This file is indexed.

/usr/include/deal.II/lac/filtered_matrix.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
// ---------------------------------------------------------------------
//
// Copyright (C) 2001 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__filtered_matrix_h
#define dealii__filtered_matrix_h



#include <deal.II/base/config.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/base/thread_management.h>
#include <deal.II/base/memory_consumption.h>
#include <deal.II/lac/pointer_matrix.h>
#include <deal.II/lac/vector_memory.h>
#include <vector>
#include <algorithm>

DEAL_II_NAMESPACE_OPEN

template <typename number> class Vector;
template <class VectorType> class FilteredMatrixBlock;


/*! @addtogroup Matrix2
 *@{
 */


/**
 * This class is a wrapper for linear systems of equations with simple
 * equality constraints fixing individual degrees of freedom to a certain
 * value such as when using Dirichlet boundary values.
 *
 * In order to accomplish this, the vmult(), Tvmult(), vmult_add() and
 * Tvmult_add functions modify the same function of the original matrix such
 * as if all constrained entries of the source vector were zero. Additionally,
 * all constrained entries of the destination vector are set to zero.
 *
 * <h3>Usage</h3>
 *
 * Usage is simple: create an object of this type, point it to a matrix that
 * shall be used for $A$ above (either through the constructor, the copy
 * constructor, or the set_referenced_matrix() function), specify the list of
 * boundary values or other constraints (through the add_constraints()
 * function), and then for each required solution modify the right hand side
 * vector (through apply_constraints()) and use this object as matrix object
 * in a linear solver. As linear solvers should only use vmult() and
 * residual() functions of a matrix class, this class should be as good a
 * matrix as any other for that purpose.
 *
 * Furthermore, also the precondition_Jacobi() function is provided (since the
 * computation of diagonal elements of the filtered matrix $A_X$ is simple),
 * so you can use this as a preconditioner. Some other functions useful for
 * matrices are also available.
 *
 * A typical code snippet showing the above steps is as follows:
 * @code
 *   ... // set up sparse matrix A and right hand side b somehow
 *
 *                     // initialize filtered matrix with
 *                     // matrix and boundary value constraints
 *   FilteredMatrix<Vector<double> > filtered_A (A);
 *   filtered_A.add_constraints (boundary_values);
 *
 *                     // set up a linear solver
 *   SolverControl control (1000, 1.e-10, false, false);
 *   GrowingVectorMemory<Vector<double> > mem;
 *   SolverCG<Vector<double> > solver (control, mem);
 *
 *                     // set up a preconditioner object
 *   PreconditionJacobi<SparseMatrix<double> > prec;
 *   prec.initialize (A, 1.2);
 *   FilteredMatrix<Vector<double> > filtered_prec (prec);
 *   filtered_prec.add_constraints (boundary_values);
 *
 *                     // compute modification of right hand side
 *   filtered_A.apply_constraints (b, true);
 *
 *                     // solve for solution vector x
 *   solver.solve (filtered_A, x, b, filtered_prec);
 * @endcode
 *
 *
 * <h3>Connection to other classes</h3>
 *
 * The function MatrixTools::apply_boundary_values() does exactly the same
 * that this class does, except for the fact that that function actually
 * modifies the matrix. Consequently, it is only possible to solve with a
 * matrix to which MatrixTools::apply_boundary_values() was applied for one
 * right hand side and one set of boundary values since the modification of
 * the right hand side depends on the original matrix.
 *
 * While this is a feasible method in cases where only one solution of the
 * linear system is required, for example in solving linear stationary
 * systems, one would often like to have the ability to solve multiple times
 * with the same matrix in nonlinear problems (where one often does not want
 * to update the Hessian between Newton steps, despite having different right
 * hand sides in subsequent steps) or time dependent problems, without having
 * to re-assemble the matrix or copy it to temporary matrices with which one
 * then can work. For these cases, this class is meant.
 *
 *
 * <h3>Some background</h3> Mathematically speaking, it is used to represent a
 * system of linear equations $Ax=b$ with the constraint that $B_D x = g_D$,
 * where $B_D$ is a rectangular matrix with exactly one $1$ in each row, and
 * these $1$s in those columns representing constrained degrees of freedom
 * (e.g. for Dirichlet boundary nodes, thus the index $D$) and zeroes for all
 * other diagonal entries, and $g_D$ having the requested nodal values for
 * these constrained nodes. Thus, the underdetermined equation $B_D x = g_D$
 * fixes only the constrained nodes and does not impose any condition on the
 * others. We note that $B_D B_D^T = 1_D$, where $1_D$ is the identity matrix
 * with dimension as large as the number of constrained degrees of freedom.
 * Likewise, $B_D^T B_D$ is the diagonal matrix with diagonal entries $0$ or
 * $1$ that, when applied to a vector, leaves all constrained nodes untouched
 * and deletes all unconstrained ones.
 *
 * For solving such a system of equations, we first write down the Lagrangian
 * $L=1/2 x^T A x - x^T b + l^T B_D x$, where $l$ is a Lagrange multiplier for
 * the constraints. The stationarity condition then reads
 * @code
 * [ A   B_D^T ] [x] = [b  ]
 * [ B_D 0     ] [l] = [g_D]
 * @endcode
 *
 * The first equation then reads $B_D^T l = b-Ax$. On the other hand, if we
 * left-multiply the first equation by $B_D^T B_D$, we obtain $B_D^T B_D A x +
 * B_D^T l = B_D^T B_D b$ after equating $B_D B_D^T$ to the identity matrix.
 * Inserting the previous equality, this yields $(A - B_D^T B_D A) x = (1 -
 * B_D^T B_D)b$. Since $x=(1 - B_D^T B_D) x + B_D^T B_D x = (1 - B_D^T B_D) x
 * + B_D^T g_D$, we can restate the linear system: $A_D x = (1 - B_D^T B_D)b -
 * (1 - B_D^T B_D) A B^T g_D$, where $A_D = (1 - B_D^T B_D) A (1 - B_D^T B_D)$
 * is the matrix where all rows and columns corresponding to constrained nodes
 * have been deleted.
 *
 * The last system of equation only defines the value of the unconstrained
 * nodes, while the constrained ones are determined by the equation $B_D x =
 * g_D$. We can combine these two linear systems by using the zeroed out rows
 * of $A_D$: if we set the diagonal to $1$ and the corresponding zeroed out
 * element of the right hand side to that of $g_D$, then this fixes the
 * constrained elements as well. We can write this as follows: $A_X x = (1 -
 * B_D^T B_D)b - (1 - B_D^T B_D) A B^T g_D + B_D^T g_D$, where $A_X = A_D +
 * B_D^T B_D$. Note that the two parts of the latter matrix operate on
 * disjoint subspaces (the first on the unconstrained nodes, the latter on the
 * constrained ones).
 *
 * In iterative solvers, it is not actually necessary to compute $A_X$
 * explicitly, since only matrix-vector operations need to be performed. This
 * can be done in a three-step procedure that first clears all elements in the
 * incoming vector that belong to constrained nodes, then performs the product
 * with the matrix $A$, then clears again. This class is a wrapper to this
 * procedure, it takes a pointer to a matrix with which to perform matrix-
 * vector products, and does the cleaning of constrained elements itself. This
 * class therefore implements an overloaded @p vmult function that does the
 * matrix-vector product, as well as @p Tvmult for transpose matrix-vector
 * multiplication and @p residual for residual computation, and can thus be
 * used as a matrix replacement in linear solvers.
 *
 * It also has the ability to generate the modification of the right hand
 * side, through the apply_constraints() function.
 *
 *
 *
 * <h3>Template arguments</h3>
 *
 * This class takes as template arguments a matrix and a vector class. The
 * former must provide @p vmult, @p vmult_add,  @p Tvmult, and @p residual
 * member function that operate on the vector type (the second template
 * argument). The latter template parameter must provide access to individual
 * elements through <tt>operator()</tt>, assignment through
 * <tt>operator=</tt>.
 *
 *
 * <h3>Thread-safety</h3>
 *
 * The functions that operate as a matrix and do not change the internal state
 * of this object are synchronised and thus threadsafe. Consequently, you do
 * not need to serialize calls to @p vmult or @p residual .
 *
 * @author Wolfgang Bangerth 2001, Luca Heltai 2006, Guido Kanschat 2007, 2008
 */
template <typename VectorType>
class FilteredMatrix : public Subscriptor
{
public:
  class const_iterator;

  /**
   * Declare the type of container size.
   */
  typedef types::global_dof_index size_type;

  /**
   * Accessor class for iterators
   */
  class Accessor
  {
    /**
     * Constructor. Since we use accessors only for read access, a const
     * matrix pointer is sufficient.
     */
    Accessor (const FilteredMatrix<VectorType> *matrix,
              const size_type                  index);

  public:
    /**
     * Row number of the element represented by this object.
     */
    size_type row() const;

    /**
     * Column number of the element represented by this object.
     */
    size_type column() const;

    /**
     * Value of the right hand side for this row.
     */
    double value() const;

  private:
    /**
     * Advance to next entry
     */
    void advance ();

    /**
     * The matrix accessed.
     */
    const FilteredMatrix<VectorType> *matrix;

    /**
     * Current row number.
     */
    size_type index;
    /*
     * Make enclosing class a
     * friend.
     */
    friend class const_iterator;
  };

  /**
   * Standard-conforming iterator.
   */
  class const_iterator
  {
  public:
    /**
     * Constructor.
     */
    const_iterator(const FilteredMatrix<VectorType> *matrix,
                   const size_type                  index);

    /**
     * Prefix increment.
     */
    const_iterator &operator++ ();

    /**
     * Postfix increment.
     */
    const_iterator &operator++ (int);

    /**
     * Dereferencing operator.
     */
    const Accessor &operator* () const;

    /**
     * Dereferencing operator.
     */
    const Accessor *operator-> () const;

    /**
     * Comparison. True, if both iterators point to the same matrix position.
     */
    bool operator == (const const_iterator &) const;
    /**
     * Inverse of <tt>==</tt>.
     */
    bool operator != (const const_iterator &) const;

    /**
     * Comparison operator. Result is true if either the first row number is
     * smaller or if the row numbers are equal and the first index is smaller.
     */
    bool operator < (const const_iterator &) const;

    /**
     * Comparison operator. Compares just the other way around than the
     * operator above.
     */
    bool operator > (const const_iterator &) const;

  private:
    /**
     * Store an object of the accessor class.
     */
    Accessor accessor;
  };

  /**
   * Typedef defining a type that represents a pair of degree of freedom index
   * and the value it shall have.
   */
  typedef std::pair<size_type, double> IndexValuePair;

  /**
   * @name Constructors and initialization
   */
//@{
  /**
   * Default constructor. You will have to set the matrix to be used later
   * using initialize().
   */
  FilteredMatrix ();

  /**
   * Copy constructor. Use the matrix and the constraints set in the given
   * object for the present one as well.
   */
  FilteredMatrix (const FilteredMatrix &fm);

  /**
   * Constructor. Use the given matrix for future operations.
   *
   * @arg @p m: The matrix being used in multiplications.
   *
   * @arg @p expect_constrained_source: See documentation of
   * #expect_constrained_source.
   */
  template <typename MatrixType>
  FilteredMatrix (const MatrixType &matrix,
                  bool              expect_constrained_source = false);

  /**
   * Copy operator. Take over matrix and constraints from the other object.
   */
  FilteredMatrix &operator = (const FilteredMatrix &fm);

  /**
   * Set the matrix to be used further on. You will probably also want to call
   * the clear_constraints() function if constraints were previously added.
   *
   * @arg @p m: The matrix being used in multiplications.
   *
   * @arg @p expect_constrained_source: See documentation of
   * #expect_constrained_source.
   */
  template <typename MatrixType>
  void initialize (const MatrixType &m,
                   bool              expect_constrained_source = false);

  /**
   * Delete all constraints and the matrix pointer.
   */
  void clear ();
//@}
  /**
   * @name Managing constraints
   */
//@{
  /**
   * Add the constraint that the value with index <tt>i</tt> should have the
   * value <tt>v</tt>.
   */
  void add_constraint (const size_type i, const double v);

  /**
   * Add a list of constraints to the ones already managed by this object. The
   * actual data type of this list must be so that dereferenced iterators are
   * pairs of indices and the corresponding values to be enforced on the
   * respective solution vector's entry. Thus, the data type might be, for
   * example, a @p std::list or @p std::vector of IndexValuePair objects, but
   * also a <tt>std::map<unsigned, double></tt>.
   *
   * The second component of these pairs will only be used in
   * apply_constraints(). The first is used to set values to zero in matrix
   * vector multiplications.
   *
   * It is an error if the argument contains an entry for a degree of freedom
   * that has already been constrained previously.
   */
  template <class ConstraintList>
  void add_constraints (const ConstraintList &new_constraints);

  /**
   * Delete the list of constraints presently in use.
   */
  void clear_constraints ();
//@}
  /**
   * Vector operations
   */
//@{
  /**
   * Apply the constraints to a right hand side vector. This needs to be done
   * before starting to solve with the filtered matrix. If the matrix is
   * symmetric (i.e. the matrix itself, not only its sparsity pattern), set
   * the second parameter to @p true to use a faster algorithm. Note: This
   * method is deprecated as matrix_is_symmetric parameter is no longer used.
   */
  void apply_constraints (VectorType &v,
                          const bool matrix_is_symmetric) const DEAL_II_DEPRECATED;
  /**
   * Apply the constraints to a right hand side vector. This needs to be done
   * before starting to solve with the filtered matrix.
   */
  void apply_constraints (VectorType &v) const;

  /**
   * Matrix-vector multiplication: this operation performs pre_filter(),
   * multiplication with the stored matrix and post_filter() in that order.
   */
  void vmult (VectorType       &dst,
              const VectorType &src) const;

  /**
   * Matrix-vector multiplication: this operation performs pre_filter(),
   * transposed multiplication with the stored matrix and post_filter() in
   * that order.
   */
  void Tvmult (VectorType       &dst,
               const VectorType &src) const;

  /**
   * Adding matrix-vector multiplication.
   *
   * @note The result vector of this multiplication will have the constraint
   * entries set to zero, independent of the previous value of <tt>dst</tt>.
   * We excpect that in most cases this is the required behavior.
   */
  void vmult_add (VectorType       &dst,
                  const VectorType &src) const;

  /**
   * Adding transpose matrix-vector multiplication:
   *
   * @note The result vector of this multiplication will have the constraint
   * entries set to zero, independent of the previous value of <tt>dst</tt>.
   * We excpect that in most cases this is the required behavior.
   */
  void Tvmult_add (VectorType       &dst,
                   const VectorType &src) const;
//@}

  /**
   * @name Iterators
   */
//@{
  /**
   * Iterator to the first constraint.
   */
  const_iterator begin () const;
  /**
   * Final iterator.
   */
  const_iterator end () const;
//@}

  /**
   * Determine an estimate for the memory consumption (in bytes) of this
   * object. Since we are not the owner of the matrix referenced, its memory
   * consumption is not included.
   */
  std::size_t memory_consumption () const;

private:
  /**
   * Determine, whether multiplications can expect that the source vector has
   * all constrained entries set to zero.
   *
   * If so, the auxiliary vector can be avoided and memory as well as time can
   * be saved.
   *
   * We expect this for instance in Newton's method, where the residual
   * already should be zero on constrained nodes. This is, because there is no
   * test function in these nodes.
   */
  bool expect_constrained_source;

  /**
   * Declare an abbreviation for an iterator into the array constraint pairs,
   * since that data type is so often used and is rather awkward to write out
   * each time.
   */
  typedef typename std::vector<IndexValuePair>::const_iterator const_index_value_iterator;

  /**
   * Helper class used to sort pairs of indices and values. Only the index is
   * considered as sort key.
   */
  struct PairComparison
  {
    /**
     * Function comparing the pairs @p i1 and @p i2 for their keys.
     */
    bool operator () (const IndexValuePair &i1,
                      const IndexValuePair &i2) const;
  };

  /**
   * Pointer to the sparsity pattern used for this matrix.
   */
  std_cxx11::shared_ptr<PointerMatrixBase<VectorType> > matrix;

  /**
   * Sorted list of pairs denoting the index of the variable and the value to
   * which it shall be fixed.
   */
  std::vector<IndexValuePair> constraints;

  /**
   * Do the pre-filtering step, i.e. zero out those components that belong to
   * constrained degrees of freedom.
   */
  void pre_filter (VectorType &v) const;

  /**
   * Do the postfiltering step, i.e. set constrained degrees of freedom to the
   * value of the input vector, as the matrix contains only ones on the
   * diagonal for these degrees of freedom.
   */
  void post_filter (const VectorType &in,
                    VectorType       &out) const;

  friend class Accessor;
  /**
   * FilteredMatrixBlock accesses pre_filter() and post_filter().
   */
  friend class FilteredMatrixBlock<VectorType>;
};

/*@}*/
/*---------------------- Inline functions -----------------------------------*/


//--------------------------------Iterators--------------------------------------//

template<typename VectorType>
inline
FilteredMatrix<VectorType>::Accessor::Accessor
(const FilteredMatrix<VectorType> *matrix,
 const size_type                   index)
  :
  matrix(matrix),
  index(index)
{
  Assert (index <= matrix->constraints.size(),
          ExcIndexRange(index, 0, matrix->constraints.size()));
}



template<typename VectorType>
inline
types::global_dof_index
FilteredMatrix<VectorType>::Accessor::row() const
{
  return matrix->constraints[index].first;
}



template<typename VectorType>
inline
types::global_dof_index
FilteredMatrix<VectorType>::Accessor::column() const
{
  return matrix->constraints[index].first;
}



template<typename VectorType>
inline
double
FilteredMatrix<VectorType>::Accessor::value() const
{
  return matrix->constraints[index].second;
}



template<typename VectorType>
inline
void
FilteredMatrix<VectorType>::Accessor::advance()
{
  Assert (index < matrix->constraints.size(), ExcIteratorPastEnd());
  ++index;
}




template<typename VectorType>
inline
FilteredMatrix<VectorType>::const_iterator::const_iterator
(const FilteredMatrix<VectorType> *matrix,
 const size_type                   index)
  :
  accessor(matrix, index)
{}



template<typename VectorType>
inline
typename FilteredMatrix<VectorType>::const_iterator &
FilteredMatrix<VectorType>::const_iterator::operator++ ()
{
  accessor.advance();
  return *this;
}


template <typename number>
inline
const typename FilteredMatrix<number>::Accessor &
FilteredMatrix<number>::const_iterator::operator* () const
{
  return accessor;
}


template <typename number>
inline
const typename FilteredMatrix<number>::Accessor *
FilteredMatrix<number>::const_iterator::operator-> () const
{
  return &accessor;
}


template <typename number>
inline
bool
FilteredMatrix<number>::const_iterator::
operator == (const const_iterator &other) const
{
  return (accessor.index == other.accessor.index
          && accessor.matrix == other.accessor.matrix);
}


template <typename number>
inline
bool
FilteredMatrix<number>::const_iterator::
operator != (const const_iterator &other) const
{
  return ! (*this == other);
}



//------------------------------- FilteredMatrix ---------------------------------------//

template <typename number>
inline
typename FilteredMatrix<number>::const_iterator
FilteredMatrix<number>::begin () const
{
  return const_iterator(this, 0);
}


template <typename number>
inline
typename FilteredMatrix<number>::const_iterator
FilteredMatrix<number>::end () const
{
  return const_iterator(this, constraints.size());
}


template <typename VectorType>
inline
bool
FilteredMatrix<VectorType>::PairComparison::
operator () (const IndexValuePair &i1,
             const IndexValuePair &i2) const
{
  return (i1.first < i2.first);
}



template <typename VectorType>
template <typename MatrixType>
inline
void
FilteredMatrix<VectorType>::initialize (const MatrixType &m, bool ecs)
{
  matrix.reset (new_pointer_matrix_base(m, VectorType()));

  expect_constrained_source = ecs;
}



template <typename VectorType>
inline
FilteredMatrix<VectorType>::FilteredMatrix ()
{}



template <typename VectorType>
inline
FilteredMatrix<VectorType>::FilteredMatrix (const FilteredMatrix &fm)
  :
  Subscriptor(),
  expect_constrained_source(fm.expect_constrained_source),
  matrix(fm.matrix),
  constraints (fm.constraints)
{}



template <typename VectorType>
template <typename MatrixType>
inline
FilteredMatrix<VectorType>::
FilteredMatrix (const MatrixType &m, bool ecs)
{
  initialize (m, ecs);
}



template <typename VectorType>
inline
FilteredMatrix<VectorType> &
FilteredMatrix<VectorType>::operator = (const FilteredMatrix &fm)
{
  matrix = fm.matrix;
  expect_constrained_source = fm.expect_constrained_source;
  constraints = fm.constraints;
  return *this;
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::add_constraint (const size_type index, const double value)
{
  // add new constraint to end
  constraints.push_back(IndexValuePair(index, value));
}



template <typename VectorType>
template <class ConstraintList>
inline
void
FilteredMatrix<VectorType>::add_constraints (const ConstraintList &new_constraints)
{
  // add new constraints to end
  const size_type old_size = constraints.size();
  constraints.reserve (old_size + new_constraints.size());
  constraints.insert (constraints.end(),
                      new_constraints.begin(),
                      new_constraints.end());
  // then merge the two arrays to
  // form one sorted one
  std::inplace_merge (constraints.begin(),
                      constraints.begin()+old_size,
                      constraints.end(),
                      PairComparison());
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::clear_constraints ()
{
  // swap vectors to release memory
  std::vector<IndexValuePair> empty;
  constraints.swap (empty);
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::clear ()
{
  clear_constraints();
  matrix.reset();
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::apply_constraints
(VectorType &v,
 const bool  /* matrix_is_symmetric */) const
{
  apply_constraints(v);
}


template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::apply_constraints (VectorType &v) const
{
  GrowingVectorMemory<VectorType> mem;
  typename VectorMemory<VectorType>::Pointer tmp_vector(mem);
  tmp_vector->reinit(v);
  const_index_value_iterator       i = constraints.begin();
  const const_index_value_iterator e = constraints.end();
  for (; i!=e; ++i)
    {
      AssertIsFinite(i->second);
      (*tmp_vector)(i->first) = -i->second;
    }

  // This vmult is without bc, to get
  // the rhs correction in a correct
  // way.
  matrix->vmult_add(v, *tmp_vector);
  // finally set constrained
  // entries themselves
  for (i=constraints.begin(); i!=e; ++i)
    {
      AssertIsFinite(i->second);
      v(i->first) = i->second;
    }
}


template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::pre_filter (VectorType &v) const
{
  // iterate over all constraints and
  // zero out value
  const_index_value_iterator       i = constraints.begin();
  const const_index_value_iterator e = constraints.end();
  for (; i!=e; ++i)
    v(i->first) = 0;
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::post_filter (const VectorType &in,
                                         VectorType       &out) const
{
  // iterate over all constraints and
  // set value correctly
  const_index_value_iterator       i = constraints.begin();
  const const_index_value_iterator e = constraints.end();
  for (; i!=e; ++i)
    {
      AssertIsFinite(in(i->first));
      out(i->first) = in(i->first);
    }
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::vmult (VectorType &dst, const VectorType &src) const
{
  if (!expect_constrained_source)
    {
      GrowingVectorMemory<VectorType> mem;
      VectorType *tmp_vector = mem.alloc();
      // first copy over src vector and
      // pre-filter
      tmp_vector->reinit(src, true);
      *tmp_vector = src;
      pre_filter (*tmp_vector);
      // then let matrix do its work
      matrix->vmult (dst, *tmp_vector);
      mem.free(tmp_vector);
    }
  else
    {
      matrix->vmult (dst, src);
    }

  // finally do post-filtering
  post_filter (src, dst);
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::Tvmult (VectorType &dst, const VectorType &src) const
{
  if (!expect_constrained_source)
    {
      GrowingVectorMemory<VectorType> mem;
      VectorType *tmp_vector = mem.alloc();
      // first copy over src vector and
      // pre-filter
      tmp_vector->reinit(src, true);
      *tmp_vector = src;
      pre_filter (*tmp_vector);
      // then let matrix do its work
      matrix->Tvmult (dst, *tmp_vector);
      mem.free(tmp_vector);
    }
  else
    {
      matrix->Tvmult (dst, src);
    }

  // finally do post-filtering
  post_filter (src, dst);
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::vmult_add (VectorType &dst, const VectorType &src) const
{
  if (!expect_constrained_source)
    {
      GrowingVectorMemory<VectorType> mem;
      VectorType *tmp_vector = mem.alloc();
      // first copy over src vector and
      // pre-filter
      tmp_vector->reinit(src, true);
      *tmp_vector = src;
      pre_filter (*tmp_vector);
      // then let matrix do its work
      matrix->vmult_add (dst, *tmp_vector);
      mem.free(tmp_vector);
    }
  else
    {
      matrix->vmult_add (dst, src);
    }

  // finally do post-filtering
  post_filter (src, dst);
}



template <typename VectorType>
inline
void
FilteredMatrix<VectorType>::Tvmult_add (VectorType &dst, const VectorType &src) const
{
  if (!expect_constrained_source)
    {
      GrowingVectorMemory<VectorType> mem;
      VectorType *tmp_vector = mem.alloc();
      // first copy over src vector and
      // pre-filter
      tmp_vector->reinit(src, true);
      *tmp_vector = src;
      pre_filter (*tmp_vector);
      // then let matrix do its work
      matrix->Tvmult_add (dst, *tmp_vector);
      mem.free(tmp_vector);
    }
  else
    {
      matrix->Tvmult_add (dst, src);
    }

  // finally do post-filtering
  post_filter (src, dst);
}



template <typename VectorType>
inline
std::size_t
FilteredMatrix<VectorType>::memory_consumption () const
{
  return (MemoryConsumption::memory_consumption (matrix) +
          MemoryConsumption::memory_consumption (constraints));
}



DEAL_II_NAMESPACE_CLOSE

#endif
/*----------------------------   filtered_matrix.h     ---------------------------*/