tt>. If the
--   type contains a negative zero, also <tt><a>decodeFloat</a> (-0.0) =
--   (0,0)</tt>. <i>The result of</i> <tt><a>decodeFloat</a> x</tt> <i>is
--   unspecified if either of</i> <tt><a>isNaN</a> x</tt> <i>or</i>
--   <tt><a>isInfinite</a> x</tt> <i>is</i> <a>True</a>.
decodeFloat :: a -> (Integer, Int)

-- | <a>encodeFloat</a> performs the inverse of <a>decodeFloat</a> in the
--   sense that for finite <tt>x</tt> with the exception of <tt>-0.0</tt>,
--   <tt><tt>uncurry</tt> <a>encodeFloat</a> (<a>decodeFloat</a> x) =
--   x</tt>. <tt><a>encodeFloat</a> m n</tt> is one of the two closest
--   representable floating-point numbers to <tt>m*b^^n</tt> (or
--   <tt>±Infinity</tt> if overflow occurs); usually the closer, but if
--   <tt>m</tt> contains too many bits, the result may be rounded in the
--   wrong direction.
encodeFloat :: Integer -> Int -> a

-- | <a>exponent</a> corresponds to the second component of
--   <a>decodeFloat</a>. <tt><a>exponent</a> 0 = 0</tt> and for finite
--   nonzero <tt>x</tt>, <tt><a>exponent</a> x = snd (<a>decodeFloat</a> x)
--   + <a>floatDigits</a> x</tt>. If <tt>x</tt> is a finite floating-point
--   number, it is equal in value to <tt><a>significand</a> x * b ^^
--   <a>exponent</a> x</tt>, where <tt>b</tt> is the floating-point radix.
--   The behaviour is unspecified on infinite or <tt>NaN</tt> values.
exponent :: a -> Int

-- | The first component of <a>decodeFloat</a>, scaled to lie in the open
--   interval (<tt>-1</tt>,<tt>1</tt>), either <tt>0.0</tt> or of absolute
--   value <tt>&gt;= 1/b</tt>, where <tt>b</tt> is the floating-point
--   radix. The behaviour is unspecified on infinite or <tt>NaN</tt>
--   values.
significand :: a -> a

-- | multiplies a floating-point number by an integer power of the radix
scaleFloat :: Int -> a -> a

-- | <a>True</a> if the argument is an IEEE "not-a-number" (NaN) value
isNaN :: a -> Bool

-- | <a>True</a> if the argument is an IEEE infinity or negative infinity
isInfinite :: a -> Bool

-- | <a>True</a> if the argument is too small to be represented in
--   normalized format
isDenormalized :: a -> Bool

-- | <a>True</a> if the argument is an IEEE negative zero
isNegativeZero :: a -> Bool

-- | <a>True</a> if the argument is an IEEE floating point number
isIEEE :: a -> Bool

-- | a version of arctangent taking two real floating-point arguments. For
--   real floating <tt>x</tt> and <tt>y</tt>, <tt><a>atan2</a> y x</tt>
--   computes the angle (from the positive x-axis) of the vector from the
--   origin to the point <tt>(x,y)</tt>. <tt><a>atan2</a> y x</tt> returns
--   a value in the range [<tt>-pi</tt>, <tt>pi</tt>]. It follows the
--   Common Lisp semantics for the origin when signed zeroes are supported.
--   <tt><a>atan2</a> y 1</tt>, with <tt>y</tt> in a type that is
--   <a>RealFloat</a>, should return the same value as <tt><a>atan</a>
--   y</tt>. A default definition of <a>atan2</a> is provided, but
--   implementors can provide a more accurate implementation.
atan2 :: a -> a -> a

-- | The <a>Maybe</a> type encapsulates an optional value. A value of type
--   <tt><a>Maybe</a> a</tt> either contains a value of type <tt>a</tt>
--   (represented as <tt><a>Just</a> a</tt>), or it is empty (represented
--   as <a>Nothing</a>). Using <a>Maybe</a> is a good way to deal with
--   errors or exceptional cases without resorting to drastic measures such
--   as <a>error</a>.
--   
--   The <a>Maybe</a> type is also a monad. It is a simple kind of error
--   monad, where all errors are represented by <a>Nothing</a>. A richer
--   error monad can be built using the <a>Either</a> type.
data Maybe a :: * -> *
Nothing :: Maybe a
Just :: a -> Maybe a
data Ordering :: *
LT :: Ordering
EQ :: Ordering
GT :: Ordering
data Bool :: *
False :: Bool
True :: Bool

-- | The character type <a>Char</a> is an enumeration whose values
--   represent Unicode (or equivalently ISO/IEC 10646) characters (see
--   <a>http://www.unicode.org/</a> for details). This set extends the ISO
--   8859-1 (Latin-1) character set (the first 256 characters), which is
--   itself an extension of the ASCII character set (the first 128
--   characters). A character literal in Haskell has type <a>Char</a>.
--   
--   To convert a <a>Char</a> to or from the corresponding <a>Int</a> value
--   defined by Unicode, use <a>toEnum</a> and <a>fromEnum</a> from the
--   <a>Enum</a> class respectively (or equivalently <tt>ord</tt> and
--   <tt>chr</tt>).
data Char :: *

-- | A value of type <tt><a>IO</a> a</tt> is a computation which, when
--   performed, does some I/O before returning a value of type <tt>a</tt>.
--   
--   There is really only one way to "perform" an I/O action: bind it to
--   <tt>Main.main</tt> in your program. When your program is run, the I/O
--   will be performed. It isn't possible to perform I/O from an arbitrary
--   function, unless that function is itself in the <a>IO</a> monad and
--   called at some point, directly or indirectly, from <tt>Main.main</tt>.
--   
--   <a>IO</a> is a monad, so <a>IO</a> actions can be combined using
--   either the do-notation or the <tt>&gt;&gt;</tt> and <tt>&gt;&gt;=</tt>
--   operations from the <tt>Monad</tt> class.
data IO a :: * -> *

-- | The <a>Either</a> type represents values with two possibilities: a
--   value of type <tt><a>Either</a> a b</tt> is either <tt><a>Left</a>
--   a</tt> or <tt><a>Right</a> b</tt>.
--   
--   The <a>Either</a> type is sometimes used to represent a value which is
--   either correct or an error; by convention, the <a>Left</a> constructor
--   is used to hold an error value and the <a>Right</a> constructor is
--   used to hold a correct value (mnemonic: "right" also means "correct").
--   
--   <h4><b>Examples</b></h4>
--   
--   The type <tt><a>Either</a> <a>String</a> <a>Int</a></tt> is the type
--   of values which can be either a <a>String</a> or an <a>Int</a>. The
--   <a>Left</a> constructor can be used only on <a>String</a>s, and the
--   <a>Right</a> constructor can be used only on <a>Int</a>s:
--   
--   <pre>
--   &gt;&gt;&gt; let s = Left "foo" :: Either String Int
--   
--   &gt;&gt;&gt; s
--   Left "foo"
--   
--   &gt;&gt;&gt; let n = Right 3 :: Either String Int
--   
--   &gt;&gt;&gt; n
--   Right 3
--   
--   &gt;&gt;&gt; :type s
--   s :: Either String Int
--   
--   &gt;&gt;&gt; :type n
--   n :: Either String Int
--   </pre>
--   
--   The <a>fmap</a> from our <a>Functor</a> instance will ignore
--   <a>Left</a> values, but will apply the supplied function to values
--   contained in a <a>Right</a>:
--   
--   <pre>
--   &gt;&gt;&gt; let s = Left "foo" :: Either String Int
--   
--   &gt;&gt;&gt; let n = Right 3 :: Either String Int
--   
--   &gt;&gt;&gt; fmap (*2) s
--   Left "foo"
--   
--   &gt;&gt;&gt; fmap (*2) n
--   Right 6
--   </pre>
--   
--   The <a>Monad</a> instance for <a>Either</a> allows us to chain
--   together multiple actions which may fail, and fail overall if any of
--   the individual steps failed. First we'll write a function that can
--   either parse an <a>Int</a> from a <a>Char</a>, or fail.
--   
--   <pre>
--   &gt;&gt;&gt; import Data.Char ( digitToInt, isDigit )
--   
--   &gt;&gt;&gt; :{
--       let parseEither :: Char -&gt; Either String Int
--           parseEither c
--             | isDigit c = Right (digitToInt c)
--             | otherwise = Left "parse error"
--   
--   &gt;&gt;&gt; :}
--   </pre>
--   
--   The following should work, since both <tt>'1'</tt> and <tt>'2'</tt>
--   can be parsed as <a>Int</a>s.
--   
--   <pre>
--   &gt;&gt;&gt; :{
--       let parseMultiple :: Either String Int
--           parseMultiple = do
--             x &lt;- parseEither '1'
--             y &lt;- parseEither '2'
--             return (x + y)
--   
--   &gt;&gt;&gt; :}
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; parseMultiple
--   Right 3
--   </pre>
--   
--   But the following should fail overall, since the first operation where
--   we attempt to parse <tt>'m'</tt> as an <a>Int</a> will fail:
--   
--   <pre>
--   &gt;&gt;&gt; :{
--       let parseMultiple :: Either String Int
--           parseMultiple = do
--             x &lt;- parseEither 'm'
--             y &lt;- parseEither '2'
--             return (x + y)
--   
--   &gt;&gt;&gt; :}
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; parseMultiple
--   Left "parse error"
--   </pre>
data Either a b :: * -> * -> *
Left :: a -> Either a b
Right :: b -> Either a b

-- | A space-efficient representation of a <a>Word8</a> vector, supporting
--   many efficient operations.
--   
--   A <a>ByteString</a> contains 8-bit bytes, or by using the operations
--   from <a>Data.ByteString.Char8</a> it can be interpreted as containing
--   8-bit characters.
data ByteString :: *
type LByteString = ByteString

-- | A space efficient, packed, unboxed Unicode text type.
data Text :: *
type LText = Text

-- | A Map from keys <tt>k</tt> to values <tt>a</tt>.
data Map k a :: * -> * -> *

-- | A map from keys to values. A map cannot contain duplicate keys; each
--   key can map to at most one value.
data HashMap k v :: * -> * -> *

-- | A map of integers to values <tt>a</tt>.
data IntMap a :: * -> *

-- | A set of values <tt>a</tt>.
data Set a :: * -> *

-- | A set of values. A set cannot contain duplicate values.
data HashSet a :: * -> *

-- | A set of integers.
data IntSet :: *

-- | General-purpose finite sequences.
data Seq a :: * -> *

-- | Boxed vectors, supporting efficient slicing.
data Vector a :: * -> *
type UVector = Vector
class (Vector Vector a, MVector MVector a) => Unbox a
type SVector = Vector

-- | The member functions of this class facilitate writing values of
--   primitive types to raw memory (which may have been allocated with the
--   above mentioned routines) and reading values from blocks of raw
--   memory. The class, furthermore, includes support for computing the
--   storage requirements and alignment restrictions of storable types.
--   
--   Memory addresses are represented as values of type <tt><a>Ptr</a>
--   a</tt>, for some <tt>a</tt> which is an instance of class
--   <a>Storable</a>. The type argument to <a>Ptr</a> helps provide some
--   valuable type safety in FFI code (you can't mix pointers of different
--   types without an explicit cast), while helping the Haskell type system
--   figure out which marshalling method is needed for a given pointer.
--   
--   All marshalling between Haskell and a foreign language ultimately
--   boils down to translating Haskell data structures into the binary
--   representation of a corresponding data structure of the foreign
--   language and vice versa. To code this marshalling in Haskell, it is
--   necessary to manipulate primitive data types stored in unstructured
--   memory blocks. The class <a>Storable</a> facilitates this manipulation
--   on all types for which it is instantiated, which are the standard
--   basic types of Haskell, the fixed size <tt>Int</tt> types
--   (<a>Int8</a>, <a>Int16</a>, <a>Int32</a>, <a>Int64</a>), the fixed
--   size <tt>Word</tt> types (<a>Word8</a>, <a>Word16</a>, <a>Word32</a>,
--   <a>Word64</a>), <a>StablePtr</a>, all types from
--   <a>Foreign.C.Types</a>, as well as <a>Ptr</a>.
class Storable a

-- | The class of types that can be converted to a hash value.
--   
--   Minimal implementation: <a>hashWithSalt</a>.
class Hashable a

-- | Return a hash value for the argument, using the given salt.
--   
--   The general contract of <a>hashWithSalt</a> is:
--   
--   <ul>
--   <li>If two values are equal according to the <a>==</a> method, then
--   applying the <a>hashWithSalt</a> method on each of the two values
--   <i>must</i> produce the same integer result if the same salt is used
--   in each case.</li>
--   <li>It is <i>not</i> required that if two values are unequal according
--   to the <a>==</a> method, then applying the <a>hashWithSalt</a> method
--   on each of the two values must produce distinct integer results.
--   However, the programmer should be aware that producing distinct
--   integer results for unequal values may improve the performance of
--   hashing-based data structures.</li>
--   <li>This method can be used to compute different hash values for the
--   same input by providing a different salt in each application of the
--   method. This implies that any instance that defines
--   <a>hashWithSalt</a> <i>must</i> make use of the salt in its
--   implementation.</li>
--   </ul>
hashWithSalt :: Int -> a -> Int

-- | Like <a>hashWithSalt</a>, but no salt is used. The default
--   implementation uses <a>hashWithSalt</a> with some default salt.
--   Instances might want to implement this method to provide a more
--   efficient implementation than the default implementation.
hash :: a -> Int

-- | A <a>Word</a> is an unsigned integral type, with the same size as
--   <a>Int</a>.
data Word :: *

-- | 8-bit unsigned integer type
data Word8 :: *

-- | 32-bit unsigned integer type
data Word32 :: *

-- | 64-bit unsigned integer type
data Word64 :: *

-- | A fixed-precision integer type with at least the range <tt>[-2^29 ..
--   2^29-1]</tt>. The exact range for a given implementation can be
--   determined by using <a>minBound</a> and <a>maxBound</a> from the
--   <a>Bounded</a> class.
data Int :: *

-- | 32-bit signed integer type
data Int32 :: *

-- | 64-bit signed integer type
data Int64 :: *

-- | Invariant: <a>Jn#</a> and <a>Jp#</a> are used iff value doesn't fit in
--   <a>S#</a>
--   
--   Useful properties resulting from the invariants:
--   
--   <ul>
--   <li><pre>abs (<a>S#</a> _) &lt;= abs (<a>Jp#</a> _)</pre></li>
--   <li><pre>abs (<a>S#</a> _) &lt; abs (<a>Jn#</a> _)</pre></li>
--   </ul>
data Integer :: *

-- | Arbitrary-precision rational numbers, represented as a ratio of two
--   <a>Integer</a> values. A rational number may be constructed using the
--   <a>%</a> operator.
type Rational = Ratio Integer

-- | Single-precision floating point numbers. It is desirable that this
--   type be at least equal in range and precision to the IEEE
--   single-precision type.
data Float :: *

-- | Double-precision floating point numbers. It is desirable that this
--   type be at least equal in range and precision to the IEEE
--   double-precision type.
data Double :: *

-- | raise a number to a non-negative integral power
(^) :: (Num a, Integral b) => a -> b -> a
infixr 8 ^

-- | raise a number to an integral power
(^^) :: (Fractional a, Integral b) => a -> b -> a
infixr 8 ^^

-- | the same as <tt><a>flip</a> (<a>-</a>)</tt>.
--   
--   Because <tt>-</tt> is treated specially in the Haskell grammar,
--   <tt>(-</tt> <i>e</i><tt>)</tt> is not a section, but an application of
--   prefix negation. However, <tt>(<a>subtract</a></tt>
--   <i>exp</i><tt>)</tt> is equivalent to the disallowed section.
subtract :: Num a => a -> a -> a

-- | general coercion from integral types
fromIntegral :: (Integral a, Num b) => a -> b

-- | general coercion to fractional types
realToFrac :: (Real a, Fractional b) => a -> b

-- | The class of monoids (types with an associative binary operation that
--   has an identity). Instances should satisfy the following laws:
--   
--   <ul>
--   <li><pre>mappend mempty x = x</pre></li>
--   <li><pre>mappend x mempty = x</pre></li>
--   <li><pre>mappend x (mappend y z) = mappend (mappend x y) z</pre></li>
--   <li><pre>mconcat = <a>foldr</a> mappend mempty</pre></li>
--   </ul>
--   
--   The method names refer to the monoid of lists under concatenation, but
--   there are many other instances.
--   
--   Some types can be viewed as a monoid in more than one way, e.g. both
--   addition and multiplication on numbers. In such cases we often define
--   <tt>newtype</tt>s and make those instances of <a>Monoid</a>, e.g.
--   <tt>Sum</tt> and <tt>Product</tt>.
class Monoid a

-- | Identity of <a>mappend</a>
mempty :: a

-- | An associative operation
mappend :: a -> a -> a

-- | Fold a list using the monoid. For most types, the default definition
--   for <a>mconcat</a> will be used, but the function is included in the
--   class definition so that an optimized version can be provided for
--   specific types.
mconcat :: [a] -> a

-- | An infix synonym for <a>mappend</a>.
(<>) :: Monoid m => m -> m -> m
infixr 6 <>

-- | Data structures that can be folded.
--   
--   For example, given a data type
--   
--   <pre>
--   data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--   </pre>
--   
--   a suitable instance would be
--   
--   <pre>
--   instance Foldable Tree where
--      foldMap f Empty = mempty
--      foldMap f (Leaf x) = f x
--      foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
--   </pre>
--   
--   This is suitable even for abstract types, as the monoid is assumed to
--   satisfy the monoid laws. Alternatively, one could define
--   <tt>foldr</tt>:
--   
--   <pre>
--   instance Foldable Tree where
--      foldr f z Empty = z
--      foldr f z (Leaf x) = f x z
--      foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
--   </pre>
--   
--   <tt>Foldable</tt> instances are expected to satisfy the following
--   laws:
--   
--   <pre>
--   foldr f z t = appEndo (foldMap (Endo . f) t ) z
--   </pre>
--   
--   <pre>
--   foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
--   </pre>
--   
--   <pre>
--   fold = foldMap id
--   </pre>
--   
--   <tt>sum</tt>, <tt>product</tt>, <tt>maximum</tt>, and <tt>minimum</tt>
--   should all be essentially equivalent to <tt>foldMap</tt> forms, such
--   as
--   
--   <pre>
--   sum = getSum . foldMap Sum
--   </pre>
--   
--   but may be less defined.
--   
--   If the type is also a <a>Functor</a> instance, it should satisfy
--   
--   <pre>
--   foldMap f = fold . fmap f
--   </pre>
--   
--   which implies that
--   
--   <pre>
--   foldMap f . fmap g = foldMap (f . g)
--   </pre>
class Foldable (t :: * -> *)

-- | The sum of a collection of actions, generalizing <a>concat</a>.
asum :: (Foldable t, Alternative f) => t (f a) -> f a

-- | Functors representing data structures that can be traversed from left
--   to right.
--   
--   A definition of <a>traverse</a> must satisfy the following laws:
--   
--   <ul>
--   <li><i><i>naturality</i></i> <tt>t . <a>traverse</a> f =
--   <a>traverse</a> (t . f)</tt> for every applicative transformation
--   <tt>t</tt></li>
--   <li><i><i>identity</i></i> <tt><a>traverse</a> Identity =
--   Identity</tt></li>
--   <li><i><i>composition</i></i> <tt><a>traverse</a> (Compose .
--   <a>fmap</a> g . f) = Compose . <a>fmap</a> (<a>traverse</a> g) .
--   <a>traverse</a> f</tt></li>
--   </ul>
--   
--   A definition of <a>sequenceA</a> must satisfy the following laws:
--   
--   <ul>
--   <li><i><i>naturality</i></i> <tt>t . <a>sequenceA</a> =
--   <a>sequenceA</a> . <a>fmap</a> t</tt> for every applicative
--   transformation <tt>t</tt></li>
--   <li><i><i>identity</i></i> <tt><a>sequenceA</a> . <a>fmap</a> Identity
--   = Identity</tt></li>
--   <li><i><i>composition</i></i> <tt><a>sequenceA</a> . <a>fmap</a>
--   Compose = Compose . <a>fmap</a> <a>sequenceA</a> .
--   <a>sequenceA</a></tt></li>
--   </ul>
--   
--   where an <i>applicative transformation</i> is a function
--   
--   <pre>
--   t :: (Applicative f, Applicative g) =&gt; f a -&gt; g a
--   </pre>
--   
--   preserving the <a>Applicative</a> operations, i.e.
--   
--   <ul>
--   <li><pre>t (<a>pure</a> x) = <a>pure</a> x</pre></li>
--   <li><pre>t (x <a>&lt;*&gt;</a> y) = t x <a>&lt;*&gt;</a> t
--   y</pre></li>
--   </ul>
--   
--   and the identity functor <tt>Identity</tt> and composition of functors
--   <tt>Compose</tt> are defined as
--   
--   <pre>
--   newtype Identity a = Identity a
--   
--   instance Functor Identity where
--     fmap f (Identity x) = Identity (f x)
--   
--   instance Applicative Identity where
--     pure x = Identity x
--     Identity f &lt;*&gt; Identity x = Identity (f x)
--   
--   newtype Compose f g a = Compose (f (g a))
--   
--   instance (Functor f, Functor g) =&gt; Functor (Compose f g) where
--     fmap f (Compose x) = Compose (fmap (fmap f) x)
--   
--   instance (Applicative f, Applicative g) =&gt; Applicative (Compose f g) where
--     pure x = Compose (pure (pure x))
--     Compose f &lt;*&gt; Compose x = Compose ((&lt;*&gt;) &lt;$&gt; f &lt;*&gt; x)
--   </pre>
--   
--   (The naturality law is implied by parametricity.)
--   
--   Instances are similar to <a>Functor</a>, e.g. given a data type
--   
--   <pre>
--   data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--   </pre>
--   
--   a suitable instance would be
--   
--   <pre>
--   instance Traversable Tree where
--      traverse f Empty = pure Empty
--      traverse f (Leaf x) = Leaf &lt;$&gt; f x
--      traverse f (Node l k r) = Node &lt;$&gt; traverse f l &lt;*&gt; f k &lt;*&gt; traverse f r
--   </pre>
--   
--   This is suitable even for abstract types, as the laws for
--   <a>&lt;*&gt;</a> imply a form of associativity.
--   
--   The superclass instances should satisfy the following:
--   
--   <ul>
--   <li>In the <a>Functor</a> instance, <a>fmap</a> should be equivalent
--   to traversal with the identity applicative functor
--   (<a>fmapDefault</a>).</li>
--   <li>In the <a>Foldable</a> instance, <a>foldMap</a> should be
--   equivalent to traversal with a constant applicative functor
--   (<a>foldMapDefault</a>).</li>
--   </ul>
class (Functor t, Foldable t) => Traversable (t :: * -> *)

-- | Send the first component of the input through the argument arrow, and
--   copy the rest unchanged to the output.
first :: Arrow a => forall b c d. a b c -> a (b, d) (c, d)

-- | A mirror image of <a>first</a>.
--   
--   The default definition may be overridden with a more efficient version
--   if desired.
second :: Arrow a => forall b c d. a b c -> a (d, b) (d, c)

-- | Split the input between the two argument arrows and combine their
--   output. Note that this is in general not a functor.
--   
--   The default definition may be overridden with a more efficient version
--   if desired.
(***) :: Arrow a => forall b c b' c'. a b c -> a b' c' -> a (b, b') (c, c')

-- | Fanout: send the input to both argument arrows and combine their
--   output.
--   
--   The default definition may be overridden with a more efficient version
--   if desired.
(&&&) :: Arrow a => forall b c c'. a b c -> a b c' -> a b (c, c')

-- | Case analysis for the <a>Bool</a> type. <tt><a>bool</a> x y p</tt>
--   evaluates to <tt>x</tt> when <tt>p</tt> is <a>False</a>, and evaluates
--   to <tt>y</tt> when <tt>p</tt> is <a>True</a>.
--   
--   This is equivalent to <tt>if p then y else x</tt>; that is, one can
--   think of it as an if-then-else construct with its arguments reordered.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; bool "foo" "bar" True
--   "bar"
--   
--   &gt;&gt;&gt; bool "foo" "bar" False
--   "foo"
--   </pre>
--   
--   Confirm that <tt><a>bool</a> x y p</tt> and <tt>if p then y else
--   x</tt> are equivalent:
--   
--   <pre>
--   &gt;&gt;&gt; let p = True; x = "bar"; y = "foo"
--   
--   &gt;&gt;&gt; bool x y p == if p then y else x
--   True
--   
--   &gt;&gt;&gt; let p = False
--   
--   &gt;&gt;&gt; bool x y p == if p then y else x
--   True
--   </pre>
bool :: a -> a -> Bool -> a

-- | The <a>mapMaybe</a> function is a version of <a>map</a> which can
--   throw out elements. In particular, the functional argument returns
--   something of type <tt><a>Maybe</a> b</tt>. If this is <a>Nothing</a>,
--   no element is added on to the result list. If it is <tt><a>Just</a>
--   b</tt>, then <tt>b</tt> is included in the result list.
--   
--   <h4><b>Examples</b></h4>
--   
--   Using <tt><a>mapMaybe</a> f x</tt> is a shortcut for
--   <tt><a>catMaybes</a> $ <a>map</a> f x</tt> in most cases:
--   
--   <pre>
--   &gt;&gt;&gt; import Text.Read ( readMaybe )
--   
--   &gt;&gt;&gt; let readMaybeInt = readMaybe :: String -&gt; Maybe Int
--   
--   &gt;&gt;&gt; mapMaybe readMaybeInt ["1", "Foo", "3"]
--   [1,3]
--   
--   &gt;&gt;&gt; catMaybes $ map readMaybeInt ["1", "Foo", "3"]
--   [1,3]
--   </pre>
--   
--   If we map the <a>Just</a> constructor, the entire list should be
--   returned:
--   
--   <pre>
--   &gt;&gt;&gt; mapMaybe Just [1,2,3]
--   [1,2,3]
--   </pre>
mapMaybe :: (a -> Maybe b) -> [a] -> [b]

-- | The <a>catMaybes</a> function takes a list of <a>Maybe</a>s and
--   returns a list of all the <a>Just</a> values.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; catMaybes [Just 1, Nothing, Just 3]
--   [1,3]
--   </pre>
--   
--   When constructing a list of <a>Maybe</a> values, <a>catMaybes</a> can
--   be used to return all of the "success" results (if the list is the
--   result of a <a>map</a>, then <a>mapMaybe</a> would be more
--   appropriate):
--   
--   <pre>
--   &gt;&gt;&gt; import Text.Read ( readMaybe )
--   
--   &gt;&gt;&gt; [readMaybe x :: Maybe Int | x &lt;- ["1", "Foo", "3"] ]
--   [Just 1,Nothing,Just 3]
--   
--   &gt;&gt;&gt; catMaybes $ [readMaybe x :: Maybe Int | x &lt;- ["1", "Foo", "3"] ]
--   [1,3]
--   </pre>
catMaybes :: [Maybe a] -> [a]

-- | The <a>fromMaybe</a> function takes a default value and and
--   <a>Maybe</a> value. If the <a>Maybe</a> is <a>Nothing</a>, it returns
--   the default values; otherwise, it returns the value contained in the
--   <a>Maybe</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; fromMaybe "" (Just "Hello, World!")
--   "Hello, World!"
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; fromMaybe "" Nothing
--   ""
--   </pre>
--   
--   Read an integer from a string using <tt>readMaybe</tt>. If we fail to
--   parse an integer, we want to return <tt>0</tt> by default:
--   
--   <pre>
--   &gt;&gt;&gt; import Text.Read ( readMaybe )
--   
--   &gt;&gt;&gt; fromMaybe 0 (readMaybe "5")
--   5
--   
--   &gt;&gt;&gt; fromMaybe 0 (readMaybe "")
--   0
--   </pre>
fromMaybe :: a -> Maybe a -> a

-- | The <a>isJust</a> function returns <a>True</a> iff its argument is of
--   the form <tt>Just _</tt>.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; isJust (Just 3)
--   True
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; isJust (Just ())
--   True
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; isJust Nothing
--   False
--   </pre>
--   
--   Only the outer constructor is taken into consideration:
--   
--   <pre>
--   &gt;&gt;&gt; isJust (Just Nothing)
--   True
--   </pre>
isJust :: Maybe a -> Bool

-- | The <a>isNothing</a> function returns <a>True</a> iff its argument is
--   <a>Nothing</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; isNothing (Just 3)
--   False
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; isNothing (Just ())
--   False
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; isNothing Nothing
--   True
--   </pre>
--   
--   Only the outer constructor is taken into consideration:
--   
--   <pre>
--   &gt;&gt;&gt; isNothing (Just Nothing)
--   False
--   </pre>
isNothing :: Maybe a -> Bool

-- | The <a>listToMaybe</a> function returns <a>Nothing</a> on an empty
--   list or <tt><a>Just</a> a</tt> where <tt>a</tt> is the first element
--   of the list.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; listToMaybe []
--   Nothing
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; listToMaybe [9]
--   Just 9
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; listToMaybe [1,2,3]
--   Just 1
--   </pre>
--   
--   Composing <a>maybeToList</a> with <a>listToMaybe</a> should be the
--   identity on singleton/empty lists:
--   
--   <pre>
--   &gt;&gt;&gt; maybeToList $ listToMaybe [5]
--   [5]
--   
--   &gt;&gt;&gt; maybeToList $ listToMaybe []
--   []
--   </pre>
--   
--   But not on lists with more than one element:
--   
--   <pre>
--   &gt;&gt;&gt; maybeToList $ listToMaybe [1,2,3]
--   [1]
--   </pre>
listToMaybe :: [a] -> Maybe a

-- | The <a>maybeToList</a> function returns an empty list when given
--   <a>Nothing</a> or a singleton list when not given <a>Nothing</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; maybeToList (Just 7)
--   [7]
--   </pre>
--   
--   <pre>
--   &gt;&gt;&gt; maybeToList Nothing
--   []
--   </pre>
--   
--   One can use <a>maybeToList</a> to avoid pattern matching when combined
--   with a function that (safely) works on lists:
--   
--   <pre>
--   &gt;&gt;&gt; import Text.Read ( readMaybe )
--   
--   &gt;&gt;&gt; sum $ maybeToList (readMaybe "3")
--   3
--   
--   &gt;&gt;&gt; sum $ maybeToList (readMaybe "")
--   0
--   </pre>
maybeToList :: Maybe a -> [a]

-- | Partitions a list of <a>Either</a> into two lists. All the <a>Left</a>
--   elements are extracted, in order, to the first component of the
--   output. Similarly the <a>Right</a> elements are extracted to the
--   second component of the output.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   &gt;&gt;&gt; partitionEithers list
--   (["foo","bar","baz"],[3,7])
--   </pre>
--   
--   The pair returned by <tt><a>partitionEithers</a> x</tt> should be the
--   same pair as <tt>(<a>lefts</a> x, <a>rights</a> x)</tt>:
--   
--   <pre>
--   &gt;&gt;&gt; let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   &gt;&gt;&gt; partitionEithers list == (lefts list, rights list)
--   True
--   </pre>
partitionEithers :: [Either a b] -> ([a], [b])

-- | Extracts from a list of <a>Either</a> all the <a>Left</a> elements.
--   All the <a>Left</a> elements are extracted in order.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   &gt;&gt;&gt; lefts list
--   ["foo","bar","baz"]
--   </pre>
lefts :: [Either a b] -> [a]

-- | Extracts from a list of <a>Either</a> all the <a>Right</a> elements.
--   All the <a>Right</a> elements are extracted in order.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   &gt;&gt;&gt; rights list
--   [3,7]
--   </pre>
rights :: [Either a b] -> [b]

-- | <tt>(*) `on` f = \x y -&gt; f x * f y</tt>.
--   
--   Typical usage: <tt><a>sortBy</a> (<tt>compare</tt> `on`
--   <tt>fst</tt>)</tt>.
--   
--   Algebraic properties:
--   
--   <ul>
--   <li><tt>(*) `on` <a>id</a> = (*)</tt> (if <tt>(*) ∉ {⊥, <a>const</a>
--   ⊥}</tt>)</li>
--   <li><pre>((*) `on` f) `on` g = (*) `on` (f . g)</pre></li>
--   <li><pre><a>flip</a> on f . <a>flip</a> on g = <a>flip</a> on (g .
--   f)</pre></li>
--   </ul>
on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
infixl 0 `on`

-- | <pre>
--   comparing p x y = compare (p x) (p y)
--   </pre>
--   
--   Useful combinator for use in conjunction with the <tt>xxxBy</tt>
--   family of functions from <a>Data.List</a>, for example:
--   
--   <pre>
--   ... sortBy (comparing fst) ...
--   </pre>
comparing :: Ord a => (b -> a) -> b -> b -> Ordering
equating :: Eq a => (b -> a) -> b -> b -> Bool

-- | The <a>Down</a> type allows you to reverse sort order conveniently. A
--   value of type <tt><a>Down</a> a</tt> contains a value of type
--   <tt>a</tt> (represented as <tt><a>Down</a> a</tt>). If <tt>a</tt> has
--   an <tt><a>Ord</a></tt> instance associated with it then comparing two
--   values thus wrapped will give you the opposite of their normal sort
--   order. This is particularly useful when sorting in generalised list
--   comprehensions, as in: <tt>then sortWith by <a>Down</a> x</tt>
--   
--   Provides <a>Show</a> and <a>Read</a> instances (<i>since:
--   4.7.0.0</i>).
newtype Down a :: * -> *
Down :: a -> Down a

-- | A functor with application, providing operations to
--   
--   <ul>
--   <li>embed pure expressions (<a>pure</a>), and</li>
--   <li>sequence computations and combine their results
--   (<a>&lt;*&gt;</a>).</li>
--   </ul>
--   
--   A minimal complete definition must include implementations of these
--   functions satisfying the following laws:
--   
--   <ul>
--   <li><i><i>identity</i></i> <pre><a>pure</a> <a>id</a> <a>&lt;*&gt;</a>
--   v = v</pre></li>
--   <li><i><i>composition</i></i> <pre><a>pure</a> (.) <a>&lt;*&gt;</a> u
--   <a>&lt;*&gt;</a> v <a>&lt;*&gt;</a> w = u <a>&lt;*&gt;</a> (v
--   <a>&lt;*&gt;</a> w)</pre></li>
--   <li><i><i>homomorphism</i></i> <pre><a>pure</a> f <a>&lt;*&gt;</a>
--   <a>pure</a> x = <a>pure</a> (f x)</pre></li>
--   <li><i><i>interchange</i></i> <pre>u <a>&lt;*&gt;</a> <a>pure</a> y =
--   <a>pure</a> (<a>$</a> y) <a>&lt;*&gt;</a> u</pre></li>
--   </ul>
--   
--   The other methods have the following default definitions, which may be
--   overridden with equivalent specialized implementations:
--   
--   <ul>
--   <li><pre>u <a>*&gt;</a> v = <a>pure</a> (<a>const</a> <a>id</a>)
--   <a>&lt;*&gt;</a> u <a>&lt;*&gt;</a> v</pre></li>
--   <li><pre>u <a>&lt;*</a> v = <a>pure</a> <a>const</a> <a>&lt;*&gt;</a>
--   u <a>&lt;*&gt;</a> v</pre></li>
--   </ul>
--   
--   As a consequence of these laws, the <a>Functor</a> instance for
--   <tt>f</tt> will satisfy
--   
--   <ul>
--   <li><pre><a>fmap</a> f x = <a>pure</a> f <a>&lt;*&gt;</a> x</pre></li>
--   </ul>
--   
--   If <tt>f</tt> is also a <a>Monad</a>, it should satisfy
--   
--   <ul>
--   <li><pre><a>pure</a> = <a>return</a></pre></li>
--   <li><pre>(<a>&lt;*&gt;</a>) = <a>ap</a></pre></li>
--   </ul>
--   
--   (which implies that <a>pure</a> and <a>&lt;*&gt;</a> satisfy the
--   applicative functor laws).
class Functor f => Applicative (f :: * -> *)

-- | Lift a value.
pure :: a -> f a

-- | Sequential application.
(<*>) :: f (a -> b) -> f a -> f b

-- | Sequence actions, discarding the value of the first argument.
(*>) :: f a -> f b -> f b

-- | Sequence actions, discarding the value of the second argument.
(<*) :: f a -> f b -> f a

-- | An infix synonym for <a>fmap</a>.
--   
--   The name of this operator is an allusion to <tt>$</tt>. Note the
--   similarities between their types:
--   
--   <pre>
--    ($)  ::              (a -&gt; b) -&gt;   a -&gt;   b
--   (&lt;$&gt;) :: Functor f =&gt; (a -&gt; b) -&gt; f a -&gt; f b
--   </pre>
--   
--   Whereas <tt>$</tt> is function application, <a>&lt;$&gt;</a> is
--   function application lifted over a <a>Functor</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   Convert from a <tt><tt>Maybe</tt> <tt>Int</tt></tt> to a
--   <tt><tt>Maybe</tt> <tt>String</tt></tt> using <tt>show</tt>:
--   
--   <pre>
--   &gt;&gt;&gt; show &lt;$&gt; Nothing
--   Nothing
--   
--   &gt;&gt;&gt; show &lt;$&gt; Just 3
--   Just "3"
--   </pre>
--   
--   Convert from an <tt><tt>Either</tt> <tt>Int</tt> <tt>Int</tt></tt> to
--   an <tt><tt>Either</tt> <tt>Int</tt></tt> <tt>String</tt> using
--   <tt>show</tt>:
--   
--   <pre>
--   &gt;&gt;&gt; show &lt;$&gt; Left 17
--   Left 17
--   
--   &gt;&gt;&gt; show &lt;$&gt; Right 17
--   Right "17"
--   </pre>
--   
--   Double each element of a list:
--   
--   <pre>
--   &gt;&gt;&gt; (*2) &lt;$&gt; [1,2,3]
--   [2,4,6]
--   </pre>
--   
--   Apply <tt>even</tt> to the second element of a pair:
--   
--   <pre>
--   &gt;&gt;&gt; even &lt;$&gt; (2,2)
--   (2,True)
--   </pre>
(<$>) :: Functor f => (a -> b) -> f a -> f b
infixl 4 <$>

-- | An associative binary operation
(<|>) :: Alternative f => forall a. f a -> f a -> f a

-- | Left-to-right Kleisli composition of monads.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
infixr 1 >=>

-- | Lift a computation from the argument monad to the constructed monad.
lift :: MonadTrans t => forall (m :: * -> *) a. Monad m => m a -> t m a

-- | Monads in which <a>IO</a> computations may be embedded. Any monad
--   built by applying a sequence of monad transformers to the <a>IO</a>
--   monad will be an instance of this class.
--   
--   Instances should satisfy the following laws, which state that
--   <a>liftIO</a> is a transformer of monads:
--   
--   <ul>
--   <li><pre><a>liftIO</a> . <a>return</a> = <a>return</a></pre></li>
--   <li><pre><a>liftIO</a> (m &gt;&gt;= f) = <a>liftIO</a> m &gt;&gt;=
--   (<a>liftIO</a> . f)</pre></li>
--   </ul>
class Monad m => MonadIO (m :: * -> *)

-- | Lift a computation from the <a>IO</a> monad.
liftIO :: IO a -> m a

-- | Lift a computation from the <a>IO</a> monad.
liftIO :: MonadIO m => forall a. IO a -> m a

-- | Any type that you wish to throw or catch as an exception must be an
--   instance of the <tt>Exception</tt> class. The simplest case is a new
--   exception type directly below the root:
--   
--   <pre>
--   data MyException = ThisException | ThatException
--       deriving (Show, Typeable)
--   
--   instance Exception MyException
--   </pre>
--   
--   The default method definitions in the <tt>Exception</tt> class do what
--   we need in this case. You can now throw and catch
--   <tt>ThisException</tt> and <tt>ThatException</tt> as exceptions:
--   
--   <pre>
--   *Main&gt; throw ThisException `catch` \e -&gt; putStrLn ("Caught " ++ show (e :: MyException))
--   Caught ThisException
--   </pre>
--   
--   In more complicated examples, you may wish to define a whole hierarchy
--   of exceptions:
--   
--   <pre>
--   ---------------------------------------------------------------------
--   -- Make the root exception type for all the exceptions in a compiler
--   
--   data SomeCompilerException = forall e . Exception e =&gt; SomeCompilerException e
--       deriving Typeable
--   
--   instance Show SomeCompilerException where
--       show (SomeCompilerException e) = show e
--   
--   instance Exception SomeCompilerException
--   
--   compilerExceptionToException :: Exception e =&gt; e -&gt; SomeException
--   compilerExceptionToException = toException . SomeCompilerException
--   
--   compilerExceptionFromException :: Exception e =&gt; SomeException -&gt; Maybe e
--   compilerExceptionFromException x = do
--       SomeCompilerException a &lt;- fromException x
--       cast a
--   
--   ---------------------------------------------------------------------
--   -- Make a subhierarchy for exceptions in the frontend of the compiler
--   
--   data SomeFrontendException = forall e . Exception e =&gt; SomeFrontendException e
--       deriving Typeable
--   
--   instance Show SomeFrontendException where
--       show (SomeFrontendException e) = show e
--   
--   instance Exception SomeFrontendException where
--       toException = compilerExceptionToException
--       fromException = compilerExceptionFromException
--   
--   frontendExceptionToException :: Exception e =&gt; e -&gt; SomeException
--   frontendExceptionToException = toException . SomeFrontendException
--   
--   frontendExceptionFromException :: Exception e =&gt; SomeException -&gt; Maybe e
--   frontendExceptionFromException x = do
--       SomeFrontendException a &lt;- fromException x
--       cast a
--   
--   ---------------------------------------------------------------------
--   -- Make an exception type for a particular frontend compiler exception
--   
--   data MismatchedParentheses = MismatchedParentheses
--       deriving (Typeable, Show)
--   
--   instance Exception MismatchedParentheses where
--       toException   = frontendExceptionToException
--       fromException = frontendExceptionFromException
--   </pre>
--   
--   We can now catch a <tt>MismatchedParentheses</tt> exception as
--   <tt>MismatchedParentheses</tt>, <tt>SomeFrontendException</tt> or
--   <tt>SomeCompilerException</tt>, but not other types, e.g.
--   <tt>IOException</tt>:
--   
--   <pre>
--   *Main&gt; throw MismatchedParentheses <tt>catch</tt> e -&gt; putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
--   Caught MismatchedParentheses
--   *Main&gt; throw MismatchedParentheses <tt>catch</tt> e -&gt; putStrLn ("Caught " ++ show (e :: SomeFrontendException))
--   Caught MismatchedParentheses
--   *Main&gt; throw MismatchedParentheses <tt>catch</tt> e -&gt; putStrLn ("Caught " ++ show (e :: SomeCompilerException))
--   Caught MismatchedParentheses
--   *Main&gt; throw MismatchedParentheses <tt>catch</tt> e -&gt; putStrLn ("Caught " ++ show (e :: IOException))
--   *** Exception: MismatchedParentheses
--   </pre>
class (Typeable * e, Show e) => Exception e
toException :: e -> SomeException
fromException :: SomeException -> Maybe e

-- | Render this exception value in a human-friendly manner.
--   
--   Default implementation: <tt><a>show</a></tt>.
displayException :: e -> String

-- | The class <a>Typeable</a> allows a concrete representation of a type
--   to be calculated.
class Typeable k (a :: k)

-- | The <tt>SomeException</tt> type is the root of the exception type
--   hierarchy. When an exception of type <tt>e</tt> is thrown, behind the
--   scenes it is encapsulated in a <tt>SomeException</tt>.
data SomeException :: *

-- | Exceptions that occur in the <tt>IO</tt> monad. An
--   <tt>IOException</tt> records a more specific error type, a descriptive
--   string and maybe the handle that was used when the error was flagged.
data IOException :: *

-- | Generalized version of <a>throwIO</a>.
throwIO :: (MonadBase IO m, Exception e) => e -> m a

-- | Generalized version of <a>try</a>.
--   
--   Note, when the given computation throws an exception any monadic side
--   effects in <tt>m</tt> will be discarded.
try :: (MonadBaseControl IO m, Exception e) => m a -> m (Either e a)

-- | Generalized version of <a>tryJust</a>.
--   
--   Note, when the given computation throws an exception any monadic side
--   effects in <tt>m</tt> will be discarded.
tryJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> m a -> m (Either b a)

-- | Generalized version of <a>catch</a>.
--   
--   Note, when the given computation throws an exception any monadic side
--   effects in <tt>m</tt> will be discarded.
catch :: (MonadBaseControl IO m, Exception e) => m a -> (e -> m a) -> m a

-- | Generalized version of <a>catchJust</a>.
--   
--   Note, when the given computation throws an exception any monadic side
--   effects in <tt>m</tt> will be discarded.
catchJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m a

-- | Generalized version of <a>handle</a>.
--   
--   Note, when the given computation throws an exception any monadic side
--   effects in <tt>m</tt> will be discarded.
handle :: (MonadBaseControl IO m, Exception e) => (e -> m a) -> m a -> m a

-- | Generalized version of <a>handleJust</a>.
--   
--   Note, when the given computation throws an exception any monadic side
--   effects in <tt>m</tt> will be discarded.
handleJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> (b -> m a) -> m a -> m a

-- | Generalized version of <a>bracket</a>.
--   
--   Note:
--   
--   <ul>
--   <li>When the "acquire" or "release" computations throw exceptions any
--   monadic side effects in <tt>m</tt> will be discarded.</li>
--   <li>When the "in-between" computation throws an exception any monadic
--   side effects in <tt>m</tt> produced by that computation will be
--   discarded but the side effects of the "acquire" or "release"
--   computations will be retained.</li>
--   <li>Also, any monadic side effects in <tt>m</tt> of the "release"
--   computation will be discarded; it is run only for its side effects in
--   <tt>IO</tt>.</li>
--   </ul>
--   
--   Note that when your <tt>acquire</tt> and <tt>release</tt> computations
--   are of type <a>IO</a> it will be more efficient to write:
--   
--   <pre>
--   <tt>liftBaseOp</tt> (<a>bracket</a> acquire release)
--   </pre>
bracket :: MonadBaseControl IO m => m a -> (a -> m b) -> (a -> m c) -> m c

-- | Generalized version of <a>bracket_</a>.
--   
--   Note any monadic side effects in <tt>m</tt> of <i>both</i> the
--   "acquire" and "release" computations will be discarded. To keep the
--   monadic side effects of the "acquire" computation, use <a>bracket</a>
--   with constant functions instead.
--   
--   Note that when your <tt>acquire</tt> and <tt>release</tt> computations
--   are of type <a>IO</a> it will be more efficient to write:
--   
--   <pre>
--   <a>liftBaseOp_</a> (<a>bracket_</a> acquire release)
--   </pre>
bracket_ :: MonadBaseControl IO m => m a -> m b -> m c -> m c

-- | Generalized version of <a>bracketOnError</a>.
--   
--   Note:
--   
--   <ul>
--   <li>When the "acquire" or "release" computations throw exceptions any
--   monadic side effects in <tt>m</tt> will be discarded.</li>
--   <li>When the "in-between" computation throws an exception any monadic
--   side effects in <tt>m</tt> produced by that computation will be
--   discarded but the side effects of the "acquire" computation will be
--   retained.</li>
--   <li>Also, any monadic side effects in <tt>m</tt> of the "release"
--   computation will be discarded; it is run only for its side effects in
--   <tt>IO</tt>.</li>
--   </ul>
--   
--   Note that when your <tt>acquire</tt> and <tt>release</tt> computations
--   are of type <a>IO</a> it will be more efficient to write:
--   
--   <pre>
--   <tt>liftBaseOp</tt> (<a>bracketOnError</a> acquire release)
--   </pre>
bracketOnError :: MonadBaseControl IO m => m a -> (a -> m b) -> (a -> m c) -> m c

-- | Generalized version of <a>onException</a>.
--   
--   Note, any monadic side effects in <tt>m</tt> of the "afterward"
--   computation will be discarded.
onException :: MonadBaseControl IO m => m a -> m b -> m a

-- | Generalized version of <a>finally</a>.
--   
--   Note, any monadic side effects in <tt>m</tt> of the "afterward"
--   computation will be discarded.
finally :: MonadBaseControl IO m => m a -> m b -> m a

-- | Generalized version of <a>mask</a>.
mask :: MonadBaseControl IO m => ((forall a. m a -> m a) -> m b) -> m b

-- | Generalized version of <a>mask_</a>.
mask_ :: MonadBaseControl IO m => m a -> m a

-- | Generalized version of <a>uninterruptibleMask</a>.
uninterruptibleMask :: MonadBaseControl IO m => ((forall a. m a -> m a) -> m b) -> m b

-- | Generalized version of <a>uninterruptibleMask_</a>.
uninterruptibleMask_ :: MonadBaseControl IO m => m a -> m a

-- | File and directory names are values of type <a>String</a>, whose
--   precise meaning is operating system dependent. Files can be opened,
--   yielding a handle which can then be used to operate on the contents of
--   that file.
type FilePath = String

-- | Combine two paths with a path separator. If the second path starts
--   with a path separator or a drive letter, then it returns the second.
--   The intention is that <tt>readFile (dir <a>&lt;/&gt;</a> file)</tt>
--   will access the same file as <tt>setCurrentDirectory dir; readFile
--   file</tt>.
--   
--   <pre>
--   Posix:   "/directory" &lt;/&gt; "file.ext" == "/directory/file.ext"
--   Windows: "/directory" &lt;/&gt; "file.ext" == "/directory\\file.ext"
--            "directory" &lt;/&gt; "/file.ext" == "/file.ext"
--   Valid x =&gt; (takeDirectory x &lt;/&gt; takeFileName x) `equalFilePath` x
--   </pre>
--   
--   Combined:
--   
--   <pre>
--   Posix:   "/" &lt;/&gt; "test" == "/test"
--   Posix:   "home" &lt;/&gt; "bob" == "home/bob"
--   Posix:   "x:" &lt;/&gt; "foo" == "x:/foo"
--   Windows: "C:\\foo" &lt;/&gt; "bar" == "C:\\foo\\bar"
--   Windows: "home" &lt;/&gt; "bob" == "home\\bob"
--   </pre>
--   
--   Not combined:
--   
--   <pre>
--   Posix:   "home" &lt;/&gt; "/bob" == "/bob"
--   Windows: "home" &lt;/&gt; "C:\\bob" == "C:\\bob"
--   </pre>
--   
--   Not combined (tricky):
--   
--   On Windows, if a filepath starts with a single slash, it is relative
--   to the root of the current drive. In [1], this is (confusingly)
--   referred to as an absolute path. The current behavior of
--   <a>&lt;/&gt;</a> is to never combine these forms.
--   
--   <pre>
--   Windows: "home" &lt;/&gt; "/bob" == "/bob"
--   Windows: "home" &lt;/&gt; "\\bob" == "\\bob"
--   Windows: "C:\\home" &lt;/&gt; "\\bob" == "\\bob"
--   </pre>
--   
--   On Windows, from [1]: "If a file name begins with only a disk
--   designator but not the backslash after the colon, it is interpreted as
--   a relative path to the current directory on the drive with the
--   specified letter." The current behavior of <a>&lt;/&gt;</a> is to
--   never combine these forms.
--   
--   <pre>
--   Windows: "D:\\foo" &lt;/&gt; "C:bar" == "C:bar"
--   Windows: "C:\\foo" &lt;/&gt; "C:bar" == "C:bar"
--   </pre>
(</>) :: FilePath -> FilePath -> FilePath
infixr 5 </>

-- | Add an extension, even if there is already one there, equivalent to
--   <a>addExtension</a>.
--   
--   <pre>
--   "/directory/path" &lt;.&gt; "ext" == "/directory/path.ext"
--   "/directory/path" &lt;.&gt; ".ext" == "/directory/path.ext"
--   </pre>
(<.>) :: FilePath -> String -> FilePath
infixr 7 <.>

-- | A <a>String</a> is a list of characters. String constants in Haskell
--   are values of type <a>String</a>.
type String = [Char]

-- | Like <a>hashWithSalt</a>, but no salt is used. The default
--   implementation uses <a>hashWithSalt</a> with some default salt.
--   Instances might want to implement this method to provide a more
--   efficient implementation than the default implementation.
hash :: Hashable a => a -> Int

-- | Return a hash value for the argument, using the given salt.
--   
--   The general contract of <a>hashWithSalt</a> is:
--   
--   <ul>
--   <li>If two values are equal according to the <a>==</a> method, then
--   applying the <a>hashWithSalt</a> method on each of the two values
--   <i>must</i> produce the same integer result if the same salt is used
--   in each case.</li>
--   <li>It is <i>not</i> required that if two values are unequal according
--   to the <a>==</a> method, then applying the <a>hashWithSalt</a> method
--   on each of the two values must produce distinct integer results.
--   However, the programmer should be aware that producing distinct
--   integer results for unequal values may improve the performance of
--   hashing-based data structures.</li>
--   <li>This method can be used to compute different hash values for the
--   same input by providing a different salt in each application of the
--   method. This implies that any instance that defines
--   <a>hashWithSalt</a> <i>must</i> make use of the salt in its
--   implementation.</li>
--   </ul>
hashWithSalt :: Hashable a => Int -> a -> Int
readArgs :: (MonadIO m, ArgumentTuple a) => m a


-- | BasicPrelude mostly re-exports several key libraries in their
--   entirety. The exception is Data.List, where various functions are
--   replaced by similar versions that are either generalized, operate on
--   Text, or are implemented strictly.
module BasicPrelude

-- | Data structures that can be folded.
--   
--   For example, given a data type
--   
--   <pre>
--   data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--   </pre>
--   
--   a suitable instance would be
--   
--   <pre>
--   instance Foldable Tree where
--      foldMap f Empty = mempty
--      foldMap f (Leaf x) = f x
--      foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
--   </pre>
--   
--   This is suitable even for abstract types, as the monoid is assumed to
--   satisfy the monoid laws. Alternatively, one could define
--   <tt>foldr</tt>:
--   
--   <pre>
--   instance Foldable Tree where
--      foldr f z Empty = z
--      foldr f z (Leaf x) = f x z
--      foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
--   </pre>
--   
--   <tt>Foldable</tt> instances are expected to satisfy the following
--   laws:
--   
--   <pre>
--   foldr f z t = appEndo (foldMap (Endo . f) t ) z
--   </pre>
--   
--   <pre>
--   foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
--   </pre>
--   
--   <pre>
--   fold = foldMap id
--   </pre>
--   
--   <tt>sum</tt>, <tt>product</tt>, <tt>maximum</tt>, and <tt>minimum</tt>
--   should all be essentially equivalent to <tt>foldMap</tt> forms, such
--   as
--   
--   <pre>
--   sum = getSum . foldMap Sum
--   </pre>
--   
--   but may be less defined.
--   
--   If the type is also a <a>Functor</a> instance, it should satisfy
--   
--   <pre>
--   foldMap f = fold . fmap f
--   </pre>
--   
--   which implies that
--   
--   <pre>
--   foldMap f . fmap g = foldMap (f . g)
--   </pre>
class Foldable (t :: * -> *)

-- | Map each element of the structure to a monoid, and combine the
--   results.
foldMap :: Monoid m => (a -> m) -> t a -> m

-- | Right-associative fold of a structure.
--   
--   In the case of lists, <a>foldr</a>, when applied to a binary operator,
--   a starting value (typically the right-identity of the operator), and a
--   list, reduces the list using the binary operator, from right to left:
--   
--   <pre>
--   foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
--   </pre>
--   
--   Note that, since the head of the resulting expression is produced by
--   an application of the operator to the first element of the list,
--   <a>foldr</a> can produce a terminating expression from an infinite
--   list.
--   
--   For a general <a>Foldable</a> structure this should be semantically
--   identical to,
--   
--   <pre>
--   foldr f z = <a>foldr</a> f z . <a>toList</a>
--   </pre>
foldr :: (a -> b -> b) -> b -> t a -> b

-- | Right-associative fold of a structure, but with strict application of
--   the operator.
foldr' :: (a -> b -> b) -> b -> t a -> b

-- | Left-associative fold of a structure.
--   
--   In the case of lists, <a>foldl</a>, when applied to a binary operator,
--   a starting value (typically the left-identity of the operator), and a
--   list, reduces the list using the binary operator, from left to right:
--   
--   <pre>
--   foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
--   </pre>
--   
--   Note that to produce the outermost application of the operator the
--   entire input list must be traversed. This means that <a>foldl'</a>
--   will diverge if given an infinite list.
--   
--   Also note that if you want an efficient left-fold, you probably want
--   to use <a>foldl'</a> instead of <a>foldl</a>. The reason for this is
--   that latter does not force the "inner" results (e.g. <tt>z <tt>f</tt>
--   x1</tt> in the above example) before applying them to the operator
--   (e.g. to <tt>(<tt>f</tt> x2)</tt>). This results in a thunk chain
--   <tt>O(n)</tt> elements long, which then must be evaluated from the
--   outside-in.
--   
--   For a general <a>Foldable</a> structure this should be semantically
--   identical to,
--   
--   <pre>
--   foldl f z = <a>foldl</a> f z . <a>toList</a>
--   </pre>
foldl :: (b -> a -> b) -> b -> t a -> b

-- | Left-associative fold of a structure but with strict application of
--   the operator.
--   
--   This ensures that each step of the fold is forced to weak head normal
--   form before being applied, avoiding the collection of thunks that
--   would otherwise occur. This is often what you want to strictly reduce
--   a finite list to a single, monolithic result (e.g. <a>length</a>).
--   
--   For a general <a>Foldable</a> structure this should be semantically
--   identical to,
--   
--   <pre>
--   foldl f z = <a>foldl'</a> f z . <a>toList</a>
--   </pre>
foldl' :: (b -> a -> b) -> b -> t a -> b

-- | A variant of <a>foldr</a> that has no base case, and thus may only be
--   applied to non-empty structures.
--   
--   <pre>
--   <a>foldr1</a> f = <a>foldr1</a> f . <a>toList</a>
--   </pre>
foldr1 :: (a -> a -> a) -> t a -> a

-- | A variant of <a>foldl</a> that has no base case, and thus may only be
--   applied to non-empty structures.
--   
--   <pre>
--   <a>foldl1</a> f = <a>foldl1</a> f . <a>toList</a>
--   </pre>
foldl1 :: (a -> a -> a) -> t a -> a

-- | Test whether the structure is empty. The default implementation is
--   optimized for structures that are similar to cons-lists, because there
--   is no general way to do better.
null :: t a -> Bool

-- | Returns the size/length of a finite structure as an <a>Int</a>. The
--   default implementation is optimized for structures that are similar to
--   cons-lists, because there is no general way to do better.
length :: t a -> Int

-- | Does the element occur in the structure?
elem :: Eq a => a -> t a -> Bool

-- | The largest element of a non-empty structure.
maximum :: Ord a => t a -> a

-- | The least element of a non-empty structure.
minimum :: Ord a => t a -> a

-- | Does the element occur in the structure?
elem :: Foldable t => forall a. Eq a => a -> t a -> Bool

-- | The largest element of a non-empty structure.
maximum :: Foldable t => forall a. Ord a => t a -> a

-- | The least element of a non-empty structure.
minimum :: Foldable t => forall a. Ord a => t a -> a

-- | Functors representing data structures that can be traversed from left
--   to right.
--   
--   A definition of <a>traverse</a> must satisfy the following laws:
--   
--   <ul>
--   <li><i><i>naturality</i></i> <tt>t . <a>traverse</a> f =
--   <a>traverse</a> (t . f)</tt> for every applicative transformation
--   <tt>t</tt></li>
--   <li><i><i>identity</i></i> <tt><a>traverse</a> Identity =
--   Identity</tt></li>
--   <li><i><i>composition</i></i> <tt><a>traverse</a> (Compose .
--   <a>fmap</a> g . f) = Compose . <a>fmap</a> (<a>traverse</a> g) .
--   <a>traverse</a> f</tt></li>
--   </ul>
--   
--   A definition of <a>sequenceA</a> must satisfy the following laws:
--   
--   <ul>
--   <li><i><i>naturality</i></i> <tt>t . <a>sequenceA</a> =
--   <a>sequenceA</a> . <a>fmap</a> t</tt> for every applicative
--   transformation <tt>t</tt></li>
--   <li><i><i>identity</i></i> <tt><a>sequenceA</a> . <a>fmap</a> Identity
--   = Identity</tt></li>
--   <li><i><i>composition</i></i> <tt><a>sequenceA</a> . <a>fmap</a>
--   Compose = Compose . <a>fmap</a> <a>sequenceA</a> .
--   <a>sequenceA</a></tt></li>
--   </ul>
--   
--   where an <i>applicative transformation</i> is a function
--   
--   <pre>
--   t :: (Applicative f, Applicative g) =&gt; f a -&gt; g a
--   </pre>
--   
--   preserving the <a>Applicative</a> operations, i.e.
--   
--   <ul>
--   <li><pre>t (<a>pure</a> x) = <a>pure</a> x</pre></li>
--   <li><pre>t (x <a>&lt;*&gt;</a> y) = t x <a>&lt;*&gt;</a> t
--   y</pre></li>
--   </ul>
--   
--   and the identity functor <tt>Identity</tt> and composition of functors
--   <tt>Compose</tt> are defined as
--   
--   <pre>
--   newtype Identity a = Identity a
--   
--   instance Functor Identity where
--     fmap f (Identity x) = Identity (f x)
--   
--   instance Applicative Identity where
--     pure x = Identity x
--     Identity f &lt;*&gt; Identity x = Identity (f x)
--   
--   newtype Compose f g a = Compose (f (g a))
--   
--   instance (Functor f, Functor g) =&gt; Functor (Compose f g) where
--     fmap f (Compose x) = Compose (fmap (fmap f) x)
--   
--   instance (Applicative f, Applicative g) =&gt; Applicative (Compose f g) where
--     pure x = Compose (pure (pure x))
--     Compose f &lt;*&gt; Compose x = Compose ((&lt;*&gt;) &lt;$&gt; f &lt;*&gt; x)
--   </pre>
--   
--   (The naturality law is implied by parametricity.)
--   
--   Instances are similar to <a>Functor</a>, e.g. given a data type
--   
--   <pre>
--   data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--   </pre>
--   
--   a suitable instance would be
--   
--   <pre>
--   instance Traversable Tree where
--      traverse f Empty = pure Empty
--      traverse f (Leaf x) = Leaf &lt;$&gt; f x
--      traverse f (Node l k r) = Node &lt;$&gt; traverse f l &lt;*&gt; f k &lt;*&gt; traverse f r
--   </pre>
--   
--   This is suitable even for abstract types, as the laws for
--   <a>&lt;*&gt;</a> imply a form of associativity.
--   
--   The superclass instances should satisfy the following:
--   
--   <ul>
--   <li>In the <a>Functor</a> instance, <a>fmap</a> should be equivalent
--   to traversal with the identity applicative functor
--   (<a>fmapDefault</a>).</li>
--   <li>In the <a>Foldable</a> instance, <a>foldMap</a> should be
--   equivalent to traversal with a constant applicative functor
--   (<a>foldMapDefault</a>).</li>
--   </ul>
class (Functor t, Foldable t) => Traversable (t :: * -> *)

-- | Map each element of a structure to an action, evaluate these actions
--   from left to right, and collect the results. For a version that
--   ignores the results see <a>traverse_</a>.
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

-- | Evaluate each action in the structure from left to right, and and
--   collect the results. For a version that ignores the results see
--   <a>sequenceA_</a>.
sequenceA :: Applicative f => t (f a) -> f (t a)

-- | Map each element of a structure to a monadic action, evaluate these
--   actions from left to right, and collect the results. For a version
--   that ignores the results see <a>mapM_</a>.
mapM :: Monad m => (a -> m b) -> t a -> m (t b)

-- | Evaluate each monadic action in the structure from left to right, and
--   collect the results. For a version that ignores the results see
--   <a>sequence_</a>.
sequence :: Monad m => t (m a) -> m (t a)

-- | <pre>
--   map = fmap
--   </pre>
map :: (Functor f) => (a -> b) -> f a -> f b

-- | <pre>
--   empty = mempty
--   </pre>

-- | <i>Deprecated: Use mempty</i>
empty :: Monoid w => w

-- | <pre>
--   (++) = mappend
--   </pre>
(++) :: Monoid w => w -> w -> w
infixr 5 ++

-- | <pre>
--   concat = mconcat
--   </pre>
concat :: Monoid w => [w] -> w

-- | <pre>
--   intercalate = mconcat .: intersperse
--   </pre>
intercalate :: Monoid w => w -> [w] -> w

-- | Compute the sum of a finite list of numbers.
sum :: (Foldable f, Num a) => f a -> a

-- | Compute the product of a finite list of numbers.
product :: (Foldable f, Num a) => f a -> a

-- | Convert a value to readable Text
tshow :: Show a => a -> Text

-- | Convert a value to readable IsString
--   
--   Since 0.3.12
fromShow :: (Show a, IsString b) => a -> b

-- | Parse Text to a value
read :: Read a => Text -> a

-- | The readIO function is similar to read except that it signals parse
--   failure to the IO monad instead of terminating the program.
readIO :: Read a => Text -> IO a

-- | Read a file and return the contents of the file as Text. The entire
--   file is read strictly.
readFile :: FilePath -> IO Text

-- | Write Text to a file. The file is truncated to zero length before
--   writing begins.
writeFile :: FilePath -> Text -> IO ()

-- | Write Text to the end of a file.
appendFile :: FilePath -> Text -> IO ()

-- | <i>O(n)</i> Breaks a <a>Text</a> up into a list of <a>Text</a>s at
--   newline <a>Char</a>s. The resulting strings do not contain newlines.
lines :: Text -> [Text]

-- | <i>O(n)</i> Breaks a <a>Text</a> up into a list of words, delimited by
--   <a>Char</a>s representing white space.
words :: Text -> [Text]

-- | <i>O(n)</i> Joins lines, after appending a terminating newline to
--   each.
unlines :: [Text] -> Text

-- | <i>O(n)</i> Joins words using single space characters.
unwords :: [Text] -> Text
textToString :: Text -> String
ltextToString :: LText -> String

-- | This function assumes file paths are encoded in UTF8. If it cannot
--   decode the <a>FilePath</a>, the result is just an approximation.
--   
--   Since 0.3.13

-- | <i>Deprecated: Use Data.Text.pack</i>
fpToText :: FilePath -> Text

-- | Since 0.3.13

-- | <i>Deprecated: Use Data.Text.unpack</i>
fpFromText :: Text -> FilePath

-- | Since 0.3.13

-- | <i>Deprecated: Use id</i>
fpToString :: FilePath -> String

-- | Encode text using UTF-8 encoding.
encodeUtf8 :: Text -> ByteString

-- | Note that this is <i>not</i> the standard
--   <tt>Data.Text.Encoding.decodeUtf8</tt>. That function will throw
--   impure exceptions on any decoding errors. This function instead uses
--   <tt>decodeLenient</tt>.
decodeUtf8 :: ByteString -> Text

-- | Read a single line of user input from <a>stdin</a>.
getLine :: IO Text

-- | Lazily read all user input on <a>stdin</a> as a single string.
getContents :: IO Text

-- | The <a>interact</a> function takes a function of type <tt>Text -&gt;
--   Text</tt> as its argument. The entire input from the standard input
--   device is passed (lazily) to this function as its argument, and the
--   resulting string is output on the standard output device.
interact :: (Text -> Text) -> IO ()

-- | <tt><a>gcd</a> x y</tt> is the non-negative factor of both <tt>x</tt>
--   and <tt>y</tt> of which every common factor of <tt>x</tt> and
--   <tt>y</tt> is also a factor; for example <tt><a>gcd</a> 4 2 = 2</tt>,
--   <tt><a>gcd</a> (-4) 6 = 2</tt>, <tt><a>gcd</a> 0 4</tt> = <tt>4</tt>.
--   <tt><a>gcd</a> 0 0</tt> = <tt>0</tt>. (That is, the common divisor
--   that is "greatest" in the divisibility preordering.)
--   
--   Note: Since for signed fixed-width integer types, <tt><a>abs</a>
--   <a>minBound</a> &lt; 0</tt>, the result may be negative if one of the
--   arguments is <tt><a>minBound</a></tt> (and necessarily is if the other
--   is <tt>0</tt> or <tt><a>minBound</a></tt>) for such types.
gcd :: Integral a => a -> a -> a

-- | <tt><a>lcm</a> x y</tt> is the smallest positive integer that both
--   <tt>x</tt> and <tt>y</tt> divide.
lcm :: Integral a => a -> a -> a

-- | Conversion of values to readable <a>String</a>s.
--   
--   Derived instances of <a>Show</a> have the following properties, which
--   are compatible with derived instances of <a>Read</a>:
--   
--   <ul>
--   <li>The result of <a>show</a> is a syntactically correct Haskell
--   expression containing only constants, given the fixity declarations in
--   force at the point where the type is declared. It contains only the
--   constructor names defined in the data type, parentheses, and spaces.
--   When labelled constructor fields are used, braces, commas, field
--   names, and equal signs are also used.</li>
--   <li>If the constructor is defined to be an infix operator, then
--   <a>showsPrec</a> will produce infix applications of the
--   constructor.</li>
--   <li>the representation will be enclosed in parentheses if the
--   precedence of the top-level constructor in <tt>x</tt> is less than
--   <tt>d</tt> (associativity is ignored). Thus, if <tt>d</tt> is
--   <tt>0</tt> then the result is never surrounded in parentheses; if
--   <tt>d</tt> is <tt>11</tt> it is always surrounded in parentheses,
--   unless it is an atomic expression.</li>
--   <li>If the constructor is defined using record syntax, then
--   <a>show</a> will produce the record-syntax form, with the fields given
--   in the same order as the original declaration.</li>
--   </ul>
--   
--   For example, given the declarations
--   
--   <pre>
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   </pre>
--   
--   the derived instance of <a>Show</a> is equivalent to
--   
--   <pre>
--   instance (Show a) =&gt; Show (Tree a) where
--   
--          showsPrec d (Leaf m) = showParen (d &gt; app_prec) $
--               showString "Leaf " . showsPrec (app_prec+1) m
--            where app_prec = 10
--   
--          showsPrec d (u :^: v) = showParen (d &gt; up_prec) $
--               showsPrec (up_prec+1) u .
--               showString " :^: "      .
--               showsPrec (up_prec+1) v
--            where up_prec = 5
--   </pre>
--   
--   Note that right-associativity of <tt>:^:</tt> is ignored. For example,
--   
--   <ul>
--   <li><tt><a>show</a> (Leaf 1 :^: Leaf 2 :^: Leaf 3)</tt> produces the
--   string <tt>"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"</tt>.</li>
--   </ul>
class Show a

-- | Convert a value to a readable <a>String</a>.
--   
--   <a>showsPrec</a> should satisfy the law
--   
--   <pre>
--   showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)
--   </pre>
--   
--   Derived instances of <a>Read</a> and <a>Show</a> satisfy the
--   following:
--   
--   <ul>
--   <li><tt>(x,"")</tt> is an element of <tt>(<a>readsPrec</a> d
--   (<a>showsPrec</a> d x ""))</tt>.</li>
--   </ul>
--   
--   That is, <a>readsPrec</a> parses the string produced by
--   <a>showsPrec</a>, and delivers the value that <a>showsPrec</a> started
--   with.
showsPrec :: Int -> a -> ShowS

-- | A specialised variant of <a>showsPrec</a>, using precedence context
--   zero, and returning an ordinary <a>String</a>.
show :: a -> String

-- | The method <a>showList</a> is provided to allow the programmer to give
--   a specialised way of showing lists of values. For example, this is
--   used by the predefined <a>Show</a> instance of the <a>Char</a> type,
--   where values of type <a>String</a> should be shown in double quotes,
--   rather than between square brackets.
showList :: [a] -> ShowS

-- | The <tt>shows</tt> functions return a function that prepends the
--   output <a>String</a> to an existing <a>String</a>. This allows
--   constant-time concatenation of results using function composition.
type ShowS = String -> String

-- | equivalent to <a>showsPrec</a> with a precedence of 0.
shows :: Show a => a -> ShowS

-- | utility function converting a <a>Char</a> to a show function that
--   simply prepends the character unchanged.
showChar :: Char -> ShowS

-- | utility function converting a <a>String</a> to a show function that
--   simply prepends the string unchanged.
showString :: String -> ShowS

-- | utility function that surrounds the inner show function with
--   parentheses when the <a>Bool</a> parameter is <a>True</a>.
showParen :: Bool -> ShowS -> ShowS

-- | A parser for a type <tt>a</tt>, represented as a function that takes a
--   <a>String</a> and returns a list of possible parses as
--   <tt>(a,<a>String</a>)</tt> pairs.
--   
--   Note that this kind of backtracking parser is very inefficient;
--   reading a large structure may be quite slow (cf <a>ReadP</a>).
type ReadS a = String -> [(a, String)]

-- | attempts to parse a value from the front of the string, returning a
--   list of (parsed value, remaining string) pairs. If there is no
--   successful parse, the returned list is empty.
--   
--   Derived instances of <a>Read</a> and <a>Show</a> satisfy the
--   following:
--   
--   <ul>
--   <li><tt>(x,"")</tt> is an element of <tt>(<a>readsPrec</a> d
--   (<a>showsPrec</a> d x ""))</tt>.</li>
--   </ul>
--   
--   That is, <a>readsPrec</a> parses the string produced by
--   <a>showsPrec</a>, and delivers the value that <a>showsPrec</a> started
--   with.
readsPrec :: Read a => Int -> ReadS a

-- | The method <a>readList</a> is provided to allow the programmer to give
--   a specialised way of parsing lists of values. For example, this is
--   used by the predefined <a>Read</a> instance of the <a>Char</a> type,
--   where values of type <a>String</a> should be are expected to use
--   double quotes, rather than square brackets.
readList :: Read a => ReadS [a]

-- | equivalent to <a>readsPrec</a> with a precedence of 0.
reads :: Read a => ReadS a

-- | <tt><a>readParen</a> <a>True</a> p</tt> parses what <tt>p</tt> parses,
--   but surrounded with parentheses.
--   
--   <tt><a>readParen</a> <a>False</a> p</tt> parses what <tt>p</tt>
--   parses, but optionally surrounded with parentheses.
readParen :: Bool -> ReadS a -> ReadS a

-- | The <a>lex</a> function reads a single lexeme from the input,
--   discarding initial white space, and returning the characters that
--   constitute the lexeme. If the input string contains only white space,
--   <a>lex</a> returns a single successful `lexeme' consisting of the
--   empty string. (Thus <tt><a>lex</a> "" = [("","")]</tt>.) If there is
--   no legal lexeme at the beginning of the input string, <a>lex</a> fails
--   (i.e. returns <tt>[]</tt>).
--   
--   This lexer is not completely faithful to the Haskell lexical syntax in
--   the following respects:
--   
--   <ul>
--   <li>Qualified names are not handled properly</li>
--   <li>Octal and hexadecimal numerics are not recognized as a single
--   token</li>
--   <li>Comments are not treated properly</li>
--   </ul>
lex :: ReadS String
readMay :: Read a => Text -> Maybe a

-- | Write a character to the standard output device (same as
--   <a>hPutChar</a> <a>stdout</a>).
putChar :: Char -> IO ()

-- | Read a character from the standard input device (same as
--   <a>hGetChar</a> <a>stdin</a>).
getChar :: IO Char

-- | The <a>readLn</a> function combines <a>getLine</a> and <a>readIO</a>.
readLn :: Read a => IO a