This file is indexed.

/usr/include/Aria/ArLaser.h is in libaria-dev 2.8.0+repack-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/*
Adept MobileRobots Robotics Interface for Applications (ARIA)
Copyright (C) 2004, 2005 ActivMedia Robotics LLC
Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc.
Copyright (C) 2011, 2012, 2013 Adept Technology

     This program is free software; you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation; either version 2 of the License, or
     (at your option) any later version.

     This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     GNU General Public License for more details.

     You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software
     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

If you wish to redistribute ARIA under different terms, contact 
Adept MobileRobots for information about a commercial version of ARIA at 
robots@mobilerobots.com or 
Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960
*/
#ifndef ARRANGEDEVICELASER_H
#define ARRANGEDEVICELASER_H

#include "ariaTypedefs.h"
#include "ArRangeDeviceThreaded.h"

class ArDeviceConnection;



/** Range device interface specialized for laser rangefinder sensors.

   This class is a subclass of ArRangeDeviceThreaded meant for any
   planar scanning lasers, like the SICK lasers, Hokoyo URG series
   lasers, etc.  Unlike other base classes this contains the superset
   of everything that may need to be configured on any of the sensors,
   even though some subclasses may only provide some of those parameters
   and features. (This allows the configuration interfaces and parameter
   files to work for any laser type.)

   Normally, a program does not define or create any ArLaser objects
   directly. Instead,
   objects (device-specific subclasses of ArLaser) are created by ArLaserConnector::connectLasers()
   based on the robot parameter file and command line arguments, and
   the resulting ArLaser objects are stored in the ArRobot object
   Use ArRobot::getLaserMap() or ArRobot::findLaser() to access the ArLaser
   objects after calling ArLaserConnector::connectLasers(). 

   The
   canSetDegrees(), canChooseRange(), canSetIncrement(),
   canChooseIncrement(), canChooseUnits(), canChooseReflectorBits(),
   canSetPowerControlled(), canChooseStartBaud(), and canChooseAutoBaud()  and
other similar functions are used by ArLaserConnector to test if a parameter
   is relevant to a specific laser type.


   @par Creating New ArLaser Subclasses
   If you want to create your own new class to implement a sensor
   not in ARIA, create a subclass of this class.  ArUrg
   is the best current example of this.
   Call the laserAllow* 
   functions in its constructor depending on what features
   that laser sensor has (use the laserAllowSet* functions if it is possible
   to set any value in a range, or use the laserAllow*Choices functions if it
   is only possible to set specific values).
   You may also want to use the override the laserSetName
   call so that your own mutexes will get named appropriately.  You
   can use laserSetDefaultTcpPort to set the default TCP port (which
   you should do if the laser normally is connected to over TCP).  You
   can use laserSetDefaultPortType to the type of port normally used
   (so that if a port is passed in we can make a reasonable guess as
   to what type, so that people don't always have to pass in a type).
   Before you connect you should call laserPullUnsetParams to fill in
   the parameters that weren't set explicitly with the default ones in
   the .p files.  If the maximum range of the laser changes depending
   on settings (like on the LMS2xx) you should call
   laserSetAbsoluteMaxRange (after you call
   laserPullUnsetParamsFromRobot).  Implement the blockingConnect,
   asyncConnect, disconnect, isConnected, and isTryingToConnect
   calls... while calling laserConnect, laserFailedConnect,
   laserDisconnectNormally, and laserDisconnectOnError calls to let
   the laser base class call the appropriate callbacks.  You should
   use the laserCheckLostConnection in your runThread to see if the
   laser has lost connection (see its documentation for details).
   Then after you get your readings call laserProcessReadings to fill
   them from the raw buffer into the current and cumulative buffer
   (and call the reading callbacks).  The internal* calls are all
   internal to the base class and shouldn't have to be used by
   inheriting classes.  After you have created a new laser type you
   can add it to Aria by using the Aria::laserAddCreator call and then
   it will work like any of the built in laser types (see the
   documentation for that function for what the creator needs to do,
   and an example is ArLaserCreatorHelper in the ariaUtil.h/cpp
   files).  Similiarly if you need a new connection type (ie not
   serial or tcp) you implement them and then use
   Aria::deviceConnectionAddCreator call to add new types so they too
   will then be treated the same as the built in Aria ones
   (ArDeviceConnectionCreatorHelper in ariaUtil.h/cpp file is the
   example for that one).

   @since 2.7.0
   @ingroup ImportantClasses
   @ingroup DeviceClasses
**/

class ArLaser : public ArRangeDeviceThreaded
{
public:
  /// Constructor
  AREXPORT ArLaser(int laserNumber, 
		   const char *name, 
		   unsigned int absoluteMaxRange,
		   bool locationDependent = false,
		   bool appendLaserNumberToName = true);
  /// Destructor
  AREXPORT virtual ~ArLaser();

  /// Connect to the laser and block for the result
  AREXPORT virtual bool blockingConnect(void) = 0;
  /// Connect to the laser without blocking
  AREXPORT virtual bool asyncConnect(void) = 0;
  /// Disconnect from the laser
  AREXPORT virtual bool disconnect(void) = 0;
  /// See if the laser is connected
  AREXPORT virtual bool isConnected(void) = 0;  
  /// See if the laser is trying to connect
  AREXPORT virtual bool isTryingToConnect(void) = 0;  
  
  /// Sets the numter of seconds without a response until connection assumed lost
  AREXPORT virtual void setConnectionTimeoutSeconds(double seconds);
  /// Gets the number of seconds without a response until connection assumed lost
  AREXPORT virtual double getConnectionTimeoutSeconds(void);

  /// Gets the time data was last receieved
  ArTime getLastReadingTime(void) { return myLastReading; }
  
  /// Gets the number of laser readings received in the last second
  AREXPORT int getReadingCount(void);

  /// Sets the device connection
  AREXPORT virtual void setDeviceConnection(ArDeviceConnection *conn);
  /// Gets the device connection
  AREXPORT virtual ArDeviceConnection *getDeviceConnection(void);

  /// Sets the position of the sensor on the robot
  AREXPORT void setSensorPosition(double x, double y, double th, double z = 0);
  /// Sets the position of the sensor on the robot
  AREXPORT void setSensorPosition(ArPose pose, double z = 0);  
  /// Gets if the sensor pose has been set 
  bool hasSensorPosition(void) { return myHaveSensorPose; }
  /// Gets the position of the sensor on the robot
  ArPose getSensorPosition(void) { return mySensorPose; }
  /// Gets the X position of the sensor on the robot
  double getSensorPositionX(void) { return mySensorPose.getX(); }
  /// Gets the Y position of the sensor on the robot
  double getSensorPositionY(void) { return mySensorPose.getY(); }
  /// Gets the Z position of the sensor on the robot (0 is unknown)
  double getSensorPositionZ(void) { return mySensorZ; }
  /// Gets the heading of the sensor on the robot
  double getSensorPositionTh(void) { return mySensorPose.getTh(); }

  /// Gets the number of the laser this is
  int getLaserNumber(void) { return myLaserNumber; }
  
  /// Sets the log level that informational things are logged at
  void setInfoLogLevel(ArLog::LogLevel infoLogLevel) 
    { myInfoLogLevel = infoLogLevel; }
  /// Gets the log level that informational things are logged at
  ArLog::LogLevel getInfoLogLevel(void) 
    { return myInfoLogLevel; }

  /// Cumulative readings that are this close to current beams are discarded
  void setCumulativeCleanDist(double dist)
    {
      myCumulativeCleanDist = dist;
      myCumulativeCleanDistSquared = dist * dist;
    }
  /// Cumulative readings that are this close to current beams are discarded
  double getCumulativeCleanDist(void)
    { 
      return myCumulativeCleanDist; 
    }
  /// Cumulative readings are cleaned every this number of milliseconds
  void setCumulativeCleanInterval(int milliSeconds)
    {
      myCumulativeCleanInterval = milliSeconds;
    }
  /// Cumulative readings are cleaned every this number of milliseconds
  int getCumulativeCleanInterval(void)
    {
      return myCumulativeCleanInterval;
    }
  /// Offset for cumulative cleaning 
  void setCumulativeCleanOffset(int milliSeconds)
    {
      myCumulativeCleanOffset = milliSeconds;
    }
  /// Gets the offset for cumulative cleaning
  int getCumulativeCleanOffset(void)
    {
      return myCumulativeCleanOffset;
    }
  /// Resets when the cumulative cleaning happened (so offset can help)
  void resetLastCumulativeCleanTime(void)
    {
      myCumulativeLastClean.setToNow();
      myCumulativeLastClean.addMSec(myCumulativeCleanOffset);
    }

  /// Adds a series of degree at which to ignore readings (within 1 degree of nearest integer)
  AREXPORT bool addIgnoreReadings(const char *ignoreReadings); 
  /// Adds a degree at which to ignore readings (within 1 degree of nearest integer)
  void addIgnoreReading(double ignoreReading)
    { myIgnoreReadings.insert(ArMath::roundInt(ignoreReading)); }
  /// Clears the degrees we ignore readings at
  void clearIgnoreReadings(void) 
    { myIgnoreReadings.clear(); }
  /// Gets the list of readings that we ignore
  const std::set<int> *getIgnoreReadings(void) const
    { return &myIgnoreReadings; }
  
  /// Gets if the laser is flipped or not
  bool getFlipped(void) { return myFlipped; }
  /// Sets if the laser is flipped or not
  bool setFlipped(bool flipped) { myFlipped = flipped; return true; }

  /// Gets the default TCP port for the laser
  int getDefaultTcpPort(void) { return myDefaultTcpPort; }

  /// Gets the default port type for the laser
  const char *getDefaultPortType(void) { return myDefaultPortType.c_str(); }

  /// Sees if this class can set the degrees with doubles or not
  /**
     Gets if this class can set the start and end degrees with doubles.
     
     If so, you can use getStartDegreesMin and getStartDegreesMax to see
     the valid values that you can use with setStartDegrees (and see
     what was set with getStartDegrees), and getEndDegreesMin and
     getEndDegreesMax to see the valid values that you can use with
     setEndDegrees (and see what was set with getEndDegrees).

  **/
  bool canSetDegrees(void) { return myCanSetDegrees; }

  /// Gets the minimum value for the start angle
  /** @see canSetDegrees **/
  double getStartDegreesMin(void) { return myStartDegreesMin; }
  /// Gets the maximum value for the start angle
  /** @see canSetDegrees **/
  double getStartDegreesMax(void) { return myStartDegreesMax; }
  /// Gets the start angle
  /** @see canSetDegrees **/
  double getStartDegrees(void) { return myStartDegrees; }
  /// Sets the start angle, it must be between getStartDegreesMin and getStartDegreesMax
  /** @see canSetDegrees **/
  AREXPORT bool setStartDegrees(double startDegrees);
  /// Gets the minimum value for the end angle
  /** @see canSetDegrees **/
  double getEndDegreesMin(void) { return myEndDegreesMin; }
  /// Gets the maximum value for the end angle
  /** @see canSetDegrees **/
  double getEndDegreesMax(void) { return myEndDegreesMax; }
  /// Gets the end angle
  /** @see canSetDegrees **/
  double getEndDegrees(void) { return myEndDegrees; }
  /// Sets the end angle, it must be between getEndDegreesMin and getEndDegreesMax
  /** @see canSetDegrees **/
  AREXPORT bool setEndDegrees(double endDegrees);


  /**
     Gets if you can choose the number of degrees

     If so, you can call chooseDegrees with one of the strings from
     getDegreesChoices, and get the degrees chosen as a string with 
     getDegreesChoice or get the degrees chosen as a double with
     getDegreesChoiceDouble.
  **/
  bool canChooseDegrees(void) { return myCanChooseDegrees; }
  /// Gets the list of range choices
  /** @see canChooseDegrees **/
  std::list<std::string> getDegreesChoices(void) 
    { return myDegreesChoicesList; }
  /// Gets a string with the list of degrees choices seperated by |s 
  /** @see canChooseDegrees **/
  const char *getDegreesChoicesString(void) 
    { return myDegreesChoicesString.c_str(); }
  /// Sets the range to one of the choices from getDegreesChoices
  /** @see canChooseDegrees **/
  AREXPORT bool chooseDegrees(const char *range);
  /// Gets the range that was chosen
  /** @see canChooseDegrees **/
  const char *getDegreesChoice(void) 
    { return myDegreesChoice.c_str(); }
  /// Gets the range that was chosen as a double
  /** @see canChooseDegrees **/
  double getDegreesChoiceDouble(void) { return myDegreesChoiceDouble; }
  /// Gets the map of degrees choices to what they mean 
  /** 
      This is mostly for the simulated laser
      @see canChooseDegrees 
      @internal 
  **/
  std::map<std::string, double> getDegreesChoicesMap(void) 
    { return myDegreesChoices; }


  /**
     Gets if you can set an increment
     
  **/
  bool canSetIncrement(void) { return myCanSetIncrement; }
  /// Gets the increment minimum
  /** @see canSetIncrement **/
  double getIncrementMin(void) { return myIncrementMin; }
  /// Gets the increment maximum
  /** @see canSetIncrement **/
  double getIncrementMax(void) { return myIncrementMax; }
  /// Gets the increment
  /** @see canSetIncrement **/
  double getIncrement(void) { return myIncrement; }
  /// Sets the increment
  /** @see canSetIncrement **/
  AREXPORT bool setIncrement(double increment);

  /**
     Gets if you can choose an increment.

     If so, call chooseIncrement with one of the choices in
     getIncrementChoices, and get the choice as a string with
     getIncrementChoice or the choice as a string with
     getIncrementChoiceDouble.
  **/
  bool canChooseIncrement(void) { return myCanChooseIncrement; }
  /// Gets the list of increment choices 
  /** @see canChooseIncrement **/
  std::list<std::string> getIncrementChoices(void) 
    { return myIncrementChoicesList; }
  /// Gets a string with the list of increment choices seperated by |s 
  /** @see canChooseIncrement **/
  const char *getIncrementChoicesString(void) 
    { return myIncrementChoicesString.c_str(); }
  /// Sets the increment to one of the choices from getIncrementChoices
  /** @see canChooseIncrement **/
  AREXPORT bool chooseIncrement(const char *increment);
  /// Gets the increment that was chosen
  /** @see canChooseIncrement **/
  const char *getIncrementChoice(void) { return myIncrementChoice.c_str(); }
  /// Gets the increment that was chosen as a double
  /** @see canChooseIncrement **/
  double getIncrementChoiceDouble(void) { return myIncrementChoiceDouble; }
  /// Gets the map of increment choices to what they mean
  /** 
      This is mostly for the simulated laser
      @see canChooseIncrement 
      @internal 
  **/
  std::map<std::string, double> getIncrementChoicesMap(void) 
    { return myIncrementChoices; }

  /**
     Gets if you can choose units for the laser.

     If so, call chooseUnits with one of the choices in
     getUnitsChoices, and see what the choice was with
     getUnitsChoice.
  **/
  bool canChooseUnits(void) { return myCanChooseUnits; }
  /// Gets the list of units choices 
  /** @see canChooseUnits **/
  std::list<std::string> getUnitsChoices(void) 
    { return myUnitsChoices; }
  /// Gets a string with the list of units choices seperated by |s 
  /** @see canChooseUnits **/
  const char *getUnitsChoicesString(void) 
    { return myUnitsChoicesString.c_str(); }
  /// Sets the units to one of the choices from getUnitsChoices
  /** @see canChooseUnits **/
  AREXPORT bool chooseUnits(const char *units);
  /// Gets the units that was chosen
  /** @see canChooseUnits **/
  const char *getUnitsChoice(void) { return myUnitsChoice.c_str(); }

  /**
     Gets if you can choose reflectorBits for the laser.

     If so, call chooseReflectorBits with one of the choices in
     getReflectorBitsChoices, and see what the choice was with
     getReflectorBitsChoice.
  **/
  bool canChooseReflectorBits(void) { return myCanChooseReflectorBits; }
  /// Gets the list of reflectorBits choices 
  /** @see canChooseReflectorBits **/
  std::list<std::string> getReflectorBitsChoices(void) 
    { return myReflectorBitsChoices; }
  /// Gets a string with the list of reflectorBits choices seperated by |s 
  /** @see canChooseReflectorBits **/
  const char *getReflectorBitsChoicesString(void) 
    { return myReflectorBitsChoicesString.c_str(); }
  /// Sets the reflectorBits to one of the choices from getReflectorBitsChoices
  /** @see canChooseReflectorBits **/
  AREXPORT bool chooseReflectorBits(const char *reflectorBits);
  /// Gets the reflectorBits that was chosen
  /** @see canChooseReflectorBits **/
  const char *getReflectorBitsChoice(void) { return myReflectorBitsChoice.c_str(); }

  /**
     Gets if you can set powerControlled for the laser.

     If so, call setPowerControlled to set if the power is being controlled
     or not, and see what the setting is with getPowerControlled.
  **/
  bool canSetPowerControlled(void) { return myCanSetPowerControlled; }
  /// Sets if the power is controlled 
  /** @see canChoosePowerControlled **/
  AREXPORT bool setPowerControlled(bool powerControlled);
  /// Gets if the power is controlled
  /** @see canChoosePowerControlled **/
  bool getPowerControlled(void) { return myPowerControlled; }

  /**
     Gets if you can choose startingBaud for the laser.

     If so, call chooseStartingBaud with one of the choices in
     getStartingBaudChoices, and see what the choice was with
     getStartingBaudChoice.
  **/
  bool canChooseStartingBaud(void) { return myCanChooseStartingBaud; }
  /// Gets the list of reflectorBits choices 
  /** @see canChooseStartingBaud **/
  std::list<std::string> getStartingBaudChoices(void) 
    { return myStartingBaudChoices; }
  /// Gets a string with the list of reflectorBits choices seperated by |s 
  /** @see canChooseStartingBaud **/
  const char *getStartingBaudChoicesString(void) 
    { return myStartingBaudChoicesString.c_str(); }
  /// Sets the reflectorBits to one of the choices from getStartingBaudChoices
  /** @see canChooseStartingBaud **/
  AREXPORT bool chooseStartingBaud(const char *reflectorBits);
  /// Gets the reflectorBits that was chosen
  /** @see canChooseStartingBaud **/
  const char *getStartingBaudChoice(void) { return myStartingBaudChoice.c_str(); }


  /**
     Gets if you can choose autoBaud for the laser.

     If so, call chooseAutoBaud with one of the choices in
     getAutoBaudChoices, and see what the choice was with
     getAutoBaudChoice.
  **/
  bool canChooseAutoBaud(void) { return myCanChooseAutoBaud; }
  /// Gets the list of reflectorBits choices 
  /** @see canChooseAutoBaud **/
  std::list<std::string> getAutoBaudChoices(void) 
    { return myAutoBaudChoices; }
  /// Gets a string with the list of reflectorBits choices seperated by |s 
  /** @see canChooseAutoBaud **/
  const char *getAutoBaudChoicesString(void) 
    { return myAutoBaudChoicesString.c_str(); }
  /// Sets the reflectorBits to one of the choices from getAutoBaudChoices
  /** @see canChooseAutoBaud **/
  AREXPORT bool chooseAutoBaud(const char *reflectorBits);
  /// Gets the reflectorBits that was chosen
  /** @see canChooseAutoBaud **/
  const char *getAutoBaudChoice(void) { return myAutoBaudChoice.c_str(); }


  /// Adds a connect callback
  void addConnectCB(ArFunctor *functor,
			     int position = 50) 
    { myConnectCBList.addCallback(functor, position); }
  /// Adds a disconnect callback
  void remConnectCB(ArFunctor *functor)
    { myConnectCBList.remCallback(functor); }

  /// Adds a callback for when a connection to the robot is failed
  void addFailedConnectCB(ArFunctor *functor, 
				   int position = 50) 
    { myFailedConnectCBList.addCallback(functor, position); }
  /// Removes a callback for when a connection to the robot is failed
  void remFailedConnectCB(ArFunctor *functor)
    { myFailedConnectCBList.remCallback(functor); }

  /// Adds a callback for when disconnect is called while connected
  void addDisconnectNormallyCB(ArFunctor *functor, 
			     int position = 50) 
    { myDisconnectNormallyCBList.addCallback(functor, position); }

  /// Removes a callback for when disconnect is called while connected
  void remDisconnectNormallyCB(ArFunctor *functor)
    { myDisconnectNormallyCBList.remCallback(functor); }
  
  /// Adds a callback for when disconnection happens because of an error
  void addDisconnectOnErrorCB(ArFunctor *functor, 
			     int position = 50) 
    { myDisconnectOnErrorCBList.addCallback(functor, position); }

  /// Removes a callback for when disconnection happens because of an error
  void remDisconnectOnErrorCB(ArFunctor *functor)
    { myDisconnectOnErrorCBList.remCallback(functor); }

  /// Adds a callback that is called whenever a laser reading is processed
  void addReadingCB(ArFunctor *functor,
			     int position = 50) 
    { myDataCBList.addCallback(functor, position); }

  /// Removes a callback that is called whenever a laser reading is processed
  void remReadingCB(ArFunctor *functor)
    { myDataCBList.remCallback(functor); }

  /// Gets the absolute maximum range on the sensor
  unsigned int getAbsoluteMaxRange(void) { return myAbsoluteMaxRange; }

  /// Copies the reading count stuff from another laser (for the laser filter)
  AREXPORT void copyReadingCount(const ArLaser* laser);

  /// override the default to bound the maxrange by the absolute max range
  AREXPORT virtual void setMaxRange(unsigned int maxRange);

  /// override the default to keep track of its been set or not
  AREXPORT virtual void setCumulativeBufferSize(size_t size);

  /// Call the laser can implement to make sure the parameters
  /// are all okay or set the maximum range (based on the params)
  /**
     The base laser should make sure all the parameters make sense
     according to what was set up as allowed. 

     This is here for two purposes.  The first is to check for
     parameters that aren't valid because of something the base class
     can't check for. The second is to recalculate whatever the
     maximum range of the sensor is based on those settings, and call
     setAbsoluteMaxRange if the maximum range has changed based on the
     settings.

     This is strictly an internal call, mostly for the simulated laser
     so that it can more closely match the real laser on complicated
     things like the LMS2xx where the settings for the units and bits
     affect what the maximum range is.

     @internal
  **/
  AREXPORT virtual bool laserCheckParams(void) { return true; }

  /// Applies a transform to the buffers
  AREXPORT virtual void applyTransform(ArTransform trans,
                                        bool doCumulative = true);

  /// Makes it so we'll apply simple naming to all the lasers
  AREXPORT static void useSimpleNamingForAllLasers(void);
protected:
  
  /// Converts the raw readings into the buffers (needs to be called
  /// by subclasses)
  AREXPORT void laserProcessReadings(void);

  /// Returns if the laser has lost connection so that the subclass
  /// can do something appropriate
  AREXPORT bool laserCheckLostConnection(void);

  /// Pulls the unset params from the robot parameter file
  AREXPORT bool laserPullUnsetParamsFromRobot(void);

  /// Allows setting the degrees the laser uses to anything in a range
  AREXPORT void laserAllowSetDegrees(double defaultStartDegrees, double startDegreesMin, double startDegreesMax, double defaultEndDegrees, double endDegreesMin, double endDegreesMax);

  /// Allows setting the degrees the laser uses to one of a number of choices
  AREXPORT void laserAllowDegreesChoices(const char *defaultDegreesChoice,
			   std::map<std::string, double> degreesChoices);

  /// Allows setting the increment the laser uses to anything in a range
  AREXPORT void laserAllowSetIncrement(
	  double defaultIncrement, double incrementMin,  double incrementMax);

  /// Allows setting the increment to one of a number of choices
  AREXPORT void laserAllowIncrementChoices(const char *defaultIncrementChoice, 
			     std::map<std::string, double> incrementChoices);

  /// Allows setting the units the laser will use to one of a number of choices
  AREXPORT void laserAllowUnitsChoices(const char *defaultUnitsChoice, 
			 std::list<std::string> unitsChoices);

  /// Allows setting the reflector bits the laser will use to one of a
  /// number of choices
  AREXPORT void laserAllowReflectorBitsChoices(
	  const char *defaultReflectorBitsChoice,
	  std::list<std::string> reflectorBitsChoices);

  /// Allows setting if the power is controlled or not
  AREXPORT void laserAllowSetPowerControlled(bool defaultPowerControlled);

  /// Allows setting the starting baud to one of a number of choices
  AREXPORT void laserAllowStartingBaudChoices(
	  const char *defaultStartingBaudChoice, 
	  std::list<std::string> startingBaudChoices);

  /// Allows setting the auto baud speed to one of a number of choices
  AREXPORT void laserAllowAutoBaudChoices(
	  const char *defaultAutoBaudChoice, 
	  std::list<std::string> autoBaudChoices);

  /// Called when the lasers name is set
  AREXPORT virtual void laserSetName(const char *name);
  
  /// Sets the laser's default TCP port
  AREXPORT void laserSetDefaultTcpPort(int defaultLaserTcpPort);

  /// Sets the laser's default connection port type
  AREXPORT void laserSetDefaultPortType(const char *defaultPortType);

  /// Sets the absolute maximum range on the sensor
  AREXPORT void laserSetAbsoluteMaxRange(unsigned int absoluteMaxRange);

  /// Function for a laser to call when it connects
  AREXPORT virtual void laserConnect(void);
  /// Function for a laser to call when it fails to connects
  AREXPORT virtual void laserFailedConnect(void);
  /// Function for a laser to call when it disconnects normally
  AREXPORT virtual void laserDisconnectNormally(void);
  /// Function for a laser to call when it loses connection
  AREXPORT virtual void laserDisconnectOnError(void);

  // processes the individual reading, helper for base class
  AREXPORT void internalProcessReading(double x, double y, unsigned int range,
				    bool clean, bool onlyClean);

  // internal helper function for seeing if the choice matches
  AREXPORT bool internalCheckChoice(const char *check, const char *choice,
		   std::list<std::string> *choices, const char *choicesStr);
  // internal helper function for seeing if the choice matches
  AREXPORT bool internalCheckChoice(const char *check, const char *choice,
		   std::map<std::string, double> *choices,
		   const char *choicesStr, double *choiceDouble);
  // internal helper function for building a string for a list of chocies
  void internalBuildChoicesString(std::list<std::string> *choices, std::string *str);
  // internal helper function for building a string for a list of chocies
  void internalBuildChoices(std::map<std::string, double> *choices, 
		    std::string *str, std::list<std::string> *choicesList);

  // Function called in laserProcessReadings to indicate that a
  // reading was received
  AREXPORT virtual void internalGotReading(void);

  int myLaserNumber;


  ArDeviceConnection *myConn;
  ArMutex myConnMutex;

  double myTimeoutSeconds;
  

  ArPose mySensorPose;
  double mySensorZ;
  bool myHaveSensorPose;

  double myCumulativeCleanDist;
  double myCumulativeCleanDistSquared;
  int myCumulativeCleanInterval;
  int myCumulativeCleanOffset;
  ArTime myCumulativeLastClean;
  std::set<int> myIgnoreReadings;

  unsigned int myAbsoluteMaxRange;
  bool myMaxRangeSet;

  bool myCumulativeBufferSizeSet;

  bool myFlippedSet;
  bool myFlipped;
  
  bool myCanSetDegrees; 
  double myStartDegreesMin;
  double myStartDegreesMax;
  bool myStartDegreesSet;
  double myStartDegrees;
  double myEndDegreesMin;
  double myEndDegreesMax;
  bool myEndDegreesSet;
  double myEndDegrees;

  bool myCanChooseDegrees;
  std::map<std::string, double> myDegreesChoices; 
  std::list<std::string> myDegreesChoicesList; 
  bool myDegreesChoiceSet;
  std::string myDegreesChoicesString; 
  std::string myDegreesChoice;
  double myDegreesChoiceDouble;


  bool myCanSetIncrement; 
  double myIncrementMin; 
  double myIncrementMax; 
  bool myIncrementSet;
  double myIncrement;

  bool myCanChooseIncrement; 
  std::map<std::string, double> myIncrementChoices; 
  std::list<std::string> myIncrementChoicesList; 
  std::string myIncrementChoicesString; 
  bool myIncrementChoiceSet;
  std::string myIncrementChoice;
  double myIncrementChoiceDouble;

  bool myCanChooseUnits; 
  std::list<std::string> myUnitsChoices; 
  std::string myUnitsChoicesString; 
  bool myUnitsChoiceSet;
  std::string myUnitsChoice;

  bool myCanChooseReflectorBits; 
  std::list<std::string> myReflectorBitsChoices; 
  std::string myReflectorBitsChoicesString; 
  bool myReflectorBitsChoiceSet;
  std::string myReflectorBitsChoice;
  
  bool myCanSetPowerControlled;
  bool myPowerControlledSet;
  bool myPowerControlled;

  bool myCanChooseStartingBaud; 
  std::list<std::string> myStartingBaudChoices; 
  std::string myStartingBaudChoicesString; 
  bool myStartingBaudChoiceSet;
  std::string myStartingBaudChoice;

  bool myCanChooseAutoBaud; 
  std::list<std::string> myAutoBaudChoices; 
  std::string myAutoBaudChoicesString; 
  bool myAutoBaudChoiceSet;
  std::string myAutoBaudChoice;

  int myDefaultTcpPort;
  std::string myDefaultPortType;

  ArCallbackList myConnectCBList;
  ArCallbackList myFailedConnectCBList;
  ArCallbackList myDisconnectOnErrorCBList;
  ArCallbackList myDisconnectNormallyCBList;
  ArCallbackList myDataCBList;

  ArLog::LogLevel myInfoLogLevel;

  ArTime myLastReading;
  // packet count
  time_t myTimeLastReading;
  int myReadingCurrentCount;
  int myReadingCount;
  bool myRobotRunningAndConnected;

  static bool ourUseSimpleNaming;
};

#endif // ARRANGEDEVICELASER_H