This file is indexed.

/usr/include/deal.II/lac/chunk_sparsity_pattern.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
// ---------------------------------------------------------------------
//
// Copyright (C) 2008 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__chunk_sparsity_pattern_h
#define dealii__chunk_sparsity_pattern_h


#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/vector_slice.h>

#include <deal.II/lac/sparsity_pattern.h>

#include <vector>
#include <iostream>

DEAL_II_NAMESPACE_OPEN


template <typename> class ChunkSparseMatrix;


/*! @addtogroup Sparsity
 *@{
 */



/**
 * Iterators on sparsity patterns
 */
namespace ChunkSparsityPatternIterators
{
  // forward declaration
  class Iterator;

  /**
   * Accessor class for iterators into sparsity patterns. This class is also
   * the base class for both const and non-const accessor classes into sparse
   * matrices.
   *
   * Note that this class only allows read access to elements, providing their
   * row and column number. It does not allow modifying the sparsity pattern
   * itself.
   *
   * @author Martin Kronbichler
   * @date 2013
   */
  class Accessor
  {
  public:
    /**
     * Constructor.
     */
    Accessor (const ChunkSparsityPattern *matrix,
              const unsigned int          row);

    /**
     * Constructor. Construct the end accessor for the given sparsity pattern.
     */
    Accessor (const ChunkSparsityPattern *matrix);

    /**
     * Row number of the element represented by this object. This function can
     * only be called for entries for which is_valid_entry() is true.
     */
    unsigned int row () const;

    /**
     * Returns the global index from the reduced sparsity pattern.
     */
    std::size_t reduced_index() const;

    /**
     * Column number of the element represented by this object. This function
     * can only be called for entries for which is_valid_entry() is true.
     */
    unsigned int column () const;

    /**
     * Return whether the sparsity pattern entry pointed to by this iterator
     * is valid or not. Note that after compressing the sparsity pattern, all
     * entries are valid. However, before compression, the sparsity pattern
     * allocated some memory to be used while still adding new nonzero
     * entries; if you create iterators in this phase of the sparsity
     * pattern's lifetime, you will iterate over elements that are not valid.
     * If this is so, then this function will return false.
     */
    bool is_valid_entry () const;


    /**
     * Comparison. True, if both iterators point to the same matrix position.
     */
    bool operator == (const Accessor &) const;


    /**
     * Comparison operator. Result is true if either the first row number is
     * smaller or if the row numbers are equal and the first index is smaller.
     *
     * This function is only valid if both iterators point into the same
     * sparsity pattern.
     */
    bool operator < (const Accessor &) const;

  protected:
    /**
     * The sparsity pattern we operate on accessed.
     */
    const ChunkSparsityPattern *sparsity_pattern;

    /**
     * The accessor of the (reduced) sparsity pattern.
     */
    SparsityPatternIterators::Accessor reduced_accessor;

    /**
     * Current chunk row number.
     */
    unsigned int chunk_row;

    /**
     * Current chunk col number.
     */
    unsigned int chunk_col;

    /**
     * Move the accessor to the next nonzero entry in the matrix.
     */
    void advance ();

    /**
     * Grant access to iterator class.
     */
    friend class Iterator;
  };



  /**
   * Iterator that walks over the elements of a sparsity pattern.
   */
  class Iterator
  {
  public:
    /**
     * Constructor. Create an iterator into the sparsity pattern @p sp for the
     * given row and the index within it.
     */
    Iterator (const ChunkSparsityPattern *sp,
              const unsigned int          row);

    /**
     * Prefix increment.
     */
    Iterator &operator++ ();

    /**
     * Postfix increment.
     */
    Iterator operator++ (int);

    /**
     * Dereferencing operator.
     */
    const Accessor &operator* () const;

    /**
     * Dereferencing operator.
     */
    const Accessor *operator-> () const;

    /**
     * Comparison. True, if both iterators point to the same matrix position.
     */
    bool operator == (const Iterator &) const;

    /**
     * Inverse of <tt>==</tt>.
     */
    bool operator != (const Iterator &) const;

    /**
     * Comparison operator. Result is true if either the first row number is
     * smaller or if the row numbers are equal and the first index is smaller.
     *
     * This function is only valid if both iterators point into the same
     * matrix.
     */
    bool operator < (const Iterator &) const;

  private:
    /**
     * Store an object of the accessor class.
     */
    Accessor accessor;
  };
}



/**
 * Structure representing the sparsity pattern of a sparse matrix. This class
 * is an example of the "static" type of
 * @ref Sparsity.
 * It uses the compressed row storage (CSR) format to store data.
 *
 * The use of this class is demonstrated in step-51.
 *
 * @author Wolfgang Bangerth, 2008
 */
class ChunkSparsityPattern : public Subscriptor
{
public:
  /**
   * Declare the type for container size.
   */
  typedef types::global_dof_index size_type;
  /**
   * Typedef an iterator class that allows to walk over all nonzero elements
   * of a sparsity pattern.
   */
  typedef ChunkSparsityPatternIterators::Iterator const_iterator;

  /**
   * Typedef an iterator class that allows to walk over all nonzero elements
   * of a sparsity pattern.
   *
   * Since the iterator does not allow to modify the sparsity pattern, this
   * type is the same as that for @p const_iterator.
   */
  typedef ChunkSparsityPatternIterators::Iterator iterator;

  /**
   * Define a value which is used to indicate that a certain value in the
   * colnums array is unused, i.e. does not represent a certain column number
   * index.
   *
   * Indices with this invalid value are used to insert new entries to the
   * sparsity pattern using the add() member function, and are removed when
   * calling compress().
   *
   * You should not assume that the variable declared here has a certain
   * value. The initialization is given here only to enable the compiler to
   * perform some optimizations, but the actual value of the variable may
   * change over time.
   */
  static const size_type invalid_entry = SparsityPattern::invalid_entry;

  /**
   * Initialize the matrix empty, that is with no memory allocated. This is
   * useful if you want such objects as member variables in other classes. You
   * can make the structure usable by calling the reinit() function.
   */
  ChunkSparsityPattern ();

  /**
   * Copy constructor. This constructor is only allowed to be called if the
   * matrix structure to be copied is empty. This is so in order to prevent
   * involuntary copies of objects for temporaries, which can use large
   * amounts of computing time. However, copy constructors are needed if one
   * wants to place a ChunkSparsityPattern in a container, e.g., to write such
   * statements like <tt>v.push_back (ChunkSparsityPattern());</tt>, with
   * <tt>v</tt> a vector of ChunkSparsityPattern objects.
   *
   * Usually, it is sufficient to use the explicit keyword to disallow
   * unwanted temporaries, but this does not work for <tt>std::vector</tt>.
   * Since copying a structure like this is not useful anyway because multiple
   * matrices can use the same sparsity structure, copies are only allowed for
   * empty objects, as described above.
   */
  ChunkSparsityPattern (const ChunkSparsityPattern &);

  /**
   * Initialize a rectangular matrix.
   *
   * @arg m number of rows @arg n number of columns @arg max_per_row maximum
   * number of nonzero entries per row
   */
  ChunkSparsityPattern (const size_type m,
                        const size_type n,
                        const size_type max_chunks_per_row,
                        const size_type chunk_size);

  /**
   * Initialize a rectangular matrix.
   *
   * @arg m number of rows @arg n number of columns @arg row_lengths possible
   * number of nonzero entries for each row.  This vector must have one entry
   * for each row.
   */
  ChunkSparsityPattern (const size_type m,
                        const size_type n,
                        const std::vector<size_type> &row_lengths,
                        const size_type chunk_size);

  /**
   * Initialize a quadratic matrix of dimension <tt>n</tt> with at most
   * <tt>max_per_row</tt> nonzero entries per row.
   *
   * This constructor automatically enables optimized storage of diagonal
   * elements. To avoid this, use the constructor taking row and column
   * numbers separately.
   */
  ChunkSparsityPattern (const size_type n,
                        const size_type max_per_row,
                        const size_type chunk_size);

  /**
   * Initialize a quadratic matrix.
   *
   * @arg m number of rows and columns @arg row_lengths possible number of
   * nonzero entries for each row.  This vector must have one entry for each
   * row.
   */
  ChunkSparsityPattern (const size_type                m,
                        const std::vector<size_type>  &row_lengths,
                        const size_type                chunk_size);

  /**
   * Destructor.
   */
  ~ChunkSparsityPattern ();

  /**
   * Copy operator. For this the same holds as for the copy constructor: it is
   * declared, defined and fine to be called, but the latter only for empty
   * objects.
   */
  ChunkSparsityPattern &operator = (const ChunkSparsityPattern &);

  /**
   * Reallocate memory and set up data structures for a new matrix with <tt>m
   * </tt>rows and <tt>n</tt> columns, with at most <tt>max_per_row</tt>
   * nonzero entries per row.
   *
   * This function simply maps its operations to the other <tt>reinit</tt>
   * function.
   */
  void reinit (const size_type m,
               const size_type n,
               const size_type max_per_row,
               const size_type chunk_size);

  /**
   * Reallocate memory for a matrix of size <tt>m x n</tt>. The number of
   * entries for each row is taken from the array <tt>row_lengths</tt> which
   * has to give this number of each row <tt>i=1...m</tt>.
   *
   * If <tt>m*n==0</tt> all memory is freed, resulting in a total
   * reinitialization of the object. If it is nonzero, new memory is only
   * allocated if the new size extends the old one. This is done to save time
   * and to avoid fragmentation of the heap.
   *
   * If the number of rows equals the number of columns then diagonal elements
   * are stored first in each row to allow optimized access in relaxation
   * methods of SparseMatrix.
   */
  void reinit (const size_type m,
               const size_type n,
               const std::vector<size_type> &row_lengths,
               const size_type chunk_size);

  /**
   * Same as above, but with a VectorSlice argument instead.
   */
  void reinit (const size_type m,
               const size_type n,
               const VectorSlice<const std::vector<size_type> > &row_lengths,
               const size_type chunk_size);

  /**
   * This function compresses the sparsity structure that this object
   * represents.  It does so by eliminating unused entries and sorting the
   * remaining ones to allow faster access by usage of binary search
   * algorithms. A special sorting scheme is used for the diagonal entry of
   * quadratic matrices, which is always the first entry of each row.
   *
   * The memory which is no more needed is released.
   *
   * SparseMatrix objects require the ChunkSparsityPattern objects they are
   * initialized with to be compressed, to reduce memory requirements.
   */
  void compress ();

  /**
   * This function can be used as a replacement for reinit(), subsequent calls
   * to add() and a final call to close() if you know exactly in advance the
   * entries that will form the matrix sparsity pattern.
   *
   * The first two parameters determine the size of the matrix. For the two
   * last ones, note that a sparse matrix can be described by a sequence of
   * rows, each of which is represented by a sequence of pairs of column
   * indices and values. In the present context, the begin() and end()
   * parameters designate iterators (of forward iterator type) into a
   * container, one representing one row. The distance between begin() and
   * end() should therefore be equal to n_rows(). These iterators may be
   * iterators of <tt>std::vector</tt>, <tt>std::list</tt>, pointers into a
   * C-style array, or any other iterator satisfying the requirements of a
   * forward iterator. The objects pointed to by these iterators (i.e. what we
   * get after applying <tt>operator*</tt> or <tt>operator-></tt> to one of
   * these iterators) must be a container itself that provides functions
   * <tt>begin</tt> and <tt>end</tt> designating a range of iterators that
   * describe the contents of one line. Dereferencing these inner iterators
   * must either yield a pair of an unsigned integer as column index and a
   * value of arbitrary type (such a type would be used if we wanted to
   * describe a sparse matrix with one such object), or simply an unsigned
   * integer (of we only wanted to describe a sparsity pattern). The function
   * is able to determine itself whether an unsigned integer or a pair is what
   * we get after dereferencing the inner iterators, through some template
   * magic.
   *
   * While the order of the outer iterators denotes the different rows of the
   * matrix, the order of the inner iterator denoting the columns does not
   * matter, as they are sorted internal to this function anyway.
   *
   * Since that all sounds very complicated, consider the following example
   * code, which may be used to fill a sparsity pattern:
   * @code
   * std::vector<std::vector<size_type> > column_indices (n_rows);
   * for (size_type row=0; row<n_rows; ++row)
   *         // generate necessary columns in this row
   *   fill_row (column_indices[row]);
   *
   * sparsity.copy_from (n_rows, n_cols,
   *                     column_indices.begin(),
   *                     column_indices.end());
   * @endcode
   *
   * Note that this example works since the iterators dereferenced yield
   * containers with functions <tt>begin</tt> and <tt>end</tt> (namely
   * <tt>std::vector</tt>s), and the inner iterators dereferenced yield
   * unsigned integers as column indices. Note that we could have replaced
   * each of the two <tt>std::vector</tt> occurrences by <tt>std::list</tt>,
   * and the inner one by <tt>std::set</tt> as well.
   *
   * Another example would be as follows, where we initialize a whole matrix,
   * not only a sparsity pattern:
   * @code
   * std::vector<std::map<size_type,double> > entries (n_rows);
   * for (size_type row=0; row<n_rows; ++row)
   *         // generate necessary pairs of columns
   *         // and corresponding values in this row
   *   fill_row (entries[row]);
   *
   * sparsity.copy_from (n_rows, n_cols,
   *                     column_indices.begin(),
   *                     column_indices.end());
   * matrix.reinit (sparsity);
   * matrix.copy_from (column_indices.begin(),
   *                   column_indices.end());
   * @endcode
   *
   * This example works because dereferencing iterators of the inner type
   * yields a pair of unsigned integers and a value, the first of which we
   * take as column index. As previously, the outer <tt>std::vector</tt> could
   * be replaced by <tt>std::list</tt>, and the inner <tt>std::map<unsigned
   * int,double></tt> could be replaced by <tt>std::vector<std::pair<unsigned
   * int,double> ></tt>, or a list or set of such pairs, as they all return
   * iterators that point to such pairs.
   */
  template <typename ForwardIterator>
  void copy_from (const size_type n_rows,
                  const size_type n_cols,
                  const ForwardIterator begin,
                  const ForwardIterator end,
                  const size_type chunk_size);

  /**
   * Copy data from an object of type DynamicSparsityPattern. Previous content
   * of this object is lost, and the sparsity pattern is in compressed mode
   * afterwards.
   */
  template <typename SparsityPatternType>
  void copy_from (const SparsityPatternType &dsp,
                  const size_type            chunk_size);

  /**
   * Take a full matrix and use its nonzero entries to generate a sparse
   * matrix entry pattern for this object.
   *
   * Previous content of this object is lost, and the sparsity pattern is in
   * compressed mode afterwards.
   */
  template <typename number>
  void copy_from (const FullMatrix<number> &matrix,
                  const size_type chunk_size);

  /**
   * Set the sparsity pattern of the chunk sparsity pattern to be given by
   * <tt>chunk_size*chunksize</tt> blocks of the sparsity pattern for chunks
   * specified. Note that the final number of rows <tt>m</tt> of the sparsity
   * pattern will be approximately <tt>sparsity_pattern_for_chunks.n_rows() *
   * chunk_size</tt> (modulo padding elements in the last chunk) and similarly
   * for the number of columns <tt>n</tt>.
   *
   * This is a special initialization option in case you can tell the position
   * of the chunk already from the beginning without generating the sparsity
   * pattern using <tt>make_sparsity_pattern</tt> calls. This bypasses the
   * search for chunks but of course needs to be handled with care in order to
   * give a correct sparsity pattern.
   *
   * Previous content of this object is lost, and the sparsity pattern is in
   * compressed mode afterwards.
   */
  template <typename Sparsity>
  void create_from (const unsigned int  m,
                    const unsigned int  n,
                    const Sparsity     &sparsity_pattern_for_chunks,
                    const unsigned int  chunk_size,
                    const bool          optimize_diagonal = true);

  /**
   * Return whether the object is empty. It is empty if no memory is
   * allocated, which is the same as that both dimensions are zero.
   */
  bool empty () const;

  /**
   * Return the chunk size given as argument when constructing this object.
   */
  size_type get_chunk_size () const;

  /**
   * Return the maximum number of entries per row. Before compression, this
   * equals the number given to the constructor, while after compression, it
   * equals the maximum number of entries actually allocated by the user.
   */
  size_type max_entries_per_row () const;

  /**
   * Add a nonzero entry to the matrix. This function may only be called for
   * non-compressed sparsity patterns.
   *
   * If the entry already exists, nothing bad happens.
   */
  void add (const size_type i,
            const size_type j);

  /**
   * Make the sparsity pattern symmetric by adding the sparsity pattern of the
   * transpose object.
   *
   * This function throws an exception if the sparsity pattern does not
   * represent a quadratic matrix.
   */
  void symmetrize ();

  /**
   * Return number of rows of this matrix, which equals the dimension of the
   * image space.
   */
  inline size_type n_rows () const;

  /**
   * Return number of columns of this matrix, which equals the dimension of
   * the range space.
   */
  inline size_type n_cols () const;

  /**
   * Check if a value at a certain position may be non-zero.
   */
  bool exists (const size_type i,
               const size_type j) const;

  /**
   * Number of entries in a specific row.
   */
  size_type row_length (const size_type row) const;

  /**
   * Compute the bandwidth of the matrix represented by this structure. The
   * bandwidth is the maximum of $|i-j|$ for which the index pair $(i,j)$
   * represents a nonzero entry of the matrix. Consequently, the maximum
   * bandwidth a $n\times m$ matrix can have is $\max\{n-1,m-1\}$.
   */
  size_type bandwidth () const;

  /**
   * Return the number of nonzero elements of this matrix. Actually, it
   * returns the number of entries in the sparsity pattern; if any of the
   * entries should happen to be zero, it is counted anyway.
   *
   * This function may only be called if the matrix struct is compressed. It
   * does not make too much sense otherwise anyway.
   */
  size_type n_nonzero_elements () const;

  /**
   * Return whether the structure is compressed or not.
   */
  bool is_compressed () const;

  /**
   * Return whether this object stores only those entries that have been added
   * explicitly, or if the sparsity pattern contains elements that have been
   * added through other means (implicitly) while building it. For the current
   * class, the result is true if and only if it is square because it then
   * unconditionally stores the diagonal entries whether they have been added
   * explicitly or not.
   *
   * This function mainly serves the purpose of describing the current class
   * in cases where several kinds of sparsity patterns can be passed as
   * template arguments.
   */
  bool stores_only_added_elements () const;

  /**
   * Iterator starting at the first entry of the matrix. The resulting
   * iterator can be used to walk over all nonzero entries of the sparsity
   * pattern.
   */
  iterator begin () const;

  /**
   * Final iterator.
   */
  iterator end () const;

  /**
   * Iterator starting at the first entry of row <tt>r</tt>.
   *
   * Note that if the given row is empty, i.e. does not contain any nonzero
   * entries, then the iterator returned by this function equals
   * <tt>end(r)</tt>. Note also that the iterator may not be dereferencable in
   * that case.
   */
  iterator begin (const unsigned int r) const;

  /**
   * Final iterator of row <tt>r</tt>. It points to the first element past the
   * end of line @p r, or past the end of the entire sparsity pattern.
   *
   * Note that the end iterator is not necessarily dereferencable. This is in
   * particular the case if it is the end iterator for the last row of a
   * matrix.
   */
  iterator end (const unsigned int r) const;

  /**
   * Write the data of this object en bloc to a file. This is done in a binary
   * mode, so the output is neither readable by humans nor (probably) by other
   * computers using a different operating system of number format.
   *
   * The purpose of this function is that you can swap out matrices and
   * sparsity pattern if you are short of memory, want to communicate between
   * different programs, or allow objects to be persistent across different
   * runs of the program.
   */
  void block_write (std::ostream &out) const;

  /**
   * Read data that has previously been written by block_write() from a file.
   * This is done using the inverse operations to the above function, so it is
   * reasonably fast because the bitstream is not interpreted except for a few
   * numbers up front.
   *
   * The object is resized on this operation, and all previous contents are
   * lost.
   *
   * A primitive form of error checking is performed which will recognize the
   * bluntest attempts to interpret some data as a vector stored bitwise to a
   * file, but not more.
   */
  void block_read (std::istream &in);

  /**
   * Print the sparsity of the matrix. The output consists of one line per row
   * of the format <tt>[i,j1,j2,j3,...]</tt>. <i>i</i> is the row number and
   * <i>jn</i> are the allocated columns in this row.
   */
  void print (std::ostream &out) const;

  /**
   * Print the sparsity of the matrix in a format that <tt>gnuplot</tt>
   * understands and which can be used to plot the sparsity pattern in a
   * graphical way. The format consists of pairs <tt>i j</tt> of nonzero
   * elements, each representing one entry of this matrix, one per line of the
   * output file. Indices are counted from zero on, as usual. Since sparsity
   * patterns are printed in the same way as matrices are displayed, we print
   * the negative of the column index, which means that the <tt>(0,0)</tt>
   * element is in the top left rather than in the bottom left corner.
   *
   * Print the sparsity pattern in gnuplot by setting the data style to dots
   * or points and use the <tt>plot</tt> command.
   */
  void print_gnuplot (std::ostream &out) const;

  /**
   * Determine an estimate for the memory consumption (in bytes) of this
   * object. See MemoryConsumption.
   */
  std::size_t memory_consumption () const;

  /**
   * @addtogroup Exceptions
   * @{
   */
  /**
   * Exception
   */
  DeclException1 (ExcInvalidNumber,
                  int,
                  << "The provided number is invalid here: " << arg1);
  /**
   * Exception
   */
  DeclException2 (ExcInvalidIndex,
                  int, int,
                  << "The given index " << arg1
                  << " should be less than " << arg2 << ".");
  /**
   * Exception
   */
  DeclException2 (ExcNotEnoughSpace,
                  int, int,
                  << "Upon entering a new entry to row " << arg1
                  << ": there was no free entry any more. " << std::endl
                  << "(Maximum number of entries for this row: "
                  << arg2 << "; maybe the matrix is already compressed?)");
  /**
   * Exception
   */
  DeclException0 (ExcNotCompressed);
  /**
   * Exception
   */
  DeclException0 (ExcMatrixIsCompressed);
  /**
   * Exception
   */
  DeclException0 (ExcEmptyObject);
  /**
   * Exception
   */
  DeclException0 (ExcInvalidConstructorCall);
  /**
   * Exception
   */
  DeclException2 (ExcIteratorRange,
                  int, int,
                  << "The iterators denote a range of " << arg1
                  << " elements, but the given number of rows was " << arg2);
  /**
   * Exception
   */
  DeclException0 (ExcMETISNotInstalled);
  /**
   * Exception
   */
  DeclException1 (ExcInvalidNumberOfPartitions,
                  int,
                  << "The number of partitions you gave is " << arg1
                  << ", but must be greater than zero.");
  /**
   * Exception
   */
  DeclException2 (ExcInvalidArraySize,
                  int, int,
                  << "The array has size " << arg1 << " but should have size "
                  << arg2);
  //@}
private:
  /**
   * Number of rows that this sparsity structure shall represent.
   */
  size_type rows;

  /**
   * Number of columns that this sparsity structure shall represent.
   */
  size_type cols;

  /**
   * The size of chunks.
   */
  size_type chunk_size;

  /**
   * The reduced sparsity pattern. We store only which chunks exist, with each
   * chunk a block in the matrix of size chunk_size by chunk_size.
   */
  SparsityPattern sparsity_pattern;

  /**
   * Make all the chunk sparse matrix kinds friends.
   */
  template <typename> friend class ChunkSparseMatrix;

  /**
   * Make the accessor class a friend.
   */
  friend class ChunkSparsityPatternIterators::Accessor;
};


/*@}*/
/*---------------------- Inline functions -----------------------------------*/

#ifndef DOXYGEN

namespace ChunkSparsityPatternIterators
{
  inline
  Accessor::
  Accessor (const ChunkSparsityPattern *sparsity_pattern,
            const unsigned int          row)
    :
    sparsity_pattern(sparsity_pattern),
    reduced_accessor(row==sparsity_pattern->n_rows() ?
                     *sparsity_pattern->sparsity_pattern.end() :
                     *sparsity_pattern->sparsity_pattern.
                     begin(row/sparsity_pattern->get_chunk_size())),
    chunk_row (row==sparsity_pattern->n_rows() ? 0 :
               row%sparsity_pattern->get_chunk_size()),
    chunk_col (0)
  {}



  inline
  Accessor::
  Accessor (const ChunkSparsityPattern *sparsity_pattern)
    :
    sparsity_pattern(sparsity_pattern),
    reduced_accessor(*sparsity_pattern->sparsity_pattern.end()),
    chunk_row (0),
    chunk_col (0)
  {}



  inline
  bool
  Accessor::is_valid_entry () const
  {
    return reduced_accessor.is_valid_entry()
           &&
           sparsity_pattern->get_chunk_size()*reduced_accessor.row()+chunk_row <
           sparsity_pattern->n_rows()
           &&
           sparsity_pattern->get_chunk_size()*reduced_accessor.column()+chunk_col <
           sparsity_pattern->n_cols();
  }



  inline
  unsigned int
  Accessor::row() const
  {
    Assert (is_valid_entry() == true, ExcInvalidIterator());

    return sparsity_pattern->get_chunk_size()*reduced_accessor.row() +
           chunk_row;
  }



  inline
  unsigned int
  Accessor::column() const
  {
    Assert (is_valid_entry() == true, ExcInvalidIterator());

    return sparsity_pattern->get_chunk_size()*reduced_accessor.column() +
           chunk_col;
  }



  inline
  std::size_t
  Accessor::reduced_index() const
  {
    Assert (is_valid_entry() == true, ExcInvalidIterator());

    return reduced_accessor.index_within_sparsity;
  }




  inline
  bool
  Accessor::operator == (const Accessor &other) const
  {
    // no need to check for equality of sparsity patterns as this is done in
    // the reduced case already and every ChunkSparsityPattern has its own
    // reduced sparsity pattern
    return (reduced_accessor == other.reduced_accessor &&
            chunk_row == other.chunk_row &&
            chunk_col == other.chunk_col);
  }



  inline
  bool
  Accessor::operator < (const Accessor &other) const
  {
    Assert (sparsity_pattern == other.sparsity_pattern,
            ExcInternalError());

    if (chunk_row != other.chunk_row)
      {
        if (reduced_accessor.index_within_sparsity ==
            reduced_accessor.sparsity_pattern->n_nonzero_elements())
          return false;
        if (other.reduced_accessor.index_within_sparsity ==
            reduced_accessor.sparsity_pattern->n_nonzero_elements())
          return true;

        const unsigned int
        global_row = sparsity_pattern->get_chunk_size()*reduced_accessor.row()
                     +chunk_row,
                     other_global_row = sparsity_pattern->get_chunk_size()*
                                        other.reduced_accessor.row()+other.chunk_row;
        if (global_row < other_global_row)
          return true;
        else if (global_row > other_global_row)
          return false;
      }

    return (reduced_accessor.index_within_sparsity <
            other.reduced_accessor.index_within_sparsity ||
            (reduced_accessor.index_within_sparsity ==
             other.reduced_accessor.index_within_sparsity &&
             chunk_col < other.chunk_col));
  }


  inline
  void
  Accessor::advance ()
  {
    const unsigned int chunk_size = sparsity_pattern->get_chunk_size();
    Assert (chunk_row < chunk_size && chunk_col < chunk_size,
            ExcIteratorPastEnd());
    Assert (reduced_accessor.row() * chunk_size + chunk_row <
            sparsity_pattern->n_rows()
            &&
            reduced_accessor.column() * chunk_size + chunk_col <
            sparsity_pattern->n_cols(),
            ExcIteratorPastEnd());
    if (chunk_size == 1)
      {
        reduced_accessor.advance();
        return;
      }

    ++chunk_col;

    // end of chunk
    if (chunk_col == chunk_size
        ||
        reduced_accessor.column() * chunk_size + chunk_col ==
        sparsity_pattern->n_cols())
      {
        const unsigned int reduced_row = reduced_accessor.row();
        // end of row
        if (reduced_accessor.index_within_sparsity + 1 ==
            reduced_accessor.sparsity_pattern->rowstart[reduced_row+1])
          {
            ++chunk_row;

            chunk_col = 0;

            // end of chunk rows or end of matrix
            if (chunk_row == chunk_size ||
                (reduced_row * chunk_size + chunk_row ==
                 sparsity_pattern->n_rows()))
              {
                chunk_row = 0;
                reduced_accessor.advance();
              }
            // go back to the beginning of the same reduced row but with
            // chunk_row increased by one
            else
              reduced_accessor.index_within_sparsity =
                reduced_accessor.sparsity_pattern->rowstart[reduced_row];
          }
        // advance within chunk
        else
          {
            reduced_accessor.advance();
            chunk_col = 0;
          }
      }
  }



  inline
  Iterator::Iterator (const ChunkSparsityPattern *sparsity_pattern,
                      const unsigned int          row)
    :
    accessor(sparsity_pattern, row)
  {}



  inline
  Iterator &
  Iterator::operator++ ()
  {
    accessor.advance ();
    return *this;
  }



  inline
  Iterator
  Iterator::operator++ (int)
  {
    const Iterator iter = *this;
    accessor.advance ();
    return iter;
  }



  inline
  const Accessor &
  Iterator::operator* () const
  {
    return accessor;
  }



  inline
  const Accessor *
  Iterator::operator-> () const
  {
    return &accessor;
  }


  inline
  bool
  Iterator::operator == (const Iterator &other) const
  {
    return (accessor == other.accessor);
  }



  inline
  bool
  Iterator::operator != (const Iterator &other) const
  {
    return ! (accessor == other.accessor);
  }


  inline
  bool
  Iterator::operator < (const Iterator &other) const
  {
    return accessor < other.accessor;
  }

}



inline
ChunkSparsityPattern::iterator
ChunkSparsityPattern::begin () const
{
  return iterator(this, 0);
}


inline
ChunkSparsityPattern::iterator
ChunkSparsityPattern::end () const
{
  return iterator(this, n_rows());
}



inline
ChunkSparsityPattern::iterator
ChunkSparsityPattern::begin (const unsigned int r) const
{
  Assert (r<n_rows(), ExcIndexRange(r,0,n_rows()));
  return iterator(this, r);
}



inline
ChunkSparsityPattern::iterator
ChunkSparsityPattern::end (const unsigned int r) const
{
  Assert (r<n_rows(), ExcIndexRange(r,0,n_rows()))
  return iterator(this, r+1);
}



inline
ChunkSparsityPattern::size_type
ChunkSparsityPattern::n_rows () const
{
  return rows;
}


inline
ChunkSparsityPattern::size_type
ChunkSparsityPattern::n_cols () const
{
  return cols;
}



inline
ChunkSparsityPattern::size_type
ChunkSparsityPattern::get_chunk_size () const
{
  return chunk_size;
}



inline
bool
ChunkSparsityPattern::is_compressed () const
{
  return sparsity_pattern.compressed;
}



template <typename ForwardIterator>
void
ChunkSparsityPattern::copy_from (const size_type       n_rows,
                                 const size_type       n_cols,
                                 const ForwardIterator begin,
                                 const ForwardIterator end,
                                 const size_type       chunk_size)
{
  Assert (static_cast<size_type>(std::distance (begin, end)) == n_rows,
          ExcIteratorRange (std::distance (begin, end), n_rows));

  // first determine row lengths for each row. if the matrix is quadratic,
  // then we might have to add an additional entry for the diagonal, if that
  // is not yet present. as we have to call compress anyway later on, don't
  // bother to check whether that diagonal entry is in a certain row or not
  const bool is_square = (n_rows == n_cols);
  std::vector<size_type> row_lengths;
  row_lengths.reserve(n_rows);
  for (ForwardIterator i=begin; i!=end; ++i)
    row_lengths.push_back (std::distance (i->begin(), i->end())
                           +
                           (is_square ? 1 : 0));
  reinit (n_rows, n_cols, row_lengths, chunk_size);

  // now enter all the elements into the matrix
  size_type row = 0;
  typedef typename std::iterator_traits<ForwardIterator>::value_type::const_iterator inner_iterator;
  for (ForwardIterator i=begin; i!=end; ++i, ++row)
    {
      const inner_iterator end_of_row = i->end();
      for (inner_iterator j=i->begin(); j!=end_of_row; ++j)
        {
          const size_type col
            = internal::SparsityPatternTools::get_column_index_from_iterator(*j);
          Assert (col < n_cols, ExcInvalidIndex(col,n_cols));

          add (row, col);
        }
    }

  // finally compress everything. this also sorts the entries within each row
  compress ();
}


#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif