This file is indexed.

/usr/include/deal.II/base/time_stepping.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// ---------------------------------------------------------------------
//
// Copyright (C) 2014 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__time_stepping_h
#define dealii__time_stepping_h


#include <deal.II/base/config.h>
#include <deal.II/base/std_cxx11/function.h>

#include <vector>

DEAL_II_NAMESPACE_OPEN

/**
 * Namespace containing the time stepping methods.
 *
 * @author Bruno Turcksin
 * @date 2014
 */

namespace TimeStepping
{
  /**
   * The following Runge-Kutta methods are available:
   * - Explicit methods (see ExplicitRungeKutta::initialize):
   *   - FORWARD_EULER (first order)
   *   - RK_THIRD_ORDER (third order Runge-Kutta)
   *   - RK_CLASSIC_FOURTH_ORDER (classical fourth order Runge-Kutta)
   * - Implicit methods (see ImplicitRungeKutta::initialize):
   *   - BACKWARD_EULER (first order)
   *   - IMPLICIT_MIDPOINT (second order)
   *   - CRANK_NICOLSON (second order)
   *   - SDIRK_TWO_STAGES (second order)
   * - Embedded explicit methods (see EmbeddedExplicitRungeKutta::initialize):
   *   - HEUN_EULER (second order)
   *   - BOGACKI_SHAMPINE (third order)
   *   - DOPRI: Dormand-Prince (fifth order, method used by ode45 in
   * MATLAB)
   *   - FEHLBERG (fifth order)
   *   - CASH_KARP (firth order)
   */
  enum runge_kutta_method { FORWARD_EULER, RK_THIRD_ORDER, RK_CLASSIC_FOURTH_ORDER,
                            BACKWARD_EULER, IMPLICIT_MIDPOINT, CRANK_NICOLSON,
                            SDIRK_TWO_STAGES, HEUN_EULER, BOGACKI_SHAMPINE, DOPRI,
                            FEHLBERG, CASH_KARP
                          };



  /**
   * Reason for exiting evolve_one_time_step when using an embedded method:
   * DELTA_T (the time step is in the valid range), MIN_DELTA_T (the time step
   * was increased to the minimum acceptable time step), MAX_DELTA_T (the time
   * step was reduced to the maximum acceptable time step).
   */
  enum embedded_runge_kutta_time_step { DELTA_T, MIN_DELTA_T, MAX_DELTA_T };



  /**
   * Abstract class for time stepping methods. These methods assume that the
   * equation has the form: $ \frac{\partial y}{\partial t} = f(t,y) $.
   */
  template <typename VectorType>
  class TimeStepping
  {
  public:
    /**
     * Virtual destructor.
     */
    virtual ~TimeStepping() {}

    /**
     * Purely virtual function. This function is used to advance from time @p
     * t to t+ @p delta_t. @p F is a vector of functions $ f(t,y) $ that
     * should be integrated, the input parameters are the time t and the
     * vector y and the output is value of f at this point. @p J_inverse is a
     * vector functions that compute the inverse of the Jacobians associated
     * to the implicit problems. The input parameters are the time, $ \tau $,
     * and a vector. The output is the value of function at this point. This
     * function returns the time at the end of the time step.
     */
    virtual double evolve_one_time_step
    (std::vector<std_cxx11::function<VectorType (const double, const VectorType &)> >               &F,
     std::vector<std_cxx11::function<VectorType (const double, const double, const VectorType &)> > &J_inverse,
     double                                                                                         t,
     double                                                                                         delta_t,
     VectorType                                                                                     &y) = 0;

    /**
     * Empty structure used to store information.
     */
    struct Status {};

    /**
     * Purely virtual function that return Status.
     */
    virtual const Status &get_status() const = 0;
  };



  /**
   * Base class for the Runge-Kutta method
   *
   * @author Damien Lebrun-Grandie, Bruno Turcksin
   * @date 2014
   */
  template <typename VectorType>
  class RungeKutta : public TimeStepping<VectorType>
  {
  public:
    /**
     * Virtual destructor.
     */
    virtual ~RungeKutta() {}

    /**
     * Purely virtual method used to initialize the Runge-Kutta method.
     */
    virtual void initialize(runge_kutta_method method) = 0;
    /**
     * This function is used to advance from time @p t to t+ @p delta_t. @p F
     * is a vector of functions $ f(t,y) $ that should be integrated, the
     * input parameters are the time t and the vector y and the output is
     * value of f at this point. @p J_inverse is a vector functions that
     * compute the inverse of the Jacobians associated to the implicit
     * problems. The input parameters are the time, $ \tau $, and a vector.
     * The output is the value of function at this point. This function
     * returns the time at the end of the time step. When using Runge-Kutta
     * methods, @p F and @ J_inverse can only contain one element.
     */
    double evolve_one_time_step
    (std::vector<std_cxx11::function<VectorType (const double, const VectorType &)> >               &F,
     std::vector<std_cxx11::function<VectorType (const double, const double, const VectorType &)> > &J_inverse,
     double                                                                                         t,
     double                                                                                         delta_t,
     VectorType &y);

    /**
     * Purely virtual function. This function is used to advance from time @p
     * t to t+ @p delta_t. @p f  is the function $ f(t,y) $ that should be
     * integrated, the input parameters are the time t and the vector y and
     * the output is value of f at this point. @p id_minus_tau_J_inverse is a
     * function that computes $ inv(I-\tau J)$ where $ I $ is the identity
     * matrix, $ \tau $ is given, and $ J $ is the Jacobian $ \frac{\partial
     * J}{\partial y} $. The input parameters are the time, $ \tau $, and a
     * vector. The output is the value of function at this point.
     * evolve_one_time_step returns the time at the end of the time step.
     */
    virtual double evolve_one_time_step
    (std_cxx11::function<VectorType (const double, const VectorType &)>               f,
     std_cxx11::function<VectorType (const double, const double, const VectorType &)> id_minus_tau_J_inverse,
     double                                                                           t,
     double                                                                           delta_t,
     VectorType                                                                       &y) = 0;

  protected:
    /**
     * Number of stages of the Runge-Kutta method.
     */
    unsigned int n_stages;

    /**
     * Butcher tableau coefficients.
     */
    std::vector<double> b;

    /**
     * Butcher tableau coefficients.
     */
    std::vector<double> c;

    /**
     * Butcher tableau coefficients.
     */
    std::vector<std::vector<double> > a;
  };



  /**
   * ExplicitRungeKutta is derived from RungeKutta and implement the explicit
   * methods.
   */
  template <typename VectorType>
  class ExplicitRungeKutta : public RungeKutta<VectorType>
  {
  public:
    using RungeKutta<VectorType>::evolve_one_time_step;

    /**
     * Default constructor. initialize(runge_kutta_method) needs to be called
     * before the object can be used.
     */
    ExplicitRungeKutta() {}

    /**
     * Constructor. This function calls initialize(runge_kutta_method).
     */
    ExplicitRungeKutta(runge_kutta_method method);

    /**
     * Initialize the explicit Runge-Kutta method.
     */
    void initialize(runge_kutta_method method);

    /**
     * This function is used to advance from time @p t to t+ @p delta_t. @p f
     * is the function $ f(t,y) $ that should be integrated, the input
     * parameters are the time t and the vector y and the output is value of f
     * at this point. @p id_minus_tau_J_inverse is a function that computes $
     * inv(I-\tau J)$ where $ I $ is the identity matrix, $ \tau $ is given,
     * and $ J $ is the Jacobian $ \frac{\partial J}{\partial y} $. The input
     * parameter are the time, $ \tau $, and a vector. The output is the value
     * of function at this point. evolve_one_time_step returns the time at the
     * end of the time step.
     */
    double evolve_one_time_step
    (std_cxx11::function<VectorType (const double, const VectorType &)>               f,
     std_cxx11::function<VectorType (const double, const double, const VectorType &)> id_minus_tau_J_inverse,
     double                                                                           t,
     double                                                                           delta_t,
     VectorType &y);

    /**
     * This function is used to advance from time @p t to t+ @p delta_t. This
     * function is similar to the one derived from RungeKutta, but does not
     * required id_minus_tau_J_inverse because it is not used for explicit
     * methods. evolve_one_time_step returns the time at the end of the time
     * step.
     */
    double evolve_one_time_step
    (std_cxx11::function<VectorType (const double, const VectorType &)> f,
     double                                                             t,
     double                                                             delta_t,
     VectorType                                                         &y);

    /**
     * This structure stores the name of the method used.
     */
    struct Status : public TimeStepping<VectorType>::Status
    {
      runge_kutta_method method;
    };

    /**
     * Return the status of the current object.
     */
    const Status &get_status() const;

  private:
    /**
     * Compute the different stages needed.
     */
    void compute_stages
    (std_cxx11::function<VectorType (const double, const VectorType &)> f,
     const double                                                       t,
     const double                                                       delta_t,
     const VectorType                                                   &y,
     std::vector<VectorType>                                            &f_stages) const;

    /**
     * Status structure of the object.
     */
    Status status;
  };



  /**
   * This class is derived from RungeKutta and implement the implicit methods.
   * This class works only for Diagonal Implicit Runge-Kutta (DIRK) methods.
   */
  template <typename VectorType>
  class ImplicitRungeKutta : public RungeKutta<VectorType>
  {
  public:
    using RungeKutta<VectorType>::evolve_one_time_step;

    /**
     * Default constructor. initialize(runge_kutta_method) and
     * set_newton_solver_parameters(unsigned int,double) need to be called
     * before the object can be used.
     */
    ImplicitRungeKutta() {}

    /**
     * Constructor. This function calls initialize(runge_kutta_method) and
     * initialize the maximum number of iterations and the tolerance of the
     * Newton solver.
     */
    ImplicitRungeKutta(runge_kutta_method method, unsigned int max_it=100, double tolerance=1e-6);

    /**
     * Initialize the implicit Runge-Kutta method.
     */
    void initialize(runge_kutta_method method);

    /**
     * This function is used to advance from time @p t to t+ @p delta_t. @p f
     * is the function $ f(t,y) $ that should be integrated, the input
     * parameters are the time t and the vector y and the output is value of f
     * at this point. @p id_minus_tau_J_inverse is a function that computes $
     * (I-\tau J)^{-1}$ where $ I $ is the identity matrix, $ \tau $ is given,
     * and $ J $ is the Jacobian $ \frac{\partial J}{\partial y} $. The input
     * parameters this function receives are the time, $ \tau $, and a vector.
     * The output is the value of function at this point. evolve_one_time_step
     * returns the time at the end of the time step.
     */
    double evolve_one_time_step
    (std_cxx11::function<VectorType (const double, const VectorType &)>               f,
     std_cxx11::function<VectorType (const double, const double, const VectorType &)> id_minus_tau_J_inverse,
     double                                                                           t,
     double                                                                           delta_t,
     VectorType                                                                       &y);

    /**
     * Set the maximum number of iterations and the tolerance used by the
     * Newton solver.
     */
    void set_newton_solver_parameters(unsigned int max_it, double tolerance);

    /**
     * Structure that stores the name of the method, the number of Newton
     * iterations and the norm of the residual when exiting the Newton solver.
     */
    struct Status : public TimeStepping<VectorType>::Status
    {
      runge_kutta_method method;
      unsigned int       n_iterations;
      double             norm_residual;
    };

    /**
     * Return the status of the current object.
     */
    const Status &get_status() const;

  private:
    /**
     * Compute the different stages needed.
     */
    void compute_stages
    (std_cxx11::function<VectorType (const double, const VectorType &)>               f,
     std_cxx11::function<VectorType (const double, const double, const VectorType &)> id_minus_tau_J_inverse,
     double                                                                           t,
     double                                                                           delta_t,
     VectorType                                                                       &y,
     std::vector<VectorType> &f_stages);

    /**
     * Newton solver used for the implicit stages.
     */
    void newton_solve(std_cxx11::function<void (const VectorType &,VectorType &)> get_residual,
                      std_cxx11::function<VectorType (const VectorType &)>        id_minus_tau_J_inverse,
                      VectorType                                                  &y);

    /**
     * Compute the residual needed by the Newton solver.
     */
    void compute_residual(std_cxx11::function<VectorType (const double, const VectorType &)> f,
                          double                                                             t,
                          double                                                             delta_t,
                          const VectorType                                                   &old_y,
                          const VectorType                                                   &y,
                          VectorType                                                         &tendency,
                          VectorType                                                         &residual) const;

    /**
     * When using SDIRK, there is no need to compute the linear combination of
     * the stages. Thus, when this flag is true, the linear combination is
     * skipped.
     */
    bool skip_linear_combi;

    /**
     * Maximum number of iterations of the Newton solver.
     */
    unsigned int max_it;

    /**
     * Tolerance of the Newton solver.
     */
    double tolerance;

    /**
     * Status structure of the object.
     */
    Status status;
  };



  /**
   * This is class is derived from RungeKutta and implement embedded explicit
   * methods.
   */
  template <typename VectorType>
  class EmbeddedExplicitRungeKutta : public RungeKutta<VectorType>
  {
  public:
    using RungeKutta<VectorType>::evolve_one_time_step;

    /**
     * Default constructor. initialize(runge_kutta_method) and
     * set_time_adaptation_parameters(double, double, double, double, double,
     * double) need to be called before the object can be used.
     */
    EmbeddedExplicitRungeKutta() {}

    /**
     * Constructor. This function calls initialize(runge_kutta_method) and
     * initialize the parameters needed for time adaptation.
     */
    EmbeddedExplicitRungeKutta(runge_kutta_method method,
                               double coarsen_param = 1.2,
                               double refine_param = 0.8,
                               double min_delta = 1e-14,
                               double max_delta = 1e100,
                               double refine_tol = 1e-8,
                               double coarsen_tol = 1e-12);

    /**
     * Destructor.
     */
    ~EmbeddedExplicitRungeKutta()
    {
      free_memory();
    }

    /**
     * If necessary, deallocate memory allocated by the object.
     */
    void free_memory();

    /**
     * Initialize the embedded explicit Runge-Kutta method.
     */
    void initialize(runge_kutta_method method);

    /**
     * This function is used to advance from time @p t to t+ @p delta_t. @p f
     * is the function $ f(t,y) $ that should be integrated, the input
     * parameters are the time t and the vector y and the output is value of f
     * at this point. @p id_minus_tau_J_inverse is a function that computes $
     * inv(I-\tau J)$ where $ I $ is the identity matrix, $ \tau $ is given,
     * and $ J $ is the Jacobian $ \frac{\partial J}{\partial y} $. The input
     * parameters are the time, $ \tau $, and a vector. The output is the
     * value of function at this point. evolve_one_time_step returns the time
     * at the end of the time step.
     */
    double evolve_one_time_step
    (std_cxx11::function<VectorType (const double, const VectorType &)>               f,
     std_cxx11::function<VectorType (const double, const double, const VectorType &)> id_minus_tau_J_inverse,
     double                                                                           t,
     double                                                                           delta_t,
     VectorType &y);

    /**
     * This function is used to advance from time @p t to t+ @p delta_t. This
     * function is similar to the one derived from TimeStepping, but does not
     * required id_minus_tau_J_inverse because it is not used for explicit
     * methods. evolve_one_time_step returns the time at the end of the time
     * step.
     */
    double evolve_one_time_step
    (std_cxx11::function<VectorType (const double, const VectorType &)> f,
     double                                                             t,
     double                                                             delta_t,
     VectorType &y);

    /**
     * Set the parameters necessary for the time adaptation.
     */
    void set_time_adaptation_parameters(double coarsen_param,
                                        double refine_param,
                                        double min_delta,
                                        double max_delta,
                                        double refine_tol,
                                        double coarsen_tol);

    /**
     * Structure that stores the name of the method, the reason to exit
     * evolve_one_time_step, the number of iteration inside n_iterations, a
     * guess of what the next time step should be, and an estimate of the norm
     * of the error.
     */
    struct Status : public TimeStepping<VectorType>::Status
    {
      runge_kutta_method method;
      embedded_runge_kutta_time_step exit_delta_t;
      unsigned int n_iterations;
      double delta_t_guess;
      double error_norm;
    };

    /**
     * Return the status of the current object.
     */
    const Status &get_status() const;

  private:
    /**
     * Compute the different stages needed.
     */
    void compute_stages(std_cxx11::function<VectorType (const double, const VectorType &)> f,
                        const double                                                       t,
                        const double                                                       delta_t,
                        const VectorType                                                   &y,
                        std::vector<VectorType>                                            &f_stages);

    /**
     * This parameter is the factor (>1) by which the time step is multiplied
     * when the time stepping can be coarsen.
     */
    double coarsen_param;

    /**
     * This parameter is the factor (<1) by which the time step is multiplied
     * when the time stepping must be refined.
     */
    double refine_param;

    /**
     * Smallest time step allowed.
     */
    double min_delta_t;

    /**
     * Largest time step allowed.
     */
    double max_delta_t;

    /**
     * Refinement tolerance: if the error estimate is larger than refine_tol,
     * the time step is refined.
     */
    double refine_tol;

    /**
     * Coarsening tolerance: if the error estimate is smaller than coarse_tol,
     * the time step is coarsen.
     */
    double coarsen_tol;

    /**
     * If the flag is true, the last stage is the same as the first stage and
     * one evaluation of f can be saved.
     */
    bool last_same_as_first;

    /**
     * Butcher tableau coefficients.
     */
    std::vector<double> b1;

    /**
     * Butcher tableau coefficients.
     */
    std::vector<double> b2;

    /**
     * If the last_same_as_first flag is set to true, the last stage is saved
     * and reused as the first stage of the next time step.
     */
    VectorType *last_stage;

    /**
     * Status structure of the object.
     */
    Status status;
  };
}

DEAL_II_NAMESPACE_CLOSE

#endif