This file is indexed.

/usr/include/deal.II/base/template_constraints.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// ---------------------------------------------------------------------
//
// Copyright (C) 2003 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__template_constraints_h
#define dealii__template_constraints_h


#include <deal.II/base/config.h>
#include <deal.II/base/complex_overloads.h>

#include <complex>
#include <utility>

DEAL_II_NAMESPACE_OPEN

template <bool, typename> struct constraint_and_return_value;


/**
 * This specialization of the general template for the case of a <tt>true</tt>
 * first template argument declares a local typedef <tt>type</tt> to the
 * second template argument. It is used in order to construct constraints on
 * template arguments in template (and member template) functions. The
 * negative specialization is missing.
 *
 * Here's how the trick works, called SFINAE (substitution failure is not an
 * error): The C++ standard prescribes that a template function is only
 * considered in a call, if all parts of its signature can be instantiated
 * with the template parameter replaced by the respective types/values in this
 * particular call. Example:
 * @code
 *   template <typename T>
 *   typename T::type  foo(T) {...};
 *   ...
 *   foo(1);
 * @endcode
 * The compiler should detect that in this call, the template parameter T must
 * be identified with the type "int". However, the return type T::type does
 * not exist. The trick now is that this is not considered an error: this
 * template is simply not considered, the compiler keeps on looking for
 * another possible function foo.
 *
 * The idea is then to make the return type un-instantiatable if certain
 * constraints on the template types are not satisfied:
 * @code
 *   template <bool, typename> struct constraint_and_return_value;
 *   template <typename T> struct constraint_and_return_value<true,T> {
 *     typedef T type;
 *   };
 * @endcode
 * constraint_and_return_value<false,T> is not defined. Given something like
 * @code
 *   template <typename>
 *   struct int_or_double         { static const bool value = false;};
 *   template <>
 *   struct int_or_double<int>    { static const bool value = true; };
 *   template <>
 *   struct int_or_double<double> { static const bool value = true; };
 * @endcode
 * we can write a template
 * @code
 *   template <typename T>
 *   typename constraint_and_return_value<int_or_double<T>::value,void>::type
 *   f (T);
 * @endcode
 * which can only be instantiated if T=int or T=double. A call to f('c') will
 * just fail with a compiler error: "no instance of f(char) found". On the
 * other hand, if the predicate in the first argument to the
 * constraint_and_return_value template is true, then the return type is just
 * the second type in the template.
 *
 * @author Wolfgang Bangerth, 2003
 */
template <typename T> struct constraint_and_return_value<true,T>
{
  typedef T type;
};



/**
 * A template class that simply exports its template argument as a local
 * typedef. This class, while at first appearing useless, makes sense in the
 * following context: if you have a function template as follows:
 * @code
 *   template <typename T> void f(T, T);
 * @endcode
 * then it can't be called in an expression like <code>f(1, 3.141)</code>
 * because the type <code>T</code> of the template can not be deduced in a
 * unique way from the types of the arguments. However, if the template is
 * written as
 * @code
 *   template <typename T> void f(T, typename identity<T>::type);
 * @endcode
 * then the call becomes valid: the type <code>T</code> is not deducible from
 * the second argument to the function, so only the first argument
 * participates in template type resolution.
 *
 * The context for this feature is as follows: consider
 * @code
 * template <typename RT, typename A>
 * void forward_call(RT (*p) (A), A a)  { p(a); }
 *
 * void h (double);
 *
 * void g()
 * {
 *   forward_call(&h, 1);
 * }
 * @endcode
 * This code fails to compile because the compiler can't decide whether the
 * template type <code>A</code> should be <code>double</code> (from the
 * signature of the function given as first argument to
 * <code>forward_call</code>, or <code>int</code> because the expression
 * <code>1</code> has that type. Of course, what we would like the compiler to
 * do is simply cast the <code>1</code> to <code>double</code>. We can achieve
 * this by writing the code as follows:
 * @code
 * template <typename RT, typename A>
 * void forward_call(RT (*p) (A), typename identity<A>::type a)  { p(a); }
 *
 * void h (double);
 *
 * void g()
 * {
 *   forward_call(&h, 1);
 * }
 * @endcode
 *
 * @author Wolfgang Bangerth, 2008
 */
template <typename T>
struct identity
{
  typedef T type;
};



/**
 * A class to perform comparisons of arbitrary pointers for equality. In some
 * circumstances, one would like to make sure that two arguments to a function
 * are not the same object. One would, in this case, make sure that their
 * addresses are not the same. However, sometimes the types of these two
 * arguments may be template types, and they may be the same type or not. In
 * this case, a simple comparison as in <tt>&object1 != &object2</tt> does
 * only work if the types of the two objects are equal, but the compiler will
 * barf if they are not. However, in the latter case, since the types of the
 * two objects are different, we can be sure that the two objects cannot be
 * the same.
 *
 * This class implements a comparison function that always returns @p false if
 * the types of its two arguments are different, and returns <tt>p1 == p2</tt>
 * otherwise.
 *
 * @author Wolfgang Bangerth, 2004
 */
struct PointerComparison
{
  /**
   * Comparison function for pointers of the same type. Returns @p true if the
   * two pointers are equal.
   */
  template <typename T>
  static bool equal (const T *p1, const T *p2);

  /**
   * Comparison function for pointers of different types. The C++ language
   * does not allow comparing these pointers using <tt>operator==</tt>.
   * However, since the two pointers have different types, we know that they
   * can't be the same, so we always return @p false.
   */
  template <typename T, typename U>
  static bool equal (const T *, const U *);
};



namespace internal
{
  /**
   * A type that is sometimes used for template tricks. For example, in some
   * situations one would like to do this:
   *
   * @code
   *   template <int dim>
   *   class X {
   *     // do something on subdim-dimensional sub-objects of the big
   *     // dim-dimensional thing (for example on vertices/lines/quads of
   *     // cells):
   *     template <int subdim> void f();
   *   };
   *
   *   template <int dim>
   *   template <>
   *   void X<dim>::f<0> () { ...operate on the vertices of a cell... }
   *
   *   template <int dim, int subdim> void g(X<dim> &x) {
   *     x.f<subdim> ();
   *   }
   * @endcode
   *
   * The problem is: the language doesn't allow us to specialize
   * <code>X::f()</code> without specializing the outer class first. One of
   * the common tricks is therefore to use something like this:
   *
   * @code
   *   template <int N> struct int2type {};
   *
   *   template <int dim>
   *   class X {
   *     // do something on subdim-dimensional sub-objects of the big
   *     // dim-dimensional thing (for example on vertices/lines/quads of
   *     // cells):
   *     void f(int2type<0>);
   *     void f(int2type<1>);
   *     void f(int2type<2>);
   *     void f(int2type<3>);
   *   };
   *
   *   template <int dim>
   *   void X<dim>::f (int2type<0>) { ...operate on the vertices of a cell... }
   *
   *   template <int dim>
   *   void X<dim>::f (int2type<1>) { ...operate on the lines of a cell... }
   *
   *   template <int dim, int subdim> void g(X<dim> &x) {
   *     x.f (int2type<subdim>());
   *   }
   * @endcode
   *
   * Note that we have replaced specialization of <code>X::f()</code> by
   * overloading, but that from inside the function <code>g()</code>, we can
   * still select which of the different <code>X::f()</code> we want based on
   * the <code>subdim</code> template argument.
   *
   * @author Wolfgang Bangerth, 2006
   */
  template <int N>
  struct int2type
  {};


  /**
   * The equivalent of the int2type class for boolean arguments.
   *
   * @author Wolfgang Bangerth, 2009
   */
  template <bool B>
  struct bool2type
  {};
}



/**
 * A type that can be used to determine whether two types are equal. It allows
 * to write code like
 * @code
 *   template <typename T>
 *   void Vector<T>::some_operation () {
 *     if (types_are_equal<T,double>::value == true)
 *       call_some_blas_function_for_doubles;
 *     else
 *       do_it_by_hand;
 *   }
 * @endcode
 *
 * This construct is made possible through the existence of a partial
 * specialization of the class for template arguments that are equal.
 */
template <typename T, typename U>
struct types_are_equal
{
  static const bool value = false;
};


/**
 * Partial specialization of the general template for the case that both
 * template arguments are equal. See the documentation of the general template
 * for more information.
 */
template <typename T>
struct types_are_equal<T,T>
{
  static const bool value = true;
};



/**
 * A class with a local typedef that represents the type that results from the
 * product of two variables of type @p T and @p U. In other words, we would
 * like to infer the type of the <code>product</code> variable in code like
 * this:
 * @code
 *   T t;
 *   U u;
 *   auto product = t*u;
 * @endcode
 * The local typedef of this structure represents the type the variable
 * <code>product</code> would have.
 *
 *
 * <h3>Where is this useful</h3>
 *
 * The purpose of this class is principally to represent the type one needs to
 * use to represent the values or gradients of finite element fields at
 * quadrature points. For example, assume you are storing the values $U_j$ of
 * unknowns in a Vector<float>, then evaluating $u_h(x_q) = \sum_j U_j
 * \varphi_j(x_q)$ at quadrature points results in values $u_h(x_q)$ that need
 * to be stored as @p double variables because the $U_j$ are @p float values
 * and the $\varphi_j(x_q)$ are computed as @p double values, and the product
 * are then @p double values. On the other hand, if you store your unknowns
 * $U_j$ as <code>std::complex@<double@></code> values and you try to evaluate
 * $\nabla u_h(x_q) = \sum_j U_j \nabla\varphi_j(x_q)$ at quadrature points,
 * then the gradients $\nabla u_h(x_q)$ need to be stored as objects of type
 * <code>Tensor@<1,dim,std::complex@<double@>@></code> because that's what you
 * get when you multiply a complex number by a <code>Tensor@<1,dim@></code>
 * (the type used to represent the gradient of shape functions of scalar
 * finite elements).
 *
 * Likewise, if you are using a vector valued element (with dim components)
 * and the $U_j$ are stored as @p double variables, then $u_h(x_q) = \sum_j
 * U_j \varphi_j(x_q)$ needs to have type <code>Tensor@<1,dim@></code>
 * (because the shape functions have type <code>Tensor@<1,dim@></code>).
 * Finally, if you store the $U_j$ as objects of type
 * <code>std::complex@<double@></code> and you have a vector valued element,
 * then the gradients $\nabla u_h(x_q) = \sum_j U_j \nabla\varphi_j(x_q)$ will
 * result in objects of type <code>Tensor@<2,dim,std::complex@<double@>
 * @></code>.
 *
 * In all of these cases, this type is used to identify which type needs to be
 * used for the result of computing the product of unknowns and the values,
 * gradients, or other properties of shape functions.
 *
 * @author Wolfgang Bangerth, 2015
 */
template <typename T, typename U>
struct ProductType
{
#ifdef DEAL_II_WITH_CXX11
  typedef decltype(std::declval<T>() * std::declval<U>()) type;
#endif
};

#ifndef DEAL_II_WITH_CXX11

template <typename T>
struct ProductType<T,T>
{
  typedef T type;
};

template <typename T>
struct ProductType<T,bool>
{
  typedef T type;
};

template <typename T>
struct ProductType<bool, T>
{
  typedef T type;
};

template <>
struct ProductType<bool,double>
{
  typedef double type;
};

template <>
struct ProductType<double,bool>
{
  typedef double type;
};

template <>
struct ProductType<double,float>
{
  typedef double type;
};

template <>
struct ProductType<float,double>
{
  typedef double type;
};

template <>
struct ProductType<double,long double>
{
  typedef long double type;
};

template <>
struct ProductType<long double,double>
{
  typedef long double type;
};

template <>
struct ProductType<double,int>
{
  typedef double type;
};

template <>
struct ProductType<int,double>
{
  typedef double type;
};

template <>
struct ProductType<float,int>
{
  typedef float type;
};

template <>
struct ProductType<int,float>
{
  typedef float type;
};

template <>
struct ProductType<double, unsigned int>
{
  typedef double type;
};

template <>
struct ProductType<unsigned int, double>
{
  typedef double type;
};

template <>
struct ProductType<float,unsigned int>
{
  typedef float type;
};

template <>
struct ProductType<unsigned int,float>
{
  typedef float type;
};

#endif

// Annoyingly, there is no std::complex<T>::operator*(U) for scalars U
// other than T (not even in C++11, or C++14). We provide our own overloads
// in base/complex_overloads.h, but in order for them to work, we have to
// manually specify all products we want to allow:

template <typename T>
struct ProductType<std::complex<T>,std::complex<T> >
{
  typedef std::complex<T> type;
};

template <typename T, typename U>
struct ProductType<std::complex<T>,std::complex<U> >
{
  typedef std::complex<typename ProductType<T,U>::type> type;
};

template <typename U>
struct ProductType<double,std::complex<U> >
{
  typedef std::complex<typename ProductType<double,U>::type> type;
};

template <typename T>
struct ProductType<std::complex<T>,double>
{
  typedef std::complex<typename ProductType<T,double>::type> type;
};


template <typename U>
struct ProductType<float,std::complex<U> >
{
  typedef std::complex<typename ProductType<float,U>::type> type;
};

template <typename T>
struct ProductType<std::complex<T>,float>
{
  typedef std::complex<typename ProductType<T,float>::type> type;
};



/**
 * This class provides a local typedef @p type that is equal to the template
 * argument but only if the template argument corresponds to a scalar type
 * (i.e., one of the floating point types, signed or unsigned integer, or a
 * complex number). If the template type @p T is not a scalar, then no class
 * <code>EnableIfScalar@<T@></code> is declared and, consequently, no local
 * typedef is available.
 *
 * The purpose of the class is to disable certain template functions if one of
 * the arguments is not a scalar number. By way of (nonsensical) example,
 * consider the following function:
 * @code
 *   template <typename T>
 *   T multiply (const T t1, const T t2) { return t1*t2; }
 * @endcode
 * This function can be called with any two arguments of the same type @p T.
 * This includes arguments for which this clearly makes no sense.
 * Consequently, one may want to restrict the function to only scalars, and
 * this can be written as
 * @code
 *   template <typename T>
 *   typename EnableIfScalar<T>::type
 *   multiply (const T t1, const T t2) { return t1*t2; }
 * @endcode
 * At a place where you call the function, the compiler will deduce the type
 * @p T from the arguments. For example, in
 * @code
 *   multiply(1.234, 2.345);
 * @endcode
 * it will deduce @p T to be @p double, and because
 * <code>EnableIfScalar@<double@>::type</code> equals @p double, the compiler
 * will instantiate a function <code>double multiply(const double, const
 * double)</code> from the template above. On the other hand, in a context
 * like
 * @code
 *   std::vector<char> v1, v2;
 *   multiply(v1, v2);
 * @endcode
 * the compiler will deduce @p T to be <code>std::vector@<char@></code> but
 * because <code>EnableIfScalar@<std::vector@<char@>@>::type</code> does not
 * exist the compiler does not consider the template for instantiation. This
 * technique is called "Substitution Failure is not an Error (SFINAE)". It
 * makes sure that the template function can not even be called, rather than
 * leading to a later error about the fact that the operation
 * <code>t1*t2</code> is not defined (or may lead to some nonsensical result).
 * It also allows the declaration of overloads of a function such as @p
 * multiply for different types of arguments, without resulting in ambiguous
 * call errors by the compiler.
 *
 * @author Wolfgang Bangerth, 2015
 */
template <typename T>
struct EnableIfScalar;


template <> struct EnableIfScalar<double>
{
  typedef double type;
};


template <> struct EnableIfScalar<float>
{
  typedef float type;
};


template <> struct EnableIfScalar<long double>
{
  typedef long double type;
};


template <> struct EnableIfScalar<int>
{
  typedef int type;
};


template <> struct EnableIfScalar<unsigned int>
{
  typedef unsigned int type;
};



template <typename T> struct EnableIfScalar<std::complex<T> >
{
  typedef std::complex<T> type;
};


// --------------- inline functions -----------------


template <typename T, typename U>
inline
bool
PointerComparison::equal (const T *, const U *)
{
  return false;
}



template <typename T>
inline
bool
PointerComparison::equal (const T *p1, const T *p2)
{
  return (p1==p2);
}


DEAL_II_NAMESPACE_CLOSE

#endif