This file is indexed.

/usr/include/deal.II/grid/manifold.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// ---------------------------------------------------------------------
//
// Copyright (C) 1998 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__tria_manifold_h
#define dealii__tria_manifold_h


/*----------------------------   manifold.h     ---------------------------*/

#include <deal.II/base/config.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/thread_management.h>
#include <deal.II/base/point.h>
#include <deal.II/grid/tria.h>

DEAL_II_NAMESPACE_OPEN

template <int dim, int space_dim> class Triangulation;


/**
 * We collect here some helper functions used in the Manifold<dim,spacedim>
 * classes.
 */
namespace Manifolds
{
  /**
   * Given a general mesh iterator, construct a quadrature with the Laplace
   * weights or with uniform weights according the parameter @p with_laplace,
   * and with all relevant points of the iterator: vertices, line centers
   * and/or face centers, which can be called when creating new vertices in
   * the manifold routines.
   */
  template <typename OBJECT>
  Quadrature<OBJECT::AccessorType::space_dimension>
  get_default_quadrature(const OBJECT &obj, bool with_laplace = false);
}


/**
 * This class is used to represent a manifold to a triangulation. When a
 * triangulation creates a new vertex on this manifold, it determines the new
 * vertex' coordinates through the following function:
 *
 *   @code
 *     ...
 *     Point<spacedim> new_vertex = manifold.get_new_point (quadrature);
 *     ...
 *   @endcode
 * @p quadrature is a Quadrature<spacedim> object, which contains a collection
 * of points in @p spacedim dimension, and a collection of weights (Note that
 * unlike almost all other cases in the library, we here interpret the points
 * in the quadrature object to be in real space, not on the reference cell.)
 *
 * Internally, the get_new_point() function calls the project_to_manifold()
 * function after computing the weighted average of the quadrature points.
 * This allows end users to only overload project_to_manifold() for simple
 * situations.
 *
 * Should a finer control be necessary, then get_new_point() can be
 * overloaded.
 *
 * FlatManifold is the specialization from which StraightBoundary is derived,
 * where the project_to_manifold() function is the identity.
 *
 * @ingroup manifold
 * @author Luca Heltai, 2014
 */
template <int dim, int spacedim=dim>
class Manifold : public Subscriptor
{
public:


  /**
   * Destructor. Does nothing here, but needs to be declared to make it
   * virtual.
   */
  virtual ~Manifold ();

  /**
   * Return the point which shall become the new vertex surrounded by the
   * given points which make up the quadrature. We use a quadrature object,
   * which should be filled with the surrounding points together with
   * appropriate weights.
   *
   * In its default implementation it calls internally the function
   * project_to_manifold. User classes can get away by simply implementing
   * that method.
   */
  virtual
  Point<spacedim>
  get_new_point(const Quadrature<spacedim> &quad) const;

  /**
   * Given a point which lies close to the given manifold, it modifies it and
   * projects it to manifold itself.
   *
   * This class is used by the default implementation of the function
   * get_new_point(). It should be made pure virtual, but for historical
   * reason, derived classes like Boundary<dim, spacedim> do not implement it.
   * The default behavior of this class, however, is to throw an exception
   * when called.
   *
   * If your manifold is simple, you could implement this function only, and
   * the default behavior should work out of the box.
   */
  virtual
  Point<spacedim> project_to_manifold (const std::vector<Point<spacedim> > &surrounding_points,
                                       const Point<spacedim> &candidate) const;

  /**
   * Backward compatibility interface.  Return the point which shall become
   * the new middle vertex of the two children of a regular line. In 2D, this
   * line is a line at the boundary, while in 3d, it is bounding a face at the
   * boundary (the lines therefore is also on the boundary).
   *
   * The default implementation of this function passes its argument to the
   * Manifolds::get_default_quadrature() function, and then calls the
   * Manifold<dim,spacedim>::get_new_point() function. User derived classes
   * can overload Manifold<dim,spacedim>::get_new_point() or
   * Manifold<dim,spacedim>::project_to_surface(), which is called by the
   * default implementation of Manifold<dim,spacedim>::get_new_point().
   */
  virtual
  Point<spacedim>
  get_new_point_on_line (const typename Triangulation<dim,spacedim>::line_iterator &line) const;

  /**
   * Backward compatibility interface. Return the point which shall become the
   * common point of the four children of a quad at the boundary in three or
   * more spatial dimensions. This function therefore is only useful in at
   * least three dimensions and should not be called for lower dimensions.
   *
   * This function is called after the four lines bounding the given @p quad
   * are refined, so you may want to use the information provided by
   * <tt>quad->line(i)->child(j)</tt>, <tt>i=0...3</tt>, <tt>j=0,1</tt>.
   *
   * The default implementation of this function passes its argument to the
   * Manifolds::get_default_quadrature() function, and then calls the
   * Manifold<dim,spacedim>::get_new_point() function. User derived classes
   * can overload Manifold<dim,spacedim>::get_new_point() or
   * Manifold<dim,spacedim>::project_to_surface(), which is called by the
   * default implementation of Manifold<dim,spacedim>::get_new_point().
   */
  virtual
  Point<spacedim>
  get_new_point_on_quad (const typename Triangulation<dim,spacedim>::quad_iterator &quad) const;

  /**
   * Backward compatibility interface.  Return the point which shall become
   * the common point of the eight children of a hex in three or spatial
   * dimensions. This function therefore is only useful in at least three
   * dimensions and should not be called for lower dimensions.
   *
   * This function is called after the all the bounding objects of the given
   * @p hex are refined, so you may want to use the information provided by
   * <tt>hex->quad(i)->line(j)->child(k)</tt>, <tt>i=0...5</tt>,
   * <tt>j=0...3</tt>, <tt>k=0,1</tt>.
   *
   * The default implementation of this function passes its argument to the
   * Manifolds::get_default_quadrature() function, and then calls the
   * Manifold<dim,spacedim>::get_new_point() function. User derived classes
   * can overload Manifold<dim,spacedim>::get_new_point() or
   * Manifold<dim,spacedim>::project_to_surface(), which is called by the
   * default implementation of Manifold<dim,spacedim>::get_new_point().
   */
  virtual
  Point<spacedim>
  get_new_point_on_hex (const typename Triangulation<dim,spacedim>::hex_iterator &hex) const;


  /**
   * Backward compatibility interface. Depending on <tt>dim=2</tt> or
   * <tt>dim=3</tt> this function calls the get_new_point_on_line or the
   * get_new_point_on_quad function. It throws an exception for
   * <tt>dim=1</tt>. This wrapper allows dimension independent programming.
   */
  Point<spacedim>
  get_new_point_on_face (const typename Triangulation<dim,spacedim>::face_iterator &face) const;


  /**
   * Backward compatibility interface.  Depending on <tt>dim=1</tt>,
   * <tt>dim=2</tt> or <tt>dim=3</tt> this function calls the
   * get_new_point_on_line, get_new_point_on_quad or the get_new_point_on_hex
   * function. This wrapper allows dimension independent programming.
   */
  Point<spacedim>
  get_new_point_on_cell (const typename Triangulation<dim,spacedim>::cell_iterator &cell) const;
};


/**
 * Specialization of Manifold<dim,spacedim>, which represent a possibly
 * periodic Euclidean space of dimension @p dim embedded in the Euclidean
 * space of @p spacedim dimensions. The main characteristic of this Manifold
 * is the fact that the function
 * FlatManifold<dim,spacedim>::project_to_manifold() is the identity function.
 *
 * @ingroup manifold
 *
 * @author Luca Heltai, 2014
 */
template <int dim, int spacedim=dim>
class FlatManifold: public Manifold<dim, spacedim>
{
public:
  /**
   * Default constructor. The optional argument can be used to specify the
   * periodicity of the spacedim-dimensional manifold (one period per
   * direction). A periodicity value of zero means that along that direction
   * there is no periodicity. By default no periodicity is assumed.
   *
   * Periodicity affects the way a middle point is computed. It is assumed
   * that if two points are more than half period distant, then the distance
   * should be computed by crossing the periodicity boundary, i.e., the
   * average is computed by adding a full period to the sum of the two. For
   * example, if along direction 0 we have 2*pi periodicity, then the average
   * of (2*pi-eps) and (eps) is not pi, but 2*pi (or zero), since, on a
   * periodic manifold, these two points are at distance 2*eps and not (2*pi-
   * eps). Special cases are taken into account, to ensure that the behavior
   * is always as expected. The third argument is used as a relative tolerance
   * when computing distances.
   *
   * Periodicity will be intended in the following way: the domain is
   * considered to be the box contained in [Point<spacedim>(), periodicity)
   * where the right extreme is excluded. If any of the components of this box
   * has zero length, then no periodicity is computed in that direction.
   * Whenever a function that tries to compute averages is called, an
   * exception will be thrown if one of the points which you are using for the
   * average lies outside the periodicity box. The return points are
   * guaranteed to lie in the periodicity box plus or minus
   * tolerance*periodicity.norm().
   */
  FlatManifold (const Point<spacedim> periodicity=Point<spacedim>(),
                const double tolerance=1e-10);

  /**
   * Let the new point be the average sum of surrounding vertices.
   *
   * This particular implementation constructs the weighted average of the
   * surrounding points, and then calls internally the function
   * project_to_manifold. The reason why we do it this way, is to allow lazy
   * programmers to implement only the project_to_manifold function for their
   * own Manifold classes which are small (or trivial) perturbations of a flat
   * manifold. This is the case whenever the coarse mesh is a decent
   * approximation of the manifold geometry. In this case, the middle point of
   * a cell is close to true middle point of the manifold, and a projection
   * may suffice.
   *
   * For most simple geometries, it is possible to get reasonable results by
   * deriving your own Manifold class from FlatManifold, and write a new
   * interface only for the project_to_manifold function. You will have good
   * approximations also with large deformations, as long as in the coarsest
   * mesh size you are trying to refine, the middle point is not too far from
   * the manifold mid point, i.e., as long as the coarse mesh size is small
   * enough.
   */
  virtual Point<spacedim>
  get_new_point(const Quadrature<spacedim> &quad) const;


  /**
   * Project to FlatManifold. This is the identity function for flat,
   * Euclidean spaces. Note however that this function can be overloaded by
   * derived classes, which will then benefit from the logic behind the
   * get_new_point class which are often very similar (if not identical) to
   * the one implemented in this class.
   */
  virtual
  Point<spacedim> project_to_manifold (const std::vector<Point<spacedim> > &points,
                                       const Point<spacedim> &candidate) const;
private:
  /**
   * The periodicity of this Manifold. Periodicity affects the way a middle
   * point is computed. It is assumed that if two points are more than half
   * period distant, then the distance should be computed by crossing the
   * periodicity boundary, i.e., the average is computed by adding a full
   * period to the sum of the two. For example, if along direction 0 we have
   * 2*pi periodicity, then the average of (2*pi-eps) and (eps) is not pi, but
   * 2*pi (or zero), since, on a periodic manifold, these two points are at
   * distance 2*eps and not (2*pi-eps).
   *
   * A periodicity 0 along one direction means no periodicity. This is the
   * default value for all directions.
   */
  const Point<spacedim> periodicity;

  DeclException4(ExcPeriodicBox, int, Point<spacedim>, Point<spacedim>, double,
                 << "The component number " << arg1 << " of the point [ " << arg2
                 << " ]  is not in the interval [ " << -arg4
                 << ", " << arg3[arg4] << "), bailing out.");

  /**
   * Relative tolerance. This tolerance is used to compute distances in double
   * precision.
   */
  const double tolerance;
};


/**
 * This class describes mappings that can be expressed in terms of charts.
 * Specifically, this class with its template arguments describes a chart of
 * dimension chartdim, which is part of a Manifold<dim,spacedim> and is used
 * in an object of type Triangulation<dim,spacedim>:  It specializes a
 * Manifold of dimension chartdim embedded in a manifold of dimension
 * spacedim, for which you have explicit pull_back() and push_forward()
 * transformations. Its use is explained in great detail in step-53.
 *
 * This is a helper class which is useful when you have an explicit map from
 * an Euclidean space of dimension chartdim to an Euclidean space of dimension
 * spacedim which represents your manifold, i.e., when your manifold
 * $\mathcal{M}$ can be represented by a map \f[ F: \mathcal{B} \subset
 * R^{\text{chartdim}} \mapsto \mathcal{M} \subset R^{\text{spacedim}} \f]
 * (the push_forward() function) and that admits the inverse transformation
 * \f[ F^{-1}: \mathcal{M} \subset R^{\text{spacedim}} \mapsto \mathcal{B}
 * \subset R^{\text{chartdim}} \f] (the pull_back() function).
 *
 * The get_new_point() function of the ChartManifold class is implemented by
 * calling the pull_back() method for all <tt>surrounding_points</tt>,
 * computing their weighted average in the chartdim Euclidean space, and
 * calling the push_forward() method with the resulting point, i.e., \f[
 * p^{\text{new}} = F(\sum_i w_i F^{-1}(p_i)).  \f]
 *
 * Derived classes are required to implement the push_forward() and the
 * pull_back() methods. All other functions required by mappings will then be
 * provided by this class.
 *
 * The dimension arguments @p chartdim, @p dim and @p spacedim must satisfy
 * the following relationships:
 *   @code
 *      dim <= spacedim
 *      chartdim <= spacedim
 *   @endcode
 * However, there is no a priori relationship between @p dim and @p chartdim.
 * For example, if you want to describe a mapping for an edge (a 1d object) in
 * a 2d triangulation embedded in 3d space, you could do so by parameterizing
 * it via a line
 *   @f[
 *      F: [0,1] \rightarrow {\mathbb R}^3
 *   @f]
 * in which case @p chartdim is 1. On the other hand, there is no reason why
 * one can't describe this as a mapping
 *   @f[
 *      F: {\mathbb R}^3 \rightarrow {\mathbb R}^3
 *   @f]
 * in such a way that the line $[0,1]\times \{0\}\times \{0\}$ happens to be
 * mapped onto the edge in question. Here, @p chartdim is 3. This may seem
 * cumbersome but satisfies the requirements of an invertible function $F$
 * just fine as long as it is possible to get from the edge to the pull-back
 * space and then back again. Finally, given that we are dealing with a 2d
 * triangulation in 3d, one will often have a mapping from, say, the 2d unit
 * square or unit disk to the domain in 3d space, and the edge in question may
 * simply be the mapped edge of the unit domain in 2d space. In this case, @p
 * chartdim is 2.
 *
 * @ingroup manifold
 *
 * @author Luca Heltai, 2013, 2014
 */
template <int dim, int spacedim=dim, int chartdim=dim>
class ChartManifold: public Manifold<dim,spacedim>
{
public:
  /**
   * Constructor. The optional argument can be used to specify the periodicity
   * of the chartdim-dimensional manifold (one period per direction). A
   * periodicity value of zero means that along that direction there is no
   * periodicity. By default no periodicity is assumed.
   *
   * Periodicity affects the way a middle point is computed. It is assumed
   * that if two points are more than half period distant, then the distance
   * should be computed by crossing the periodicity boundary, i.e., then the
   * average is computed by adding a full period to the sum of the two. For
   * example, if along direction 0 we have 2*pi periodicity, then the average
   * of (2*pi-eps) and (eps) is not pi, but 2*pi (or zero), since, on the
   * manifold, these two points are at distance 2*eps and not (2*pi-eps)
   */
  ChartManifold(const Point<chartdim> periodicity=Point<chartdim>());

  /**
   * Destructor. Does nothing here, but needs to be declared to make it
   * virtual.
   */
  virtual ~ChartManifold ();


  /**
   * Refer to the general documentation of this class and the documentation of
   * the base class for more information.
   */
  virtual Point<spacedim>
  get_new_point(const Quadrature<spacedim> &quad) const;

  /**
   * Pull back the given point in spacedim to the Euclidean chartdim
   * dimensional space.
   *
   * Refer to the general documentation of this class for more information.
   */
  virtual Point<chartdim>
  pull_back(const Point<spacedim> &space_point) const = 0;

  /**
   * Given a point in the chartdim dimensional Euclidean space, this method
   * returns a point on the manifold embedded in the spacedim Euclidean space.
   *
   * Refer to the general documentation of this class for more information.
   */
  virtual Point<spacedim>
  push_forward(const Point<chartdim> &chart_point) const = 0;

private:
  /**
   * The sub_manifold object is used to compute the average of the points in
   * the chart coordinates system.
   */
  const FlatManifold<dim,chartdim> sub_manifold;
};




/* -------------- declaration of explicit specializations ------------- */

#ifndef DOXYGEN

template <>
Point<1>
Manifold<1,1>::
get_new_point_on_face (const Triangulation<1,1>::face_iterator &) const;

template <>
Point<2>
Manifold<1,2>::
get_new_point_on_face (const Triangulation<1,2>::face_iterator &) const;


template <>
Point<3>
Manifold<1,3>::
get_new_point_on_face (const Triangulation<1,3>::face_iterator &) const;


template <>
Point<1>
Manifold<1,1>::
get_new_point_on_quad (const Triangulation<1,1>::quad_iterator &) const;

template <>
Point<2>
Manifold<1,2>::
get_new_point_on_quad (const Triangulation<1,2>::quad_iterator &) const;


template <>
Point<3>
Manifold<1,3>::
get_new_point_on_quad (const Triangulation<1,3>::quad_iterator &) const;


template <>
Point<3>
Manifold<3,3>::
get_new_point_on_hex (const Triangulation<3,3>::hex_iterator &) const;

/*---Templated functions---*/

namespace Manifolds
{

  template <typename OBJECT>
  Quadrature<OBJECT::AccessorType::space_dimension>
  get_default_quadrature(const OBJECT &obj, bool with_laplace)
  {
    const int spacedim = OBJECT::AccessorType::space_dimension;
    const int dim = OBJECT::AccessorType::structure_dimension;

    std::vector<Point<spacedim> > sp;
    std::vector<double> wp;


    // note that the exact weights are chosen such as to minimize the
    // distortion of the four new quads from the optimal shape; their
    // derivation and values is copied over from the
    // @p{MappingQ::set_laplace_on_vector} function
    switch (dim)
      {
      case 1:
        sp.resize(2);
        wp.resize(2);
        sp[0] = obj->vertex(0);
        wp[0] = .5;
        sp[1] = obj->vertex(1);
        wp[1] = .5;
        break;
      case 2:
        sp.resize(8);
        wp.resize(8);

        for (unsigned int i=0; i<4; ++i)
          {
            sp[i] = obj->vertex(i);
            sp[4+i] = ( obj->line(i)->has_children() ?
                        obj->line(i)->child(0)->vertex(1) :
                        obj->line(i)->get_manifold().get_new_point_on_line(obj->line(i)) );
          }

        if (with_laplace)
          {
            std::fill(wp.begin(), wp.begin()+4, 1.0/16.0);
            std::fill(wp.begin()+4, wp.end(), 3.0/16.0);
          }
        else
          std::fill(wp.begin(), wp.end(), 1.0/8.0);
        break;
      case 3:
      {
        TriaIterator<TriaAccessor<3, 3, 3> > hex
          = static_cast<TriaIterator<TriaAccessor<3, 3, 3> > >(obj);
        const unsigned int np =
          GeometryInfo<dim>::vertices_per_cell+
          GeometryInfo<dim>::lines_per_cell+
          GeometryInfo<dim>::faces_per_cell;
        sp.resize(np);
        wp.resize(np);
        std::vector<Point<3> > *sp3 = reinterpret_cast<std::vector<Point<3> > *>(&sp);

        unsigned int j=0;

        // note that the exact weights are chosen such as to minimize the
        // distortion of the eight new hexes from the optimal shape; their
        // derivation and values is copied over from the
        // @p{MappingQ::set_laplace_on_vector} function
        for (unsigned int i=0; i<GeometryInfo<dim>::vertices_per_cell; ++i, ++j)
          {
            (*sp3)[j] = hex->vertex(i);
            wp[j] = 1.0/128.0;
          }
        for (unsigned int i=0; i<GeometryInfo<dim>::lines_per_cell; ++i, ++j)
          {
            (*sp3)[j] = (hex->line(i)->has_children() ?
                         hex->line(i)->child(0)->vertex(1) :
                         hex->line(i)->get_manifold().get_new_point_on_line(hex->line(i)));
            wp[j] = 7.0/192.0;
          }
        for (unsigned int i=0; i<GeometryInfo<dim>::faces_per_cell; ++i, ++j)
          {
            (*sp3)[j] = (hex->quad(i)->has_children() ?
                         hex->quad(i)->isotropic_child(0)->vertex(3) :
                         hex->quad(i)->get_manifold().get_new_point_on_quad(hex->quad(i)));
            wp[j] = 1.0/12.0;
          }
        // Overwrite the weights with 1/np if we don't want to use
        // laplace vectors.
        if (with_laplace == false)
          std::fill(wp.begin(), wp.end(), 1.0/np);
      }
      break;
      default:
        Assert(false, ExcInternalError());
        break;
      }
    return Quadrature<spacedim>(sp,wp);
  }
}

#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif