This file is indexed.

/usr/include/deal.II/base/aligned_vector.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
// ---------------------------------------------------------------------
//
// Copyright (C) 2011 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------


#ifndef dealii__aligned_vector_h
#define dealii__aligned_vector_h

#include <deal.II/base/config.h>
#include <deal.II/base/std_cxx11/type_traits.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/memory_consumption.h>
#include <deal.II/base/utilities.h>
#include <deal.II/base/parallel.h>
#include <boost/serialization/array.hpp>
#include <boost/serialization/split_member.hpp>

#include <cstring>



DEAL_II_NAMESPACE_OPEN


/**
 * This is a replacement class for std::vector to be used in combination with
 * VectorizedArray and derived data types. It allocates memory aligned to
 * addresses of a vectorized data type (in order to avoid segmentation faults
 * when a variable of type VectorizedArray which the compiler assumes to be
 * aligned to certain memory addresses does not actually follow these rules).
 * This could also be achieved by proving std::vector with a user-defined
 * allocator. On the other hand, writing an own small vector class lets us
 * implement parallel copy and move operations with TBB, insert deal.II-style
 * assertions, and cut some unnecessary functionality. Note that this vector
 * is a bit more memory-consuming than std::vector because of alignment, so it
 * is recommended to only use this vector on long vectors.
 *
 * @p author Katharina Kormann, Martin Kronbichler, 2011
 */
template < class T >
class AlignedVector
{
public:
  /**
   * Declare standard types used in all containers. These types parallel those
   * in the <tt>C++</tt> standard libraries <tt>vector<...></tt> class.
   */
  typedef T                   value_type;
  typedef value_type         *pointer;
  typedef const value_type   *const_pointer;
  typedef value_type         *iterator;
  typedef const value_type   *const_iterator;
  typedef value_type         &reference;
  typedef const value_type   &const_reference;
  typedef std::size_t         size_type;

  /**
   * Empty constructor. Sets the vector size to zero.
   */
  AlignedVector ();

  /**
   * Sets the vector size to the given size and initializes all elements with
   * T().
   *
   * @dealiiOperationIsMultithreaded
   */
  AlignedVector (const size_type size,
                 const T        &init = T());

  /**
   * Destructor.
   */
  ~AlignedVector ();

  /**
   * Copy constructor.
   *
   * @dealiiOperationIsMultithreaded
   */
  AlignedVector (const AlignedVector<T> &vec);

  /**
   * Assignment to the input vector @p vec.
   *
   * @dealiiOperationIsMultithreaded
   */
  AlignedVector &
  operator = (const AlignedVector<T> &vec);

  /**
   * Change the size of the vector. It keeps old elements previously available
   * but does not initialize the newly allocated memory, leaving it in an
   * undefined state.
   *
   * @note This method can only be invoked for classes @p T that define a
   * default constructor, @p T(). Otherwise, compilation will fail.
   */
  void resize_fast (const size_type size);

  /**
   * Change the size of the vector. It keeps old elements previously
   * available, and initializes each element with the specified data. If the
   * new vector size is shorter than the old one, the memory is not released
   * unless the new size is zero.
   *
   * @dealiiOperationIsMultithreaded
   */
  void resize (const size_type size_in,
               const T        &init = T());

  /**
   * Reserve memory space for @p size elements. If the argument @p size is set
   * to zero, all previously allocated memory is released.
   *
   * In order to avoid too frequent reallocation (which involves copy of the
   * data), this function doubles the amount of memory occupied when the given
   * size is larger than the previously allocated size.
   */
  void reserve (const size_type size_alloc);

  /**
   * Releases all previously allocated memory and leaves the vector in a state
   * equivalent to the state after the default constructor has been called.
   */
  void clear ();

  /**
   * Inserts an element at the end of the vector, increasing the vector size
   * by one. Note that the allocated size will double whenever the previous
   * space is not enough to hold the new element.
   */
  void push_back (const T in_data);

  /**
   * Returns the last element of the vector (read and write access).
   */
  reference back ();

  /**
   * Returns the last element of the vector (read-only access).
   */
  const_reference back () const;

  /**
   * Inserts several elements at the end of the vector given by a range of
   * elements.
   */
  template <typename ForwardIterator>
  void insert_back (ForwardIterator begin,
                    ForwardIterator end);

  /**
   * Fills the vector with size() copies of the given input.
   *
   * @note This method can only be invoked for classes that define the copy
   * assignment operator. Otherwise, compilation will fail.
   *
   * @dealiiOperationIsMultithreaded
   */
  void fill (const T &element);

  /**
   * Swaps the given vector with the calling vector.
   */
  void swap (AlignedVector<T> &vec);

  /**
   * Returns whether the vector is empty, i.e., its size is zero.
   */
  bool empty () const;

  /**
   * Returns the size of the vector.
   */
  size_type size () const;

  /**
   * Returns the capacity of the vector, i.e., the size this vector can hold
   * without reallocation. Note that capacity() >= size().
   */
  size_type capacity () const;

  /**
   * Read-write access to entry @p index in the vector.
   */
  reference
  operator [] (const size_type index);

  /**
   * Read-only access to entry @p index in the vector.
   */
  const_reference operator [] (const size_type index) const;

  /**
   * Returns a read and write pointer to the beginning of the data array.
   */
  iterator begin ();

  /**
   * Returns a read and write pointer to the end of the data array.
   */
  iterator end ();

  /**
   * Returns a read-only pointer to the beginning of the data array.
   */
  const_iterator begin () const;

  /**
   * Returns a read-only pointer to the end of the data array.
   */
  const_iterator end () const;

  /**
   * Returns the memory consumption of the allocated memory in this class. If
   * the underlying type @p T allocates memory by itself, this memory is not
   * counted.
   */
  size_type memory_consumption () const;

  /**
   * Write the data of this object to a stream for the purpose of
   * serialization.
   */
  template <class Archive>
  void save (Archive &ar, const unsigned int version) const;

  /**
   * Read the data of this object from a stream for the purpose of
   * serialization.
   */
  template <class Archive>
  void load (Archive &ar, const unsigned int version);

  BOOST_SERIALIZATION_SPLIT_MEMBER()

private:

  /**
   * Pointer to actual class data.
   */
  T *_data;

  /**
   * Pointer to the end of valid data fields.
   */
  T *_end_data;

  /**
   * Pointer to the end of the allocated memory.
   */
  T *_end_allocated;
};


// ------------------------------- inline functions --------------------------

/**
 * This namespace defines the copy and set functions used in AlignedVector.
 * These functions operate in parallel when there are enough elements in the
 * vector.
 */
namespace internal
{
  /**
   * Move and class that actually issues the copy commands in AlignedVector.
   * This class is based on the specialized for loop base class
   * ParallelForLoop in parallel.h whose purpose is the following: When
   * calling a parallel for loop on AlignedVector with apply_to_subranges, it
   * generates different code for every different argument we might choose (as
   * it is templated). This gives a lot of code (e.g. it triples the memory
   * required for compiling the file matrix_free.cc and the final object size
   * is several times larger) which is completely useless. Therefore, this
   * class channels all copy commands through one call to apply_to_subrange
   * for all possible types, which makes the copy operation much cleaner
   * (thanks to a virtual function, whose cost is negligible in this context).
   *
   * @relates AlignedVector
   */
  template <typename T>
  class AlignedVectorMove : private parallel::ParallelForInteger
  {
    static const std::size_t minimum_parallel_grain_size = 160000/sizeof(T)+1;
  public:
    /**
     * Constructor. Issues a parallel call if there are sufficiently many
     * elements, otherwise works in serial. Copies the data from the half-open
     * interval between @p source_begin and @p source_end to array starting at
     * @p destination (by calling the copy constructor with placement new). If
     * the flag copy_source is set to @p true, the elements from the source
     * array are simply copied. If it is set to @p false, the data is moved
     * between the two arrays by invoking the destructor on the source range
     * (preparing for a subsequent call to free).
     */
    AlignedVectorMove (T *source_begin,
                       T *source_end,
                       T *destination,
                       const bool copy_source)
      :
      source_ (source_begin),
      destination_ (destination),
      copy_source_ (copy_source)
    {
      Assert (source_end >= source_begin, ExcInternalError());
      const std::size_t size = source_end - source_begin;
      if (size < minimum_parallel_grain_size)
        apply_to_subrange (0, size);
      else
        apply_parallel (0, size, minimum_parallel_grain_size);
    }

    /**
     * This method moves elements from the source to the destination given in
     * the constructor on a subrange given by two integers.
     */
    virtual void apply_to_subrange (const std::size_t begin,
                                    const std::size_t end) const
    {
      // for classes trivial assignment can use memcpy. cast element to
      // (void*) to silence compiler warning for virtual classes (they will
      // never arrive here because they are non-trivial).

      if (std_cxx11::is_trivial<T>::value == true)
        std::memcpy ((void *)(destination_+begin), source_+begin,
                     (end-begin)*sizeof(T));
      else if (copy_source_ == false)
        for (std::size_t i=begin; i<end; ++i)
          {
            // initialize memory (copy construct by placement new), and
            // destruct the source
            new (&destination_[i]) T(source_[i]);
            source_[i].~T();
          }
      else
        for (std::size_t i=begin; i<end; ++i)
          new (&destination_[i]) T(source_[i]);
    }

  private:
    T *source_;
    T *destination_;
    const bool copy_source_;
  };

  /**
   * Class that issues the set commands for AlignedVector.
   *
   * @tparam initialize_memory Sets whether the the set command should
   * initialize memory (with a call to the copy constructor) or rather use the
   * copy assignment operator. A template is necessary to select the
   * appropriate operation since some classes might define only one of those
   * two operations.
   *
   * @relates AlignedVector
   */
  template <typename T, bool initialize_memory>
  class AlignedVectorSet : private parallel::ParallelForInteger
  {
    static const std::size_t minimum_parallel_grain_size = 160000/sizeof(T)+1;
  public:
    /**
     * Constructor. Issues a parallel call if there are sufficiently many
     * elements, otherwise work in serial.
     */
    AlignedVectorSet (const std::size_t size,
                      const T &element,
                      T *destination)
      :
      element_ (element),
      destination_ (destination),
      trivial_element (false)
    {
      if (size == 0)
        return;

      // do not use memcmp for long double because on some systems it does not
      // completely fill its memory and may lead to false positives in
      // e.g. valgrind
      if (std_cxx11::is_trivial<T>::value == true &&
          types_are_equal<T,long double>::value == false)
        {
          const unsigned char zero [sizeof(T)] = {};
          // cast element to (void*) to silence compiler warning for virtual
          // classes (they will never arrive here because they are
          // non-trivial).
          if (std::memcmp(zero, (void *)&element, sizeof(T)) == 0)
            trivial_element = true;
        }
      if (size < minimum_parallel_grain_size)
        apply_to_subrange (0, size);
      else
        apply_parallel (0, size, minimum_parallel_grain_size);
    }

    /**
     * This sets elements on a subrange given by two integers.
     */
    virtual void apply_to_subrange (const std::size_t begin,
                                    const std::size_t end) const
    {
      // for classes with trivial assignment of zero can use memset. cast
      // element to (void*) to silence compiler warning for virtual
      // classes (they will never arrive here because they are
      // non-trivial).
      if (std_cxx11::is_trivial<T>::value == true && trivial_element)
        std::memset ((void *)(destination_+begin), 0, (end-begin)*sizeof(T));
      else
        copy_construct_or_assign(begin, end,
                                 ::dealii::internal::bool2type<initialize_memory>());
    }

  private:
    const T &element_;
    mutable T *destination_;
    bool trivial_element;

    // copy assignment operation
    void copy_construct_or_assign(const std::size_t begin,
                                  const std::size_t end,
                                  ::dealii::internal::bool2type<false>) const
    {
      for (std::size_t i=begin; i<end; ++i)
        destination_[i] = element_;
    }

    // copy constructor (memory initialization)
    void copy_construct_or_assign(const std::size_t begin,
                                  const std::size_t end,
                                  ::dealii::internal::bool2type<true>) const
    {
      for (std::size_t i=begin; i<end; ++i)
        new (&destination_[i]) T(element_);
    }
  };

} // end of namespace internal


#ifndef DOXYGEN


template < class T >
inline
AlignedVector<T>::AlignedVector ()
  :
  _data (0),
  _end_data (0),
  _end_allocated (0)
{}



template < class T >
inline
AlignedVector<T>::AlignedVector (const size_type size,
                                 const T &init)
  :
  _data (0),
  _end_data (0),
  _end_allocated (0)
{
  if (size > 0)
    resize (size, init);
}



template < class T >
inline
AlignedVector<T>::~AlignedVector ()
{
  clear();
}



template < class T >
inline
AlignedVector<T>::AlignedVector (const AlignedVector<T> &vec)
  :
  _data (0),
  _end_data (0),
  _end_allocated (0)
{
  // copy the data from vec
  reserve (vec._end_data - vec._data);
  _end_data = _end_allocated;
  internal::AlignedVectorMove<T> (vec._data, vec._end_data, _data, true);
}



template < class T >
inline
AlignedVector<T> &
AlignedVector<T>::operator = (const AlignedVector<T> &vec)
{
  resize(0);
  resize_fast (vec._end_data - vec._data);
  internal::AlignedVectorMove<T> (vec._data, vec._end_data, _data, true);
  return *this;
}



template < class T >
inline
void
AlignedVector<T>::resize_fast (const size_type size_in)
{
  const size_type old_size = size();
  if (std_cxx11::is_trivial<T>::value == false && size_in < old_size)
    {
      // call destructor on fields that are released. doing it backward
      // releases the elements in reverse order as compared to how they were
      // created
      while (_end_data != _data+size_in)
        (--_end_data)->~T();
    }
  reserve (size_in);
  _end_data = _data + size_in;

  // need to still set the values in case the class is non-trivial because
  // virtual classes etc. need to run their (default) constructor
  if (std_cxx11::is_trivial<T>::value == false && size_in > old_size)
    dealii::internal::AlignedVectorSet<T,true> (size_in-old_size, T(), _data+old_size);
}



template < class T >
inline
void
AlignedVector<T>::resize (const size_type size_in,
                          const T        &init)
{
  const size_type old_size = size();
  if (std_cxx11::is_trivial<T>::value == false && size_in < old_size)
    {
      // call destructor on fields that are released. doing it backward
      // releases the elements in reverse order as compared to how they were
      // created
      while (_end_data != _data+size_in)
        (--_end_data)->~T();
    }
  reserve (size_in);
  _end_data = _data + size_in;

  // finally set the desired init values
  if (size_in > old_size)
    dealii::internal::AlignedVectorSet<T,true> (size_in-old_size, init, _data+old_size);
}



template < class T >
inline
void
AlignedVector<T>::reserve (const size_type size_alloc)
{
  const size_type old_size = _end_data - _data;
  const size_type allocated_size = _end_allocated - _data;
  if (size_alloc > allocated_size)
    {
      // if we continuously increase the size of the vector, we might be
      // reallocating a lot of times. therefore, try to increase the size more
      // aggressively
      size_type new_size = size_alloc;
      if (size_alloc < (2 * allocated_size))
        new_size = 2 * allocated_size;

      const size_type size_actual_allocate = new_size * sizeof(T);

      // allocate and align along 64-byte boundaries (this is enough for all
      // levels of vectorization currently supported by deal.II)
      T *new_data;
      Utilities::System::posix_memalign ((void **)&new_data, 64, size_actual_allocate);

      // copy data in case there was some content before and release the old
      // memory with the function corresponding to the one used for allocating
      std::swap (_data, new_data);
      _end_data = _data + old_size;
      _end_allocated = _data + new_size;
      if (_end_data != _data)
        {
          dealii::internal::AlignedVectorMove<T>(new_data, new_data + old_size,
                                                 _data, false);
          free(new_data);
        }
      else
        Assert(new_data == 0, ExcInternalError());
    }
  else if (size_alloc == 0)
    clear();
}



template < class T >
inline
void
AlignedVector<T>::clear ()
{
  if (_data != 0)
    {
      if (std_cxx11::is_trivial<T>::value == false)
        while (_end_data != _data)
          (--_end_data)->~T();

      free(_data);
    }
  _data = 0;
  _end_data = 0;
  _end_allocated = 0;
}



template < class T >
inline
void
AlignedVector<T>::push_back (const T in_data)
{
  Assert (_end_data <= _end_allocated, ExcInternalError());
  if (_end_data == _end_allocated)
    reserve (std::max(2*capacity(),static_cast<size_type>(16)));
  if (std_cxx11::is_trivial<T>::value == false)
    new (_end_data) T;
  *_end_data++ = in_data;
}



template < class T >
inline
typename AlignedVector<T>::reference
AlignedVector<T>::back ()
{
  AssertIndexRange (0, size());
  T *field = _end_data - 1;
  return *field;
}



template < class T >
inline
typename AlignedVector<T>::const_reference
AlignedVector<T>::back () const
{
  AssertIndexRange (0, size());
  const T *field = _end_data - 1;
  return *field;
}



template < class T >
template <typename ForwardIterator>
inline
void
AlignedVector<T>::insert_back (ForwardIterator begin,
                               ForwardIterator end)
{
  const unsigned int old_size = size();
  reserve (old_size + (end-begin));
  for ( ; begin != end; ++begin, ++_end_data)
    {
      if (std_cxx11::is_trivial<T>::value == false)
        new (_end_data) T;
      *_end_data = *begin;
    }
}



template < class T >
inline
void
AlignedVector<T>::fill (const T &value)
{
  dealii::internal::AlignedVectorSet<T,false> (size(), value, _data);
}



template < class T >
inline
void
AlignedVector<T>::swap (AlignedVector<T> &vec)
{
  std::swap (_data, vec._data);
  std::swap (_end_data, vec._end_data);
  std::swap (_end_allocated, vec._end_allocated);
}



template < class T >
inline
bool
AlignedVector<T>::empty () const
{
  return _end_data == _data;
}



template < class T >
inline
typename AlignedVector<T>::size_type
AlignedVector<T>::size () const
{
  return _end_data - _data;
}



template < class T >
inline
typename AlignedVector<T>::size_type
AlignedVector<T>::capacity () const
{
  return _end_allocated - _data;
}



template < class T >
inline
typename AlignedVector<T>::reference
AlignedVector<T>::operator [] (const size_type index)
{
  AssertIndexRange (index, size());
  return _data[index];
}



template < class T >
inline
typename AlignedVector<T>::const_reference
AlignedVector<T>::operator [] (const size_type index) const
{
  AssertIndexRange (index, size());
  return _data[index];
}



template < class T >
inline
typename AlignedVector<T>::iterator
AlignedVector<T>::begin ()
{
  return _data;
}



template < class T >
inline
typename AlignedVector<T>::iterator
AlignedVector<T>::end ()
{
  return _end_data;
}



template < class T >
inline
typename AlignedVector<T>::const_iterator
AlignedVector<T>::begin () const
{
  return _data;
}



template < class T >
inline
typename AlignedVector<T>::const_iterator
AlignedVector<T>::end () const
{
  return _end_data;
}



template < class T >
template < class Archive >
inline
void
AlignedVector<T>::save (Archive &ar, const unsigned int) const
{
  size_type vec_size (size());
  ar &vec_size;
  if (vec_size > 0)
    ar &boost::serialization::make_array(_data, vec_size);
}



template < class T >
template < class Archive >
inline
void
AlignedVector<T>::load (Archive &ar, const unsigned int)
{
  size_type vec_size = 0;
  ar &vec_size ;

  if (vec_size > 0)
    {
      reserve(vec_size);
      ar &boost::serialization::make_array(_data, vec_size);
      _end_data = _data + vec_size;
    }
}



template < class T >
inline
typename AlignedVector<T>::size_type
AlignedVector<T>::memory_consumption () const
{
  size_type memory = sizeof(*this);
  for (const T *t = _data ; t != _end_data; ++t)
    memory += dealii::MemoryConsumption::memory_consumption(*t);
  memory += sizeof(T) * (_end_allocated-_end_data);
  return memory;
}


#endif // ifndef DOXYGEN


/**
 * Relational operator == for AlignedVector
 *
 * @relates AlignedVector
 */
template < class T >
bool operator == (const AlignedVector<T> &lhs,
                  const AlignedVector<T> &rhs)
{
  if (lhs.size() != rhs.size())
    return false;
  for (typename AlignedVector<T>::const_iterator lit = lhs.begin(),
       rit = rhs.begin(); lit != lhs.end(); ++lit, ++rit)
    if (*lit != *rit)
      return false;
  return true;
}




/**
 * Relational operator != for AlignedVector
 *
 * @relates AlignedVector
 */
template < class T >
bool operator != (const AlignedVector<T> &lhs,
                  const AlignedVector<T> &rhs)
{
  return !(operator==(lhs, rhs));
}


DEAL_II_NAMESPACE_CLOSE

#endif