This file is indexed.

/usr/include/deal.II/fe/fe_poly.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
// ---------------------------------------------------------------------
//
// Copyright (C) 2004 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__fe_poly_h
#define dealii__fe_poly_h


#include <deal.II/fe/fe.h>
#include <deal.II/base/quadrature.h>

DEAL_II_NAMESPACE_OPEN

/*!@addtogroup febase */
/*@{*/

/**
 * This class gives a unified framework for the implementation of
 * FiniteElement classes based on polynomial spaces like the
 * TensorProductPolynomials or PolynomialSpace classes.
 *
 * Every class conforming to the following interface can be used as template
 * parameter PolynomialType.
 *
 * @code
 * static const unsigned int dimension;
 *
 *  void compute (const Point<dim>            &unit_point,
 *                std::vector<double>         &values,
 *                std::vector<Tensor<1,dim> > &grads,
 *                std::vector<Tensor<2,dim> > &grad_grads,
 *                std::vector<Tensor<3,dim> > &third_derivatives,
 *                std::vector<Tensor<4,dim> > &fourth_derivatives) const;
 *
 * double compute_value (const unsigned int i,
 *                       const Point<dim> &p) const;
 *
 *  template <int order>
 *  Tensor<order,dim> compute_derivative (const unsigned int i,
 *                                        const Point<dim> &p) const;
 * @endcode
 * Example classes are TensorProductPolynomials, PolynomialSpace or
 * PolynomialsP.
 *
 * This class is not a fully implemented FiniteElement class. Instead there
 * are several pure virtual functions declared in the FiniteElement and
 * FiniteElement classes which cannot be implemented by this class but are
 * left for implementation in derived classes.
 *
 * @todo Since nearly all functions for spacedim != dim are specialized, this
 * class needs cleaning up.
 *
 * @author Ralf Hartmann 2004, Guido Kanschat, 2009
 */

template <class PolynomialType, int dim=PolynomialType::dimension, int spacedim=dim>
class FE_Poly : public FiniteElement<dim,spacedim>
{
public:
  /**
   * Constructor.
   */
  FE_Poly (const PolynomialType &poly_space,
           const FiniteElementData<dim> &fe_data,
           const std::vector<bool> &restriction_is_additive_flags,
           const std::vector<ComponentMask> &nonzero_components);

  /**
   * Return the polynomial degree of this finite element, i.e. the value
   * passed to the constructor.
   */
  unsigned int get_degree () const;

  // for documentation, see the FiniteElement base class
  virtual
  UpdateFlags
  requires_update_flags (const UpdateFlags update_flags) const;

  /**
   * Return the numbering of the underlying polynomial space compared to
   * lexicographic ordering of the basis functions. Returns
   * PolynomialType::get_numbering().
   */
  std::vector<unsigned int> get_poly_space_numbering() const;

  /**
   * Return the inverse numbering of the underlying polynomial space. Returns
   * PolynomialType::get_numbering_inverse().
   */
  std::vector<unsigned int> get_poly_space_numbering_inverse() const;

  /**
   * Return the value of the <tt>i</tt>th shape function at the point
   * <tt>p</tt>. See the FiniteElement base class for more information about
   * the semantics of this function.
   */
  virtual double shape_value (const unsigned int i,
                              const Point<dim> &p) const;

  /**
   * Return the value of the <tt>component</tt>th vector component of the
   * <tt>i</tt>th shape function at the point <tt>p</tt>. See the
   * FiniteElement base class for more information about the semantics of this
   * function.
   *
   * Since this element is scalar, the returned value is the same as if the
   * function without the <tt>_component</tt> suffix were called, provided
   * that the specified component is zero.
   */
  virtual double shape_value_component (const unsigned int i,
                                        const Point<dim> &p,
                                        const unsigned int component) const;

  /**
   * Return the gradient of the <tt>i</tt>th shape function at the point
   * <tt>p</tt>. See the FiniteElement base class for more information about
   * the semantics of this function.
   */
  virtual Tensor<1,dim> shape_grad (const unsigned int  i,
                                    const Point<dim>   &p) const;

  /**
   * Return the gradient of the <tt>component</tt>th vector component of the
   * <tt>i</tt>th shape function at the point <tt>p</tt>. See the
   * FiniteElement base class for more information about the semantics of this
   * function.
   *
   * Since this element is scalar, the returned value is the same as if the
   * function without the <tt>_component</tt> suffix were called, provided
   * that the specified component is zero.
   */
  virtual Tensor<1,dim> shape_grad_component (const unsigned int i,
                                              const Point<dim> &p,
                                              const unsigned int component) const;

  /**
   * Return the tensor of second derivatives of the <tt>i</tt>th shape
   * function at point <tt>p</tt> on the unit cell. See the FiniteElement base
   * class for more information about the semantics of this function.
   */
  virtual Tensor<2,dim> shape_grad_grad (const unsigned int  i,
                                         const Point<dim> &p) const;

  /**
   * Return the second derivative of the <tt>component</tt>th vector component
   * of the <tt>i</tt>th shape function at the point <tt>p</tt>. See the
   * FiniteElement base class for more information about the semantics of this
   * function.
   *
   * Since this element is scalar, the returned value is the same as if the
   * function without the <tt>_component</tt> suffix were called, provided
   * that the specified component is zero.
   */
  virtual Tensor<2,dim> shape_grad_grad_component (const unsigned int i,
                                                   const Point<dim> &p,
                                                   const unsigned int component) const;

  /**
   * Return the tensor of third derivatives of the <tt>i</tt>th shape function
   * at point <tt>p</tt> on the unit cell. See the FiniteElement base class
   * for more information about the semantics of this function.
   */
  virtual Tensor<3,dim> shape_3rd_derivative (const unsigned int  i,
                                              const Point<dim>   &p) const;

  /**
   * Return the third derivative of the <tt>component</tt>th vector component
   * of the <tt>i</tt>th shape function at the point <tt>p</tt>. See the
   * FiniteElement base class for more information about the semantics of this
   * function.
   *
   * Since this element is scalar, the returned value is the same as if the
   * function without the <tt>_component</tt> suffix were called, provided
   * that the specified component is zero.
   */
  virtual Tensor<3,dim> shape_3rd_derivative_component (const unsigned int i,
                                                        const Point<dim>   &p,
                                                        const unsigned int component) const;

  /**
   * Return the tensor of fourth derivatives of the <tt>i</tt>th shape
   * function at point <tt>p</tt> on the unit cell. See the FiniteElement base
   * class for more information about the semantics of this function.
   */
  virtual Tensor<4,dim> shape_4th_derivative (const unsigned int  i,
                                              const Point<dim>   &p) const;

  /**
   * Return the fourth derivative of the <tt>component</tt>th vector component
   * of the <tt>i</tt>th shape function at the point <tt>p</tt>. See the
   * FiniteElement base class for more information about the semantics of this
   * function.
   *
   * Since this element is scalar, the returned value is the same as if the
   * function without the <tt>_component</tt> suffix were called, provided
   * that the specified component is zero.
   */
  virtual Tensor<4,dim> shape_4th_derivative_component (const unsigned int i,
                                                        const Point<dim>   &p,
                                                        const unsigned int component) const;

protected:
  /*
   * NOTE: The following function has its definition inlined into the class declaration
   * because we otherwise run into a compiler error with MS Visual Studio.
   */


  virtual
  typename FiniteElement<dim,spacedim>::InternalDataBase *
  get_data(const UpdateFlags                                                    update_flags,
           const Mapping<dim,spacedim>                                         &/*mapping*/,
           const Quadrature<dim>                                               &quadrature,
           dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data) const
  {
    // generate a new data object and
    // initialize some fields
    InternalData *data = new InternalData;
    data->update_each = requires_update_flags(update_flags);

    const unsigned int n_q_points = quadrature.size();

    // initialize some scratch arrays. we need them for the underlying
    // polynomial to put the values and derivatives of shape functions
    // to put there, depending on what the user requested
    std::vector<double> values(update_flags & update_values ?
                               this->dofs_per_cell : 0);
    std::vector<Tensor<1,dim> > grads(update_flags & update_gradients ?
                                      this->dofs_per_cell : 0);
    std::vector<Tensor<2,dim> > grad_grads(update_flags & update_hessians ?
                                           this->dofs_per_cell : 0);
    std::vector<Tensor<3,dim> > third_derivatives(update_flags & update_3rd_derivatives ?
                                                  this->dofs_per_cell : 0);
    std::vector<Tensor<4,dim> > fourth_derivatives;   // won't be needed, so leave empty

    // now also initialize fields the fields of this class's own
    // temporary storage, depending on what we need for the given
    // update flags.
    //
    // there is one exception from the rule: if we are dealing with
    // cells (i.e., if this function is not called via
    // get_(sub)face_data()), then we can already store things in the
    // final location where FEValues::reinit() later wants to see
    // things. we then don't need the intermediate space. we determine
    // whether we are on a cell by asking whether the number of
    // elements in the output array equals the number of quadrature
    // points (yes, it's a cell) or not (because in that case the
    // number of quadrature points we use here equals the number of
    // quadrature points summed over *all* faces or subfaces, whereas
    // the number of output slots equals the number of quadrature
    // points on only *one* face)
    if ((update_flags & update_values)
        &&
        !((output_data.shape_values.n_rows() > 0)
          &&
          (output_data.shape_values.n_cols() == n_q_points)))
      data->shape_values.reinit (this->dofs_per_cell, n_q_points);

    if (update_flags & update_gradients)
      data->shape_gradients.reinit (this->dofs_per_cell, n_q_points);

    if (update_flags & update_hessians)
      data->shape_hessians.reinit (this->dofs_per_cell, n_q_points);

    if (update_flags & update_3rd_derivatives)
      data->shape_3rd_derivatives.reinit (this->dofs_per_cell, n_q_points);

    // next already fill those fields of which we have information by
    // now. note that the shape gradients are only those on the unit
    // cell, and need to be transformed when visiting an actual cell
    if (update_flags & (update_values | update_gradients
                        | update_hessians | update_3rd_derivatives) )
      for (unsigned int i=0; i<n_q_points; ++i)
        {
          poly_space.compute(quadrature.point(i),
                             values, grads, grad_grads,
                             third_derivatives,
                             fourth_derivatives);

          // the values of shape functions at quadrature points don't change.
          // consequently, write these values right into the output array if
          // we can, i.e., if the output array has the correct size. this is
          // the case on cells. on faces, we already precompute data on *all*
          // faces and subfaces, but we later on copy only a portion of it
          // into the output object; in that case, copy the data from all
          // faces into the scratch object
          if (update_flags & update_values)
            if (output_data.shape_values.n_rows() > 0)
              {
                if (output_data.shape_values.n_cols() == n_q_points)
                  for (unsigned int k=0; k<this->dofs_per_cell; ++k)
                    output_data.shape_values[k][i] = values[k];
                else
                  for (unsigned int k=0; k<this->dofs_per_cell; ++k)
                    data->shape_values[k][i] = values[k];
              }

          // for everything else, derivatives need to be transformed,
          // so we write them into our scratch space and only later
          // copy stuff into where FEValues wants it
          if (update_flags & update_gradients)
            for (unsigned int k=0; k<this->dofs_per_cell; ++k)
              data->shape_gradients[k][i] = grads[k];

          if (update_flags & update_hessians)
            for (unsigned int k=0; k<this->dofs_per_cell; ++k)
              data->shape_hessians[k][i] = grad_grads[k];

          if (update_flags & update_3rd_derivatives)
            for (unsigned int k=0; k<this->dofs_per_cell; ++k)
              data->shape_3rd_derivatives[k][i] = third_derivatives[k];
        }
    return data;
  }

  virtual
  void
  fill_fe_values (const typename Triangulation<dim,spacedim>::cell_iterator           &cell,
                  const CellSimilarity::Similarity                                     cell_similarity,
                  const Quadrature<dim>                                               &quadrature,
                  const Mapping<dim,spacedim>                                         &mapping,
                  const typename Mapping<dim,spacedim>::InternalDataBase              &mapping_internal,
                  const dealii::internal::FEValues::MappingRelatedData<dim, spacedim> &mapping_data,
                  const typename FiniteElement<dim,spacedim>::InternalDataBase        &fe_internal,
                  dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data) const;

  virtual
  void
  fill_fe_face_values (const typename Triangulation<dim,spacedim>::cell_iterator           &cell,
                       const unsigned int                                                   face_no,
                       const Quadrature<dim-1>                                             &quadrature,
                       const Mapping<dim,spacedim>                                         &mapping,
                       const typename Mapping<dim,spacedim>::InternalDataBase              &mapping_internal,
                       const dealii::internal::FEValues::MappingRelatedData<dim, spacedim> &mapping_data,
                       const typename FiniteElement<dim,spacedim>::InternalDataBase        &fe_internal,
                       dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data) const;

  virtual
  void
  fill_fe_subface_values (const typename Triangulation<dim,spacedim>::cell_iterator           &cell,
                          const unsigned int                                                   face_no,
                          const unsigned int                                                   sub_no,
                          const Quadrature<dim-1>                                             &quadrature,
                          const Mapping<dim,spacedim>                                         &mapping,
                          const typename Mapping<dim,spacedim>::InternalDataBase              &mapping_internal,
                          const dealii::internal::FEValues::MappingRelatedData<dim, spacedim> &mapping_data,
                          const typename FiniteElement<dim,spacedim>::InternalDataBase        &fe_internal,
                          dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data) const;

  /**
   * Fields of cell-independent data.
   *
   * For information about the general purpose of this class, see the
   * documentation of the base class.
   */
  class InternalData : public FiniteElement<dim,spacedim>::InternalDataBase
  {
  public:
    /**
     * Array with shape function values in quadrature points. There is one row
     * for each shape function, containing values for each quadrature point.
     *
     * In this array, we store the values of the shape function in the
     * quadrature points on the unit cell. Since these values do not change
     * under transformation to the real cell, we only need to copy them over
     * when visiting a concrete cell.
     */
    Table<2,double> shape_values;

    /**
     * Array with shape function gradients in quadrature points. There is one
     * row for each shape function, containing values for each quadrature
     * point.
     *
     * We store the gradients in the quadrature points on the unit cell. We
     * then only have to apply the transformation (which is a matrix-vector
     * multiplication) when visiting an actual cell.
     */
    Table<2,Tensor<1,dim> > shape_gradients;

    /**
     * Array with shape function hessians in quadrature points. There is one
     * row for each shape function, containing values for each quadrature
     * point.
     *
     * We store the hessians in the quadrature points on the unit cell. We
     * then only have to apply the transformation when visiting an actual
     * cell.
     */
    Table<2,Tensor<2,dim> > shape_hessians;

    /**
     * Array with shape function third derivatives in quadrature points. There
     * is one row for each shape function, containing values for each
     * quadrature point.
     *
     * We store the third derivatives in the quadrature points on the unit
     * cell. We then only have to apply the transformation when visiting an
     * actual cell.
     */
    Table<2,Tensor<3,dim> > shape_3rd_derivatives;
  };

  /**
   * Correct the shape third derivatives by subtracting the terms
   * corresponding to the Jacobian pushed forward gradient and second
   * derivative.
   *
   * Before the correction, the third derivatives would be given by
   * @f[
   * D_{ijkl} = \frac{d^3\phi_i}{d \hat x_J d \hat x_K d \hat x_L} (J_{jJ})^{-1} (J_{kK})^{-1} (J_{lL})^{-1},
   * @f]
   * where $J_{iI}=\frac{d x_i}{d \hat x_I}$. After the correction, the
   * correct third derivative would be given by
   * @f[
   * \frac{d^3\phi_i}{d x_j d x_k d x_l} = D_{ijkl} - H_{mjl} \frac{d^2 \phi_i}{d x_k d x_m}
   * - H_{mkl} \frac{d^2 \phi_i}{d x_j d x_m} - H_{mjk} \frac{d^2 \phi_i}{d x_l d x_m}
   * - K_{mjkl} \frac{d \phi_i}{d x_m},
   * @f]
   * where $H_{ijk}$ is the Jacobian pushed-forward derivative and $K_{ijkl}$
   * is the Jacobian pushed-forward second derivative.
   */
  void
  correct_third_derivatives (internal::FEValues::FiniteElementRelatedData<dim,spacedim>       &output_data,
                             const internal::FEValues::MappingRelatedData<dim,spacedim>       &mapping_data,
                             const unsigned int                                                n_q_points,
                             const unsigned int                                                dof) const;

  /**
   * The polynomial space. Its type is given by the template parameter
   * PolynomialType.
   */
  PolynomialType poly_space;
};

/*@}*/

DEAL_II_NAMESPACE_CLOSE

#endif