This file is indexed.

/usr/include/deal.II/lac/block_matrix_base.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
// ---------------------------------------------------------------------
//
// Copyright (C) 2004 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__block_matrix_base_h
#define dealii__block_matrix_base_h


#include <deal.II/base/config.h>
#include <deal.II/base/table.h>
#include <deal.II/base/thread_management.h>
#include <deal.II/base/utilities.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/base/memory_consumption.h>
#include <deal.II/lac/block_indices.h>
#include <deal.II/lac/exceptions.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/matrix_iterator.h>
#include <deal.II/lac/vector.h>

#include <cmath>

DEAL_II_NAMESPACE_OPEN


template <typename> class MatrixIterator;



/*! @addtogroup Matrix1
 *@{
 */

/**
 * Namespace in which iterators in block matrices are implemented.
 *
 * @author Wolfgang Bangerth, 2004
 */
namespace BlockMatrixIterators
{
  /**
   * Base class for block matrix accessors, implementing the stepping through
   * a matrix.
   */
  template <class BlockMatrixType>
  class AccessorBase
  {
  public:
    /**
     * Declare type for container size.
     */
    typedef types::global_dof_index size_type;

    /**
     * Typedef the value type of the matrix we point into.
     */
    typedef typename BlockMatrixType::value_type value_type;

    /**
     * Initialize data fields to default values.
     */
    AccessorBase ();

    /**
     * Block row of the element represented by this object.
     */
    unsigned int block_row() const;

    /**
     * Block column of the element represented by this object.
     */
    unsigned int block_column() const;

  protected:
    /**
     * Block row into which we presently point.
     */
    unsigned int row_block;

    /**
     * Block column into which we presently point.
     */
    unsigned int col_block;

    /**
     * Let the iterator class be a friend.
     */
    template <typename>
    friend class MatrixIterator;
  };



  /**
   * Accessor classes in block matrices.
   */
  template <class BlockMatrixType, bool Constness>
  class Accessor;


  /**
   * Block matrix accessor for non const matrices.
   */
  template <class BlockMatrixType>
  class Accessor<BlockMatrixType, false>
    :
    public AccessorBase<BlockMatrixType>
  {
  public:
    /**
     * Declare type for container size.
     */
    typedef types::global_dof_index size_type;

    /**
     * Type of the matrix used in this accessor.
     */
    typedef BlockMatrixType MatrixType;

    /**
     * Typedef the value type of the matrix we point into.
     */
    typedef typename BlockMatrixType::value_type value_type;

    /**
     * Constructor. Since we use accessors only for read access, a const
     * matrix pointer is sufficient.
     *
     * Place the iterator at the beginning of the given row of the matrix, or
     * create the end pointer if @p row equals the total number of rows in the
     * matrix.
     */
    Accessor (BlockMatrixType *m,
              const size_type row,
              const size_type col);

    /**
     * Row number of the element represented by this object.
     */
    size_type row() const;

    /**
     * Column number of the element represented by this object.
     */
    size_type column() const;

    /**
     * Value of the entry at the current position.
     */
    value_type value() const;

    /**
     * Set new value.
     */
    void set_value(value_type newval) const;

  protected:
    /**
     * The matrix accessed.
     */
    BlockMatrixType *matrix;

    /**
     * Iterator of the underlying matrix class.
     */
    typename BlockMatrixType::BlockType::iterator base_iterator;

    /**
     * Move ahead one element.
     */
    void advance ();

    /**
     * Compare this accessor with another one for equality.
     */
    bool operator == (const Accessor &a) const;

    template <typename> friend class MatrixIterator;
    friend class Accessor<BlockMatrixType, true>;
  };

  /**
   * Block matrix accessor for constant matrices, implementing the stepping
   * through a matrix.
   */
  template <class BlockMatrixType>
  class Accessor<BlockMatrixType, true>
    :
    public AccessorBase<BlockMatrixType>
  {
  public:
    /**
     * Declare type for container size.
     */
    typedef types::global_dof_index size_type;

    /**
     * Type of the matrix used in this accessor.
     */
    typedef const BlockMatrixType MatrixType;

    /**
     * Typedef the value type of the matrix we point into.
     */
    typedef typename BlockMatrixType::value_type value_type;

    /**
     * Constructor. Since we use accessors only for read access, a const
     * matrix pointer is sufficient.
     *
     * Place the iterator at the beginning of the given row of the matrix, or
     * create the end pointer if @p row equals the total number of rows in the
     * matrix.
     */
    Accessor (const BlockMatrixType *m,
              const size_type row,
              const size_type col);

    /**
     * Initialize const accessor from non const accessor.
     */
    Accessor(const Accessor<BlockMatrixType, false> &);

    /**
     * Row number of the element represented by this object.
     */
    size_type row() const;

    /**
     * Column number of the element represented by this object.
     */
    size_type column() const;

    /**
     * Value of the entry at the current position.
     */
    value_type value() const;
  protected:
    /**
     * The matrix accessed.
     */
    const BlockMatrixType *matrix;

    /**
     * Iterator of the underlying matrix class.
     */
    typename BlockMatrixType::BlockType::const_iterator base_iterator;

    /**
     * Move ahead one element.
     */
    void advance ();

    /**
     * Compare this accessor with another one for equality.
     */
    bool operator == (const Accessor &a) const;

    /**
     * Let the iterator class be a friend.
     */
    template <typename>
    friend class dealii::MatrixIterator;
  };
}



/**
 * Blocked matrix class. The behaviour of objects of this type is almost as
 * for the usual matrix objects, with most of the functions being implemented
 * in both classes. The main difference is that the matrix represented by this
 * object is composed of an array of matrices (e.g. of type
 * SparseMatrix<number>) and all accesses to the elements of this object are
 * relayed to accesses of the base matrices. The actual type of the individual
 * blocks of this matrix is the type of the template argument, and can, for
 * example be the usual SparseMatrix or PETScWrappers::SparseMatrix.
 *
 * In addition to the usual matrix access and linear algebra functions, there
 * are functions block() which allow access to the different blocks of the
 * matrix. This may, for example, be of help when you want to implement Schur
 * complement methods, or block preconditioners, where each block belongs to a
 * specific component of the equation you are presently discretizing.
 *
 * Note that the numbers of blocks and rows are implicitly determined by the
 * sparsity pattern objects used.
 *
 * Objects of this type are frequently used when a system of differential
 * equations has solutions with variables that fall into different classes.
 * For example, solutions of the Stokes or Navier-Stokes equations have @p dim
 * velocity components and one pressure component. In this case, it may make
 * sense to consider the linear system of equations as a system of 2x2 blocks,
 * and one can construct preconditioners or solvers based on this 2x2 block
 * structure. This class can help you in these cases, as it allows to view the
 * matrix alternatively as one big matrix, or as a number of individual
 * blocks.
 *
 *
 * <h3>Inheriting from this class</h3>
 *
 * Since this class simply forwards its calls to the subobjects (if necessary
 * after adjusting indices denoting which subobject is meant), this class is
 * completely independent of the actual type of the subobject. The functions
 * that set up block matrices and destroy them, however, have to be
 * implemented in derived classes. These functions also have to fill the data
 * members provided by this base class, as they are only used passively in
 * this class.
 *
 *
 * Most of the functions take a vector or block vector argument. These
 * functions can, in general, only successfully be compiled if the individual
 * blocks of this matrix implement the respective functions operating on the
 * vector type in question. For example, if you have a block sparse matrix
 * over deal.II SparseMatrix objects, then you will likely not be able to form
 * the matrix-vector multiplication with a block vector over
 * PETScWrappers::SparseMatrix objects. If you attempt anyway, you will likely
 * get a number of compiler errors.
 *
 * @note Instantiations for this template are provided for <tt>@<float@> and
 * @<double@></tt>; others can be generated in application programs (see the
 * section on
 * @ref Instantiations
 * in the manual).
 *
 * @see
 * @ref GlossBlockLA "Block (linear algebra)"
 * @author Wolfgang Bangerth, 2000, 2004
 */
template <typename MatrixType>
class BlockMatrixBase : public Subscriptor
{
public:
  /**
   * Typedef the type of the underlying matrix.
   */
  typedef MatrixType BlockType;

  /**
   * Type of matrix entries. These are analogous to typedefs in the standard
   * library containers.
   */
  typedef typename BlockType::value_type value_type;
  typedef value_type             *pointer;
  typedef const value_type       *const_pointer;
  typedef value_type             &reference;
  typedef const value_type       &const_reference;
  typedef types::global_dof_index size_type;

  typedef
  MatrixIterator<BlockMatrixIterators::Accessor<BlockMatrixBase, false> >
  iterator;

  typedef
  MatrixIterator<BlockMatrixIterators::Accessor<BlockMatrixBase, true> >
  const_iterator;


  /**
   * Default constructor.
   */
  BlockMatrixBase ();

  /**
   * Destructor.
   */
  ~BlockMatrixBase ();

  /**
   * Copy the matrix given as argument into the current object.
   *
   * Copying matrices is an expensive operation that we do not want to happen
   * by accident through compiler generated code for <code>operator=</code>.
   * (This would happen, for example, if one accidentally declared a function
   * argument of the current type <i>by value</i> rather than <i>by
   * reference</i>.) The functionality of copying matrices is implemented in
   * this member function instead. All copy operations of objects of this type
   * therefore require an explicit function call.
   *
   * The source matrix may be a matrix of arbitrary type, as long as its data
   * type is convertible to the data type of this matrix.
   *
   * The function returns a reference to <tt>this</tt>.
   */
  template <class BlockMatrixType>
  BlockMatrixBase &
  copy_from (const BlockMatrixType &source);

  /**
   * Access the block with the given coordinates.
   */
  BlockType &
  block (const unsigned int row,
         const unsigned int column);


  /**
   * Access the block with the given coordinates. Version for constant
   * objects.
   */
  const BlockType &
  block (const unsigned int row,
         const unsigned int column) const;

  /**
   * Return the dimension of the codomain (or range) space. To remember: the
   * matrix is of dimension $m \times n$.
   */
  size_type m () const;

  /**
   * Return the dimension of the domain space. To remember: the matrix is of
   * dimension $m \times n$.
   */
  size_type n () const;


  /**
   * Return the number of blocks in a column. Returns zero if no sparsity
   * pattern is presently associated to this matrix.
   */
  unsigned int n_block_rows () const;

  /**
   * Return the number of blocks in a row. Returns zero if no sparsity pattern
   * is presently associated to this matrix.
   */
  unsigned int n_block_cols () const;

  /**
   * Set the element <tt>(i,j)</tt> to <tt>value</tt>. Throws an error if the
   * entry does not exist or if <tt>value</tt> is not a finite number. Still,
   * it is allowed to store zero values in non-existent fields.
   */
  void set (const size_type i,
            const size_type j,
            const value_type value);

  /**
   * Set all elements given in a FullMatrix into the sparse matrix locations
   * given by <tt>indices</tt>. In other words, this function writes the
   * elements in <tt>full_matrix</tt> into the calling matrix, using the
   * local-to-global indexing specified by <tt>indices</tt> for both the rows
   * and the columns of the matrix. This function assumes a quadratic sparse
   * matrix and a quadratic full_matrix, the usual situation in FE
   * calculations.
   *
   * The optional parameter <tt>elide_zero_values</tt> can be used to specify
   * whether zero values should be set anyway or they should be filtered away
   * (and not change the previous content in the respective element if it
   * exists). The default value is <tt>false</tt>, i.e., even zero values are
   * treated.
   */
  template <typename number>
  void set (const std::vector<size_type> &indices,
            const FullMatrix<number>     &full_matrix,
            const bool                    elide_zero_values = false);

  /**
   * Same function as before, but now including the possibility to use
   * rectangular full_matrices and different local-to-global indexing on rows
   * and columns, respectively.
   */
  template <typename number>
  void set (const std::vector<size_type> &row_indices,
            const std::vector<size_type> &col_indices,
            const FullMatrix<number>     &full_matrix,
            const bool                    elide_zero_values = false);

  /**
   * Set several elements in the specified row of the matrix with column
   * indices as given by <tt>col_indices</tt> to the respective value.
   *
   * The optional parameter <tt>elide_zero_values</tt> can be used to specify
   * whether zero values should be set anyway or they should be filtered away
   * (and not change the previous content in the respective element if it
   * exists). The default value is <tt>false</tt>, i.e., even zero values are
   * treated.
   */
  template <typename number>
  void set (const size_type row,
            const std::vector<size_type> &col_indices,
            const std::vector<number>    &values,
            const bool                    elide_zero_values = false);

  /**
   * Set several elements to values given by <tt>values</tt> in a given row in
   * columns given by col_indices into the sparse matrix.
   *
   * The optional parameter <tt>elide_zero_values</tt> can be used to specify
   * whether zero values should be inserted anyway or they should be filtered
   * away. The default value is <tt>false</tt>, i.e., even zero values are
   * inserted/replaced.
   */
  template <typename number>
  void set (const size_type  row,
            const size_type  n_cols,
            const size_type *col_indices,
            const number    *values,
            const bool       elide_zero_values = false);

  /**
   * Add <tt>value</tt> to the element (<i>i,j</i>).  Throws an error if the
   * entry does not exist or if <tt>value</tt> is not a finite number. Still,
   * it is allowed to store zero values in non-existent fields.
   */
  void add (const size_type i,
            const size_type j,
            const value_type value);

  /**
   * Add all elements given in a FullMatrix<double> into sparse matrix
   * locations given by <tt>indices</tt>. In other words, this function adds
   * the elements in <tt>full_matrix</tt> to the respective entries in calling
   * matrix, using the local-to-global indexing specified by <tt>indices</tt>
   * for both the rows and the columns of the matrix. This function assumes a
   * quadratic sparse matrix and a quadratic full_matrix, the usual situation
   * in FE calculations.
   *
   * The optional parameter <tt>elide_zero_values</tt> can be used to specify
   * whether zero values should be added anyway or these should be filtered
   * away and only non-zero data is added. The default value is <tt>true</tt>,
   * i.e., zero values won't be added into the matrix.
   */
  template <typename number>
  void add (const std::vector<size_type> &indices,
            const FullMatrix<number>     &full_matrix,
            const bool                    elide_zero_values = true);

  /**
   * Same function as before, but now including the possibility to use
   * rectangular full_matrices and different local-to-global indexing on rows
   * and columns, respectively.
   */
  template <typename number>
  void add (const std::vector<size_type> &row_indices,
            const std::vector<size_type> &col_indices,
            const FullMatrix<number>     &full_matrix,
            const bool                    elide_zero_values = true);

  /**
   * Set several elements in the specified row of the matrix with column
   * indices as given by <tt>col_indices</tt> to the respective value.
   *
   * The optional parameter <tt>elide_zero_values</tt> can be used to specify
   * whether zero values should be added anyway or these should be filtered
   * away and only non-zero data is added. The default value is <tt>true</tt>,
   * i.e., zero values won't be added into the matrix.
   */
  template <typename number>
  void add (const size_type row,
            const std::vector<size_type> &col_indices,
            const std::vector<number>    &values,
            const bool                    elide_zero_values = true);

  /**
   * Add an array of values given by <tt>values</tt> in the given global
   * matrix row at columns specified by col_indices in the sparse matrix.
   *
   * The optional parameter <tt>elide_zero_values</tt> can be used to specify
   * whether zero values should be added anyway or these should be filtered
   * away and only non-zero data is added. The default value is <tt>true</tt>,
   * i.e., zero values won't be added into the matrix.
   */
  template <typename number>
  void add (const size_type  row,
            const size_type  n_cols,
            const size_type *col_indices,
            const number    *values,
            const bool       elide_zero_values = true,
            const bool       col_indices_are_sorted = false);

  /**
   * Add <tt>matrix</tt> scaled by <tt>factor</tt> to this matrix, i.e. the
   * matrix <tt>factor*matrix</tt> is added to <tt>this</tt>. If the sparsity
   * pattern of the calling matrix does not contain all the elements in the
   * sparsity pattern of the input matrix, this function will throw an
   * exception.
   *
   * Depending on MatrixType, however, additional restrictions might arise.
   * Some sparse matrix formats require <tt>matrix</tt> to be based on the
   * same sparsity pattern as the calling matrix.
   */
  void add (const value_type                   factor,
            const BlockMatrixBase<MatrixType> &matrix);

  /**
   * Return the value of the entry (i,j).  This may be an expensive operation
   * and you should always take care where to call this function.  In order to
   * avoid abuse, this function throws an exception if the wanted element does
   * not exist in the matrix.
   */
  value_type operator () (const size_type i,
                          const size_type j) const;

  /**
   * This function is mostly like operator()() in that it returns the value of
   * the matrix entry <tt>(i,j)</tt>. The only difference is that if this
   * entry does not exist in the sparsity pattern, then instead of raising an
   * exception, zero is returned. While this may be convenient in some cases,
   * note that it is simple to write algorithms that are slow compared to an
   * optimal solution, since the sparsity of the matrix is not used.
   */
  value_type el (const size_type i,
                 const size_type j) const;

  /**
   * Return the main diagonal element in the <i>i</i>th row. This function
   * throws an error if the matrix is not quadratic and also if the diagonal
   * blocks of the matrix are not quadratic.
   *
   * This function is considerably faster than the operator()(), since for
   * quadratic matrices, the diagonal entry may be the first to be stored in
   * each row and access therefore does not involve searching for the right
   * column number.
   */
  value_type diag_element (const size_type i) const;

  /**
   * Call the compress() function on all the subblocks of the matrix.
   *
   *
   * See
   * @ref GlossCompress "Compressing distributed objects"
   * for more information.
   */
  void compress (::dealii::VectorOperation::values operation);

  /**
   * Multiply the entire matrix by a fixed factor.
   */
  BlockMatrixBase &operator *= (const value_type factor);

  /**
   * Divide the entire matrix by a fixed factor.
   */
  BlockMatrixBase &operator /= (const value_type factor);

  /**
   * Adding Matrix-vector multiplication. Add $M*src$ on $dst$ with $M$ being
   * this matrix.
   */
  template <class BlockVectorType>
  void vmult_add (BlockVectorType       &dst,
                  const BlockVectorType &src) const;

  /**
   * Adding Matrix-vector multiplication. Add <i>M<sup>T</sup>src</i> to
   * <i>dst</i> with <i>M</i> being this matrix. This function does the same
   * as vmult_add() but takes the transposed matrix.
   */
  template <class BlockVectorType>
  void Tvmult_add (BlockVectorType       &dst,
                   const BlockVectorType &src) const;

  /**
   * Return the norm of the vector <i>v</i> with respect to the norm induced
   * by this matrix, i.e. <i>v<sup>T</sup>Mv)</i>. This is useful, e.g. in the
   * finite element context, where the <i>L<sup>T</sup></i>-norm of a function
   * equals the matrix norm with respect to the mass matrix of the vector
   * representing the nodal values of the finite element function. Note that
   * even though the function's name might suggest something different, for
   * historic reasons not the norm but its square is returned, as defined
   * above by the scalar product.
   *
   * Obviously, the matrix needs to be square for this operation.
   */
  template <class BlockVectorType>
  value_type
  matrix_norm_square (const BlockVectorType &v) const;

  /**
   * Compute the matrix scalar product $\left(u,Mv\right)$.
   */
  template <class BlockVectorType>
  value_type
  matrix_scalar_product (const BlockVectorType &u,
                         const BlockVectorType &v) const;

  /**
   * Compute the residual <i>r=b-Ax</i>. Write the residual into <tt>dst</tt>.
   */
  template <class BlockVectorType>
  value_type residual (BlockVectorType       &dst,
                       const BlockVectorType &x,
                       const BlockVectorType &b) const;

  /**
   * Print the matrix to the given stream, using the format <tt>(line,col)
   * value</tt>, i.e. one nonzero entry of the matrix per line. The optional
   * flag outputs the sparsity pattern in a different style according to the
   * underlying sparse matrix type.
   */
  void print (std::ostream &out,
              const bool    alternative_output = false) const;

  /**
   * Iterator starting at the first entry.
   */
  iterator begin ();

  /**
   * Final iterator.
   */
  iterator end ();

  /**
   * Iterator starting at the first entry of row <tt>r</tt>.
   */
  iterator begin (const size_type r);

  /**
   * Final iterator of row <tt>r</tt>.
   */
  iterator end (const size_type r);
  /**
   * Iterator starting at the first entry.
   */
  const_iterator begin () const;

  /**
   * Final iterator.
   */
  const_iterator end () const;

  /**
   * Iterator starting at the first entry of row <tt>r</tt>.
   */
  const_iterator begin (const size_type r) const;

  /**
   * Final iterator of row <tt>r</tt>.
   */
  const_iterator end (const size_type r) const;

  /**
   * Return a reference to the underlying BlockIndices data of the rows.
   */
  const BlockIndices &get_row_indices () const;

  /**
   * Return a reference to the underlying BlockIndices data of the columns.
   */
  const BlockIndices &get_column_indices () const;

  /**
   * Determine an estimate for the memory consumption (in bytes) of this
   * object. Note that only the memory reserved on the current processor is
   * returned in case this is called in an MPI-based program.
   */
  std::size_t memory_consumption () const;

  /**
   * @addtogroup Exceptions
   * @{
   */

  /**
   * Exception
   */
  DeclException4 (ExcIncompatibleRowNumbers,
                  int, int, int, int,
                  << "The blocks [" << arg1 << ',' << arg2 << "] and ["
                  << arg3 << ',' << arg4 << "] have differing row numbers.");
  /**
   * Exception
   */
  DeclException4 (ExcIncompatibleColNumbers,
                  int, int, int, int,
                  << "The blocks [" << arg1 << ',' << arg2 << "] and ["
                  << arg3 << ',' << arg4 << "] have differing column numbers.");
  //@}
protected:
  /**
   * Release all memory and return to a state just like after having called
   * the default constructor. It also forgets the sparsity pattern it was
   * previously tied to.
   *
   * This calls clear for all sub-matrices and then resets this object to have
   * no blocks at all.
   *
   * This function is protected since it may be necessary to release
   * additional structures. A derived class can make it public again, if it is
   * sufficient.
   */
  void clear ();

  /**
   * Index arrays for rows and columns.
   */
  BlockIndices row_block_indices;
  BlockIndices column_block_indices;

  /**
   * Array of sub-matrices.
   */
  Table<2,SmartPointer<BlockType, BlockMatrixBase<MatrixType> > > sub_objects;

  /**
   * This function collects the sizes of the sub-objects and stores them in
   * internal arrays, in order to be able to relay global indices into the
   * matrix to indices into the subobjects. You *must* call this function each
   * time after you have changed the size of the sub-objects.
   *
   * Derived classes should call this function whenever the size of the sub-
   * objects has changed and the @p X_block_indices arrays need to be updated.
   *
   * Note that this function is not public since not all derived classes need
   * to export its interface. For example, for the usual deal.II SparseMatrix
   * class, the sizes are implicitly determined whenever reinit() is called,
   * and individual blocks cannot be resized. For that class, this function
   * therefore does not have to be public. On the other hand, for the PETSc
   * classes, there is no associated sparsity pattern object that determines
   * the block sizes, and for these the function needs to be publicly
   * available. These classes therefore export this function.
   */
  void collect_sizes ();

  /**
   * Matrix-vector multiplication: let $dst = M*src$ with $M$ being this
   * matrix.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class BlockVectorType>
  void vmult_block_block (BlockVectorType       &dst,
                          const BlockVectorType &src) const;

  /**
   * Matrix-vector multiplication. Just like the previous function, but only
   * applicable if the matrix has only one block column.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class BlockVectorType,
            class VectorType>
  void vmult_block_nonblock (BlockVectorType          &dst,
                             const VectorType &src) const;

  /**
   * Matrix-vector multiplication. Just like the previous function, but only
   * applicable if the matrix has only one block row.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class BlockVectorType,
            class VectorType>
  void vmult_nonblock_block (VectorType    &dst,
                             const BlockVectorType &src) const;

  /**
   * Matrix-vector multiplication. Just like the previous function, but only
   * applicable if the matrix has only one block.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class VectorType>
  void vmult_nonblock_nonblock (VectorType       &dst,
                                const VectorType &src) const;

  /**
   * Matrix-vector multiplication: let $dst = M^T*src$ with $M$ being this
   * matrix. This function does the same as vmult() but takes the transposed
   * matrix.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class BlockVectorType>
  void Tvmult_block_block (BlockVectorType       &dst,
                           const BlockVectorType &src) const;

  /**
   * Matrix-vector multiplication. Just like the previous function, but only
   * applicable if the matrix has only one block row.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class BlockVectorType,
            class VectorType>
  void Tvmult_block_nonblock (BlockVectorType  &dst,
                              const VectorType &src) const;

  /**
   * Matrix-vector multiplication. Just like the previous function, but only
   * applicable if the matrix has only one block column.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class BlockVectorType,
            class VectorType>
  void Tvmult_nonblock_block (VectorType    &dst,
                              const BlockVectorType &src) const;

  /**
   * Matrix-vector multiplication. Just like the previous function, but only
   * applicable if the matrix has only one block.
   *
   * Due to problems with deriving template arguments between the block and
   * non-block versions of the vmult/Tvmult functions, the actual functions
   * are implemented in derived classes, with implementations forwarding the
   * calls to the implementations provided here under a unique name for which
   * template arguments can be derived by the compiler.
   */
  template <class VectorType>
  void Tvmult_nonblock_nonblock (VectorType       &dst,
                                 const VectorType &src) const;


protected:

  /**
   * Some matrix types, in particular PETSc, need to synchronize set and add
   * operations. This has to be done for all matrices in the BlockMatrix. This
   * routine prepares adding of elements by notifying all blocks. Called by
   * all internal routines before adding elements.
   */
  void prepare_add_operation();

  /**
   * Notifies all blocks to let them prepare for setting elements, see
   * prepare_add_operation().
   */
  void prepare_set_operation();


private:

  /**
   * A structure containing some fields used by the set() and add() functions
   * that is used to pre-sort the input fields. Since one can reasonably
   * expect to call set() and add() from multiple threads at once as long as
   * the matrix indices that are touched are disjoint, these temporary data
   * fields need to be guarded by a mutex; the structure therefore contains
   * such a mutex as a member variable.
   */
  struct TemporaryData
  {
    /**
     * Temporary vector for counting the elements written into the individual
     * blocks when doing a collective add or set.
     */
    std::vector<size_type> counter_within_block;

    /**
     * Temporary vector for column indices on each block when writing local to
     * global data on each sparse matrix.
     */
    std::vector<std::vector<size_type> > column_indices;

    /**
     * Temporary vector for storing the local values (they need to be
     * reordered when writing local to global).
     */
    std::vector<std::vector<value_type> > column_values;

    /**
     * A mutex variable used to guard access to the member variables of this
     * structure;
     */
    Threads::Mutex mutex;

    /**
     * Copy operator. This is needed because the default copy operator of this
     * class is deleted (since Threads::Mutex is not copyable) and hence the
     * default copy operator of the enclosing class is also deleted.
     *
     * The implementation here simply does nothing -- TemporaryData objects
     * are just scratch objects that are resized at the beginning of their
     * use, so there is no point actually copying anything.
     */
    TemporaryData &operator = (const TemporaryData &)
    {
      return *this;
    }
  };

  /**
   * A set of scratch arrays that can be used by the add() and set() functions
   * that take pointers to data to pre-sort indices before use. Access from
   * multiple threads is synchronized via the mutex variable that is part of
   * the structure.
   */
  TemporaryData temporary_data;

  /**
   * Make the iterator class a friend. We have to work around a compiler bug
   * here again.
   */
  template <typename, bool>
  friend class BlockMatrixIterators::Accessor;

  template <typename>
  friend class MatrixIterator;
};


/*@}*/

#ifndef DOXYGEN
/* ------------------------- Template functions ---------------------- */


namespace BlockMatrixIterators
{
  template <class BlockMatrixType>
  inline
  AccessorBase<BlockMatrixType>::AccessorBase()
    :
    row_block(0),
    col_block(0)
  {}


  template <class BlockMatrixType>
  inline
  unsigned int
  AccessorBase<BlockMatrixType>::block_row() const
  {
    Assert (row_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());

    return row_block;
  }


  template <class BlockMatrixType>
  inline
  unsigned int
  AccessorBase<BlockMatrixType>::block_column() const
  {
    Assert (col_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());

    return col_block;
  }


  template <class BlockMatrixType>
  inline
  Accessor<BlockMatrixType, true>::Accessor (
    const BlockMatrixType  *matrix,
    const size_type        row,
    const size_type        col)
    :
    matrix(matrix),
    base_iterator(matrix->block(0,0).begin())
  {
    (void)col;
    Assert(col==0, ExcNotImplemented());

    // check if this is a regular row or
    // the end of the matrix
    if (row < matrix->m())
      {
        const std::pair<unsigned int,size_type> indices
          = matrix->row_block_indices.global_to_local(row);

        // find the first block that does
        // have an entry in this row
        for (unsigned int bc=0; bc<matrix->n_block_cols(); ++bc)
          {
            base_iterator
              = matrix->block(indices.first, bc).begin(indices.second);
            if (base_iterator !=
                matrix->block(indices.first, bc).end(indices.second))
              {
                this->row_block = indices.first;
                this->col_block = bc;
                return;
              }
          }

        // hm, there is no block that has
        // an entry in this column. we need
        // to take the next entry then,
        // which may be the first entry of
        // the next row, or recursively the
        // next row, or so on
        *this = Accessor (matrix, row+1, 0);
      }
    else
      {
        // we were asked to create the end
        // iterator for this matrix
        this->row_block = numbers::invalid_unsigned_int;
        this->col_block = numbers::invalid_unsigned_int;
      }
  }


//   template <class BlockMatrixType>
//   inline
//   Accessor<BlockMatrixType, true>::Accessor (const Accessor<BlockMatrixType, true>& other)
//                :
//                matrix(other.matrix),
//                base_iterator(other.base_iterator)
//   {
//     this->row_block = other.row_block;
//     this->col_block = other.col_block;
//   }


  template <class BlockMatrixType>
  inline
  Accessor<BlockMatrixType, true>::Accessor (const Accessor<BlockMatrixType, false> &other)
    :
    matrix(other.matrix),
    base_iterator(other.base_iterator)
  {
    this->row_block = other.row_block;
    this->col_block = other.col_block;
  }


  template <class BlockMatrixType>
  inline
  typename Accessor<BlockMatrixType, true>::size_type
  Accessor<BlockMatrixType, true>::row() const
  {
    Assert (this->row_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());

    return (matrix->row_block_indices.local_to_global(this->row_block, 0) +
            base_iterator->row());
  }


  template <class BlockMatrixType>
  inline
  typename Accessor<BlockMatrixType, true>::size_type
  Accessor<BlockMatrixType, true>::column() const
  {
    Assert (this->col_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());

    return (matrix->column_block_indices.local_to_global(this->col_block,0) +
            base_iterator->column());
  }


  template <class BlockMatrixType>
  inline
  typename Accessor<BlockMatrixType, true>::value_type
  Accessor<BlockMatrixType, true>::value () const
  {
    Assert (this->row_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());
    Assert (this->col_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());

    return base_iterator->value();
  }



  template <class BlockMatrixType>
  inline
  void
  Accessor<BlockMatrixType, true>::advance ()
  {
    Assert (this->row_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());
    Assert (this->col_block != numbers::invalid_unsigned_int,
            ExcIteratorPastEnd());

    // Remember current row inside block
    size_type local_row = base_iterator->row();

    // Advance one element inside the
    // current block
    ++base_iterator;

    // while we hit the end of the row of a
    // block (which may happen multiple
    // times if rows inside a block are
    // empty), we have to jump to the next
    // block and take the
    while (base_iterator ==
           matrix->block(this->row_block, this->col_block).end(local_row))
      {
        // jump to next block in this block
        // row, if possible, otherwise go
        // to next row
        if (this->col_block < matrix->n_block_cols()-1)
          {
            ++this->col_block;
            base_iterator
              = matrix->block(this->row_block, this->col_block).begin(local_row);
          }
        else
          {
            // jump back to next row in
            // first block column
            this->col_block = 0;
            ++local_row;

            // see if this has brought us
            // past the number of rows in
            // this block. if so see
            // whether we've just fallen
            // off the end of the whole
            // matrix
            if (local_row == matrix->block(this->row_block, this->col_block).m())
              {
                local_row = 0;
                ++this->row_block;
                if (this->row_block == matrix->n_block_rows())
                  {
                    this->row_block = numbers::invalid_unsigned_int;
                    this->col_block = numbers::invalid_unsigned_int;
                    return;
                  }
              }

            base_iterator
              = matrix->block(this->row_block, this->col_block).begin(local_row);
          }
      }
  }


  template <class BlockMatrixType>
  inline
  bool
  Accessor<BlockMatrixType, true>::operator == (const Accessor &a) const
  {
    if (matrix != a.matrix)
      return false;

    if (this->row_block == a.row_block
        && this->col_block == a.col_block)
      // end iterators do not necessarily
      // have to have the same
      // base_iterator representation, but
      // valid iterators have to
      return (((this->row_block == numbers::invalid_unsigned_int)
               &&
               (this->col_block == numbers::invalid_unsigned_int))
              ||
              (base_iterator == a.base_iterator));

    return false;
  }

//----------------------------------------------------------------------//


  template <class BlockMatrixType>
  inline
  Accessor<BlockMatrixType, false>::Accessor (
    BlockMatrixType  *matrix,
    const size_type  row,
    const size_type  col)
    :
    matrix(matrix),
    base_iterator(matrix->block(0,0).begin())
  {
    (void)col;
    Assert(col==0, ExcNotImplemented());
    // check if this is a regular row or
    // the end of the matrix
    if (row < matrix->m())
      {
        const std::pair<unsigned int,size_type> indices
          = matrix->row_block_indices.global_to_local(row);

        // find the first block that does
        // have an entry in this row
        for (size_type bc=0; bc<matrix->n_block_cols(); ++bc)
          {
            base_iterator
              = matrix->block(indices.first, bc).begin(indices.second);
            if (base_iterator !=
                matrix->block(indices.first, bc).end(indices.second))
              {
                this->row_block = indices.first;
                this->col_block = bc;
                return;
              }
          }

        // hm, there is no block that has
        // an entry in this column. we need
        // to take the next entry then,
        // which may be the first entry of
        // the next row, or recursively the
        // next row, or so on
        *this = Accessor (matrix, row+1, 0);
      }
    else
      {
        // we were asked to create the end
        // iterator for this matrix
        this->row_block = numbers::invalid_size_type;
        this->col_block = numbers::invalid_size_type;
      }
  }


  template <class BlockMatrixType>
  inline
  typename Accessor<BlockMatrixType, false>::size_type
  Accessor<BlockMatrixType, false>::row() const
  {
    Assert (this->row_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());

    return (matrix->row_block_indices.local_to_global(this->row_block, 0) +
            base_iterator->row());
  }


  template <class BlockMatrixType>
  inline
  typename Accessor<BlockMatrixType, false>::size_type
  Accessor<BlockMatrixType, false>::column() const
  {
    Assert (this->col_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());

    return (matrix->column_block_indices.local_to_global(this->col_block,0) +
            base_iterator->column());
  }


  template <class BlockMatrixType>
  inline
  typename Accessor<BlockMatrixType, false>::value_type
  Accessor<BlockMatrixType, false>::value () const
  {
    Assert (this->row_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());
    Assert (this->col_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());

    return base_iterator->value();
  }



  template <class BlockMatrixType>
  inline
  void
  Accessor<BlockMatrixType, false>::set_value (typename Accessor<BlockMatrixType, false>::value_type newval) const
  {
    Assert (this->row_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());
    Assert (this->col_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());

    base_iterator->value() = newval;
  }



  template <class BlockMatrixType>
  inline
  void
  Accessor<BlockMatrixType, false>::advance ()
  {
    Assert (this->row_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());
    Assert (this->col_block != numbers::invalid_size_type,
            ExcIteratorPastEnd());

    // Remember current row inside block
    size_type local_row = base_iterator->row();

    // Advance one element inside the
    // current block
    ++base_iterator;

    // while we hit the end of the row of a
    // block (which may happen multiple
    // times if rows inside a block are
    // empty), we have to jump to the next
    // block and take the
    while (base_iterator ==
           matrix->block(this->row_block, this->col_block).end(local_row))
      {
        // jump to next block in this block
        // row, if possible, otherwise go
        // to next row
        if (this->col_block < matrix->n_block_cols()-1)
          {
            ++this->col_block;
            base_iterator
              = matrix->block(this->row_block, this->col_block).begin(local_row);
          }
        else
          {
            // jump back to next row in
            // first block column
            this->col_block = 0;
            ++local_row;

            // see if this has brought us
            // past the number of rows in
            // this block. if so see
            // whether we've just fallen
            // off the end of the whole
            // matrix
            if (local_row == matrix->block(this->row_block, this->col_block).m())
              {
                local_row = 0;
                ++this->row_block;
                if (this->row_block == matrix->n_block_rows())
                  {
                    this->row_block = numbers::invalid_size_type;
                    this->col_block = numbers::invalid_size_type;
                    return;
                  }
              }

            base_iterator
              = matrix->block(this->row_block, this->col_block).begin(local_row);
          }
      }
  }



  template <class BlockMatrixType>
  inline
  bool
  Accessor<BlockMatrixType, false>::operator == (const Accessor &a) const
  {
    if (matrix != a.matrix)
      return false;

    if (this->row_block == a.row_block
        && this->col_block == a.col_block)
      // end iterators do not necessarily
      // have to have the same
      // base_iterator representation, but
      // valid iterators have to
      return (((this->row_block == numbers::invalid_size_type)
               &&
               (this->col_block == numbers::invalid_size_type))
              ||
              (base_iterator == a.base_iterator));

    return false;
  }
}


//---------------------------------------------------------------------------


template <typename MatrixType>
inline
BlockMatrixBase<MatrixType>::BlockMatrixBase ()
{}

template <typename MatrixType>
inline
BlockMatrixBase<MatrixType>::~BlockMatrixBase ()
{
  clear ();
}


template <class MatrixType>
template <class BlockMatrixType>
inline
BlockMatrixBase<MatrixType> &
BlockMatrixBase<MatrixType>::
copy_from (const BlockMatrixType &source)
{
  for (unsigned int r=0; r<n_block_rows(); ++r)
    for (unsigned int c=0; c<n_block_cols(); ++c)
      block(r,c).copy_from (source.block(r,c));

  return *this;
}


template <class MatrixType>
std::size_t
BlockMatrixBase<MatrixType>::memory_consumption () const
{
  std::size_t mem =
    MemoryConsumption::memory_consumption(row_block_indices)+
    MemoryConsumption::memory_consumption(column_block_indices)+
    MemoryConsumption::memory_consumption(sub_objects)+
    MemoryConsumption::memory_consumption(temporary_data.counter_within_block)+
    MemoryConsumption::memory_consumption(temporary_data.column_indices)+
    MemoryConsumption::memory_consumption(temporary_data.column_values)+
    sizeof(temporary_data.mutex);

  for (unsigned int r=0; r<n_block_rows(); ++r)
    for (unsigned int c=0; c<n_block_cols(); ++c)
      {
        MatrixType *p = this->sub_objects[r][c];
        mem += MemoryConsumption::memory_consumption(*p);
      }

  return mem;
}



template <class MatrixType>
inline
void
BlockMatrixBase<MatrixType>::clear ()
{
  for (unsigned int r=0; r<n_block_rows(); ++r)
    for (unsigned int c=0; c<n_block_cols(); ++c)
      {
        MatrixType *p = this->sub_objects[r][c];
        this->sub_objects[r][c] = 0;
        delete p;
      }
  sub_objects.reinit (0,0);

  // reset block indices to empty
  row_block_indices = column_block_indices = BlockIndices ();
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::BlockType &
BlockMatrixBase<MatrixType>::block (const unsigned int row,
                                    const unsigned int column)
{
  Assert (row<n_block_rows(),
          ExcIndexRange (row, 0, n_block_rows()));
  Assert (column<n_block_cols(),
          ExcIndexRange (column, 0, n_block_cols()));

  return *sub_objects[row][column];
}



template <class MatrixType>
inline
const typename BlockMatrixBase<MatrixType>::BlockType &
BlockMatrixBase<MatrixType>::block (const unsigned int row,
                                    const unsigned int column) const
{
  Assert (row<n_block_rows(),
          ExcIndexRange (row, 0, n_block_rows()));
  Assert (column<n_block_cols(),
          ExcIndexRange (column, 0, n_block_cols()));

  return *sub_objects[row][column];
}


template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::size_type
BlockMatrixBase<MatrixType>::m () const
{
  return row_block_indices.total_size();
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::size_type
BlockMatrixBase<MatrixType>::n () const
{
  return column_block_indices.total_size();
}



template <class MatrixType>
inline
unsigned int
BlockMatrixBase<MatrixType>::n_block_cols () const
{
  return column_block_indices.size();
}



template <class MatrixType>
inline
unsigned int
BlockMatrixBase<MatrixType>::n_block_rows () const
{
  return row_block_indices.size();
}



// Write the single set manually,
// since the other function has a lot
// of overhead in that case.
template <class MatrixType>
inline
void
BlockMatrixBase<MatrixType>::set (const size_type i,
                                  const size_type j,
                                  const value_type value)
{
  prepare_set_operation();

  AssertIsFinite(value);

  const std::pair<unsigned int,size_type>
  row_index = row_block_indices.global_to_local (i),
  col_index = column_block_indices.global_to_local (j);
  block(row_index.first,col_index.first).set (row_index.second,
                                              col_index.second,
                                              value);
}



template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::set (const std::vector<size_type> &row_indices,
                                  const std::vector<size_type> &col_indices,
                                  const FullMatrix<number>        &values,
                                  const bool                       elide_zero_values)
{
  Assert (row_indices.size() == values.m(),
          ExcDimensionMismatch(row_indices.size(), values.m()));
  Assert (col_indices.size() == values.n(),
          ExcDimensionMismatch(col_indices.size(), values.n()));

  for (size_type i=0; i<row_indices.size(); ++i)
    set (row_indices[i], col_indices.size(), &col_indices[0], &values(i,0),
         elide_zero_values);
}



template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::set (const std::vector<size_type> &indices,
                                  const FullMatrix<number>        &values,
                                  const bool                       elide_zero_values)
{
  Assert (indices.size() == values.m(),
          ExcDimensionMismatch(indices.size(), values.m()));
  Assert (values.n() == values.m(), ExcNotQuadratic());

  for (size_type i=0; i<indices.size(); ++i)
    set (indices[i], indices.size(), &indices[0], &values(i,0),
         elide_zero_values);
}



template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::set (const size_type               row,
                                  const std::vector<size_type> &col_indices,
                                  const std::vector<number>    &values,
                                  const bool                    elide_zero_values)
{
  Assert (col_indices.size() == values.size(),
          ExcDimensionMismatch(col_indices.size(), values.size()));

  set (row, col_indices.size(), &col_indices[0], &values[0],
       elide_zero_values);
}



// This is a very messy function, since
// we need to calculate to each position
// the location in the global array.
template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::set (const size_type  row,
                                  const size_type  n_cols,
                                  const size_type *col_indices,
                                  const number    *values,
                                  const bool       elide_zero_values)
{
  prepare_set_operation();

  // lock access to the temporary data structure to
  // allow multiple threads to call this function concurrently
  Threads::Mutex::ScopedLock lock (temporary_data.mutex);

  // Resize scratch arrays
  if (temporary_data.column_indices.size() < this->n_block_cols())
    {
      temporary_data.column_indices.resize (this->n_block_cols());
      temporary_data.column_values.resize (this->n_block_cols());
      temporary_data.counter_within_block.resize (this->n_block_cols());
    }

  // Resize sub-arrays to n_cols. This
  // is a bit wasteful, but we resize
  // only a few times (then the maximum
  // row length won't increase that
  // much any more). At least we know
  // that all arrays are going to be of
  // the same size, so we can check
  // whether the size of one is large
  // enough before actually going
  // through all of them.
  if (temporary_data.column_indices[0].size() < n_cols)
    {
      for (unsigned int i=0; i<this->n_block_cols(); ++i)
        {
          temporary_data.column_indices[i].resize(n_cols);
          temporary_data.column_values[i].resize(n_cols);
        }
    }

  // Reset the number of added elements
  // in each block to zero.
  for (unsigned int i=0; i<this->n_block_cols(); ++i)
    temporary_data.counter_within_block[i] = 0;

  // Go through the column indices to
  // find out which portions of the
  // values should be set in which
  // block of the matrix. We need to
  // touch all the data, since we can't
  // be sure that the data of one block
  // is stored contiguously (in fact,
  // indices will be intermixed when it
  // comes from an element matrix).
  for (size_type j=0; j<n_cols; ++j)
    {
      number value = values[j];

      if (value == number() && elide_zero_values == true)
        continue;

      const std::pair<unsigned int, size_type>
      col_index = this->column_block_indices.global_to_local(col_indices[j]);

      const size_type local_index = temporary_data.counter_within_block[col_index.first]++;

      temporary_data.column_indices[col_index.first][local_index] = col_index.second;
      temporary_data.column_values[col_index.first][local_index] = value;
    }

#ifdef DEBUG
  // If in debug mode, do a check whether
  // the right length has been obtained.
  size_type length = 0;
  for (unsigned int i=0; i<this->n_block_cols(); ++i)
    length += temporary_data.counter_within_block[i];
  Assert (length <= n_cols, ExcInternalError());
#endif

  // Now we found out about where the
  // individual columns should start and
  // where we should start reading out
  // data. Now let's write the data into
  // the individual blocks!
  const std::pair<unsigned int,size_type>
  row_index = this->row_block_indices.global_to_local (row);
  for (unsigned int block_col=0; block_col<n_block_cols(); ++block_col)
    {
      if (temporary_data.counter_within_block[block_col] == 0)
        continue;

      block(row_index.first, block_col).set
      (row_index.second,
       temporary_data.counter_within_block[block_col],
       &temporary_data.column_indices[block_col][0],
       &temporary_data.column_values[block_col][0],
       false);
    }
}



template <class MatrixType>
inline
void
BlockMatrixBase<MatrixType>::add (const size_type  i,
                                  const size_type  j,
                                  const value_type value)
{

  AssertIsFinite(value);

  prepare_add_operation();

  // save some cycles for zero additions, but
  // only if it is safe for the matrix we are
  // working with
  typedef typename MatrixType::Traits MatrixTraits;
  if ((MatrixTraits::zero_addition_can_be_elided == true)
      &&
      (value == value_type()))
    return;

  const std::pair<unsigned int,size_type>
  row_index = row_block_indices.global_to_local (i),
  col_index = column_block_indices.global_to_local (j);
  block(row_index.first,col_index.first).add (row_index.second,
                                              col_index.second,
                                              value);
}



template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::add (const std::vector<size_type> &row_indices,
                                  const std::vector<size_type> &col_indices,
                                  const FullMatrix<number>     &values,
                                  const bool                    elide_zero_values)
{
  Assert (row_indices.size() == values.m(),
          ExcDimensionMismatch(row_indices.size(), values.m()));
  Assert (col_indices.size() == values.n(),
          ExcDimensionMismatch(col_indices.size(), values.n()));

  for (size_type i=0; i<row_indices.size(); ++i)
    add (row_indices[i], col_indices.size(), &col_indices[0], &values(i,0),
         elide_zero_values);
}



template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::add (const std::vector<size_type> &indices,
                                  const FullMatrix<number>     &values,
                                  const bool                    elide_zero_values)
{
  Assert (indices.size() == values.m(),
          ExcDimensionMismatch(indices.size(), values.m()));
  Assert (values.n() == values.m(), ExcNotQuadratic());

  for (size_type i=0; i<indices.size(); ++i)
    add (indices[i], indices.size(), &indices[0], &values(i,0),
         elide_zero_values);
}



template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::add (const size_type               row,
                                  const std::vector<size_type> &col_indices,
                                  const std::vector<number>    &values,
                                  const bool                    elide_zero_values)
{
  Assert (col_indices.size() == values.size(),
          ExcDimensionMismatch(col_indices.size(), values.size()));

  add (row, col_indices.size(), &col_indices[0], &values[0],
       elide_zero_values);
}



// This is a very messy function, since
// we need to calculate to each position
// the location in the global array.
template <class MatrixType>
template <typename number>
inline
void
BlockMatrixBase<MatrixType>::add (const size_type  row,
                                  const size_type  n_cols,
                                  const size_type *col_indices,
                                  const number    *values,
                                  const bool       elide_zero_values,
                                  const bool       col_indices_are_sorted)
{
  prepare_add_operation();

  // TODO: Look over this to find out
  // whether we can do that more
  // efficiently.
  if (col_indices_are_sorted == true)
    {
#ifdef DEBUG
      // check whether indices really are
      // sorted.
      size_type before = col_indices[0];
      for (size_type i=1; i<n_cols; ++i)
        if (col_indices[i] <= before)
          Assert (false, ExcMessage ("Flag col_indices_are_sorted is set, but "
                                     "indices appear to not be sorted."))
          else
            before = col_indices[i];
#endif
      const std::pair<unsigned int,size_type>
      row_index = this->row_block_indices.global_to_local (row);

      if (this->n_block_cols() > 1)
        {
          const size_type *first_block = Utilities::lower_bound (col_indices,
                                                                 col_indices+n_cols,
                                                                 this->column_block_indices.block_start(1));

          const size_type n_zero_block_indices = first_block - col_indices;
          block(row_index.first, 0).add (row_index.second,
                                         n_zero_block_indices,
                                         col_indices,
                                         values,
                                         elide_zero_values,
                                         col_indices_are_sorted);

          if (n_zero_block_indices < n_cols)
            this->add(row, n_cols - n_zero_block_indices, first_block,
                      values + n_zero_block_indices, elide_zero_values,
                      false);
        }
      else
        {
          block(row_index.first, 0). add (row_index.second,
                                          n_cols,
                                          col_indices,
                                          values,
                                          elide_zero_values,
                                          col_indices_are_sorted);
        }

      return;
    }

  // Lock scratch arrays, then resize them
  Threads::Mutex::ScopedLock lock (temporary_data.mutex);

  if (temporary_data.column_indices.size() < this->n_block_cols())
    {
      temporary_data.column_indices.resize (this->n_block_cols());
      temporary_data.column_values.resize (this->n_block_cols());
      temporary_data.counter_within_block.resize (this->n_block_cols());
    }

  // Resize sub-arrays to n_cols. This
  // is a bit wasteful, but we resize
  // only a few times (then the maximum
  // row length won't increase that
  // much any more). At least we know
  // that all arrays are going to be of
  // the same size, so we can check
  // whether the size of one is large
  // enough before actually going
  // through all of them.
  if (temporary_data.column_indices[0].size() < n_cols)
    {
      for (unsigned int i=0; i<this->n_block_cols(); ++i)
        {
          temporary_data.column_indices[i].resize(n_cols);
          temporary_data.column_values[i].resize(n_cols);
        }
    }

  // Reset the number of added elements
  // in each block to zero.
  for (unsigned int i=0; i<this->n_block_cols(); ++i)
    temporary_data.counter_within_block[i] = 0;

  // Go through the column indices to
  // find out which portions of the
  // values should be written into
  // which block of the matrix. We need
  // to touch all the data, since we
  // can't be sure that the data of one
  // block is stored contiguously (in
  // fact, data will be intermixed when
  // it comes from an element matrix).
  for (size_type j=0; j<n_cols; ++j)
    {
      number value = values[j];

      if (value == number() && elide_zero_values == true)
        continue;

      const std::pair<unsigned int, size_type>
      col_index = this->column_block_indices.global_to_local(col_indices[j]);

      const size_type local_index = temporary_data.counter_within_block[col_index.first]++;

      temporary_data.column_indices[col_index.first][local_index] = col_index.second;
      temporary_data.column_values[col_index.first][local_index] = value;
    }

#ifdef DEBUG
  // If in debug mode, do a check whether
  // the right length has been obtained.
  size_type length = 0;
  for (unsigned int i=0; i<this->n_block_cols(); ++i)
    length += temporary_data.counter_within_block[i];
  Assert (length <= n_cols, ExcInternalError());
#endif

  // Now we found out about where the
  // individual columns should start and
  // where we should start reading out
  // data. Now let's write the data into
  // the individual blocks!
  const std::pair<unsigned int,size_type>
  row_index = this->row_block_indices.global_to_local (row);
  for (unsigned int block_col=0; block_col<n_block_cols(); ++block_col)
    {
      if (temporary_data.counter_within_block[block_col] == 0)
        continue;

      block(row_index.first, block_col).add
      (row_index.second,
       temporary_data.counter_within_block[block_col],
       &temporary_data.column_indices[block_col][0],
       &temporary_data.column_values[block_col][0],
       false,
       col_indices_are_sorted);
    }
}



template <class MatrixType>
inline
void
BlockMatrixBase<MatrixType>::add (const value_type                   factor,
                                  const BlockMatrixBase<MatrixType> &matrix)
{
  AssertIsFinite(factor);

  prepare_add_operation();

  // save some cycles for zero additions, but
  // only if it is safe for the matrix we are
  // working with
  typedef typename MatrixType::Traits MatrixTraits;
  if ((MatrixTraits::zero_addition_can_be_elided == true)
      &&
      (factor == 0))
    return;

  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      // This function should throw if the sparsity
      // patterns of the two blocks differ
      block(row, col).add(factor, matrix.block(row,col));
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::value_type
BlockMatrixBase<MatrixType>::operator () (const size_type i,
                                          const size_type j) const
{
  const std::pair<unsigned int,size_type>
  row_index = row_block_indices.global_to_local (i),
  col_index = column_block_indices.global_to_local (j);
  return block(row_index.first,col_index.first) (row_index.second,
                                                 col_index.second);
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::value_type
BlockMatrixBase<MatrixType>::el (const size_type i,
                                 const size_type j) const
{
  const std::pair<unsigned int,size_type>
  row_index = row_block_indices.global_to_local (i),
  col_index = column_block_indices.global_to_local (j);
  return block(row_index.first,col_index.first).el (row_index.second,
                                                    col_index.second);
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::value_type
BlockMatrixBase<MatrixType>::diag_element (const size_type i) const
{
  Assert (n_block_rows() == n_block_cols(),
          ExcNotQuadratic());

  const std::pair<unsigned int,size_type>
  index = row_block_indices.global_to_local (i);
  return block(index.first,index.first).diag_element(index.second);
}



template <class MatrixType>
inline
void
BlockMatrixBase<MatrixType>::compress (::dealii::VectorOperation::values operation)
{
  for (unsigned int r=0; r<n_block_rows(); ++r)
    for (unsigned int c=0; c<n_block_cols(); ++c)
      block(r,c).compress (operation);
}



template <class MatrixType>
inline
BlockMatrixBase<MatrixType> &
BlockMatrixBase<MatrixType>::operator *= (const value_type factor)
{
  Assert (n_block_cols() != 0, ExcNotInitialized());
  Assert (n_block_rows() != 0, ExcNotInitialized());

  for (unsigned int r=0; r<n_block_rows(); ++r)
    for (unsigned int c=0; c<n_block_cols(); ++c)
      block(r,c) *= factor;

  return *this;
}



template <class MatrixType>
inline
BlockMatrixBase<MatrixType> &
BlockMatrixBase<MatrixType>::operator /= (const value_type factor)
{
  Assert (n_block_cols() != 0, ExcNotInitialized());
  Assert (n_block_rows() != 0, ExcNotInitialized());
  Assert (factor !=0, ExcDivideByZero());

  const value_type factor_inv = 1. / factor;

  for (unsigned int r=0; r<n_block_rows(); ++r)
    for (unsigned int c=0; c<n_block_cols(); ++c)
      block(r,c) *= factor_inv;

  return *this;
}



template <class MatrixType>
const BlockIndices &
BlockMatrixBase<MatrixType>::get_row_indices () const
{
  return this->row_block_indices;
}



template <class MatrixType>
const BlockIndices &
BlockMatrixBase<MatrixType>::get_column_indices () const
{
  return this->column_block_indices;
}



template <class MatrixType>
template <class BlockVectorType>
void
BlockMatrixBase<MatrixType>::
vmult_block_block (BlockVectorType       &dst,
                   const BlockVectorType &src) const
{
  Assert (dst.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(dst.n_blocks(), n_block_rows()));
  Assert (src.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(src.n_blocks(), n_block_cols()));

  for (size_type row=0; row<n_block_rows(); ++row)
    {
      block(row,0).vmult (dst.block(row),
                          src.block(0));
      for (size_type col=1; col<n_block_cols(); ++col)
        block(row,col).vmult_add (dst.block(row),
                                  src.block(col));
    };
}



template <class MatrixType>
template <class BlockVectorType,
          class VectorType>
void
BlockMatrixBase<MatrixType>::
vmult_nonblock_block (VectorType    &dst,
                      const BlockVectorType &src) const
{
  Assert (n_block_rows() == 1,
          ExcDimensionMismatch(1, n_block_rows()));
  Assert (src.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(src.n_blocks(), n_block_cols()));

  block(0,0).vmult (dst, src.block(0));
  for (size_type col=1; col<n_block_cols(); ++col)
    block(0,col).vmult_add (dst, src.block(col));
}



template <class MatrixType>
template <class BlockVectorType,
          class VectorType>
void
BlockMatrixBase<MatrixType>::
vmult_block_nonblock (BlockVectorType  &dst,
                      const VectorType &src) const
{
  Assert (dst.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(dst.n_blocks(), n_block_rows()));
  Assert (1 == n_block_cols(),
          ExcDimensionMismatch(1, n_block_cols()));

  for (size_type row=0; row<n_block_rows(); ++row)
    block(row,0).vmult (dst.block(row),
                        src);
}



template <class MatrixType>
template <class VectorType>
void
BlockMatrixBase<MatrixType>::
vmult_nonblock_nonblock (VectorType       &dst,
                         const VectorType &src) const
{
  Assert (1 == n_block_rows(),
          ExcDimensionMismatch(1, n_block_rows()));
  Assert (1 == n_block_cols(),
          ExcDimensionMismatch(1, n_block_cols()));

  block(0,0).vmult (dst, src);
}



template <class MatrixType>
template <class BlockVectorType>
void
BlockMatrixBase<MatrixType>::vmult_add (BlockVectorType       &dst,
                                        const BlockVectorType &src) const
{
  Assert (dst.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(dst.n_blocks(), n_block_rows()));
  Assert (src.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(src.n_blocks(), n_block_cols()));

  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      block(row,col).vmult_add (dst.block(row),
                                src.block(col));
}




template <class MatrixType>
template <class BlockVectorType>
void
BlockMatrixBase<MatrixType>::
Tvmult_block_block (BlockVectorType       &dst,
                    const BlockVectorType &src) const
{
  Assert (dst.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(dst.n_blocks(), n_block_cols()));
  Assert (src.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(src.n_blocks(), n_block_rows()));

  dst = 0.;

  for (unsigned int  row=0; row<n_block_rows(); ++row)
    {
      for (unsigned int col=0; col<n_block_cols(); ++col)
        block(row,col).Tvmult_add (dst.block(col),
                                   src.block(row));
    };
}



template <class MatrixType>
template <class BlockVectorType,
          class VectorType>
void
BlockMatrixBase<MatrixType>::
Tvmult_block_nonblock (BlockVectorType  &dst,
                       const VectorType &src) const
{
  Assert (dst.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(dst.n_blocks(), n_block_cols()));
  Assert (1 == n_block_rows(),
          ExcDimensionMismatch(1, n_block_rows()));

  dst = 0.;

  for (unsigned int col=0; col<n_block_cols(); ++col)
    block(0,col).Tvmult_add (dst.block(col), src);
}



template <class MatrixType>
template <class BlockVectorType,
          class VectorType>
void
BlockMatrixBase<MatrixType>::
Tvmult_nonblock_block (VectorType    &dst,
                       const BlockVectorType &src) const
{
  Assert (1 == n_block_cols(),
          ExcDimensionMismatch(1, n_block_cols()));
  Assert (src.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(src.n_blocks(), n_block_rows()));

  block(0,0).Tvmult (dst, src.block(0));

  for (size_type row=1; row<n_block_rows(); ++row)
    block(row,0).Tvmult_add (dst, src.block(row));
}



template <class MatrixType>
template <class VectorType>
void
BlockMatrixBase<MatrixType>::
Tvmult_nonblock_nonblock (VectorType       &dst,
                          const VectorType &src) const
{
  Assert (1 == n_block_cols(),
          ExcDimensionMismatch(1, n_block_cols()));
  Assert (1 == n_block_rows(),
          ExcDimensionMismatch(1, n_block_rows()));

  block(0,0).Tvmult (dst, src);
}



template <class MatrixType>
template <class BlockVectorType>
void
BlockMatrixBase<MatrixType>::Tvmult_add (BlockVectorType &dst,
                                         const BlockVectorType &src) const
{
  Assert (dst.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(dst.n_blocks(), n_block_cols()));
  Assert (src.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(src.n_blocks(), n_block_rows()));

  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      block(row,col).Tvmult_add (dst.block(col),
                                 src.block(row));
}



template <class MatrixType>
template <class BlockVectorType>
typename BlockMatrixBase<MatrixType>::value_type
BlockMatrixBase<MatrixType>::matrix_norm_square (const BlockVectorType &v) const
{
  Assert (n_block_rows() == n_block_cols(), ExcNotQuadratic());
  Assert (v.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(v.n_blocks(), n_block_rows()));

  value_type norm_sqr = 0;
  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      if (row==col)
        norm_sqr += block(row,col).matrix_norm_square (v.block(row));
      else
        norm_sqr += block(row,col).matrix_scalar_product (v.block(row),
                                                          v.block(col));
  return norm_sqr;
}



template <class MatrixType>
template <class BlockVectorType>
typename BlockMatrixBase<MatrixType>::value_type
BlockMatrixBase<MatrixType>::
matrix_scalar_product (const BlockVectorType    &u,
                       const BlockVectorType &v) const
{
  Assert (u.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(u.n_blocks(), n_block_rows()));
  Assert (v.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(v.n_blocks(), n_block_cols()));

  value_type result = 0;
  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      result += block(row,col).matrix_scalar_product (u.block(row),
                                                      v.block(col));
  return result;
}



template <class MatrixType>
template <class BlockVectorType>
typename BlockMatrixBase<MatrixType>::value_type
BlockMatrixBase<MatrixType>::
residual (BlockVectorType          &dst,
          const BlockVectorType &x,
          const BlockVectorType    &b) const
{
  Assert (dst.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(dst.n_blocks(), n_block_rows()));
  Assert (b.n_blocks() == n_block_rows(),
          ExcDimensionMismatch(b.n_blocks(), n_block_rows()));
  Assert (x.n_blocks() == n_block_cols(),
          ExcDimensionMismatch(x.n_blocks(), n_block_cols()));
  // in block notation, the residual is
  // r_i = b_i - \sum_j A_ij x_j.
  // this can be written as
  // r_i = b_i - A_i0 x_0 - \sum_{j>0} A_ij x_j.
  //
  // for the first two terms, we can
  // call the residual function of
  // A_i0. for the other terms, we
  // use vmult_add. however, we want
  // to subtract, so in order to
  // avoid a temporary vector, we
  // perform a sign change of the
  // first two term before, and after
  // adding up
  for (unsigned int row=0; row<n_block_rows(); ++row)
    {
      block(row,0).residual (dst.block(row),
                             x.block(0),
                             b.block(row));

      for (size_type i=0; i<dst.block(row).size(); ++i)
        dst.block(row)(i) = -dst.block(row)(i);

      for (unsigned int col=1; col<n_block_cols(); ++col)
        block(row,col).vmult_add (dst.block(row),
                                  x.block(col));

      for (size_type i=0; i<dst.block(row).size(); ++i)
        dst.block(row)(i) = -dst.block(row)(i);
    };

  value_type res = 0;
  for (size_type row=0; row<n_block_rows(); ++row)
    res += dst.block(row).norm_sqr ();
  return std::sqrt(res);
}



template <class MatrixType>
inline
void
BlockMatrixBase<MatrixType>::print (std::ostream &out,
                                    const bool    alternative_output) const
{
  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      {
        if (!alternative_output)
          out << "Block (" << row << ", " << col << ")" << std::endl;

        block(row, col).print(out, alternative_output);
      }
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::const_iterator
BlockMatrixBase<MatrixType>::begin () const
{
  return const_iterator(this, 0);
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::const_iterator
BlockMatrixBase<MatrixType>::end () const
{
  return const_iterator(this, m());
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::const_iterator
BlockMatrixBase<MatrixType>::begin (const size_type r) const
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return const_iterator(this, r);
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::const_iterator
BlockMatrixBase<MatrixType>::end (const size_type r) const
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return const_iterator(this, r+1);
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::iterator
BlockMatrixBase<MatrixType>::begin ()
{
  return iterator(this, 0);
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::iterator
BlockMatrixBase<MatrixType>::end ()
{
  return iterator(this, m());
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::iterator
BlockMatrixBase<MatrixType>::begin (const size_type r)
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return iterator(this, r);
}



template <class MatrixType>
inline
typename BlockMatrixBase<MatrixType>::iterator
BlockMatrixBase<MatrixType>::end (const size_type r)
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return iterator(this, r+1);
}



template <class MatrixType>
void
BlockMatrixBase<MatrixType>::collect_sizes ()
{
  std::vector<size_type> row_sizes (this->n_block_rows());
  std::vector<size_type> col_sizes (this->n_block_cols());

  // first find out the row sizes
  // from the first block column
  for (unsigned int r=0; r<this->n_block_rows(); ++r)
    row_sizes[r] = sub_objects[r][0]->m();
  // then check that the following
  // block columns have the same
  // sizes
  for (unsigned int c=1; c<this->n_block_cols(); ++c)
    for (unsigned int r=0; r<this->n_block_rows(); ++r)
      Assert (row_sizes[r] == sub_objects[r][c]->m(),
              ExcIncompatibleRowNumbers (r,0,r,c));

  // finally initialize the row
  // indices with this array
  this->row_block_indices.reinit (row_sizes);


  // then do the same with the columns
  for (unsigned int c=0; c<this->n_block_cols(); ++c)
    col_sizes[c] = sub_objects[0][c]->n();
  for (unsigned int r=1; r<this->n_block_rows(); ++r)
    for (unsigned int c=0; c<this->n_block_cols(); ++c)
      Assert (col_sizes[c] == sub_objects[r][c]->n(),
              ExcIncompatibleRowNumbers (0,c,r,c));

  // finally initialize the row
  // indices with this array
  this->column_block_indices.reinit (col_sizes);
}



template <class MatrixType>
void
BlockMatrixBase<MatrixType>::prepare_add_operation ()
{
  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      block(row, col).prepare_add();
}



template <class MatrixType>
void
BlockMatrixBase<MatrixType>::prepare_set_operation ()
{
  for (unsigned int row=0; row<n_block_rows(); ++row)
    for (unsigned int col=0; col<n_block_cols(); ++col)
      block(row, col).prepare_set();
}

#endif // DOXYGEN


DEAL_II_NAMESPACE_CLOSE

#endif    // dealii__block_matrix_base_h