This file is indexed.

/usr/include/deal.II/lac/petsc_vector_base.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
// ---------------------------------------------------------------------
//
// Copyright (C) 2004 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__petsc_vector_base_h
#define dealii__petsc_vector_base_h


#include <deal.II/base/config.h>

#ifdef DEAL_II_WITH_PETSC

#  include <deal.II/base/subscriptor.h>
#  include <deal.II/lac/exceptions.h>
#  include <deal.II/lac/vector.h>

#  include <vector>
#  include <utility>

#  include <petscvec.h>
#  include <deal.II/base/index_set.h>

DEAL_II_NAMESPACE_OPEN

// forward declaration
template <typename number> class Vector;


/**
 * A namespace in which wrapper classes for PETSc objects reside.
 *
 * @ingroup PETScWrappers
 * @ingroup Vectors
 * @author Wolfgang Bangerth, 2004
 */
namespace PETScWrappers
{
  // forward declaration
  class VectorBase;

  /**
   * @cond internal
   */

  /**
   * A namespace for internal implementation details of the PETScWrapper
   * members.
   * @ingroup PETScWrappers
   */
  namespace internal
  {
    /**
     * Since access to PETSc vectors only goes through functions, rather than
     * by obtaining a reference to a vector element, we need a wrapper class
     * that acts as if it was a reference, and basically redirects all
     * accesses (read and write) to member functions of this class.
     *
     * This class implements such a wrapper: it is initialized with a vector
     * and an element within it, and has a conversion operator to extract the
     * scalar value of this element. It also has a variety of assignment
     * operator for writing to this one element.
     * @ingroup PETScWrappers
     */
    class VectorReference
    {
    public:
      /**
       * Declare type for container size.
       */
      typedef types::global_dof_index size_type;

    private:
      /**
       * Constructor. It is made private so as to only allow the actual vector
       * class to create it.
       */
      VectorReference (const VectorBase  &vector,
                       const size_type   index);


    public:

      /**
       * This looks like a copy operator, but does something different than
       * usual. In particular, it does not copy the member variables of this
       * reference. Rather, it handles the situation where we have two vectors
       * @p v and @p w, and assign elements like in <tt>v(i)=w(i)</tt>. Here,
       * both left and right hand side of the assignment have data type
       * VectorReference, but what we really mean is to assign the vector
       * elements represented by the two references. This operator implements
       * this operation. Note also that this allows us to make the assignment
       * operator const.
       */
      const VectorReference &operator = (const VectorReference &r) const;

      /**
       * The same function as above, but for non-const reference objects. The
       * function is needed since the compiler might otherwise automatically
       * generate a copy operator for non-const objects.
       */
      VectorReference &operator = (const VectorReference &r);

      /**
       * Set the referenced element of the vector to <tt>s</tt>.
       */
      const VectorReference &operator = (const PetscScalar &s) const;

      /**
       * Add <tt>s</tt> to the referenced element of the vector.
       */
      const VectorReference &operator += (const PetscScalar &s) const;

      /**
       * Subtract <tt>s</tt> from the referenced element of the vector.
       */
      const VectorReference &operator -= (const PetscScalar &s) const;

      /**
       * Multiply the referenced element of the vector by <tt>s</tt>.
       */
      const VectorReference &operator *= (const PetscScalar &s) const;

      /**
       * Divide the referenced element of the vector by <tt>s</tt>.
       */
      const VectorReference &operator /= (const PetscScalar &s) const;

      /**
       * Return the real part of the value of the referenced element.
       */
      PetscReal real () const;

      /**
       * Return the imaginary part of the value of the referenced element.
       *
       * @note This operation is not defined for real numbers and an exception
       * is thrown.
       */
      PetscReal imag () const;

      /**
       * Convert the reference to an actual value, i.e. return the value of
       * the referenced element of the vector.
       */
      operator PetscScalar () const;

      /**
       * Exception
       */
      DeclException1 (ExcPETScError,
                      int,
                      << "An error with error number " << arg1
                      << " occurred while calling a PETSc function");
      /**
       * Exception
       */
      DeclException3 (ExcAccessToNonlocalElement,
                      int, int, int,
                      << "You tried to access element " << arg1
                      << " of a distributed vector, but only elements "
                      << arg2 << " through " << arg3
                      << " are stored locally and can be accessed.");
      /**
       * Exception.
       */
      DeclException2 (ExcWrongMode,
                      int, int,
                      << "You tried to do a "
                      << (arg1 == 1 ?
                          "'set'" :
                          (arg1 == 2 ?
                           "'add'" : "???"))
                      << " operation but the vector is currently in "
                      << (arg2 == 1 ?
                          "'set'" :
                          (arg2 == 2 ?
                           "'add'" : "???"))
                      << " mode. You first have to call 'compress()'.");

    private:
      /**
       * Point to the vector we are referencing.
       */
      const VectorBase   &vector;

      /**
       * Index of the referenced element of the vector.
       */
      const size_type index;

      /**
       * Make the vector class a friend, so that it can create objects of the
       * present type.
       */
      friend class ::dealii::PETScWrappers::VectorBase;
    };
  }
  /**
   * @endcond
   */


  /**
   * Base class for all vector classes that are implemented on top of the
   * PETSc vector types. Since in PETSc all vector types (i.e. sequential and
   * parallel ones) are built by filling the contents of an abstract object
   * that is only referenced through a pointer of a type that is independent
   * of the actual vector type, we can implement almost all functionality of
   * vectors in this base class. Derived classes will then only have to
   * provide the functionality to create one or the other kind of vector.
   *
   * The interface of this class is modeled after the existing Vector class in
   * deal.II. It has almost the same member functions, and is often
   * exchangeable. However, since PETSc only supports a single scalar type
   * (either double, float, or a complex data type), it is not templated, and
   * only works with whatever your PETSc installation has defined the data
   * type @p PetscScalar to.
   *
   * Note that PETSc only guarantees that operations do what you expect if the
   * functions @p VecAssemblyBegin and @p VecAssemblyEnd have been called
   * after vector assembly. Therefore, you need to call Vector::compress()
   * before you actually use the vector.
   *
   * @ingroup PETScWrappers
   * @author Wolfgang Bangerth, 2004
   */
  class VectorBase : public Subscriptor
  {
  public:
    /**
     * Declare some of the standard types used in all containers. These types
     * parallel those in the <tt>C++</tt> standard libraries
     * <tt>vector<...></tt> class.
     */
    typedef PetscScalar               value_type;
    typedef PetscReal                 real_type;
    typedef types::global_dof_index   size_type;
    typedef internal::VectorReference reference;
    typedef const internal::VectorReference const_reference;

    /**
     * Default constructor. It doesn't do anything, derived classes will have
     * to initialize the data.
     */
    VectorBase ();

    /**
     * Copy constructor. Sets the dimension to that of the given vector, and
     * copies all elements.
     */
    VectorBase (const VectorBase &v);

    /**
     * Initialize a Vector from a PETSc Vec object. Note that we do not copy
     * the vector and we do not attain ownership, so we do not destroy the
     * PETSc object in the destructor.
     */
    explicit VectorBase (const Vec &v);

    /**
     * Destructor
     */
    virtual ~VectorBase ();

    /**
     * Release all memory and return to a state just like after having called
     * the default constructor.
     */
    virtual void clear ();

    /**
     * Compress the underlying representation of the PETSc object, i.e. flush
     * the buffers of the vector object if it has any. This function is
     * necessary after writing into a vector element-by-element and before
     * anything else can be done on it.
     *
     * See
     * @ref GlossCompress "Compressing distributed objects"
     * for more information.
     */
    void compress (const VectorOperation::values operation);

    /**
     * Set all components of the vector to the given number @p s. Simply pass
     * this down to the individual block objects, but we still need to declare
     * this function to make the example given in the discussion about making
     * the constructor explicit work.
     *
     *
     * Since the semantics of assigning a scalar to a vector are not
     * immediately clear, this operator should really only be used if you want
     * to set the entire vector to zero. This allows the intuitive notation
     * <tt>v=0</tt>. Assigning other values is deprecated and may be
     * disallowed in the future.
     */
    VectorBase &operator = (const PetscScalar s);

    /**
     * Test for equality. This function assumes that the present vector and
     * the one to compare with have the same size already, since comparing
     * vectors of different sizes makes not much sense anyway.
     */
    bool operator == (const VectorBase &v) const;

    /**
     * Test for inequality. This function assumes that the present vector and
     * the one to compare with have the same size already, since comparing
     * vectors of different sizes makes not much sense anyway.
     */
    bool operator != (const VectorBase &v) const;

    /**
     * Return the global dimension of the vector.
     */
    size_type size () const;

    /**
     * Return the local dimension of the vector, i.e. the number of elements
     * stored on the present MPI process. For sequential vectors, this number
     * is the same as size(), but for parallel vectors it may be smaller.
     *
     * To figure out which elements exactly are stored locally, use
     * local_range().
     */
    size_type local_size () const;

    /**
     * Return a pair of indices indicating which elements of this vector are
     * stored locally. The first number is the index of the first element
     * stored, the second the index of the one past the last one that is
     * stored locally. If this is a sequential vector, then the result will be
     * the pair (0,N), otherwise it will be a pair (i,i+n), where
     * <tt>n=local_size()</tt>.
     */
    std::pair<size_type, size_type>
    local_range () const;

    /**
     * Return whether @p index is in the local range or not, see also
     * local_range().
     */
    bool in_local_range (const size_type index) const;

    /**
     * Return an index set that describes which elements of this vector are
     * owned by the current processor. Note that this index set does not
     * include elements this vector may store locally as ghost elements but
     * that are in fact owned by another processor. As a consequence, the
     * index sets returned on different processors if this is a distributed
     * vector will form disjoint sets that add up to the complete index set.
     * Obviously, if a vector is created on only one processor, then the
     * result would satisfy
     * @code
     *   vec.locally_owned_elements() == complete_index_set (vec.size())
     * @endcode
     */
    IndexSet locally_owned_elements () const;

    /**
     * Return if the vector contains ghost elements.
     *
     * @see
     * @ref GlossGhostedVector "vectors with ghost elements"
     */
    bool has_ghost_elements() const;

    /**
     * Provide access to a given element, both read and write.
     */
    reference
    operator () (const size_type index);

    /**
     * Provide read-only access to an element.
     */
    PetscScalar
    operator () (const size_type index) const;

    /**
     * Provide access to a given element, both read and write.
     *
     * Exactly the same as operator().
     */
    reference
    operator [] (const size_type index);

    /**
     * Provide read-only access to an element.
     *
     * Exactly the same as operator().
     */
    PetscScalar
    operator [] (const size_type index) const;

    /**
     * A collective set operation: instead of setting individual elements of a
     * vector, this function allows to set a whole set of elements at once.
     * The indices of the elements to be set are stated in the first argument,
     * the corresponding values in the second.
     */
    void set (const std::vector<size_type>   &indices,
              const std::vector<PetscScalar>  &values);

    /**
     * A collective get operation: instead of getting individual elements of a
     * vector, this function allows to get a whole set of elements at once.
     * The indices of the elements to be read are stated in the first
     * argument, the corresponding values are returned in the second.
     */
    void extract_subvector_to (const std::vector<size_type> &indices,
                               std::vector<PetscScalar> &values) const;

    /**
     * Just as the above, but with pointers. Useful in minimizing copying of
     * data around.
     */
    template <typename ForwardIterator, typename OutputIterator>
    void extract_subvector_to (const ForwardIterator    indices_begin,
                               const ForwardIterator    indices_end,
                               OutputIterator           values_begin) const;

    /**
     * A collective add operation: This function adds a whole set of values
     * stored in @p values to the vector components specified by @p indices.
     */
    void add (const std::vector<size_type> &indices,
              const std::vector<PetscScalar>  &values);

    /**
     * This is a second collective add operation. As a difference, this
     * function takes a deal.II vector of values.
     */
    void add (const std::vector<size_type>        &indices,
              const ::dealii::Vector<PetscScalar> &values);

    /**
     * Take an address where <tt>n_elements</tt> are stored contiguously and
     * add them into the vector. Handles all cases which are not covered by
     * the other two <tt>add()</tt> functions above.
     */
    void add (const size_type    n_elements,
              const size_type   *indices,
              const PetscScalar  *values);

    /**
     * Return the scalar product of two vectors. The vectors must have the
     * same size.
     *
     * For complex valued vector, this gives$\left(v^\ast,vec\right)$.
     */
    PetscScalar operator * (const VectorBase &vec) const;

    /**
     * Return square of the $l_2$-norm.
     */
    real_type norm_sqr () const;

    /**
     * Return the mean value of the elements of this vector.
     */
    PetscScalar mean_value () const;

    /**
     * $l_1$-norm of the vector. The sum of the absolute values.
     */
    real_type l1_norm () const;

    /**
     * $l_2$-norm of the vector.  The square root of the sum of the squares of
     * the elements.
     */
    real_type l2_norm () const;

    /**
     * $l_p$-norm of the vector. The pth root of the sum of the pth powers of
     * the absolute values of the elements.
     */
    real_type lp_norm (const real_type p) const;

    /**
     * $l_\infty$-norm of the vector. Return the value of the vector element
     * with the maximum absolute value.
     */
    real_type linfty_norm () const;

    /**
     * Performs a combined operation of a vector addition and a subsequent
     * inner product, returning the value of the inner product. In other
     * words, the result of this function is the same as if the user called
     * @code
     * this->add(a, V);
     * return_value = *this * W;
     * @endcode
     *
     * The reason this function exists is for compatibility with deal.II's own
     * vector classes which can implement this functionality with less memory
     * transfer. However, for PETSc vectors such a combined operation is not
     * natively supported and thus the cost is completely equivalent as
     * calling the two methods separately.
     */
    PetscScalar add_and_dot (const PetscScalar a,
                             const VectorBase &V,
                             const VectorBase &W);

    /**
     * Normalize vector by dividing by the $l_2$-norm of the vector. Return
     * the vector norm before normalization.
     *
     * This function is deprecated.
     */
    real_type normalize () const DEAL_II_DEPRECATED;

    /**
     * Return the value of the vector element with the largest negative value.
     */
    real_type min () const;

    /**
     * Return the value of the vector element with the largest positive value.
     */
    real_type max () const;

    /**
     * Replace every element in a vector with its absolute value.
     *
     * This function is deprecated.
     */
    VectorBase &abs () DEAL_II_DEPRECATED;

    /**
     * Conjugate a vector.
     *
     * This function is deprecated.
     */
    VectorBase &conjugate () DEAL_II_DEPRECATED;

    /**
     * A collective piecewise multiply operation on <code>this</code> vector
     * with itself. TODO: The model for this function should be similar to add
     * ().
     *
     * This function is deprecated.
     */
    VectorBase &mult () DEAL_II_DEPRECATED;

    /**
     * Same as above, but a collective piecewise multiply operation of
     * <code>this</code> vector with <b>v</b>.
     *
     * This function is deprecated.
     */
    VectorBase &mult (const VectorBase &v) DEAL_II_DEPRECATED;

    /**
     * Same as above, but a collective piecewise multiply operation of
     * <b>u</b> with <b>v</b>.
     *
     * This function is deprecated.
     */
    VectorBase &mult (const VectorBase &u,
                      const VectorBase &v) DEAL_II_DEPRECATED;

    /**
     * Return whether the vector contains only elements with value zero. This
     * is a collective operation. This function is expensive, because
     * potentially all elements have to be checked.
     */
    bool all_zero () const;

    /**
     * Return @p true if the vector has no negative entries, i.e. all entries
     * are zero or positive. This function is used, for example, to check
     * whether refinement indicators are really all positive (or zero).
     */
    bool is_non_negative () const;

    /**
     * Multiply the entire vector by a fixed factor.
     */
    VectorBase &operator *= (const PetscScalar factor);

    /**
     * Divide the entire vector by a fixed factor.
     */
    VectorBase &operator /= (const PetscScalar factor);

    /**
     * Add the given vector to the present one.
     */
    VectorBase &operator += (const VectorBase &V);

    /**
     * Subtract the given vector from the present one.
     */
    VectorBase &operator -= (const VectorBase &V);

    /**
     * Addition of @p s to all components. Note that @p s is a scalar and not
     * a vector.
     */
    void add (const PetscScalar s);

    /**
     * Simple vector addition, equal to the <tt>operator +=</tt>.
     *
     * @deprecated Use the <tt>operator +=</tt> instead.
     */
    void add (const VectorBase &V) DEAL_II_DEPRECATED;

    /**
     * Simple addition of a multiple of a vector, i.e. <tt>*this += a*V</tt>.
     */
    void add (const PetscScalar a, const VectorBase &V);

    /**
     * Multiple addition of scaled vectors, i.e. <tt>*this += a*V+b*W</tt>.
     */
    void add (const PetscScalar a, const VectorBase &V,
              const PetscScalar b, const VectorBase &W);

    /**
     * Scaling and simple vector addition, i.e. <tt>*this = s*(*this)+V</tt>.
     */
    void sadd (const PetscScalar s,
               const VectorBase     &V);

    /**
     * Scaling and simple addition, i.e. <tt>*this = s*(*this)+a*V</tt>.
     */
    void sadd (const PetscScalar s,
               const PetscScalar a,
               const VectorBase     &V);

    /**
     * Scaling and multiple addition.
     *
     * This function is deprecated.
     */
    void sadd (const PetscScalar s,
               const PetscScalar a,
               const VectorBase     &V,
               const PetscScalar b,
               const VectorBase     &W) DEAL_II_DEPRECATED;

    /**
     * Scaling and multiple addition. <tt>*this = s*(*this)+a*V + b*W +
     * c*X</tt>.
     *
     * This function is deprecated.
     */
    void sadd (const PetscScalar s,
               const PetscScalar a,
               const VectorBase     &V,
               const PetscScalar b,
               const VectorBase     &W,
               const PetscScalar c,
               const VectorBase     &X) DEAL_II_DEPRECATED;

    /**
     * Scale each element of this vector by the corresponding element in the
     * argument. This function is mostly meant to simulate multiplication (and
     * immediate re-assignment) by a diagonal scaling matrix.
     */
    void scale (const VectorBase &scaling_factors);

    /**
     * Assignment <tt>*this = a*V</tt>.
     */
    void equ (const PetscScalar a, const VectorBase &V);

    /**
     * Assignment <tt>*this = a*V + b*W</tt>.
     *
     * This function is deprecated.
     */
    void equ (const PetscScalar a, const VectorBase &V,
              const PetscScalar b, const VectorBase &W) DEAL_II_DEPRECATED;

    /**
     * Compute the elementwise ratio of the two given vectors, that is let
     * <tt>this[i] = a[i]/b[i]</tt>. This is useful for example if you want to
     * compute the cellwise ratio of true to estimated error.
     *
     * This vector is appropriately scaled to hold the result.
     *
     * If any of the <tt>b[i]</tt> is zero, the result is undefined. No
     * attempt is made to catch such situations.
     */
    void ratio (const VectorBase &a,
                const VectorBase &b) DEAL_II_DEPRECATED;

    /**
     * Prints the PETSc vector object values using PETSc internal vector
     * viewer function <tt>VecView</tt>. The default format prints the
     * vector's contents, including indices of vector elements. For other
     * valid view formats, consult http://www.mcs.anl.gov/petsc/petsc-
     * current/docs/manualpages/Vec/VecView.html
     */
    void write_ascii (const PetscViewerFormat format = PETSC_VIEWER_DEFAULT) ;

    /**
     * Print to a stream. @p precision denotes the desired precision with
     * which values shall be printed, @p scientific whether scientific
     * notation shall be used. If @p across is @p true then the vector is
     * printed in a line, while if @p false then the elements are printed on a
     * separate line each.
     */
    void print (std::ostream       &out,
                const unsigned int  precision  = 3,
                const bool          scientific = true,
                const bool          across     = true) const;

    /**
     * Swap the contents of this vector and the other vector @p v. One could
     * do this operation with a temporary variable and copying over the data
     * elements, but this function is significantly more efficient since it
     * only swaps the pointers to the data of the two vectors and therefore
     * does not need to allocate temporary storage and move data around.
     *
     * This function is analog to the the @p swap function of all C++ standard
     * containers. Also, there is a global function <tt>swap(u,v)</tt> that
     * simply calls <tt>u.swap(v)</tt>, again in analogy to standard
     * functions.
     */
    void swap (VectorBase &v);

    /**
     * Conversion operator to gain access to the underlying PETSc type. If you
     * do this, you cut this class off some information it may need, so this
     * conversion operator should only be used if you know what you do. In
     * particular, it should only be used for read-only operations into the
     * vector.
     */
    operator const Vec &() const;

    /**
     * Estimate for the memory consumption (not implemented for this class).
     */
    std::size_t memory_consumption () const;

    /**
     * Return a reference to the MPI communicator object in use with this
     * object.
     */
    virtual const MPI_Comm &get_mpi_communicator () const;

  protected:
    /**
     * A generic vector object in PETSc. The actual type, a sequential vector,
     * is set in the constructor.
     */
    Vec vector;

    /**
     * Denotes if this vector has ghost indices associated with it. This means
     * that at least one of the processes in a parallel program has at least
     * one ghost index.
     */
    bool ghosted;

    /**
     * This vector contains the global indices of the ghost values. The
     * location in this vector denotes the local numbering, which is used in
     * PETSc.
     */
    IndexSet ghost_indices;

    /**
     * Store whether the last action was a write or add operation. This
     * variable is @p mutable so that the accessor classes can write to it,
     * even though the vector object they refer to is constant.
     */
    mutable VectorOperation::values last_action;

    /**
     * Make the reference class a friend.
     */
    friend class internal::VectorReference;

    /**
     * Specifies if the vector is the owner of the PETSc Vec. This is true if
     * it got created by this class and determines if it gets destructed in
     * the destructor.
     */
    bool attained_ownership;

    /**
     * Collective set or add operation: This function is invoked by the
     * collective @p set and @p add with the @p add_values flag set to the
     * corresponding value.
     */
    void do_set_add_operation (const size_type    n_elements,
                               const size_type   *indices,
                               const PetscScalar  *values,
                               const bool         add_values);


  };



// ------------------- inline and template functions --------------

  /**
   * Global function @p swap which overloads the default implementation of the
   * C++ standard library which uses a temporary object. The function simply
   * exchanges the data of the two vectors.
   *
   * @relates PETScWrappers::VectorBase
   * @author Wolfgang Bangerth, 2004
   */
  inline
  void swap (VectorBase &u, VectorBase &v)
  {
    u.swap (v);
  }

#ifndef DOXYGEN
  namespace internal
  {
    inline
    VectorReference::VectorReference (const VectorBase  &vector,
                                      const size_type   index)
      :
      vector (vector),
      index (index)
    {}


    inline
    const VectorReference &
    VectorReference::operator = (const VectorReference &r) const
    {
      // as explained in the class
      // documentation, this is not the copy
      // operator. so simply pass on to the
      // "correct" assignment operator
      *this = static_cast<PetscScalar> (r);

      return *this;
    }



    inline
    VectorReference &
    VectorReference::operator = (const VectorReference &r)
    {
      // as explained in the class
      // documentation, this is not the copy
      // operator. so simply pass on to the
      // "correct" assignment operator
      *this = static_cast<PetscScalar> (r);

      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator = (const PetscScalar &value) const
    {
      Assert ((vector.last_action == VectorOperation::insert)
              ||
              (vector.last_action == VectorOperation::unknown),
              ExcWrongMode (VectorOperation::insert,
                            vector.last_action));

      Assert (!vector.has_ghost_elements(), ExcGhostsPresent());

      const PetscInt petsc_i = index;

      const int ierr
        = VecSetValues (vector, 1, &petsc_i, &value, INSERT_VALUES);
      AssertThrow (ierr == 0, ExcPETScError(ierr));

      vector.last_action = VectorOperation::insert;

      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator += (const PetscScalar &value) const
    {
      Assert ((vector.last_action == VectorOperation::add)
              ||
              (vector.last_action == VectorOperation::unknown),
              ExcWrongMode (VectorOperation::add,
                            vector.last_action));

      Assert (!vector.has_ghost_elements(), ExcGhostsPresent());

      vector.last_action = VectorOperation::add;

      // we have to do above actions in any
      // case to be consistent with the MPI
      // communication model (see the
      // comments in the documentation of
      // PETScWrappers::MPI::Vector), but we
      // can save some work if the addend is
      // zero
      if (value == PetscScalar())
        return *this;

      // use the PETSc function to add something
      const PetscInt petsc_i = index;
      const int ierr
        = VecSetValues (vector, 1, &petsc_i, &value, ADD_VALUES);
      AssertThrow (ierr == 0, ExcPETScError(ierr));


      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator -= (const PetscScalar &value) const
    {
      Assert ((vector.last_action == VectorOperation::add)
              ||
              (vector.last_action == VectorOperation::unknown),
              ExcWrongMode (VectorOperation::add,
                            vector.last_action));

      Assert (!vector.has_ghost_elements(), ExcGhostsPresent());

      vector.last_action = VectorOperation::add;

      // we have to do above actions in any
      // case to be consistent with the MPI
      // communication model (see the
      // comments in the documentation of
      // PETScWrappers::MPI::Vector), but we
      // can save some work if the addend is
      // zero
      if (value == PetscScalar())
        return *this;

      // use the PETSc function to
      // add something
      const PetscInt petsc_i = index;
      const PetscScalar subtractand = -value;
      const int ierr
        = VecSetValues (vector, 1, &petsc_i, &subtractand, ADD_VALUES);
      AssertThrow (ierr == 0, ExcPETScError(ierr));

      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator *= (const PetscScalar &value) const
    {
      Assert ((vector.last_action == VectorOperation::insert)
              ||
              (vector.last_action == VectorOperation::unknown),
              ExcWrongMode (VectorOperation::insert,
                            vector.last_action));

      Assert (!vector.has_ghost_elements(), ExcGhostsPresent());

      vector.last_action = VectorOperation::insert;

      // we have to do above actions in any
      // case to be consistent with the MPI
      // communication model (see the
      // comments in the documentation of
      // PETScWrappers::MPI::Vector), but we
      // can save some work if the factor is
      // one
      if (value == 1.)
        return *this;

      const PetscInt petsc_i = index;
      const PetscScalar new_value
        = static_cast<PetscScalar>(*this) * value;

      const int ierr
        = VecSetValues (vector, 1, &petsc_i, &new_value, INSERT_VALUES);
      AssertThrow (ierr == 0, ExcPETScError(ierr));

      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator /= (const PetscScalar &value) const
    {
      Assert ((vector.last_action == VectorOperation::insert)
              ||
              (vector.last_action == VectorOperation::unknown),
              ExcWrongMode (VectorOperation::insert,
                            vector.last_action));

      Assert (!vector.has_ghost_elements(), ExcGhostsPresent());

      vector.last_action = VectorOperation::insert;

      // we have to do above actions in any
      // case to be consistent with the MPI
      // communication model (see the
      // comments in the documentation of
      // PETScWrappers::MPI::Vector), but we
      // can save some work if the factor is
      // one
      if (value == 1.)
        return *this;

      const PetscInt petsc_i = index;
      const PetscScalar new_value
        = static_cast<PetscScalar>(*this) / value;

      const int ierr
        = VecSetValues (vector, 1, &petsc_i, &new_value, INSERT_VALUES);
      AssertThrow (ierr == 0, ExcPETScError(ierr));

      return *this;
    }



    inline
    PetscReal
    VectorReference::real () const
    {
#ifndef PETSC_USE_COMPLEX
      return static_cast<PetscScalar>(*this);
#else
      return PetscRealPart (static_cast<PetscScalar>(*this));
#endif
    }



    inline
    PetscReal
    VectorReference::imag () const
    {
#ifndef PETSC_USE_COMPLEX
      return PetscReal (0);
#else
      return PetscImaginaryPart (static_cast<PetscScalar>(*this));
#endif
    }

  } // namespace internal

  inline
  bool
  VectorBase::in_local_range (const size_type index) const
  {
    PetscInt begin, end;
    const int ierr = VecGetOwnershipRange (static_cast<const Vec &>(vector),
                                           &begin, &end);
    AssertThrow (ierr == 0, ExcPETScError(ierr));

    return ((index >= static_cast<size_type>(begin)) &&
            (index < static_cast<size_type>(end)));
  }


  inline
  IndexSet
  VectorBase::locally_owned_elements() const
  {
    IndexSet is (size());

    // PETSc only allows for contiguous local ranges, so this is simple
    const std::pair<size_type, size_type> x = local_range();
    is.add_range (x.first, x.second);
    return is;
  }



  inline
  bool
  VectorBase::has_ghost_elements() const
  {
    return ghosted;
  }



  inline
  internal::VectorReference
  VectorBase::operator () (const size_type index)
  {
    return internal::VectorReference (*this, index);
  }



  inline
  PetscScalar
  VectorBase::operator () (const size_type index) const
  {
    return static_cast<PetscScalar>(internal::VectorReference (*this, index));
  }



  inline
  internal::VectorReference
  VectorBase::operator [] (const size_type index)
  {
    return operator()(index);
  }



  inline
  PetscScalar
  VectorBase::operator [] (const size_type index) const
  {
    return operator()(index);
  }

  inline
  const MPI_Comm &
  VectorBase::get_mpi_communicator () const
  {
    static MPI_Comm comm;
    PetscObjectGetComm((PetscObject)vector, &comm);
    return comm;
  }

  inline
  void VectorBase::extract_subvector_to (const std::vector<size_type> &indices,
                                         std::vector<PetscScalar> &values) const
  {
    extract_subvector_to(&(indices[0]), &(indices[0]) + indices.size(),  &(values[0]));
  }

  template <typename ForwardIterator, typename OutputIterator>
  inline
  void VectorBase::extract_subvector_to (const ForwardIterator    indices_begin,
                                         const ForwardIterator    indices_end,
                                         OutputIterator           values_begin) const
  {
    const PetscInt n_idx = static_cast<PetscInt>(indices_end - indices_begin);
    if (n_idx == 0)
      return;

    // if we are dealing
    // with a parallel vector
    if (ghosted )
      {

        int ierr;

        // there is the possibility
        // that the vector has
        // ghost elements. in that
        // case, we first need to
        // figure out which
        // elements we own locally,
        // then get a pointer to
        // the elements that are
        // stored here (both the
        // ones we own as well as
        // the ghost elements). in
        // this array, the locally
        // owned elements come
        // first followed by the
        // ghost elements whose
        // position we can get from
        // an index set
        PetscInt begin, end;
        ierr = VecGetOwnershipRange (vector, &begin, &end);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

        Vec locally_stored_elements = PETSC_NULL;
        ierr = VecGhostGetLocalForm(vector, &locally_stored_elements);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

        PetscInt lsize;
        ierr = VecGetSize(locally_stored_elements, &lsize);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

        PetscScalar *ptr;
        ierr = VecGetArray(locally_stored_elements, &ptr);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

        for (PetscInt i=0; i<n_idx; ++i)
          {
            const unsigned int index = *(indices_begin+i);
            if ( index>=static_cast<unsigned int>(begin)
                 && index<static_cast<unsigned int>(end) )
              {
                //local entry
                *(values_begin+i) = *(ptr+index-begin);
              }
            else
              {
                //ghost entry
                const unsigned int ghostidx
                  = ghost_indices.index_within_set(index);

                Assert(ghostidx+end-begin<(unsigned int)lsize, ExcInternalError());
                *(values_begin+i) = *(ptr+ghostidx+end-begin);
              }
          }

        ierr = VecRestoreArray(locally_stored_elements, &ptr);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

        ierr = VecGhostRestoreLocalForm(vector, &locally_stored_elements);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

      }
    // if the vector is local or the
    // caller, then simply access the
    // element we are interested in
    else
      {
        int ierr;

        PetscInt begin, end;
        ierr = VecGetOwnershipRange (vector, &begin, &end);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

        PetscScalar *ptr;
        ierr = VecGetArray(vector, &ptr);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

        for (PetscInt i=0; i<n_idx; ++i)
          {
            const unsigned int index = *(indices_begin+i);

            Assert(index>=static_cast<unsigned int>(begin)
                   && index<static_cast<unsigned int>(end), ExcInternalError());

            *(values_begin+i) = *(ptr+index-begin);
          }

        ierr = VecRestoreArray(vector, &ptr);
        AssertThrow (ierr == 0, ExcPETScError(ierr));

      }
  }

#endif // DOXYGEN
}

DEAL_II_NAMESPACE_CLOSE

#endif // DEAL_II_WITH_PETSC

/*----------------------------   petsc_vector_base.h     ---------------------------*/

#endif
/*----------------------------   petsc_vector_base.h     ---------------------------*/