This file is indexed.

/usr/include/deal.II/fe/fe_nedelec.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// ---------------------------------------------------------------------
//
// Copyright (C) 2002 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__fe_nedelec_h
#define dealii__fe_nedelec_h

#include <deal.II/base/config.h>
#include <deal.II/base/table.h>
#include <deal.II/base/tensor.h>
#include <deal.II/base/tensor.h>
#include <deal.II/base/polynomials_nedelec.h>
#include <deal.II/base/polynomial.h>
#include <deal.II/base/tensor_product_polynomials.h>
#include <deal.II/base/geometry_info.h>
#include <deal.II/base/thread_management.h>
#include <deal.II/fe/fe.h>
#include <deal.II/fe/fe_poly_tensor.h>
#include <vector>

DEAL_II_NAMESPACE_OPEN

template <int dim, int spacedim> class MappingQ;


/*!@addtogroup fe */
/*@{*/

/**
 * @warning Several aspects of the implementation are experimental. For the
 * moment, it is safe to use the element on globally refined meshes with
 * consistent orientation of faces. See the todo entries below for more
 * detailed caveats.
 *
 * Implementation of N&eacute;d&eacute;lec elements, conforming with the space
 * H<sup>curl</sup>. These elements generate vector fields with tangential
 * components continuous between mesh cells.
 *
 * We follow the convention that the degree of N&eacute;d&eacute;lec elements
 * denotes the polynomial degree of the largest complete polynomial subspace
 * contained in the N&eacute;d&eacute;lec space. This leads to the
 * consistently numbered sequence of spaces
 * @f[
 *   Q_{k+1}
 *   \stackrel{\text{grad}}{\rightarrow}
 *   \text{Nedelec}_k
 *   \stackrel{\text{curl}}{\rightarrow}
 *   \text{RaviartThomas}_k
 *   \stackrel{\text{div}}{\rightarrow}
 *   DGQ_{k}
 * @f]
 * Consequently, approximation order of the Nédélec space equals the value
 * <i>degree</i> given to the constructor. In this scheme, the lowest order
 * element would be created by the call FE_Nedelec<dim>(0). Note that this
 * follows the convention of Brezzi and Raviart, though not the one used in
 * the original paper by Nédélec.
 *
 * This class is not implemented for the codimension one case (<tt>spacedim !=
 * dim</tt>).
 *
 * @todo Even if this element is implemented for two and three space
 * dimensions, the definition of the node values relies on consistently
 * oriented faces in 3D. Therefore, care should be taken on complicated
 * meshes.
 *
 *
 * <h3>Interpolation</h3>
 *
 * The
 * @ref GlossInterpolation "interpolation"
 * operators associated with the N&eacute;d&eacute;lec element are constructed
 * such that interpolation and computing the curl are commuting operations on
 * rectangular mesh cells. We require this from interpolating arbitrary
 * functions as well as the #restriction matrices.
 *
 * <h4>Node values</h4>
 *
 * The
 * @ref GlossNodes "node values"
 * for an element of degree <i>k</i> on the reference cell are:
 * <ol>
 * <li> On edges: the moments of the tangential component with respect to
 * polynomials of degree <i>k</i>.
 * <li> On faces: the moments of the tangential components with respect to
 * <tt>dim</tt>-1 dimensional FE_Nedelec polynomials of degree <i>k</i>-1.
 * <li> In cells: the moments with respect to gradients of polynomials in FE_Q
 * of degree <i>k</i>.
 * </ol>
 *
 * <h4>Generalized support points</h4>
 *
 * The node values above rely on integrals, which will be computed by
 * quadrature rules themselves. The generalized support points are a set of
 * points such that this quadrature can be performed with sufficient accuracy.
 * The points needed are those of QGauss<sub>k+1</sub> on each edge and
 * QGauss<sub>k+2</sub> on each face and in the interior of the cell (or none
 * for N<sub>1</sub>).
 *
 * @author Markus B&uuml;rg
 * @date 2009, 2010, 2011
 */
template <int dim>
class FE_Nedelec : public FE_PolyTensor<PolynomialsNedelec<dim>, dim>
{
public:
  /**
   * Constructor for the N&eacute;d&eacute;lec element of degree @p p.
   */
  FE_Nedelec (const unsigned int p);

  /**
   * Return a string that uniquely identifies a finite element. This class
   * returns <tt>FE_Nedelec<dim>(degree)</tt>, with @p dim and @p degree
   * replaced by appropriate values.
   */
  virtual std::string get_name () const;


  /**
   * This function returns @p true, if the shape function @p shape_index has
   * non-zero function values somewhere on the face @p face_index.
   */
  virtual bool has_support_on_face (const unsigned int shape_index,
                                    const unsigned int face_index) const;

  /**
   * Return whether this element implements its hanging node constraints in
   * the new way, which has to be used to make elements "hp compatible".
   *
   * For the <tt>FE_Nedelec</tt> class the result is always true (independent
   * of the degree of the element), as it implements the complete set of
   * functions necessary for hp capability.
   */
  virtual bool hp_constraints_are_implemented () const;

  /**
   * Return whether this element dominates the one, which is given as
   * argument.
   */
  virtual FiniteElementDomination::Domination
  compare_for_face_domination (const FiniteElement<dim> &fe_other) const;

  /**
   * If, on a vertex, several finite elements are active, the hp code first
   * assigns the degrees of freedom of each of these FEs different global
   * indices. It then calls this function to find out which of them should get
   * identical values, and consequently can receive the same global DoF index.
   * This function therefore returns a list of identities between DoFs of the
   * present finite element object with the DoFs of @p fe_other, which is a
   * reference to a finite element object representing one of the other finite
   * elements active on this particular vertex. The function computes which of
   * the degrees of freedom of the two finite element objects are equivalent,
   * both numbered between zero and the corresponding value of dofs_per_vertex
   * of the two finite elements. The first index of each pair denotes one of
   * the vertex dofs of the present element, whereas the second is the
   * corresponding index of the other finite element.
   */
  virtual std::vector<std::pair<unsigned int, unsigned int> >
  hp_vertex_dof_identities (const FiniteElement<dim> &fe_other) const;

  /**
   * Same as hp_vertex_dof_indices(), except that the function treats degrees
   * of freedom on lines.
   */
  virtual std::vector<std::pair<unsigned int, unsigned int> >
  hp_line_dof_identities (const FiniteElement<dim> &fe_other) const;

  /**
   * Same as hp_vertex_dof_indices(), except that the function treats degrees
   * of freedom on lines.
   */
  virtual std::vector<std::pair<unsigned int, unsigned int> >
  hp_quad_dof_identities (const FiniteElement<dim> &fe_other) const;

  /**
   * Return the matrix interpolating from a face of one element to the face of
   * the neighboring element. The size of the matrix is then
   * <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
   *
   * Derived elements will have to implement this function. They may only
   * provide interpolation matrices for certain source finite elements, for
   * example those from the same family. If they don't implement interpolation
   * from a given element, then they must throw an exception of type
   * <tt>FiniteElement<dim>::ExcInterpolationNotImplemented</tt>.
   */
  virtual void
  get_face_interpolation_matrix (const FiniteElement<dim> &source,
                                 FullMatrix<double> &matrix) const;

  /**
   * Return the matrix interpolating from a face of one element to the subface
   * of the neighboring element. The size of the matrix is then
   * <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
   *
   * Derived elements will have to implement this function. They may only
   * provide interpolation matrices for certain source finite elements, for
   * example those from the same family. If they don't implement interpolation
   * from a given element, then they must throw an exception of type
   * <tt>ExcInterpolationNotImplemented</tt>.
   */
  virtual void
  get_subface_interpolation_matrix (const FiniteElement<dim> &source,
                                    const unsigned int subface,
                                    FullMatrix<double> &matrix) const;
  /**
   * Projection from a fine grid space onto a coarse grid space. If this
   * projection operator is associated with a matrix @p P, then the
   * restriction of this matrix @p P_i to a single child cell is returned
   * here.
   *
   * The matrix @p P is the concatenation or the sum of the cell matrices @p
   * P_i, depending on the #restriction_is_additive_flags. This distinguishes
   * interpolation (concatenation) and projection with respect to scalar
   * products (summation).
   *
   * Row and column indices are related to coarse grid and fine grid spaces,
   * respectively, consistent with the definition of the associated operator.
   */
  virtual const FullMatrix<double> &
  get_restriction_matrix (const unsigned int child,
                          const RefinementCase<dim> &refinement_case=RefinementCase<dim>::isotropic_refinement) const;

  /**
   * Embedding matrix between grids.
   *
   * The identity operator from a coarse grid space into a fine grid space is
   * associated with a matrix @p P. The restriction of this matrix @p P_i to a
   * single child cell is returned here.
   *
   * The matrix @p P is the concatenation, not the sum of the cell matrices @p
   * P_i. That is, if the same non-zero entry <tt>j,k</tt> exists in in two
   * different child matrices @p P_i, the value should be the same in both
   * matrices and it is copied into the matrix @p P only once.
   *
   * Row and column indices are related to fine grid and coarse grid spaces,
   * respectively, consistent with the definition of the associated operator.
   *
   * These matrices are used by routines assembling the prolongation matrix
   * for multi-level methods.  Upon assembling the transfer matrix between
   * cells using this matrix array, zero elements in the prolongation matrix
   * are discarded and will not fill up the transfer matrix.
   */
  virtual const FullMatrix<double> &
  get_prolongation_matrix (const unsigned int child,
                           const RefinementCase<dim> &refinement_case=RefinementCase<dim>::isotropic_refinement) const;

  virtual void interpolate (std::vector<double> &local_dofs,
                            const std::vector<double> &values) const;

  virtual void interpolate (std::vector<double> &local_dofs,
                            const std::vector<Vector<double> > &values,
                            unsigned int offset = 0) const;
  virtual void interpolate (std::vector<double> &local_dofs,
                            const VectorSlice<const std::vector<std::vector<double> > > &values)
  const;

  /**
   * Returns a list of constant modes of the element.
   */
  virtual std::pair<Table<2,bool>, std::vector<unsigned int> >
  get_constant_modes () const;

  virtual std::size_t memory_consumption () const;
  virtual FiniteElement<dim> *clone() const;

private:
  /**
   * Only for internal use. Its full name is @p get_dofs_per_object_vector
   * function and it creates the @p dofs_per_object vector that is needed
   * within the constructor to be passed to the constructor of @p
   * FiniteElementData.
   *
   * If the optional argument <tt>dg</tt> is true, the vector returned will
   * have all degrees of freedom assigned to the cell, none on the faces and
   * edges.
   */
  static std::vector<unsigned int>
  get_dpo_vector (const unsigned int degree, bool dg=false);

  /**
   * Initialize the @p generalized_support_points field of the FiniteElement
   * class and fill the tables with interpolation weights (#boundary_weights
   * and interior_weights). Called from the constructor.
   */
  void initialize_support_points (const unsigned int degree);

  /**
   * Initialize the interpolation from functions on refined mesh cells onto
   * the father cell. According to the philosophy of the Nédélec element,
   * this restriction operator preserves the curl of a function weakly.
   */
  void initialize_restriction ();

  /**
   * These are the factors multiplied to a function in the
   * #generalized_face_support_points when computing the integration.
   *
   * See the
   * @ref GlossGeneralizedSupport "glossary entry on generalized support points"
   * for more information.
   */
  Table<2, double> boundary_weights;

  /*
   * Mutex for protecting initialization of restriction and embedding matrix.
   */
  mutable Threads::Mutex mutex;

  /**
   * Allow access from other dimensions.
   */
  template <int dim1> friend class FE_Nedelec;
};

/* -------------- declaration of explicit specializations ------------- */

#ifndef DOXYGEN

template <>
void
FE_Nedelec<1>::initialize_restriction();

#endif // DOXYGEN

/*@}*/

DEAL_II_NAMESPACE_CLOSE

#endif