This file is indexed.

/usr/include/deal.II/lac/eigen.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// ---------------------------------------------------------------------
//
// Copyright (C) 2000 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__eigen_h
#define dealii__eigen_h


#include <deal.II/base/config.h>
#include <deal.II/lac/shifted_matrix.h>
#include <deal.II/lac/solver.h>
#include <deal.II/lac/solver_control.h>
#include <deal.II/lac/solver_cg.h>
#include <deal.II/lac/solver_gmres.h>
#include <deal.II/lac/solver_minres.h>
#include <deal.II/lac/vector_memory.h>
#include <deal.II/lac/precondition.h>

#include <cmath>

DEAL_II_NAMESPACE_OPEN


/*!@addtogroup Solvers */
/*@{*/

/**
 * Power method (von Mises) for eigenvalue computations.
 *
 * This method determines the largest eigenvalue of a matrix by applying
 * increasing powers of this matrix to a vector. If there is an eigenvalue $l$
 * with dominant absolute value, the iteration vectors will become aligned to
 * its eigenspace and $Ax = lx$.
 *
 * A shift parameter allows to shift the spectrum, so it is possible to
 * compute the smallest eigenvalue, too.
 *
 * Convergence of this method is known to be slow.
 *
 * @author Guido Kanschat, 2000
 */
template <typename VectorType = Vector<double> >
class EigenPower : private Solver<VectorType>
{
public:
  /**
   * Declare type of container size.
   */
  typedef types::global_dof_index size_type;

  /**
   * Standardized data struct to pipe additional data to the solver.
   */
  struct AdditionalData
  {
    /**
     * Shift parameter. This parameter allows to shift the spectrum to compute
     * a different eigenvalue.
     */
    double shift;
    /**
     * Constructor. Set the shift parameter.
     */
    AdditionalData (const double shift = 0.)
      :
      shift(shift)
    {}

  };

  /**
   * Constructor.
   */
  EigenPower (SolverControl            &cn,
              VectorMemory<VectorType> &mem,
              const AdditionalData     &data=AdditionalData());

  /**
   * Virtual destructor.
   */
  virtual ~EigenPower ();

  /**
   * Power method. @p x is the (not necessarily normalized, but nonzero) start
   * vector for the power method. After the iteration, @p value is the
   * approximated eigenvalue and @p x is the corresponding eigenvector,
   * normalized with respect to the l2-norm.
   */
  template <typename MatrixType>
  void
  solve (double           &value,
         const MatrixType &A,
         VectorType       &x);

protected:
  /**
   * Shift parameter.
   */
  AdditionalData additional_data;
};

/**
 * Inverse iteration (Wieland) for eigenvalue computations.
 *
 * This class implements an adaptive version of the inverse iteration by
 * Wieland.
 *
 * There are two choices for the stopping criterion: by default, the norm of
 * the residual $A x - l x$ is computed. Since this might not converge to zero
 * for non-symmetric matrices with non-trivial Jordan blocks, it can be
 * replaced by checking the difference of successive eigenvalues. Use
 * AdditionalData::use_residual for switching this option.
 *
 * Usually, the initial guess entering this method is updated after each step,
 * replacing it with the new approximation of the eigenvalue. Using a
 * parameter AdditionalData::relaxation between 0 and 1, this update can be
 * damped. With relaxation parameter 0, no update is performed. This damping
 * allows for slower adaption of the shift value to make sure that the method
 * converges to the eigenvalue closest to the initial guess. This can be aided
 * by the parameter AdditionalData::start_adaption, which indicates the first
 * iteration step in which the shift value should be adapted.
 *
 * @author Guido Kanschat, 2000, 2003
 */
template <typename VectorType = Vector<double> >
class EigenInverse : private Solver<VectorType>
{
public:
  /**
   * Declare type of container size.
   */
  typedef types::global_dof_index size_type;

  /**
   * Standardized data struct to pipe additional data to the solver.
   */
  struct AdditionalData
  {
    /**
     * Damping of the updated shift value.
     */
    double relaxation;

    /**
     * Start step of adaptive shift parameter.
     */
    unsigned int start_adaption;
    /**
     * Flag for the stopping criterion.
     */
    bool use_residual;
    /**
     * Constructor.
     */
    AdditionalData (double relaxation = 1.,
                    unsigned int start_adaption = 6,
                    bool use_residual = true)
      :
      relaxation(relaxation),
      start_adaption(start_adaption),
      use_residual(use_residual)
    {}

  };

  /**
   * Constructor.
   */
  EigenInverse (SolverControl            &cn,
                VectorMemory<VectorType> &mem,
                const AdditionalData     &data=AdditionalData());


  /**
   * Virtual destructor.
   */
  virtual ~EigenInverse ();

  /**
   * Inverse method. @p value is the start guess for the eigenvalue and @p x
   * is the (not necessarily normalized, but nonzero) start vector for the
   * power method. After the iteration, @p value is the approximated
   * eigenvalue and @p x is the corresponding eigenvector, normalized with
   * respect to the l2-norm.
   */
  template <typename MatrixType>
  void
  solve (double           &value,
         const MatrixType &A,
         VectorType       &x);

protected:
  /**
   * Flags for execution.
   */
  AdditionalData additional_data;
};

/*@}*/
//---------------------------------------------------------------------------


template <class VectorType>
EigenPower<VectorType>::EigenPower (SolverControl            &cn,
                                    VectorMemory<VectorType> &mem,
                                    const AdditionalData     &data)
  :
  Solver<VectorType>(cn, mem),
  additional_data(data)
{}



template <class VectorType>
EigenPower<VectorType>::~EigenPower ()
{}



template <class VectorType>
template <typename MatrixType>
void
EigenPower<VectorType>::solve (double           &value,
                               const MatrixType &A,
                               VectorType       &x)
{
  SolverControl::State conv=SolverControl::iterate;

  deallog.push("Power method");

  VectorType *Vy = this->memory.alloc ();
  VectorType &y = *Vy;
  y.reinit (x);
  VectorType *Vr = this->memory.alloc ();
  VectorType &r = *Vr;
  r.reinit (x);

  double length = x.l2_norm ();
  double old_length = 0.;
  x *= 1./length;

  A.vmult (y,x);

  // Main loop
  int iter=0;
  for (; conv==SolverControl::iterate; iter++)
    {
      y.add(additional_data.shift, x);

      // Compute absolute value of eigenvalue
      old_length = length;
      length = y.l2_norm ();

      // do a little trick to compute the sign
      // with not too much effect of round-off errors.
      double entry = 0.;
      size_type i = 0;
      double thresh = length/x.size();
      do
        {
          Assert (i<x.size(), ExcInternalError());
          entry = y (i++);
        }
      while (std::fabs(entry) < thresh);

      --i;

      // Compute unshifted eigenvalue
      value = (entry * x (i) < 0.) ? -length : length;
      value -= additional_data.shift;

      // Update normalized eigenvector
      x.equ (1/length, y);

      // Compute residual
      A.vmult (y,x);

      // Check the change of the eigenvalue
      // Brrr, this is not really a good criterion
      conv = this->iteration_status (iter, std::fabs(1./length-1./old_length), x);
    }

  this->memory.free(Vy);
  this->memory.free(Vr);

  deallog.pop();

  // in case of failure: throw exception
  AssertThrow(conv == SolverControl::success, SolverControl::NoConvergence (iter,
              std::fabs(1./length-1./old_length)));

  // otherwise exit as normal
}

//---------------------------------------------------------------------------

template <class VectorType>
EigenInverse<VectorType>::EigenInverse (SolverControl            &cn,
                                        VectorMemory<VectorType> &mem,
                                        const AdditionalData     &data)
  :
  Solver<VectorType>(cn, mem),
  additional_data(data)
{}



template <class VectorType>
EigenInverse<VectorType>::~EigenInverse ()
{}



template <class VectorType>
template <typename MatrixType>
void
EigenInverse<VectorType>::solve (double           &value,
                                 const MatrixType &A,
                                 VectorType       &x)
{
  deallog.push("Wielandt");

  SolverControl::State conv=SolverControl::iterate;

  // Prepare matrix for solver
  ShiftedMatrix <MatrixType> A_s(A, -value);

  // Define solver
  ReductionControl inner_control (5000, 1.e-16, 1.e-5, false, false);
  PreconditionIdentity prec;
  SolverGMRES<VectorType>
  solver(inner_control, this->memory);

  // Next step for recomputing the shift
  unsigned int goal = additional_data.start_adaption;

  // Auxiliary vector
  VectorType *Vy = this->memory.alloc ();
  VectorType &y = *Vy;
  y.reinit (x);
  VectorType *Vr = this->memory.alloc ();
  VectorType &r = *Vr;
  r.reinit (x);

  double length = x.l2_norm ();
  double old_value = value;

  x *= 1./length;

  // Main loop
  double res = -std::numeric_limits<double>::max();
  size_type iter=0;
  for (; conv==SolverControl::iterate; iter++)
    {
      solver.solve (A_s, y, x, prec);

      // Compute absolute value of eigenvalue
      length = y.l2_norm ();

      // do a little trick to compute the sign
      // with not too much effect of round-off errors.
      double entry = 0.;
      size_type i = 0;
      double thresh = length/x.size();
      do
        {
          Assert (i<x.size(), ExcInternalError());
          entry = y (i++);
        }
      while (std::fabs(entry) < thresh);

      --i;

      // Compute unshifted eigenvalue
      value = (entry * x (i) < 0.) ? -length : length;
      value = 1./value;
      value -= A_s.shift ();

      if (iter==goal)
        {
          const double new_shift = - additional_data.relaxation * value
                                   + (1.-additional_data.relaxation) * A_s.shift();
          A_s.shift(new_shift);
          ++goal;
        }

      // Update normalized eigenvector
      x.equ (1./length, y);
      // Compute residual
      if (additional_data.use_residual)
        {
          y.equ (value, x);
          A.vmult(r,x);
          r.sadd(-1., value, x);
          res = r.l2_norm();
          // Check the residual
          conv = this->iteration_status (iter, res, x);
        }
      else
        {
          res = std::fabs(1./value-1./old_value);
          conv = this->iteration_status (iter, res, x);
        }
      old_value = value;
    }

  this->memory.free(Vy);
  this->memory.free(Vr);

  deallog.pop();

  // in case of failure: throw
  // exception
  AssertThrow (conv == SolverControl::success,
               SolverControl::NoConvergence (iter,
                                             res));
  // otherwise exit as normal
}

DEAL_II_NAMESPACE_CLOSE

#endif