This file is indexed.

/usr/include/deal.II/lac/slepc_solver.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
// ---------------------------------------------------------------------
//
// Copyright (C) 2009 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------


#ifndef dealii__slepc_solver_h
#define dealii__slepc_solver_h

#include <deal.II/base/config.h>

#ifdef DEAL_II_WITH_SLEPC

#  include <deal.II/base/std_cxx11/shared_ptr.h>
#  include <deal.II/lac/exceptions.h>
#  include <deal.II/lac/solver_control.h>
#  include <deal.II/lac/petsc_matrix_base.h>
#  include <deal.II/lac/slepc_spectral_transformation.h>

#  include <petscconf.h>
#  include <petscksp.h>
#  include <slepceps.h>

DEAL_II_NAMESPACE_OPEN

/**
 * Base namespace for solver classes using the SLEPc solvers which are
 * selected based on flags passed to the eigenvalue problem solver context.
 * Derived classes set the right flags to set the right solver.
 *
 * The SLEPc solvers are intended to be used for solving the generalized
 * eigenspectrum problem $(A-\lambda B)x=0$, for $x\neq0$; where $A$ is a
 * system matrix, $B$ is a mass matrix, and $\lambda, x$ are a set of
 * eigenvalues and eigenvectors respectively. The emphasis is on methods and
 * techniques appropriate for problems in which the associated matrices are
 * sparse. Most of the methods offered by the SLEPc library are projection
 * methods or other methods with similar properties; and wrappers are provided
 * to interface to SLEPc solvers that handle both of these problem sets.
 *
 * SLEPcWrappers can be implemented in application codes in the following way:
 * @code
 *  SolverControl solver_control (1000, 1e-9);
 *  SolverArnoldi system (solver_control, mpi_communicator);
 *  system.solve (A, B, lambda, x, size_of_spectrum);
 * @endcode
 * for the generalized eigenvalue problem $Ax=B\lambda x$, where the variable
 * <code>const unsigned int size_of_spectrum</code> tells SLEPc the number of
 * eigenvector/eigenvalue pairs to solve for. Additional options and solver
 * parameters can be passed to the SLEPc solvers before calling
 * <code>solve()</code>. For example, if the matrices of the general
 * eigenspectrum problem are not hermitian and the lower eigenvalues are
 * wanted only, the following code can be implemented before calling
 * <code>solve()</code>:
 * @code
 *  system.set_problem_type (EPS_NHEP);
 *  system.set_which_eigenpairs (EPS_SMALLEST_REAL);
 * @endcode
 * These options can also be set at the command line.
 *
 * See also <code>step-36</code> for a hands-on example.
 *
 * For cases when spectral transformations are used in conjunction with
 * Krylov-type solvers or Davidson-type eigensolvers are employed one can
 * additionally specify which linear solver and preconditioner to use. This
 * can be achieved as follows
 * @code
 *   PETScWrappers::PreconditionBoomerAMG::AdditionalData data;
 *   data.symmetric_operator = true;
 *   PETScWrappers::PreconditionBoomerAMG preconditioner(mpi_communicator, data);
 *   SolverControl linear_solver_control (dof_handler.n_dofs(), 1e-12,false,false);
 *   PETScWrappers::SolverCG  linear_solver(linear_solver_control,mpi_communicator);
 *   linear_solver.initialize(preconditioner);
 *   SolverControl solver_control (100, 1e-9,false,false);
 *   SLEPcWrappers::SolverKrylovSchur eigensolver(solver_control,mpi_communicator);
 *   SLEPcWrappers::TransformationShift spectral_transformation(mpi_communicator);
 *   spectral_transformation.set_solver(linear_solver);
 *   eigensolver.set_transformation(spectral_transformation);
 *   eigensolver.solve (stiffness_matrix,mass_matrix,eigenvalues,eigenfunctions,eigenfunctions.size());
 * @endcode
 *
 * In order to support this usage case, different from PETSc wrappers, the
 * classes in this namespace are written in such a way that the underlying
 * SLEPc objects are initialized in constructors. By doing so one also avoid
 * caching of different settings (such as target eigenvalue or type of the
 * problem); instead those are applied straight away when the corresponding
 * functions of the wrapper classes are called.
 *
 * An alternative implementation to the one above is to use the API internals
 * directly within the application code. In this way the calling sequence
 * requires calling several of SolverBase functions rather than just one. This
 * freedom is intended for use of the SLEPcWrappers that require a greater
 * handle on the eigenvalue problem solver context. See also the API of, for
 * example:
 * @code
 * template <typename OutputVector>
 * void
 * SolverBase::solve (const PETScWrappers::MatrixBase &A,
 *                   const PETScWrappers::MatrixBase &B,
 *                   std::vector<PetscScalar>        &eigenvalues,
 *                   std::vector<OutputVector>       &eigenvectors,
 *                   const unsigned int               n_eigenpairs)
 * { ... }
 * @endcode
 * as an example on how to do this.
 *
 * For further information and explanations on handling the
 * @ref SLEPcWrappers "SLEPcWrappers",
 * see also the
 * @ref PETScWrappers "PETScWrappers",
 * on which they depend.
 *
 * @ingroup SLEPcWrappers
 *
 * @author Toby D. Young 2008, 2009, 2010, 2011, 2013; and Rickard Armiento
 * 2008; and Denis Davydov 2015.
 *
 * @note Various tweaks and enhancements contributed by Eloy Romero and Jose
 * E. Roman 2009, 2010.
 */
namespace SLEPcWrappers
{

  /**
   * Base class for solver classes using the SLEPc solvers. Since solvers in
   * SLEPc are selected based on flags passed to a generic solver object,
   * basically all the actual solver calls happen in this class, and derived
   * classes simply set the right flags to select one solver or another, or to
   * set certain parameters for individual solvers.
   */
  class SolverBase
  {
  public:
    /**
     * Constructor. Takes the MPI communicator over which parallel
     * computations are to happen.
     */
    SolverBase (SolverControl &cn,
                const MPI_Comm &mpi_communicator);

    /**
     * Destructor.
     */
    virtual ~SolverBase ();

    /**
     * Composite method that solves the eigensystem $Ax=\lambda x$. The
     * eigenvector sent in has to have at least one element that we can use as
     * a template when resizing, since we do not know the parameters of the
     * specific vector class used (i.e. local_dofs for MPI vectors). However,
     * while copying eigenvectors, at least twice the memory size of
     * <tt>eigenvectors</tt> is being used (and can be more). To avoid doing
     * this, the fairly standard calling sequence executed here is used: Set
     * up matrices for solving; Actually solve the system; Gather the
     * solution(s).
     *
     * @note Note that the number of converged eigenvectors can be larger than
     * the number of eigenvectors requested; this is due to a round off error
     * (success) of the eigenproblem solver context. If this is found to be
     * the case we simply do not bother with more eigenpairs than requested,
     * but handle that it may be more than specified by ignoring any extras.
     * By default one eigenvector/eigenvalue pair is computed.
     */
    template <typename OutputVector>
    void
    solve (const PETScWrappers::MatrixBase &A,
           std::vector<PetscScalar>        &eigenvalues,
           std::vector<OutputVector>       &eigenvectors,
           const unsigned int               n_eigenpairs = 1);

    /**
     * Same as above, but here a composite method for solving the system $A
     * x=\lambda B x$, for real matrices, vectors, and values $A, B, x,
     * \lambda$.
     */
    template <typename OutputVector>
    void
    solve (const PETScWrappers::MatrixBase &A,
           const PETScWrappers::MatrixBase &B,
           std::vector<PetscScalar>        &eigenvalues,
           std::vector<OutputVector>       &eigenvectors,
           const unsigned int               n_eigenpairs = 1);

    /**
     * Same as above, but here a composite method for solving the system $A
     * x=\lambda B x$ with real matrices $A, B$ and imaginary eigenpairs $x,
     * \lambda$.
     */
    template <typename OutputVector>
    void
    solve (const PETScWrappers::MatrixBase &A,
           const PETScWrappers::MatrixBase &B,
           std::vector<double>             &real_eigenvalues,
           std::vector<double>             &imag_eigenvalues,
           std::vector<OutputVector>       &real_eigenvectors,
           std::vector<OutputVector>       &imag_eigenvectors,
           const unsigned int               n_eigenpairs = 1);

    /**
     * Set the initial vector for the solver.
     */
    void
    set_initial_vector
    (const PETScWrappers::VectorBase &this_initial_vector) DEAL_II_DEPRECATED;

    /**
     * Set the initial vector space for the solver.
     *
     * By default, SLEPc initializes the starting vector or the initial
     * subspace randomly.
     */
    template <typename Vector>
    void
    set_initial_space
    (const std::vector<Vector> &initial_space);

    /**
     * Set the spectral transformation to be used.
     */
    void
    set_transformation (SLEPcWrappers::TransformationBase &this_transformation);

    /**
     * Set target eigenvalues in the spectrum to be computed. By default, no
     * target is set.
     */
    void
    set_target_eigenvalue (const PetscScalar &this_target);

    /**
     * Indicate which part of the spectrum is to be computed. By default
     * largest magnitude eigenvalues are computed.
     *
     * @note For other allowed values see the SLEPc documentation.
     */
    void
    set_which_eigenpairs (EPSWhich set_which);

    /**
     * Specify the type of the eigenspectrum problem. This can be used to
     * exploit known symmetries of the matrices that make up the
     * standard/generalized eigenspectrum problem.  By default a non-Hermitian
     * problem is assumed.
     *
     * @note For other allowed values see the SLEPc documentation.
     */
    void
    set_problem_type (EPSProblemType set_problem);

    /**
     * Take the information provided from SLEPc and checks it against
     * deal.II's own SolverControl objects to see if convergence has been
     * reached.
     */
    void
    get_solver_state (const SolverControl::State state);

    /**
     * Exception. Standard exception.
     */
    DeclException0 (ExcSLEPcWrappersUsageError);

    /**
     * Exception. SLEPc error with error number.
     */
    DeclException1 (ExcSLEPcError,
                    int,
                    << "    An error with error number " << arg1
                    << " occurred while calling a SLEPc function");

    /**
     * Exception. Convergence failure on the number of eigenvectors.
     */
    DeclException2 (ExcSLEPcEigenvectorConvergenceMismatchError,
                    int, int,
                    << "    The number of converged eigenvectors is " << arg1
                    << " but " << arg2 << " were requested. ");

    /**
     * Access to the object that controls convergence.
     */
    SolverControl &control () const;

  protected:

    /**
     * Reference to the object that controls convergence of the iterative
     * solver.
     */
    SolverControl &solver_control;

    /**
     * Copy of the MPI communicator object to be used for the solver.
     */
    const MPI_Comm mpi_communicator;

    /**
     * Solve the linear system for <code>n_eigenpairs</code> eigenstates.
     * Parameter <code>n_converged</code> contains the actual number of
     * eigenstates that have  converged; this can be both fewer or more than
     * n_eigenpairs, depending on the SLEPc eigensolver used.
     */
    void
    solve (const unsigned int n_eigenpairs,
           unsigned int *n_converged);

    /**
     * Access the real parts of solutions for a solved eigenvector problem,
     * pair index solutions, $\text{index}\,\in\,0\hdots
     * \text{n\_converged}-1$.
     */
    void
    get_eigenpair (const unsigned int         index,
                   PetscScalar               &eigenvalues,
                   PETScWrappers::VectorBase &eigenvectors);

    /**
     * Access the real and imaginary parts of solutions for a solved
     * eigenvector problem, pair index solutions, $\text{index}\,\in\,0\hdots
     * \text{n\_converged}-1$.
     */
    void
    get_eigenpair (const unsigned int         index,
                   double                    &real_eigenvalues,
                   double                    &imag_eigenvalues,
                   PETScWrappers::VectorBase &real_eigenvectors,
                   PETScWrappers::VectorBase &imag_eigenvectors);

    /**
     * Initialize solver for the linear system $Ax=\lambda x$. (Note: this is
     * required before calling solve ())
     */
    void
    set_matrices (const PETScWrappers::MatrixBase &A);

    /**
     * Same as above, but here initialize solver for the linear system $A
     * x=\lambda B x$.
     */
    void
    set_matrices (const PETScWrappers::MatrixBase &A,
                  const PETScWrappers::MatrixBase &B);

  protected:

    /**
     * Objects for Eigenvalue Problem Solver.
     */
    EPS eps;

  private:
    /**
     * Convergence reason.
     */
    EPSConvergedReason reason;


    /**
     * A function that can be used in SLEPc as a callback to check on
     * convergence.
     *
     * @note This function is not used currently.
     */
    static
    int
    convergence_test (EPS          eps,
                      PetscScalar  real_eigenvalue,
                      PetscScalar  imag_eigenvalue,
                      PetscReal    residual_norm,
                      PetscReal   *estimated_error,
                      void        *solver_control);
  };

  /**
   * An implementation of the solver interface using the SLEPc Krylov-Schur
   * solver. Usage: All spectrum, all problem types, complex.
   *
   * @ingroup SLEPcWrappers
   *
   * @author Toby D. Young 2008
   */
  class SolverKrylovSchur : public SolverBase
  {
  public:

    /**
     * Standardized data struct to pipe additional data to the solver, should
     * it be needed.
     */
    struct AdditionalData
    {};

    /**
     * SLEPc solvers will want to have an MPI communicator context over which
     * computations are parallelized. By default, this carries the same
     * behaviour as the PETScWrappers, but you can change that.
     */
    SolverKrylovSchur (SolverControl        &cn,
                       const MPI_Comm       &mpi_communicator = PETSC_COMM_SELF,
                       const AdditionalData &data = AdditionalData());

  protected:

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };

  /**
   * An implementation of the solver interface using the SLEPc Arnoldi solver.
   * Usage: All spectrum, all problem types, complex.
   *
   * @ingroup SLEPcWrappers
   *
   * @author Toby D. Young 2008, 2011
   */
  class SolverArnoldi : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver, should
     * it be needed.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, set the option of delayed
       * reorthogonalization to false, i.e. don't do it.
       */
      AdditionalData (const bool delayed_reorthogonalization = false);

      /**
       * Flag for delayed reorthogonalization.
       */
      bool delayed_reorthogonalization;
    };

    /**
     * SLEPc solvers will want to have an MPI communicator context over which
     * computations are parallelized. By default, this carries the same
     * behaviour as the PETScWrappers, but you can change that.
     */
    SolverArnoldi (SolverControl        &cn,
                   const MPI_Comm       &mpi_communicator = PETSC_COMM_SELF,
                   const AdditionalData &data = AdditionalData());

  protected:

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };

  /**
   * An implementation of the solver interface using the SLEPc Lanczos solver.
   * Usage: All spectrum, all problem types, complex.
   *
   * @ingroup SLEPcWrappers
   *
   * @author Toby D. Young 2009; and Denis Davydov 2015;
   */
  class SolverLanczos : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver, should
     * it be needed.
     */
    struct AdditionalData
    {
      /**
       * The type of reorthogonalization used during the Lanczos iteration.
       */
      EPSLanczosReorthogType reorthog;

      /**
       * Constructor. By default sets the type of reorthogonalization used
       * during the Lanczos iteration to full.
       */
      AdditionalData(const EPSLanczosReorthogType r  = EPS_LANCZOS_REORTHOG_FULL);
    };

    /**
     * SLEPc solvers will want to have an MPI communicator context over which
     * computations are parallelized. By default, this carries the same
     * behaviour as the PETScWrappers, but you can change that.
     */
    SolverLanczos (SolverControl        &cn,
                   const MPI_Comm       &mpi_communicator = PETSC_COMM_SELF,
                   const AdditionalData &data = AdditionalData());

  protected:

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };

  /**
   * An implementation of the solver interface using the SLEPc Power solver.
   * Usage: Largest values of spectrum only, all problem types, complex.
   *
   * @ingroup SLEPcWrappers
   *
   * @author Toby D. Young 2010
   */
  class SolverPower : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver, should
     * it be needed.
     */
    struct AdditionalData
    {};

    /**
     * SLEPc solvers will want to have an MPI communicator context over which
     * computations are parallelized. By default, this carries the same
     * behaviour as the PETScWrappers, but you can change that.
     */
    SolverPower (SolverControl        &cn,
                 const MPI_Comm       &mpi_communicator = PETSC_COMM_SELF,
                 const AdditionalData &data = AdditionalData());

  protected:

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };

  /**
   * An implementation of the solver interface using the SLEPc Davidson
   * solver. Usage: All problem types.
   *
   * @ingroup SLEPcWrappers
   *
   * @author Toby D. Young 2010; Denis Davydov 2015
   */
  class SolverGeneralizedDavidson : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver, should
     * it be needed.
     */
    struct AdditionalData
    {
      /**
       * Use double expansion in search subspace.
       */
      bool double_expansion;

      /**
       * Constructor. By default set double_expansion to false.
       */
      AdditionalData(bool double_expansion = false);
    };

    /**
     * SLEPc solvers will want to have an MPI communicator context over which
     * computations are parallelized. By default, this carries the same
     * behaviour as the PETScWrappers, but you can change that.
     */
    SolverGeneralizedDavidson (SolverControl        &cn,
                               const MPI_Comm       &mpi_communicator = PETSC_COMM_SELF,
                               const AdditionalData &data = AdditionalData());

  protected:

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };

  /**
   * An implementation of the solver interface using the SLEPc Jacobi-Davidson
   * solver. Usage: All problem types.
   *
   * @ingroup SLEPcWrappers
   *
   * @author Toby D. Young 2013
   */
  class SolverJacobiDavidson : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver, should
     * it be needed.
     */
    struct AdditionalData
    {};

    /**
     * SLEPc solvers will want to have an MPI communicator context over which
     * computations are parallelized. By default, this carries the same
     * behaviour as the PETScWrappers, but you can change that.
     */
    SolverJacobiDavidson (SolverControl        &cn,
                          const MPI_Comm       &mpi_communicator = PETSC_COMM_SELF,
                          const AdditionalData &data = AdditionalData());

  protected:

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };


  /**
   * An implementation of the solver interface using the SLEPc LAPACK direct
   * solver.
   *
   * @ingroup SLEPcWrappers
   *
   * @author Toby D. Young 2013
   */
  class SolverLAPACK : public SolverBase
  {
  public:

    /**
     * Standardized data struct to pipe additional data to the solver, should
     * it be needed.
     */
    struct AdditionalData
    {};

    /**
     * SLEPc solvers will want to have an MPI communicator context over which
     * computations are parallelized. By default, this carries the same
     * behaviour as the PETScWrappers, but you can change that.
     */
    SolverLAPACK (SolverControl        &cn,
                  const MPI_Comm       &mpi_communicator = PETSC_COMM_SELF,
                  const AdditionalData &data = AdditionalData());

  protected:

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };

  // --------------------------- inline and template functions -----------
  /**
   * This is declared here to make it possible to take a std::vector of
   * different PETScWrappers vector types
   */
  // todo: The logic of these functions can be simplified without breaking backward compatibility...

  template <typename OutputVector>
  void
  SolverBase::solve (const PETScWrappers::MatrixBase &A,
                     std::vector<PetscScalar>        &eigenvalues,
                     std::vector<OutputVector>       &eigenvectors,
                     const unsigned int               n_eigenpairs)
  {
    // Panic if the number of eigenpairs wanted is out of bounds.
    AssertThrow ((n_eigenpairs > 0) && (n_eigenpairs <= A.m ()),
                 ExcSLEPcWrappersUsageError());

    // Set the matrices of the problem
    set_matrices (A);

    // and solve
    unsigned int n_converged = 0;
    solve (n_eigenpairs, &n_converged);

    if (n_converged > n_eigenpairs)
      n_converged = n_eigenpairs;
    AssertThrow (n_converged == n_eigenpairs,
                 ExcSLEPcEigenvectorConvergenceMismatchError(n_converged, n_eigenpairs));

    AssertThrow (eigenvectors.size() != 0, ExcSLEPcWrappersUsageError());
    eigenvectors.resize (n_converged, eigenvectors.front());
    eigenvalues.resize (n_converged);

    for (unsigned int index=0; index<n_converged; ++index)
      get_eigenpair (index, eigenvalues[index], eigenvectors[index]);
  }

  template <typename OutputVector>
  void
  SolverBase::solve (const PETScWrappers::MatrixBase &A,
                     const PETScWrappers::MatrixBase &B,
                     std::vector<PetscScalar>        &eigenvalues,
                     std::vector<OutputVector>       &eigenvectors,
                     const unsigned int                  n_eigenpairs)
  {
    // Guard against incompatible matrix sizes:
    AssertThrow (A.m() == B.m (), ExcDimensionMismatch(A.m(), B.m()));
    AssertThrow (A.n() == B.n (), ExcDimensionMismatch(A.n(), B.n()));

    // Panic if the number of eigenpairs wanted is out of bounds.
    AssertThrow ((n_eigenpairs>0) && (n_eigenpairs<=A.m ()),
                 ExcSLEPcWrappersUsageError());

    // Set the matrices of the problem
    set_matrices (A, B);

    // and solve
    unsigned int n_converged = 0;
    solve (n_eigenpairs, &n_converged);

    if (n_converged>=n_eigenpairs)
      n_converged = n_eigenpairs;

    AssertThrow (n_converged==n_eigenpairs,
                 ExcSLEPcEigenvectorConvergenceMismatchError(n_converged, n_eigenpairs));
    AssertThrow (eigenvectors.size() != 0, ExcSLEPcWrappersUsageError());

    eigenvectors.resize (n_converged, eigenvectors.front());
    eigenvalues.resize (n_converged);

    for (unsigned int index=0; index<n_converged; ++index)
      get_eigenpair (index, eigenvalues[index], eigenvectors[index]);
  }

  template <typename OutputVector>
  void
  SolverBase::solve (const PETScWrappers::MatrixBase &A,
                     const PETScWrappers::MatrixBase &B,
                     std::vector<double>             &real_eigenvalues,
                     std::vector<double>             &imag_eigenvalues,
                     std::vector<OutputVector>       &real_eigenvectors,
                     std::vector<OutputVector>       &imag_eigenvectors,
                     const unsigned int                  n_eigenpairs)
  {
    // Guard against incompatible matrix sizes:
    AssertThrow (A.m() == B.m (), ExcDimensionMismatch(A.m(), B.m()));
    AssertThrow (A.n() == B.n (), ExcDimensionMismatch(A.n(), B.n()));

    // and incompatible eigenvalue/eigenvector sizes
    AssertThrow (real_eigenvalues.size() == imag_eigenvalues.size(),
                 ExcDimensionMismatch(real_eigenvalues.size(), imag_eigenvalues.size()));
    AssertThrow (real_eigenvectors.size() == imag_eigenvectors.size (),
                 ExcDimensionMismatch(real_eigenvectors.size(), imag_eigenvectors.size()));

    // Panic if the number of eigenpairs wanted is out of bounds.
    AssertThrow ((n_eigenpairs>0) && (n_eigenpairs<=A.m ()),
                 ExcSLEPcWrappersUsageError());

    // Set the matrices of the problem
    set_matrices (A, B);

    // and solve
    unsigned int n_converged = 0;
    solve (n_eigenpairs, &n_converged);

    if (n_converged>=n_eigenpairs)
      n_converged = n_eigenpairs;

    AssertThrow (n_converged==n_eigenpairs,
                 ExcSLEPcEigenvectorConvergenceMismatchError(n_converged, n_eigenpairs));
    AssertThrow ((real_eigenvectors.size()!=0) && (imag_eigenvectors.size()!=0),
                 ExcSLEPcWrappersUsageError());

    real_eigenvectors.resize (n_converged, real_eigenvectors.front());
    imag_eigenvectors.resize (n_converged, imag_eigenvectors.front());
    real_eigenvalues.resize (n_converged);
    imag_eigenvalues.resize (n_converged);

    for (unsigned int index=0; index<n_converged; ++index)
      get_eigenpair (index,
                     real_eigenvalues[index], imag_eigenvalues[index],
                     real_eigenvectors[index], imag_eigenvectors[index]);
  }

  template <typename Vector>
  void
  SolverBase::set_initial_space(const std::vector<Vector> &this_initial_space)
  {
    int ierr;
    std::vector<Vec> vecs(this_initial_space.size());

    for (unsigned int i = 0; i < this_initial_space.size(); i++)
      {
        Assert(this_initial_space[i].l2_norm()>0.0,
               ExcMessage("Initial vectors should be nonzero."));
        vecs[i] = this_initial_space[i];
      }

    // if the eigensolver supports only a single initial vector, but several
    // guesses are provided, then all except the first one will be discarded.
    // One could still build a vector that is rich in the directions of all guesses,
    // by taking a linear combination of them. (TODO: make function virtual?)

#if DEAL_II_PETSC_VERSION_LT(3,1,0)
    ierr = EPSSetInitialVector (eps, &vecs[0]);
#else
    ierr = EPSSetInitialSpace (eps, vecs.size(), &vecs[0]);
#endif
    AssertThrow (ierr == 0, ExcSLEPcError(ierr));
  }

}

DEAL_II_NAMESPACE_CLOSE

#endif // DEAL_II_WITH_SLEPC

/*----------------------------   slepc_solver.h  ---------------------------*/

#endif

/*----------------------------   slepc_solver.h  ---------------------------*/