This file is indexed.

/usr/include/deal.II/base/function.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
// ---------------------------------------------------------------------
//
// Copyright (C) 1998 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__function_h
#define dealii__function_h


#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/function_time.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/tensor.h>
#include <deal.II/base/symmetric_tensor.h>
#include <deal.II/base/point.h>
#include <deal.II/base/std_cxx11/function.h>

#include <vector>

DEAL_II_NAMESPACE_OPEN


template <typename number> class Vector;
template <int rank, int dim, typename Number> class TensorFunction;

/**
 * This class is a model for a general function that, given a point at which
 * to evaluate the function, returns a vector of values with one or more
 * components.
 *
 * The class serves the purpose of representing both scalar and vector valued
 * functions. To this end, we consider scalar functions as a special case of
 * vector valued functions, in the former case only having a single component
 * return vector. Since handling vectors is comparatively expensive, the
 * interface of this class has functions which only ask for a single component
 * of the vector-valued results (this is what you will usually need in case
 * you know that your function is scalar-valued) as well as functions you can
 * ask for an entire vector of results with as many components as the function
 * object represents. Access to function objects therefore is through the
 * following methods:
 * @code
 *   // access to one component at one point
 *   double value        (const Point<dim>   &p,
 *                        const unsigned int  component = 0) const;
 *
 *   // return all components at one point
 *   void   vector_value (const Point<dim>   &p,
 *                        Vector<double>     &value) const;
 * @endcode
 *
 * For more efficiency, there are other functions returning one or all
 * components at a list of points at once:
 * @code
 *   // access to one component at several points
 *   void   value_list (const std::vector<Point<dim> >  &point_list,
 *                      std::vector<double>             &value_list,
 *                      const unsigned int  component = 0) const;
 *
 *   // return all components at several points
 *   void   vector_value_list (const std::vector<Point<dim> >    &point_list,
 *                             std::vector<Vector<double> >      &value_list) const;
 * @endcode
 *
 * Furthermore, there are functions returning the gradient of the function or
 * even higher derivatives at one or several points.
 *
 * You will usually only overload those functions you need; the functions
 * returning several values at a time (value_list(), vector_value_list(), and
 * gradient analogs) will call those returning only one value (value(),
 * vector_value(), and gradient analogs), while those ones will throw an
 * exception when called but not overloaded.
 *
 * Conversely, the functions returning all components of the function at one
 * or several points (i.e. vector_value(), vector_value_list()), will
 * <em>not</em> call the function returning one component at one point
 * repeatedly, once for each point and component. The reason is efficiency:
 * this would amount to too many virtual function calls. If you have vector-
 * valued functions, you should therefore also provide overloads of the
 * virtual functions for all components at a time.
 *
 * Also note, that unless only called a very small number of times, you should
 * overload all sets of functions (returning only one value, as well as those
 * returning a whole array), since the cost of evaluation of a point value is
 * often less than the virtual function call itself.
 *
 * Support for time dependent functions can be found in the base class
 * FunctionTime.
 *
 *
 * <h3>Functions that return tensors</h3>
 *
 * If the functions you are dealing with have a number of components that are
 * a priori known (for example, <tt>dim</tt> elements), you might consider
 * using the TensorFunction class instead. This is, in particular, true if the
 * objects you return have the properties of a tensor, i.e., they are for
 * example dim-dimensional vectors or dim-by-dim matrices. On the other hand,
 * functions like VectorTools::interpolate or
 * VectorTools::interpolate_boundary_values definitely only want objects of
 * the current type. You can use the VectorFunctionFromTensorFunction class to
 * convert the former to the latter.
 *
 *
 * <h3>Functions that return different fields</h3>
 *
 * Most of the time, your functions will have the form $f : \Omega \rightarrow
 * {\mathbb R}^{n_\text{components}}$. However, there are occasions where you
 * want the function to return vectors (or scalars) over a different number
 * field, for example functions that return complex numbers or vectors of
 * complex numbers: $f : \Omega \rightarrow {\mathbb
 * C}^{n_\text{components}}$. In such cases, you can use the second template
 * argument of this class: it describes the scalar type to be used for each
 * component of your return values. It defaults to @p double, but in the
 * example above, it could be set to <code>std::complex@<double@></code>.
 *
 *
 * @ingroup functions
 * @author Wolfgang Bangerth, 1998, 1999, Luca Heltai 2014
 */
template <int dim, typename Number=double>
class Function : public FunctionTime<Number>,
  public Subscriptor
{
public:
  /**
   * Export the value of the template parameter as a static member constant.
   * Sometimes useful for some expression template programming.
   */
  static const unsigned int dimension = dim;

  /**
   * Number of vector components.
   */
  const unsigned int n_components;

  /**
   * Constructor. May take an initial value for the number of components
   * (which defaults to one, i.e. a scalar function), and the time variable,
   * which defaults to zero.
   */
  Function (const unsigned int n_components = 1,
            const Number       initial_time = 0.0);

  /**
   * Virtual destructor; absolutely necessary in this case.
   *
   * This destructor is declared pure virtual, such that objects of this class
   * cannot be created. Since all the other virtual functions have a pseudo-
   * implementation to avoid overhead in derived classes, they can not be
   * abstract. As a consequence, we could generate an object of this class
   * because none of this class's functions are abstract.
   *
   * We circumvent this problem by making the destructor of this class
   * abstract virtual. This ensures that at least one member function is
   * abstract, and consequently, no objects of type Function can be created.
   * However, there is no need for derived classes to explicitly implement a
   * destructor: every class has a destructor, either explicitly implemented
   * or implicitly generated by the compiler, and this resolves the
   * abstractness of any derived class even if they do not have an explicitly
   * declared destructor.
   *
   * Nonetheless, since derived classes want to call the destructor of a base
   * class, this destructor is implemented (despite it being pure virtual).
   */
  virtual ~Function () = 0;

  /**
   * Assignment operator. This is here only so that you can have objects of
   * derived classes in containers, or assign them otherwise. It will raise an
   * exception if the object from which you assign has a different number of
   * components than the one being assigned to.
   */
  Function &operator= (const Function &f);

  /**
   * Return the value of the function at the given point. Unless there is only
   * one component (i.e. the function is scalar), you should state the
   * component you want to have evaluated; it defaults to zero, i.e. the first
   * component.
   */
  virtual Number value (const Point<dim>   &p,
                        const unsigned int  component = 0) const;

  /**
   * Return all components of a vector-valued function at a given point.
   *
   * <tt>values</tt> shall have the right size beforehand, i.e. #n_components.
   *
   * The default implementation will call value() for each component.
   */
  virtual void vector_value (const Point<dim>   &p,
                             Vector<Number>     &values) const;

  /**
   * Set <tt>values</tt> to the point values of the specified component of the
   * function at the <tt>points</tt>.  It is assumed that <tt>values</tt>
   * already has the right size, i.e.  the same size as the <tt>points</tt>
   * array.
   *
   * By default, this function repeatedly calls value() for each point
   * separately, to fill the output array.
   */
  virtual void value_list (const std::vector<Point<dim> > &points,
                           std::vector<Number>            &values,
                           const unsigned int              component = 0) const;

  /**
   * Set <tt>values</tt> to the point values of the function at the
   * <tt>points</tt>.  It is assumed that <tt>values</tt> already has the
   * right size, i.e.  the same size as the <tt>points</tt> array, and that
   * all elements be vectors with the same number of components as this
   * function has.
   *
   * By default, this function repeatedly calls vector_value() for each point
   * separately, to fill the output array.
   */
  virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                  std::vector<Vector<Number> >   &values) const;

  /**
   * For each component of the function, fill a vector of values, one for each
   * point.
   *
   * The default implementation of this function in Function calls
   * value_list() for each component. In order to improve performance, this
   * can be reimplemented in derived classes to speed up performance.
   */
  virtual void vector_values (const std::vector<Point<dim> > &points,
                              std::vector<std::vector<Number> > &values) const;

  /**
   * Return the gradient of the specified component of the function at the
   * given point.
   */
  virtual Tensor<1,dim, Number> gradient (const Point<dim>   &p,
                                          const unsigned int  component = 0) const;

  /**
   * Return the gradient of all components of the function at the given point.
   */
  virtual void vector_gradient (const Point<dim>            &p,
                                std::vector<Tensor<1,dim, Number> > &gradients) const;

  /**
   * Set <tt>gradients</tt> to the gradients of the specified component of the
   * function at the <tt>points</tt>.  It is assumed that <tt>gradients</tt>
   * already has the right size, i.e.  the same size as the <tt>points</tt>
   * array.
   */
  virtual void gradient_list (const std::vector<Point<dim> > &points,
                              std::vector<Tensor<1,dim, Number> >    &gradients,
                              const unsigned int              component = 0) const;

  /**
   * For each component of the function, fill a vector of gradient values, one
   * for each point.
   *
   * The default implementation of this function in Function calls
   * value_list() for each component. In order to improve performance, this
   * can be reimplemented in derived classes to speed up performance.
   */
  virtual void vector_gradients (const std::vector<Point<dim> >            &points,
                                 std::vector<std::vector<Tensor<1,dim, Number> > > &gradients) const;

  /**
   * Set <tt>gradients</tt> to the gradients of the function at the
   * <tt>points</tt>, for all components. It is assumed that
   * <tt>gradients</tt> already has the right size, i.e. the same size as the
   * <tt>points</tt> array.
   *
   * The outer loop over <tt>gradients</tt> is over the points in the list,
   * the inner loop over the different components of the function.
   */
  virtual void vector_gradient_list (const std::vector<Point<dim> >            &points,
                                     std::vector<std::vector<Tensor<1,dim, Number> > > &gradients) const;

  /**
   * Compute the Laplacian of a given component at point <tt>p</tt>.
   */
  virtual Number laplacian (const Point<dim>   &p,
                            const unsigned int  component = 0) const;

  /**
   * Compute the Laplacian of all components at point <tt>p</tt> and store
   * them in <tt>values</tt>.
   */
  virtual void vector_laplacian (const Point<dim>   &p,
                                 Vector<Number>     &values) const;

  /**
   * Compute the Laplacian of one component at a set of points.
   */
  virtual void laplacian_list (const std::vector<Point<dim> > &points,
                               std::vector<Number>            &values,
                               const unsigned int              component = 0) const;

  /**
   * Compute the Laplacians of all components at a set of points.
   */
  virtual void vector_laplacian_list (const std::vector<Point<dim> > &points,
                                      std::vector<Vector<Number> >   &values) const;

  /**
   * Compute the Hessian of a given component at point <tt>p</tt>, that is the
   * gradient of the gradient of the function.
   */
  virtual SymmetricTensor<2,dim,Number> hessian (const Point<dim>   &p,
                                                 const unsigned int          component = 0) const;

  /**
   * Compute the Hessian of all components at point <tt>p</tt> and store them
   * in <tt>values</tt>.
   */
  virtual void vector_hessian (const Point<dim>                           &p,
                               std::vector<SymmetricTensor<2,dim,Number> > &values) const;

  /**
   * Compute the Hessian of one component at a set of points.
   */
  virtual void hessian_list (const std::vector<Point<dim> >              &points,
                             std::vector<SymmetricTensor<2,dim,Number> > &values,
                             const unsigned int                          component = 0) const;

  /**
   * Compute the Hessians of all components at a set of points.
   */
  virtual void vector_hessian_list (const std::vector<Point<dim> >                            &points,
                                    std::vector<std::vector<SymmetricTensor<2,dim,Number> > > &values) const;


  /**
   * Return an estimate for the memory consumption, in bytes, of this object.
   * This is not exact (but will usually be close) because calculating the
   * memory usage of trees (e.g., <tt>std::map</tt>) is difficult.
   */
  std::size_t memory_consumption () const;
};



/**
 * Provide a function which always returns zero. Obviously, also the derivates
 * of this function are zero. Also, it returns zero on all components in case
 * the function is not a scalar one, which can be obtained by passing the
 * constructor the appropriate number of components.
 *
 * This function is of use when you want to implement homogeneous boundary
 * conditions, or zero initial conditions.
 *
 * @ingroup functions
 * @author Wolfgang Bangerth, 1998, 1999
 */
template <int dim, typename Number=double>
class ZeroFunction : public Function<dim, Number>
{
public:
  /**
   * Constructor. The number of components is preset to one.
   */
  ZeroFunction (const unsigned int n_components = 1);

  /**
   * Virtual destructor; absolutely necessary in this case.
   *
   */
  virtual ~ZeroFunction ();

  virtual Number value (const Point<dim>   &p,
                        const unsigned int  component) const;

  virtual void vector_value (const Point<dim> &p,
                             Vector<Number>   &return_value) const;

  virtual void value_list (const std::vector<Point<dim> > &points,
                           std::vector<Number>            &values,
                           const unsigned int              component = 0) const;

  virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                  std::vector<Vector<Number> >   &values) const;

  virtual Tensor<1,dim, Number> gradient (const Point<dim> &p,
                                          const unsigned int component = 0) const;

  virtual void vector_gradient (const Point<dim>            &p,
                                std::vector<Tensor<1,dim, Number> > &gradients) const;

  virtual void gradient_list (const std::vector<Point<dim> > &points,
                              std::vector<Tensor<1,dim, Number> >    &gradients,
                              const unsigned int              component = 0) const;

  virtual void vector_gradient_list (const std::vector<Point<dim> >            &points,
                                     std::vector<std::vector<Tensor<1,dim, Number> > > &gradients) const;
};



/**
 * Provide a function which always returns the constant values handed to the
 * constructor.
 *
 * Obviously, the derivates of this function are zero, which is why we derive
 * this class from <tt>ZeroFunction</tt>: we then only have to overload the
 * value functions, not all the derivatives. In some way, it would be more
 * obvious to do the derivation in the opposite direction, i.e. let
 * <tt>ZeroFunction</tt> be a more specialized version of
 * <tt>ConstantFunction</tt>; however, this would be less efficient, since we
 * could not make use of the fact that the function value of the
 * <tt>ZeroFunction</tt> is known at compile time and need not be looked up
 * somewhere in memory.
 *
 * @ingroup functions
 * @author Wolfgang Bangerth, 1998, 1999, Lei Qiao, 2015
 */
template <int dim, typename Number=double>
class ConstantFunction : public ZeroFunction<dim, Number>
{
public:
  /**
   * Constructor; set values of all components to the provided one. The
   * default number of components is one.
   */
  ConstantFunction (const Number       value,
                    const unsigned int n_components = 1);

  /**
   * Constructor; takes an <tt>std::vector<Number></tt> object as an argument.
   * The number of components is determined by <tt>values.size()</tt>.
   */
  ConstantFunction (const std::vector<Number> &values);

  /**
   * Constructor; takes an <tt>Vector<Number></tt> object as an argument. The
   * number of components is determined by <tt>values.size()</tt>.
   */
  ConstantFunction (const Vector<Number> &values);

  /**
   * Constructor; uses whatever stores in [begin_ptr, begin_ptr+n_components)
   * to initialize a new object.
   */
  ConstantFunction (const Number *begin_ptr, const unsigned int n_components);

  /**
   * Virtual destructor; absolutely necessary in this case.
   */
  virtual ~ConstantFunction ();

  virtual Number value (const Point<dim>   &p,
                        const unsigned int  component) const;

  virtual void vector_value (const Point<dim> &p,
                             Vector<Number>   &return_value) const;

  virtual void value_list (const std::vector<Point<dim> > &points,
                           std::vector<Number>            &return_values,
                           const unsigned int              component = 0) const;

  virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                  std::vector<Vector<Number> >   &return_values) const;

  std::size_t memory_consumption () const;

protected:
  /**
   * Store the constant function value vector.
   */
  std::vector<Number> function_value_vector;
};


/**
 * This is a constant vector-valued function, in which one or more components
 * of the vector have a constant value and all other components are zero.  It
 * is especially useful as a weight function for
 * VectorTools::integrate_difference, where it allows to integrate only one or
 * a few vector components, rather than the entire vector-valued solution. In
 * other words, it acts as a component mask with a single component selected
 * (see the
 * @ref GlossComponentMask "the glossary entry on component masks").
 * See the step-20 tutorial program for a detailed explanation and a use case.
 *
 * @ingroup functions
 * @author Guido Kanschat, 2000, Wolfgang Bangerth 2006
 */
template <int dim, typename Number=double>
class ComponentSelectFunction : public ConstantFunction<dim, Number>
{
public:
  /**
   * Constructor if only a single component shall be non-zero. Arguments
   * denote the component selected, the value for that component and the total
   * number of vector components.
   */
  ComponentSelectFunction (const unsigned int selected,
                           const Number       value,
                           const unsigned int n_components);

  /**
   * Constructor. As before, but the value for the selected component is
   * assumed to be one. In essence, this function then works as a mask.
   */
  ComponentSelectFunction (const unsigned int selected,
                           const unsigned int n_components);

  /**
   * Constructor if multiple components shall have non-zero, unit values (i.e.
   * this should be a mask for multiple components). The first argument
   * denotes a half-open interval of components (for example std::pair(0,dim)
   * for the first dim components), and the second argument is the total
   * number of vector components.
   */
  ComponentSelectFunction (const std::pair<unsigned int, unsigned int> &selected,
                           const unsigned int n_components);


  /**
   * Substitute function value with value of a <tt>ConstantFunction@<dim,
   * Number@></tt> object and keep the current selection pattern.
   *
   * This is useful if you want to have different values in different
   * components since the provided constructors of
   * <tt>ComponentSelectFunction@<dim, Number@></tt> class can only have same
   * value for all components.
   *
   * @note: we copy the underlying component value data from @p f from its
   * beginning. So the number of components of @p f cannot be less than the
   * calling object.
   */
  virtual void substitute_function_value_with (const ConstantFunction<dim, Number> &f);

  /**
   * Return the value of the function at the given point for all components.
   */
  virtual void vector_value (const Point<dim> &p,
                             Vector<Number>   &return_value) const;

  /**
   * Set <tt>values</tt> to the point values of the function at the
   * <tt>points</tt>, for all components. It is assumed that <tt>values</tt>
   * already has the right size, i.e. the same size as the <tt>points</tt>
   * array.
   */
  virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                  std::vector<Vector<Number> >   &values) const;

  /**
   * Return an estimate for the memory consumption, in bytes, of this object.
   * This is not exact (but will usually be close) because calculating the
   * memory usage of trees (e.g., <tt>std::map</tt>) is difficult.
   */
  std::size_t memory_consumption () const;

protected:
  /**
   * Half-open interval of the indices of selected components.
   */
  const std::pair<unsigned int,unsigned int> selected_components;
};



/**
 * This class provides a way to convert a scalar function of the kind
 * @code
 *   Number foo (const Point<dim> &);
 * @endcode
 * into an object of type Function@<dim@>. Since the argument returns a
 * scalar, the result is clearly a Function object for which
 * <code>function.n_components==1</code>. The class works by storing a pointer
 * to the given function and every time
 * <code>function.value(p,component)</code> is called, calls
 * <code>foo(p)</code> and returns the corresponding value. It also makes sure
 * that <code>component</code> is in fact zero, as needs be for scalar
 * functions.
 *
 * The class provides an easy way to turn a simple global function into
 * something that has the required Function@<dim@> interface for operations
 * like VectorTools::interpolate_boundary_values() etc., and thereby allows
 * for simpler experimenting without having to write all the boiler plate code
 * of declaring a class that is derived from Function and implementing the
 * Function::value() function. An example of this is given in the results
 * section of step-53.
 *
 * The class gains additional expressive power because the argument it takes
 * does not have to be a pointer to an actual function. Rather, it is a
 * function object, i.e., it can also be the result of call to std::bind (or
 * boost::bind) or some other object that can be called with a single
 * argument. For example, if you need a Function object that returns the norm
 * of a point, you could write it like so:
 * @code
 *   template <int dim, typename Number>
 *   class Norm : public Function<dim, Number> {
 *     public:
 *       virtual Number value (const Point<dim> &p,
 *                             const unsigned int component) const {
 *         Assert (component == 0, ExcMessage ("This object is scalar!"));
 *         return p.norm();
 *       }
 *    };
 *
 *    Norm<2> my_norm_object;
 * @endcode
 * and then pass the <code>my_norm_object</code> around, or you could write it
 * like so:
 * @code
 *   ScalarFunctionFromFunctionObject<dim, Number> my_norm_object (&Point<dim>::norm);
 * @endcode
 *
 * Similarly, to generate an object that computes the distance to a point
 * <code>q</code>, we could do this:
 * @code
 *   template <int dim, typename Number>
 *   class DistanceTo : public Function<dim, Number> {
 *     public:
 *       DistanceTo (const Point<dim> &q) : q(q) {}
 *       virtual Number value (const Point<dim> &p,
 *                             const unsigned int component) const {
 *         Assert (component == 0, ExcMessage ("This object is scalar!"));
 *         return q.distance(p);
 *       }
 *     private:
 *       const Point<dim> q;
 *    };
 *
 *    Point<2> q (2,3);
 *    DistanceTo<2> my_distance_object;
 * @endcode
 * or we could write it like so:
 * @code
 *    ScalarFunctionFromFunctionObject<dim, Number>
 *      my_distance_object (std_cxx11::bind (&Point<dim>::distance,
 *                                           q,
 *                                           std_cxx11::_1));
 * @endcode
 * The savings in work to write this are apparent.
 *
 * @author Wolfgang Bangerth, 2011
 */
template <int dim, typename Number=double>
class ScalarFunctionFromFunctionObject : public Function<dim, Number>
{
public:
  /**
   * Given a function object that takes a Point and returns a Number value,
   * convert this into an object that matches the Function<dim, Number>
   * interface.
   */
  ScalarFunctionFromFunctionObject (const std_cxx11::function<Number (const Point<dim> &)> &function_object);

  /**
   * Return the value of the function at the given point. Returns the value
   * the function given to the constructor produces for this point.
   */
  virtual Number value (const Point<dim>   &p,
                        const unsigned int  component = 0) const;

private:
  /**
   * The function object which we call when this class's value() or
   * value_list() functions are called.
   */
  const std_cxx11::function<Number (const Point<dim> &)> function_object;
};



/**
 * This class is similar to the ScalarFunctionFromFunctionObject class in that
 * it allows for the easy conversion of a function object to something that
 * satisfies the interface of the Function base class. The difference is that
 * here, the given function object is still a scalar function (i.e. it has a
 * single value at each space point) but that the Function object generated is
 * vector valued. The number of vector components is specified in the
 * constructor, where one also selects a single one of these vector components
 * that should be filled by the passed object. The result is a vector Function
 * object that returns zero in each component except the single selected one
 * where it returns the value returned by the given as the first argument to
 * the constructor.
 *
 * @note In the above discussion, note the difference between the (scalar)
 * "function object" (i.e., a C++ object <code>x</code> that can be called as
 * in <code>x(p)</code>) and the capitalized (vector valued) "Function object"
 * (i.e., an object of a class that is derived from the Function base class).
 *
 * To be more concrete, let us consider the following example:
 * @code
 *   Number one (const Point<2> &p) { return 1; }
 *   VectorFunctionFromScalarFunctionObject<2>
 *      component_mask (&one, 1, 3);
 * @endcode
 * Here, <code>component_mask</code> then represents a Function object that
 * for every point returns the vector $(0, 1, 0)^T$, i.e. a mask function that
 * could, for example, be passed to VectorTools::integrate_difference(). This
 * effect can also be achieved using the ComponentSelectFunction class but is
 * obviously easily extended to functions that are non-constant in their one
 * component.
 *
 * @author Wolfgang Bangerth, 2011
 */
template <int dim, typename Number=double>
class VectorFunctionFromScalarFunctionObject : public Function<dim, Number>
{
public:
  /**
   * Given a function object that takes a Point and returns a Number value,
   * convert this into an object that matches the Function@<dim@> interface.
   *
   * @param function_object The scalar function that will form one component
   * of the resulting Function object.
   * @param n_components The total number of vector components of the
   * resulting Function object.
   * @param selected_component The single component that should be filled by
   * the first argument.
   */
  VectorFunctionFromScalarFunctionObject (const std_cxx11::function<Number (const Point<dim> &)> &function_object,
                                          const unsigned int selected_component,
                                          const unsigned int n_components);

  /**
   * Return the value of the function at the given point. Returns the value
   * the function given to the constructor produces for this point.
   */
  virtual Number value (const Point<dim>   &p,
                        const unsigned int  component = 0) const;

  /**
   * Return all components of a vector-valued function at a given point.
   *
   * <tt>values</tt> shall have the right size beforehand, i.e. #n_components.
   */
  virtual void vector_value (const Point<dim>   &p,
                             Vector<Number>     &values) const;

private:
  /**
   * The function object which we call when this class's value() or
   * value_list() functions are called.
   */
  const std_cxx11::function<Number (const Point<dim> &)> function_object;

  /**
   * The vector component whose value is to be filled by the given scalar
   * function.
   */
  const unsigned int selected_component;
};


/**
 * This class is built as a means of translating the <code>Tensor<1,dim,
 * Number> </code> values produced by objects of type TensorFunction and
 * returning them as a multiple component version of the same thing as a
 * Vector for use in, for example, the VectorTools::interpolate or the many
 * other functions taking Function objects. It allows the user to place the
 * desired components into an <tt>n_components</tt> long vector starting at
 * the <tt>selected_component</tt> location in that vector and have all other
 * components be 0.
 *
 * For example: Say you created a class called
 *  @code
 *    class RightHandSide : public TensorFunction<rank,dim, Number>
 *  @endcode
 * which extends the TensorFunction class and you have an object
 *  @code
 *    RightHandSide<1,dim, Number> rhs;
 *  @endcode
 * of that class which you want to interpolate onto your mesh using the
 * VectorTools::interpolate function, but the finite element you use for the
 * DoFHandler object has 3 copies of a finite element with <tt>dim</tt>
 * components, for a total of 3*dim components. To interpolate onto that
 * DoFHandler, you need an object of type Function that has 3*dim vector
 * components. Creating such an object from the existing <code>rhs</code>
 * object is done using this piece of code:
 *  @code
 *      RighHandSide<1,dim, Number> rhs;
 *      VectorFunctionFromTensorFunction<dim, Number> rhs_vector_function (rhs, 0, 3*dim);
 *  @endcode
 * where the <code>dim</code> components of the tensor function are placed
 * into the first <code>dim</code> components of the function object.
 *
 * @author Spencer Patty, 2013
 */
template <int dim, typename Number=double>
class VectorFunctionFromTensorFunction : public Function<dim, Number>
{
public:
  /**
   * Given a TensorFunction object that takes a <tt>Point</tt> and returns a
   * <tt>Tensor<1,dim, Number></tt> value, convert this into an object that
   * matches the Function@<dim@> interface.
   *
   * By default, create a Vector object of the same size as
   * <tt>tensor_function</tt> returns, i.e., with <tt>dim</tt> components.
   *
   * @param tensor_function The TensorFunction that will form one component of
   * the resulting Vector Function object.
   * @param n_components The total number of vector components of the
   * resulting TensorFunction object.
   * @param selected_component The first component that should be filled by
   * the first argument.  This should be such that the entire tensor_function
   * fits inside the <tt>n_component</tt> length return vector.
   */
  VectorFunctionFromTensorFunction (const TensorFunction<1,dim, Number> &tensor_function,
                                    const unsigned int selected_component=0,
                                    const unsigned int n_components=dim);

  /**
   * This destructor is defined as virtual so as to coincide with all other
   * aspects of class.
   */
  virtual ~VectorFunctionFromTensorFunction();

  /**
   * Return a single component of a vector-valued function at a given point.
   */
  virtual Number value (const Point<dim> &p,
                        const unsigned int component = 0) const;

  /**
   * Return all components of a vector-valued function at a given point.
   *
   * <tt>values</tt> shall have the right size beforehand, i.e. #n_components.
   */
  virtual void vector_value (const Point<dim> &p,
                             Vector<Number>   &values) const;

  /**
   * Return all components of a vector-valued function at a list of points.
   *
   * <tt>value_list</tt> shall be the same size as <tt>points</tt> and each
   * element of the vector will be passed to vector_value() to evaluate the
   * function
   */
  virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                  std::vector<Vector<Number> >   &value_list) const;

private:
  /**
   * The TensorFunction object which we call when this class's vector_value()
   * or vector_value_list() functions are called.
   */
  const TensorFunction<1,dim,Number> &tensor_function;

  /**
   * The first vector component whose value is to be filled by the given
   * TensorFunction.  The values will be placed in components
   * selected_component to selected_component+dim-1 for a
   * <tt>TensorFunction<1,dim, Number></tt> object.
   */
  const unsigned int selected_component;
};


DEAL_II_NAMESPACE_CLOSE

#endif