This file is indexed.

/usr/include/deal.II/integrators/laplace.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
// ---------------------------------------------------------------------
//
// Copyright (C) 2010 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__integrators_laplace_h
#define dealii__integrators_laplace_h


#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/quadrature.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/fe/mapping.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/meshworker/dof_info.h>

DEAL_II_NAMESPACE_OPEN

namespace LocalIntegrators
{
  /**
   * @brief Local integrators related to the Laplacian and its DG formulations
   *
   * @ingroup Integrators
   * @author Guido Kanschat
   * @date 2010
   */
  namespace Laplace
  {
    /**
     * Laplacian in weak form, namely on the cell <i>Z</i> the matrix \f[
     * \int_Z \nu \nabla u \cdot \nabla v \, dx. \f]
     *
     * The FiniteElement in <tt>fe</tt> may be scalar or vector valued. In the
     * latter case, the Laplacian is applied to each component separately.
     *
     * @author Guido Kanschat
     * @date 2008, 2009, 2010
     */
    template<int dim>
    void cell_matrix (
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      const double factor = 1.)
    {
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int n_components = fe.get_fe().n_components();

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = fe.JxW(k) * factor;
          for (unsigned int i=0; i<n_dofs; ++i)
            {
              double Mii = 0.0;
              for (unsigned int d=0; d<n_components; ++d)
                Mii += dx *
                       (fe.shape_grad_component(i,k,d) * fe.shape_grad_component(i,k,d));

              M(i,i) += Mii;

              for (unsigned int j=i+1; j<n_dofs; ++j)
                {
                  double Mij = 0.0;
                  for (unsigned int d=0; d<n_components; ++d)
                    Mij += dx *
                           (fe.shape_grad_component(j,k,d) * fe.shape_grad_component(i,k,d));

                  M(i,j) += Mij;
                  M(j,i) += Mij;
                }
            }
        }

    }

    /**
     * Laplacian residual operator in weak form
     *
     * \f[ \int_Z \nu \nabla u \cdot \nabla v \, dx. \f]
     */
    template <int dim>
    inline void
    cell_residual  (
      Vector<double> &result,
      const FEValuesBase<dim> &fe,
      const std::vector<Tensor<1,dim> > &input,
      double factor = 1.)
    {
      const unsigned int nq = fe.n_quadrature_points;
      const unsigned int n_dofs = fe.dofs_per_cell;
      Assert(input.size() == nq, ExcDimensionMismatch(input.size(), nq));
      Assert(result.size() == n_dofs, ExcDimensionMismatch(result.size(), n_dofs));

      for (unsigned int k=0; k<nq; ++k)
        {
          const double dx = factor * fe.JxW(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            result(i) += dx * (input[k] * fe.shape_grad(i,k));
        }
    }


    /**
     * Vector-valued Laplacian residual operator in weak form
     *
     * \f[ \int_Z \nu \nabla u : \nabla v \, dx. \f]
     */
    template <int dim>
    inline void
    cell_residual  (
      Vector<double> &result,
      const FEValuesBase<dim> &fe,
      const VectorSlice<const std::vector<std::vector<Tensor<1,dim> > > > &input,
      double factor = 1.)
    {
      const unsigned int nq = fe.n_quadrature_points;
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int n_comp = fe.get_fe().n_components();

      AssertVectorVectorDimension(input, n_comp, fe.n_quadrature_points);
      Assert(result.size() == n_dofs, ExcDimensionMismatch(result.size(), n_dofs));

      for (unsigned int k=0; k<nq; ++k)
        {
          const double dx = factor * fe.JxW(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            for (unsigned int d=0; d<n_comp; ++d)
              {

                result(i) += dx * (input[d][k] * fe.shape_grad_component(i,k,d));
              }
        }
    }


    /**
     * Weak boundary condition of Nitsche type for the Laplacian, namely on
     * the face <i>F</i> the matrix
     * @f[
     * \int_F \Bigl(\gamma u v - \partial_n u v - u \partial_n v\Bigr)\;ds.
     * @f]
     *
     * Here, $\gamma$ is the <tt>penalty</tt> parameter suitably computed with
     * compute_penalty().
     *
     * @author Guido Kanschat
     * @date 2008, 2009, 2010
     */
    template <int dim>
    void nitsche_matrix (
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      double penalty,
      double factor = 1.)
    {
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int n_comp = fe.get_fe().n_components();

      Assert (M.m() == n_dofs, ExcDimensionMismatch(M.m(), n_dofs));
      Assert (M.n() == n_dofs, ExcDimensionMismatch(M.n(), n_dofs));

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = fe.JxW(k) * factor;
          const Tensor<1,dim> n = fe.normal_vector(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            for (unsigned int j=0; j<n_dofs; ++j)
              for (unsigned int d=0; d<n_comp; ++d)
                M(i,j) += dx *
                          (2. * fe.shape_value_component(i,k,d) * penalty * fe.shape_value_component(j,k,d)
                           - (n * fe.shape_grad_component(i,k,d)) * fe.shape_value_component(j,k,d)
                           - (n * fe.shape_grad_component(j,k,d)) * fe.shape_value_component(i,k,d));
        }
    }

    /**
     * Weak boundary condition for the Laplace operator by Nitsche, scalar
     * version, namely on the face <i>F</i> the vector
     * @f[
     * \int_F \Bigl(\gamma (u-g) v - \partial_n u v - (u-g) \partial_n v\Bigr)\;ds.
     * @f]
     *
     * Here, <i>u</i> is the finite element function whose values and gradient
     * are given in the arguments <tt>input</tt> and <tt>Dinput</tt>,
     * respectively. <i>g</i> is the inhomogeneous boundary value in the
     * argument <tt>data</tt>. $\gamma$ is the usual penalty parameter.
     *
     * @author Guido Kanschat
     * @date 2008, 2009, 2010
     */
    template <int dim>
    void nitsche_residual (
      Vector<double> &result,
      const FEValuesBase<dim> &fe,
      const std::vector<double> &input,
      const std::vector<Tensor<1,dim> > &Dinput,
      const std::vector<double> &data,
      double penalty,
      double factor = 1.)
    {
      const unsigned int n_dofs = fe.dofs_per_cell;
      AssertDimension(input.size(), fe.n_quadrature_points);
      AssertDimension(Dinput.size(), fe.n_quadrature_points);
      AssertDimension(data.size(), fe.n_quadrature_points);

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = factor * fe.JxW(k);
          const Tensor<1,dim> n = fe.normal_vector(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            {
              const double dnv = fe.shape_grad(i,k) * n;
              const double dnu = Dinput[k] * n;
              const double v= fe.shape_value(i,k);
              const double u= input[k];
              const double g= data[k];

              result(i) += dx*(2.*penalty*(u-g)*v - dnv*(u-g) - dnu*v);
            }
        }
    }

    /**
     * Weak boundary condition for the Laplace operator by Nitsche, vector
     * valued version, namely on the face <i>F</i> the vector
     * @f[
     * \int_F \Bigl(\gamma (\mathbf u- \mathbf g) \cdot \mathbf v
     * - \partial_n \mathbf u \cdot \mathbf v
     * - (\mathbf u-\mathbf g) \cdot \partial_n \mathbf v\Bigr)\;ds.
     * @f]
     *
     * Here, <i>u</i> is the finite element function whose values and gradient
     * are given in the arguments <tt>input</tt> and <tt>Dinput</tt>,
     * respectively. <i>g</i> is the inhomogeneous boundary value in the
     * argument <tt>data</tt>. $\gamma$ is the usual penalty parameter.
     *
     * @author Guido Kanschat
     * @date 2008, 2009, 2010
     */
    template <int dim>
    void nitsche_residual (
      Vector<double> &result,
      const FEValuesBase<dim> &fe,
      const VectorSlice<const std::vector<std::vector<double> > > &input,
      const VectorSlice<const std::vector<std::vector<Tensor<1,dim> > > > &Dinput,
      const VectorSlice<const std::vector<std::vector<double> > > &data,
      double penalty,
      double factor = 1.)
    {
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int n_comp = fe.get_fe().n_components();
      AssertVectorVectorDimension(input, n_comp, fe.n_quadrature_points);
      AssertVectorVectorDimension(Dinput, n_comp, fe.n_quadrature_points);
      AssertVectorVectorDimension(data, n_comp, fe.n_quadrature_points);

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = factor * fe.JxW(k);
          const Tensor<1,dim> n = fe.normal_vector(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            for (unsigned int d=0; d<n_comp; ++d)
              {
                const double dnv = fe.shape_grad_component(i,k,d) * n;
                const double dnu = Dinput[d][k] * n;
                const double v= fe.shape_value_component(i,k,d);
                const double u= input[d][k];
                const double g= data[d][k];

                result(i) += dx*(2.*penalty*(u-g)*v - dnv*(u-g) - dnu*v);
              }
        }
    }

    /**
     * Flux for the interior penalty method for the Laplacian, namely on the
     * face <i>F</i> the matrices associated with the bilinear form
     * @f[
     * \int_F \Bigl( \gamma [u][v] - \{\nabla u\}[v\mathbf n] - [u\mathbf
     * n]\{\nabla v\} \Bigr) \; ds.
     * @f]
     *
     * The penalty parameter should always be the mean value of the penalties
     * needed for stability on each side. In the case of constant
     * coefficients, it can be computed using compute_penalty().
     *
     * If <tt>factor2</tt> is missing or negative, the factor is assumed the
     * same on both sides. If factors differ, note that the penalty parameter
     * has to be computed accordingly.
     *
     * @author Guido Kanschat
     * @date 2008, 2009, 2010
     */
    template <int dim>
    void ip_matrix (
      FullMatrix<double> &M11,
      FullMatrix<double> &M12,
      FullMatrix<double> &M21,
      FullMatrix<double> &M22,
      const FEValuesBase<dim> &fe1,
      const FEValuesBase<dim> &fe2,
      double penalty,
      double factor1 = 1.,
      double factor2 = -1.)
    {
      const unsigned int n_dofs = fe1.dofs_per_cell;
      AssertDimension(M11.n(), n_dofs);
      AssertDimension(M11.m(), n_dofs);
      AssertDimension(M12.n(), n_dofs);
      AssertDimension(M12.m(), n_dofs);
      AssertDimension(M21.n(), n_dofs);
      AssertDimension(M21.m(), n_dofs);
      AssertDimension(M22.n(), n_dofs);
      AssertDimension(M22.m(), n_dofs);

      const double nui = factor1;
      const double nue = (factor2 < 0) ? factor1 : factor2;
      const double nu = .5*(nui+nue);

      for (unsigned int k=0; k<fe1.n_quadrature_points; ++k)
        {
          const double dx = fe1.JxW(k);
          const Tensor<1,dim> n = fe1.normal_vector(k);
          for (unsigned int d=0; d<fe1.get_fe().n_components(); ++d)
            {
              for (unsigned int i=0; i<n_dofs; ++i)
                {
                  for (unsigned int j=0; j<n_dofs; ++j)
                    {
                      const double vi = fe1.shape_value_component(i,k,d);
                      const double dnvi = n * fe1.shape_grad_component(i,k,d);
                      const double ve = fe2.shape_value_component(i,k,d);
                      const double dnve = n * fe2.shape_grad_component(i,k,d);
                      const double ui = fe1.shape_value_component(j,k,d);
                      const double dnui = n * fe1.shape_grad_component(j,k,d);
                      const double ue = fe2.shape_value_component(j,k,d);
                      const double dnue = n * fe2.shape_grad_component(j,k,d);
                      M11(i,j) += dx*(-.5*nui*dnvi*ui-.5*nui*dnui*vi+nu*penalty*ui*vi);
                      M12(i,j) += dx*( .5*nui*dnvi*ue-.5*nue*dnue*vi-nu*penalty*vi*ue);
                      M21(i,j) += dx*(-.5*nue*dnve*ui+.5*nui*dnui*ve-nu*penalty*ui*ve);
                      M22(i,j) += dx*( .5*nue*dnve*ue+.5*nue*dnue*ve+nu*penalty*ue*ve);
                    }
                }
            }
        }
    }

    /**
     * Flux for the interior penalty method for the Laplacian applied to the
     * tangential components of a vector field, namely on the face <i>F</i>
     * the matrices associated with the bilinear form
     * @f[
     * \int_F \Bigl( \gamma [u_\tau][v_\tau] - \{\nabla u_\tau\}[v_\tau\mathbf n] - [u_\tau\mathbf
     * n]\{\nabla v_\tau\} \Bigr) \; ds.
     * @f]
     *
     * @warning This function is still under development!
     *
     * @author Bärbel Janssen, Guido Kanschat
     * @date 2013
     */
    template <int dim>
    void ip_tangential_matrix (
      FullMatrix<double> &M11,
      FullMatrix<double> &M12,
      FullMatrix<double> &M21,
      FullMatrix<double> &M22,
      const FEValuesBase<dim> &fe1,
      const FEValuesBase<dim> &fe2,
      double penalty,
      double factor1 = 1.,
      double factor2 = -1.)
    {
      const unsigned int n_dofs = fe1.dofs_per_cell;
      AssertDimension(fe1.get_fe().n_components(), dim);
      AssertDimension(fe2.get_fe().n_components(), dim);
      AssertDimension(M11.n(), n_dofs);
      AssertDimension(M11.m(), n_dofs);
      AssertDimension(M12.n(), n_dofs);
      AssertDimension(M12.m(), n_dofs);
      AssertDimension(M21.n(), n_dofs);
      AssertDimension(M21.m(), n_dofs);
      AssertDimension(M22.n(), n_dofs);
      AssertDimension(M22.m(), n_dofs);

      const double nui = factor1;
      const double nue = (factor2 < 0) ? factor1 : factor2;
      const double nu = .5*(nui+nue);

      for (unsigned int k=0; k<fe1.n_quadrature_points; ++k)
        {
          const double dx = fe1.JxW(k);
          const Tensor<1,dim> n = fe1.normal_vector(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            {
              for (unsigned int j=0; j<n_dofs; ++j)
                {
                  double u1dotn = 0.;
                  double v1dotn = 0.;
                  double u2dotn = 0.;
                  double v2dotn = 0.;

                  double ngradu1n = 0.;
                  double ngradv1n = 0.;
                  double ngradu2n = 0.;
                  double ngradv2n = 0.;

                  for (unsigned int d=0; d<dim; ++d)
                    {
                      u1dotn += n[d]*fe1.shape_value_component(j,k,d);
                      v1dotn += n[d]*fe1.shape_value_component(i,k,d);
                      u2dotn += n[d]*fe2.shape_value_component(j,k,d);
                      v2dotn += n[d]*fe2.shape_value_component(i,k,d);

                      ngradu1n += n*fe1.shape_grad_component(j,k,d)*n[d];
                      ngradv1n += n*fe1.shape_grad_component(i,k,d)*n[d];
                      ngradu2n += n*fe2.shape_grad_component(j,k,d)*n[d];
                      ngradv2n += n*fe2.shape_grad_component(i,k,d)*n[d];
                    }

                  for (unsigned int d=0; d<fe1.get_fe().n_components(); ++d)
                    {
                      const double vi = fe1.shape_value_component(i,k,d)-v1dotn*n[d];
                      const double dnvi = n * fe1.shape_grad_component(i,k,d)-ngradv1n*n[d];

                      const double ve = fe2.shape_value_component(i,k,d)-v2dotn*n[d];
                      const double dnve = n * fe2.shape_grad_component(i,k,d)-ngradv2n*n[d];

                      const double ui = fe1.shape_value_component(j,k,d)-u1dotn*n[d];
                      const double dnui = n * fe1.shape_grad_component(j,k,d)-ngradu1n*n[d];

                      const double ue = fe2.shape_value_component(j,k,d)-u2dotn*n[d];
                      const double dnue = n * fe2.shape_grad_component(j,k,d)-ngradu2n*n[d];

                      M11(i,j) += dx*(-.5*nui*dnvi*ui-.5*nui*dnui*vi+nu*penalty*ui*vi);
                      M12(i,j) += dx*( .5*nui*dnvi*ue-.5*nue*dnue*vi-nu*penalty*vi*ue);
                      M21(i,j) += dx*(-.5*nue*dnve*ui+.5*nui*dnui*ve-nu*penalty*ui*ve);
                      M22(i,j) += dx*( .5*nue*dnve*ue+.5*nue*dnue*ve+nu*penalty*ue*ve);
                    }
                }
            }
        }
    }

    /**
     * Residual term for the symmetric interior penalty method:
     * @f[
     * \int_F \Bigl( \gamma [u][v] - \{\nabla u\}[v\mathbf n] - [u\mathbf
     * n]\{\nabla v\} \Bigr) \; ds.
     * @f]
     *
     * @author Guido Kanschat
     * @date 2012
     */
    template<int dim>
    void
    ip_residual(
      Vector<double> &result1,
      Vector<double> &result2,
      const FEValuesBase<dim> &fe1,
      const FEValuesBase<dim> &fe2,
      const std::vector<double> &input1,
      const std::vector<Tensor<1,dim> > &Dinput1,
      const std::vector<double> &input2,
      const std::vector<Tensor<1,dim> > &Dinput2,
      double pen,
      double int_factor = 1.,
      double ext_factor = -1.)
    {
      Assert(fe1.get_fe().n_components() == 1,
             ExcDimensionMismatch(fe1.get_fe().n_components(), 1));
      Assert(fe2.get_fe().n_components() == 1,
             ExcDimensionMismatch(fe2.get_fe().n_components(), 1));

      const double nui = int_factor;
      const double nue = (ext_factor < 0) ? int_factor : ext_factor;
      const double penalty = .5 * pen * (nui + nue);

      const unsigned int n_dofs = fe1.dofs_per_cell;

      for (unsigned int k=0; k<fe1.n_quadrature_points; ++k)
        {
          const double dx = fe1.JxW(k);
          const Tensor<1,dim> n = fe1.normal_vector(k);

          for (unsigned int i=0; i<n_dofs; ++i)
            {
              const double vi = fe1.shape_value(i,k);
              const Tensor<1,dim> &Dvi = fe1.shape_grad(i,k);
              const double dnvi = Dvi * n;
              const double ve = fe2.shape_value(i,k);
              const Tensor<1,dim> &Dve = fe2.shape_grad(i,k);
              const double dnve = Dve * n;

              const double ui = input1[k];
              const Tensor<1,dim> &Dui = Dinput1[k];
              const double dnui = Dui * n;
              const double ue = input2[k];
              const Tensor<1,dim> &Due = Dinput2[k];
              const double dnue = Due * n;

              result1(i) += dx*(-.5*nui*dnvi*ui-.5*nui*dnui*vi+penalty*ui*vi);
              result1(i) += dx*( .5*nui*dnvi*ue-.5*nue*dnue*vi-penalty*vi*ue);
              result2(i) += dx*(-.5*nue*dnve*ui+.5*nui*dnui*ve-penalty*ui*ve);
              result2(i) += dx*( .5*nue*dnve*ue+.5*nue*dnue*ve+penalty*ue*ve);
            }
        }
    }


    /**
     * Vector-valued residual term for the symmetric interior penalty method:
     * @f[
     * \int_F \Bigl( \gamma [\mathbf u]\cdot[\mathbf v]
     * - \{\nabla \mathbf u\}[\mathbf v\otimes \mathbf n]
     * - [\mathbf u\otimes \mathbf n]\{\nabla \mathbf v\} \Bigr) \; ds.
     * @f]
     *
     * @author Guido Kanschat
     * @date 2012
     */
    template<int dim>
    void
    ip_residual(
      Vector<double> &result1,
      Vector<double> &result2,
      const FEValuesBase<dim> &fe1,
      const FEValuesBase<dim> &fe2,
      const VectorSlice<const std::vector<std::vector<double> > > &input1,
      const VectorSlice<const std::vector<std::vector<Tensor<1,dim> > > > &Dinput1,
      const VectorSlice<const std::vector<std::vector<double> > > &input2,
      const VectorSlice<const std::vector<std::vector<Tensor<1,dim> > > > &Dinput2,
      double pen,
      double int_factor = 1.,
      double ext_factor = -1.)
    {
      const unsigned int n_comp = fe1.get_fe().n_components();
      const unsigned int n1 = fe1.dofs_per_cell;

      AssertVectorVectorDimension(input1, n_comp, fe1.n_quadrature_points);
      AssertVectorVectorDimension(Dinput1, n_comp, fe1.n_quadrature_points);
      AssertVectorVectorDimension(input2, n_comp, fe2.n_quadrature_points);
      AssertVectorVectorDimension(Dinput2, n_comp, fe2.n_quadrature_points);

      const double nui = int_factor;
      const double nue = (ext_factor < 0) ? int_factor : ext_factor;
      const double penalty = .5 * pen * (nui + nue);


      for (unsigned int k=0; k<fe1.n_quadrature_points; ++k)
        {
          const double dx = fe1.JxW(k);
          const Tensor<1,dim> n = fe1.normal_vector(k);

          for (unsigned int i=0; i<n1; ++i)
            for (unsigned int d=0; d<n_comp; ++d)
              {
                const double vi = fe1.shape_value_component(i,k,d);
                const Tensor<1,dim> &Dvi = fe1.shape_grad_component(i,k,d);
                const double dnvi = Dvi * n;
                const double ve = fe2.shape_value_component(i,k,d);
                const Tensor<1,dim> &Dve = fe2.shape_grad_component(i,k,d);
                const double dnve = Dve * n;

                const double ui = input1[d][k];
                const Tensor<1,dim> &Dui = Dinput1[d][k];
                const double dnui = Dui * n;
                const double ue = input2[d][k];
                const Tensor<1,dim> &Due = Dinput2[d][k];
                const double dnue = Due * n;

                result1(i) += dx*(-.5*nui*dnvi*ui-.5*nui*dnui*vi+penalty*ui*vi);
                result1(i) += dx*( .5*nui*dnvi*ue-.5*nue*dnue*vi-penalty*vi*ue);
                result2(i) += dx*(-.5*nue*dnve*ui+.5*nui*dnui*ve-penalty*ui*ve);
                result2(i) += dx*( .5*nue*dnve*ue+.5*nue*dnue*ve+penalty*ue*ve);
              }
        }
    }



    /**
     * Auxiliary function computing the penalty parameter for interior penalty
     * methods on rectangles.
     *
     * Computation is done in two steps: first, we compute on each cell
     * <i>Z<sub>i</sub></i> the value <i>P<sub>i</sub> =
     * p<sub>i</sub>(p<sub>i</sub>+1)/h<sub>i</sub></i>, where
     * <i>p<sub>i</sub></i> is the polynomial degree on cell
     * <i>Z<sub>i</sub></i> and <i>h<sub>i</sub></i> is the length of
     * <i>Z<sub>i</sub></i> orthogonal to the current face.
     *
     * @author Guido Kanschat
     * @date 2010
     */
    template <int dim, int spacedim, typename number>
    double compute_penalty(
      const MeshWorker::DoFInfo<dim,spacedim,number> &dinfo1,
      const MeshWorker::DoFInfo<dim,spacedim,number> &dinfo2,
      unsigned int deg1,
      unsigned int deg2)
    {
      const unsigned int normal1 = GeometryInfo<dim>::unit_normal_direction[dinfo1.face_number];
      const unsigned int normal2 = GeometryInfo<dim>::unit_normal_direction[dinfo2.face_number];
      const unsigned int deg1sq = (deg1 == 0) ? 1 : deg1 * (deg1+1);
      const unsigned int deg2sq = (deg2 == 0) ? 1 : deg2 * (deg2+1);

      double penalty1 = deg1sq / dinfo1.cell->extent_in_direction(normal1);
      double penalty2 = deg2sq / dinfo2.cell->extent_in_direction(normal2);
      if (dinfo1.cell->has_children() ^ dinfo2.cell->has_children())
        {
          Assert (dinfo1.face == dinfo2.face, ExcInternalError());
          Assert (dinfo1.face->has_children(), ExcInternalError());
          penalty1 *= 2;
        }
      const double penalty = 0.5*(penalty1 + penalty2);
      return penalty;
    }
  }
}


DEAL_II_NAMESPACE_CLOSE

#endif