This file is indexed.

/usr/include/deal.II/base/utilities.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// ---------------------------------------------------------------------
//
// Copyright (C) 2005 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__utilities_h
#define dealii__utilities_h

#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/mpi.h>

#include <vector>
#include <utility>
#include <functional>
#include <string>

#ifdef DEAL_II_WITH_TRILINOS
#  include <Epetra_Comm.h>
#  include <Epetra_Map.h>
#  ifdef DEAL_II_WITH_MPI
#    include <Epetra_MpiComm.h>
#  else
#    include <Epetra_SerialComm.h>
#  endif
#endif

DEAL_II_NAMESPACE_OPEN


/**
 * A namespace for utility functions that are not particularly specific to
 * finite element computing or numerical programs, but nevertheless are needed
 * in various contexts when writing applications.
 *
 * @ingroup utilities
 * @author Wolfgang Bangerth, 2005
 */
namespace Utilities
{

  /**
   * Convert a number @p value to a string, with as many digits as given to
   * fill with leading zeros.
   *
   * If the second parameter is left at its default value, the number is not
   * padded with leading zeros. The result is then the same as if the standard
   * C function <code>itoa()</code> had been called.
   *
   * When calling this function signed integers are implicitly converted to
   * unsigned integers and long integers might experience an overflow.
   *
   * @note The use of this function is discouraged and users should use
   * <code>Utilities::to_string()</code> instead. In its current
   * implementation the function simply calls <code>to_string@<unsigned
   * int@>()</code>.
   */
  std::string
  int_to_string (const unsigned int value,
                 const unsigned int digits = numbers::invalid_unsigned_int);

  /**
   * Convert a number @p value to a string, with @p digits characters. The
   * string is padded with leading zeros, after a possible minus sign.
   * Therefore the total number of padding zeros is @p digits minus any signs,
   * decimal points and digits of @p value.
   *
   * If the second parameter is left at its default value, the number is not
   * padded with leading zeros. The result is then the same as if the boost
   * function <code>lexical_cast@<std::string@>()</code> had been called.
   */
  template <typename number>
  std::string
  to_string (const number value,
             const unsigned int digits = numbers::invalid_unsigned_int);

  /**
   * Determine how many digits are needed to represent numbers at most as
   * large as the given number.
   */
  unsigned int
  needed_digits (const unsigned int max_number);

  /**
   * Given a string, convert it to an integer. Throw an assertion if that is
   * not possible.
   */
  int
  string_to_int (const std::string &s);

  /**
   * Return a string describing the dimensions of the object. Often, functions
   * in the deal.II library as well as in user codes need to define a string
   * containing the template dimensions of some objects defined using two
   * template parameters: dim (the topological dimension of the object) and
   * spacedim (the dimension of the embedding Euclidean space).  Since in all
   * deal.II classes, by default spacedim is equal to dimension, the above
   * string is usually contracted to "<dim>", instead of "<dim,spacedim>".
   * This function returns a string containing "dim" if dim is equal to
   * spacedim, otherwise it returns "dim,spacedim".
   */
  std::string dim_string(const int dim, const int spacedim);

  /**
   * Given a list of strings, convert it to a list of integers. Throw an
   * assertion if that is not possible.
   */
  std::vector<int>
  string_to_int (const std::vector<std::string> &s);

  /**
   * Given a string, convert it to an double. Throw an assertion if that is
   * not possible.
   */
  double
  string_to_double (const std::string &s);


  /**
   * Given a list of strings, convert it to a list of doubles. Throw an
   * assertion if that is not possible.
   */
  std::vector<double>
  string_to_double (const std::vector<std::string> &s);

  /**
   * Given a string that contains text separated by a @p delimiter, split it
   * into its components; for each component, remove leading and trailing
   * spaces. The default value of the delimiter is a comma, so that the
   * function splits comma separated lists of strings.
   *
   * To make data input from tables simpler, if the input string ends in a
   * delimiter (possibly followed by an arbitrary amount of whitespace), then
   * this last delimiter is ignored. For example,
   * @code
   *   Utilities::split_string_list("abc; def; ghi; ", ';');
   * @endcode
   * yields the same 3-element list of output <code>{"abc","def","ghi"}</code>
   * as you would get if the input had been
   * @code
   *   Utilities::split_string_list("abc; def; ghi", ';');
   * @endcode
   * or
   * @code
   *   Utilities::split_string_list("abc; def; ghi;", ';');
   * @endcode
   * As a consequence of this rule, a call like
   * @code
   *   Utilities::split_string_list(" ; ", ';');
   * @endcode
   * yields a one-element list. Because of the trimming of whitespace, the
   * single element is the empty string.
   *
   * This function can digest the case that the delimiter is a space. In this
   * case, it returns all words in the string. Combined with the rules above,
   * this implies that
   * @code
   *   Utilities::split_string_list("abc def ghi ", ' ');
   * @endcode
   * yields again the 3-element list of output
   * <code>{"abc","def","ghi"}</code> from above despite the presence of space
   * at the end of the string. Furthermore,
   * @code
   *   Utilities::split_string_list("      ", ' ');
   * @endcode
   * yields an empty list regardless of the number of spaces in the string.
   */
  std::vector<std::string>
  split_string_list (const std::string &s,
                     const char         delimiter = ',');

  /**
   * Take a text, usually a documentation or something, and try to break it
   * into individual lines of text at most @p width characters wide, by
   * breaking at positions marked by @p delimiter in the text. If this is not
   * possible, return the shortest lines that are longer than @p width.  The
   * default value of the delimiter is a space character. If original_text
   * contains newline characters (\n), the string is split at these locations,
   * too.
   */
  std::vector<std::string>
  break_text_into_lines (const std::string &original_text,
                         const unsigned int width,
                         const char delimiter = ' ');

  /**
   * Return true if the given pattern string appears in the first position of
   * the string.
   */
  bool
  match_at_string_start (const std::string &name,
                         const std::string &pattern);

  /**
   * Read a (signed) integer starting at the position in @p name indicated by
   * the second argument, and return this integer as a pair together with how
   * many characters it takes up in the string.
   *
   * If no integer can be read at the indicated position, return
   * (-1,numbers::invalid_unsigned_int)
   */
  std::pair<int, unsigned int>
  get_integer_at_position (const std::string &name,
                           const unsigned int position);

  /**
   * Return a string with all occurrences of @p from in @p input replaced by
   * @p to.
   */
  std::string replace_in_string(const std::string &input,
                                const std::string &from,
                                const std::string &to);

  /**
   * Return a string with all standard whitespace characters (including
   * '<tt>\\t</tt>', '<tt>\\n</tt>', and '<tt>\\r</tt>') at the beginning and
   * end of @p input removed.
   */
  std::string
  trim(const std::string &input);

  /**
   * Generate a random number from a normalized Gaussian probability
   * distribution centered around @p a and with standard deviation @p sigma.
   *
   * This function is reentrant, i.e., it can safely be called from multiple
   * threads at the same time. In addition, each thread will get the same
   * sequence of numbers every time. On the other hand, if you run
   * Threads::Task objects via the Threading Building Blocks, then tasks will
   * be assigned to mostly random threads, and may get a different sequence of
   * random numbers in different runs of the program, since a previous task
   * may already have consumed the first few random numbers generated for the
   * thread you're on. If this is a problem, you need to create your own
   * random number generator objects every time you want to start from a
   * defined point.
   *
   * @note Like the system function rand(), this function produces the same
   * sequence of random numbers every time a program is started. This is an
   * important property for debugging codes, but it makes it impossible to
   * really verify statistics properties of a code. For rand(), you can call
   * srand() to "seed" the random number generator to get different sequences
   * of random numbers every time a program is called. However, this function
   * does not allow seeding the random number generator. If you need this, as
   * above, use one of the C++ or BOOST facilities.
   */
  double
  generate_normal_random_number (const double a,
                                 const double sigma);


  /**
   * Calculate a fixed power, provided as a template argument, of a number.
   *
   * This function provides an efficient way to calculate things like
   * <code>t^N</code> where <code>N</code> is a known number at compile time.
   *
   * Use this function as in <code>fixed_power@<dim@> (n)</code>.
   */
  template <int N, typename T>
  T
  fixed_power (const T t);

  /**
   * Calculate a fixed power of an integer number by a template expression
   * where both the number <code>a</code> and the power <code>N</code> are
   * compile-time constants. This computes the result of the power operation
   * at compile time, enabling its use e.g. in other templates.
   *
   * Use this class as in <code>fixed_int_power@<5,2@>::%value</code> to
   * compute 5<sup>2</sup>.
   */
  template <int a, int N>
  struct fixed_int_power
  {
    static const int value = a *fixed_int_power<a,N-1>::value;
  };

  /**
   * Base case for the power operation with <code>N=0</code>, which gives the
   * result 1.
   */
  template <int a>
  struct fixed_int_power<a,0>
  {
    static const int value = 1;
  };

  /**
   * Optimized replacement for <tt>std::lower_bound</tt> for searching within
   * the range of column indices. Slashes execution time by approximately one
   * half for the present application, partly because because the binary
   * search is replaced by a linear search for small loop lengths.
   *
   * Another reason for this function is rather obscure: when using the GCC
   * libstdc++ function std::lower_bound, complexity is O(log(N)) as required.
   * However, when using the debug version of the GCC libstdc++ as we do when
   * running the testsuite, then std::lower_bound tests whether the sequence
   * is in fact partitioned with respect to the pivot 'value' (i.e. in essence
   * that the sequence is sorted as required for binary search to work).
   * However, verifying this means that the complexity of std::lower_bound
   * jumps to O(N); we call this function O(N) times below, making the overall
   * complexity O(N**2). The consequence is that a few tests with big meshes
   * completely run off the wall time limit for tests and fail with the
   * libstdc++ debug mode
   *
   * This function simply makes the assumption that the sequence is sorted,
   * and we simply don't do the additional check.
   */
  template<typename Iterator, typename T>
  Iterator
  lower_bound (Iterator  first,
               Iterator  last,
               const T  &val);


  /**
   * The same function as above, but taking an argument that is used to
   * compare individual elements of the sequence of objects pointed to by the
   * iterators.
   */
  template<typename Iterator, typename T, typename Comp>
  Iterator
  lower_bound (Iterator   first,
               Iterator   last,
               const T   &val,
               const Comp comp);

  /**
   * Given a permutation vector (i.e. a vector $p_0\ldots p_{N-1}$ where each
   * $p_i\in [0,N)$ and $p_i\neq p_j$ for $i\neq j$), produce the reverse
   * permutation $q_i=N-1-p_i$.
   */
  std::vector<unsigned int>
  reverse_permutation (const std::vector<unsigned int> &permutation);

  /**
   * Given a permutation vector (i.e. a vector $p_0\ldots p_{N-1}$ where each
   * $p_i\in [0,N)$ and $p_i\neq p_j$ for $i\neq j$), produce the inverse
   * permutation $q_0\ldots q_{N-1}$ so that $q_{p_i}=p_{q_i}=i$.
   */
  std::vector<unsigned int>
  invert_permutation (const std::vector<unsigned int> &permutation);

  /**
   * Given a permutation vector (i.e. a vector $p_0\ldots p_{N-1}$ where each
   * $p_i\in [0,N)$ and $p_i\neq p_j$ for $i\neq j$), produce the reverse
   * permutation $q_i=N-1-p_i$.
   */
  std::vector<unsigned long long int>
  reverse_permutation (const std::vector<unsigned long long int> &permutation);

  /**
   * Given a permutation vector (i.e. a vector $p_0\ldots p_{N-1}$ where each
   * $p_i\in [0,N)$ and $p_i\neq p_j$ for $i\neq j$), produce the inverse
   * permutation $q_0\ldots q_{N-1}$ so that $q_{p_i}=p_{q_i}=i$.
   */
  std::vector<unsigned long long int>
  invert_permutation (const std::vector<unsigned long long int> &permutation);

  /**
   * A namespace for utility functions that probe system properties.
   *
   * @ingroup utilities
   */
  namespace System
  {

    /**
     * Return the CPU load as returned by "uptime". Note that the
     * interpretation of this number depends on the actual number of
     * processors in the machine. This is presently only implemented on Linux,
     * using the /proc/loadavg pseudo-file, on other systems we simply return
     * zero.
     */
    double get_cpu_load ();

    /**
     * Structure that hold information about memory usage in kB. Used by
     * get_memory_stats(). See man 5 proc entry /status for details.
     */
    struct MemoryStats
    {
      unsigned long int VmPeak; /** peak virtual memory size in kB */
      unsigned long int VmSize; /** current virtual memory size in kB */
      unsigned long int VmHWM; /** peak resident memory size in kB */
      unsigned long int VmRSS; /** current resident memory size in kB */
    };


    /**
     * Fills the @p stats structure with information about the memory
     * consumption of this process. This is only implemented on Linux.
     */
    void get_memory_stats (MemoryStats &stats);


    /**
     * Return the name of the host this process runs on.
     */
    std::string get_hostname ();


    /**
     * Return the present time as HH:MM:SS.
     */
    std::string get_time ();

    /**
     * Return the present date as YYYY/MM/DD. MM and DD may be either one or
     * two digits.
     */
    std::string get_date ();

    /**
     * Call the system function posix_memalign, or a replacement function if
     * not available, to allocate memory with a certain minimal alignment. The
     * first argument will then return a pointer to this memory block that can
     * be released later on through a standard <code>free</code> call.
     *
     * @param memptr The address of a pointer variable that will after this
     * call point to the allocated memory.
     * @param alignment The minimal alignment of the memory block, in bytes.
     * @param size The size of the memory block to be allocated, in bytes.
     *
     * @note This function checks internally for error codes, rather than
     * leaving this task to the calling site.
     */
    void posix_memalign (void **memptr, size_t alignment, size_t size);

    /**
     * @deprecated Use Utilities::MPI::job_supports_mpi() instead.
     */
    bool job_supports_mpi () DEAL_II_DEPRECATED;
  }


#ifdef DEAL_II_WITH_TRILINOS
  /**
   * This namespace provides some of the basic structures used in the
   * initialization of the Trilinos objects (e.g., matrices, vectors, and
   * preconditioners).
   */
  namespace Trilinos
  {
    /**
     * Returns a Trilinos Epetra_Comm object needed for creation of
     * Epetra_Maps.
     *
     * If deal.II has been configured to use a compiler that does not support
     * MPI then the resulting communicator will be a serial one. Otherwise,
     * the communicator will correspond to MPI_COMM_WORLD, i.e. a communicator
     * that encompasses all processes within this MPI universe.
     */
    const Epetra_Comm &comm_world();

    /**
     * Returns a Trilinos Epetra_Comm object needed for creation of
     * Epetra_Maps.
     *
     * If deal.II has been configured to use a compiler that does not support
     * MPI then the resulting communicator will be a serial one. Otherwise,
     * the communicator will correspond to MPI_COMM_SELF, i.e. a communicator
     * that comprises only this one processor.
     */
    const Epetra_Comm &comm_self();

    /**
     * Given a communicator, duplicate it. If the given communicator is
     * serial, that means to just return a copy of itself. On the other hand,
     * if it is %parallel, we duplicate the underlying MPI_Comm object: we
     * create a separate MPI communicator that contains the same processors
     * and in the same order but has a separate identifier distinct from the
     * given communicator. The function returns a pointer to a new object of a
     * class derived from Epetra_Comm. The caller of this function needs to
     * assume ownership of this function. The returned object should be
     * destroyed using the destroy_communicator() function.
     *
     * This facility is used to separate streams of communication. For
     * example, a program could simply use MPI_Comm_World for everything. But
     * it is easy to come up with scenarios where sometimes not all processors
     * participate in a communication that is intended to be global -- for
     * example if we assemble a matrix on a coarse mesh with fewer cells than
     * there are processors, some processors may not sync their matrices with
     * the rest because they haven't written into it because they own no
     * cells. That's clearly a bug. However, if these processors just continue
     * their work, and the next %parallel operation happens to be a sync on a
     * different matrix, then the sync could succeed -- by accident, since
     * different processors are talking about different matrices.
     *
     * This kind of situation can be avoided if we use different communicators
     * for different matrices which reduces the likelihood that communications
     * meant to be separate aren't recognized as such just because they happen
     * on the same communicator. In addition, it is conceivable that some MPI
     * operations can be parallelized using multiple threads because their
     * communicators identifies the communication in question, not their
     * relative timing as is the case in a sequential program that just uses a
     * single communicator.
     */
    Epetra_Comm *
    duplicate_communicator (const Epetra_Comm &communicator);

    /**
     * Given an Epetra communicator that was created by the
     * duplicate_communicator() function, destroy the underlying MPI
     * communicator object and reset the Epetra_Comm object to a the result of
     * comm_self().
     *
     * It is necessary to call this function at the time when the result of
     * duplicate_communicator() is no longer needed. The reason is that in
     * that function, we first create a new MPI_Comm object and then create an
     * Epetra_Comm around it. While we can take care of destroying the latter,
     * it doesn't destroy the communicator since it can only assume that it
     * may also be still used by other objects in the program. Consequently,
     * we have to take care of destroying it ourselves, explicitly.
     *
     * This function does exactly that. Because this has to happen while the
     * Epetra_Comm object is still around, it first resets the latter and then
     * destroys the communicator object.
     *
     * @note If you call this function on an Epetra_Comm object that is not
     * created by duplicate_communicator(), you are likely doing something
     * quite wrong. Don't do this.
     */
    void
    destroy_communicator (Epetra_Comm &communicator);

    /**
     * Return the number of MPI processes there exist in the given
     * communicator object. If this is a sequential job, it returns 1.
     */
    unsigned int get_n_mpi_processes (const Epetra_Comm &mpi_communicator);

    /**
     * Return the number of the present MPI process in the space of processes
     * described by the given communicator. This will be a unique value for
     * each process between zero and (less than) the number of all processes
     * (given by get_n_mpi_processes()).
     */
    unsigned int get_this_mpi_process (const Epetra_Comm &mpi_communicator);

    /**
     * Given a Trilinos Epetra map, create a new map that has the same
     * subdivision of elements to processors but uses the given communicator
     * object instead of the one stored in the first argument. In essence,
     * this means that we create a map that communicates among the same
     * processors in the same way, but using a separate channel.
     *
     * This function is typically used with a communicator that has been
     * obtained by the duplicate_communicator() function.
     */
    Epetra_Map
    duplicate_map (const Epetra_BlockMap  &map,
                   const Epetra_Comm &comm);
  }

#endif


}


// --------------------- inline functions

namespace Utilities
{
  template <int N, typename T>
  inline
  T fixed_power (const T n)
  {
    Assert (N>0, ExcNotImplemented());
    switch (N)
      {
      case 1:
        return n;
      case 2:
        return n*n;
      case 3:
        return n*n*n;
      case 4:
        return n*n*n*n;
      default:
        T result = n;
        for (int d=1; d<N; ++d)
          result *= n;
        return result;
      }
  }



  template<typename Iterator, typename T>
  inline
  Iterator
  lower_bound (Iterator  first,
               Iterator  last,
               const T  &val)
  {
    return Utilities::lower_bound (first, last, val,
                                   std::less<T>());
  }



  template<typename Iterator, typename T, typename Comp>
  inline
  Iterator
  lower_bound (Iterator    first,
               Iterator    last,
               const T    &val,
               const Comp  comp)
  {
    // verify that the two iterators are properly ordered. since
    // we need operator- for the iterator type anyway, do the
    // test as follows, rather than via 'last >= first'
    Assert (last - first >= 0,
            ExcMessage ("The given iterators do not satisfy the proper ordering."));

    unsigned int len = static_cast<unsigned int>(last-first);

    if (len==0)
      return first;

    while (true)
      {
        // if length equals 8 or less,
        // then do a rolled out
        // search. use a switch without
        // breaks for that and roll-out
        // the loop somehow
        if (len < 8)
          {
            switch (len)
              {
              case 7:
                if (!comp(*first, val))
                  return first;
                ++first;
              case 6:
                if (!comp(*first, val))
                  return first;
                ++first;
              case 5:
                if (!comp(*first, val))
                  return first;
                ++first;
              case 4:
                if (!comp(*first, val))
                  return first;
                ++first;
              case 3:
                if (!comp(*first, val))
                  return first;
                ++first;
              case 2:
                if (!comp(*first, val))
                  return first;
                ++first;
              case 1:
                if (!comp(*first, val))
                  return first;
                return first+1;
              default:
                // indices seem
                // to not be
                // sorted
                // correctly!? or
                // did len
                // become==0
                // somehow? that
                // shouldn't have
                // happened
                Assert (false, ExcInternalError());
              }
          }



        const unsigned int half   = len >> 1;
        const Iterator     middle = first + half;

        // if the value is larger than
        // that pointed to by the
        // middle pointer, then the
        // insertion point must be
        // right of it
        if (comp(*middle, val))
          {
            first = middle + 1;
            len  -= half + 1;
          }
        else
          len = half;
      }
  }
}


DEAL_II_NAMESPACE_CLOSE

#endif