This file is indexed.

/usr/include/deal.II/lac/solver_gmres.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
// ---------------------------------------------------------------------
//
// Copyright (C) 1998 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__solver_gmres_h
#define dealii__solver_gmres_h



#include <deal.II/base/config.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/logstream.h>
#include <deal.II/lac/householder.h>
#include <deal.II/lac/solver.h>
#include <deal.II/lac/solver_control.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/lapack_full_matrix.h>
#include <deal.II/lac/vector.h>

#include <vector>
#include <cmath>
#include <algorithm>

DEAL_II_NAMESPACE_OPEN

/*!@addtogroup Solvers */
/*@{*/

namespace internal
{
  /**
   * A namespace for a helper class to the GMRES solver.
   */
  namespace SolverGMRES
  {
    /**
     * Class to hold temporary vectors.  This class automatically allocates a
     * new vector, once it is needed.
     *
     * A future version should also be able to shift through vectors
     * automatically, avoiding restart.
     */

    template <typename VectorType>
    class TmpVectors
    {
    public:
      /**
       * Constructor. Prepares an array of @p VectorType of length @p
       * max_size.
       */
      TmpVectors(const unsigned int       max_size,
                 VectorMemory<VectorType> &vmem);

      /**
       * Delete all allocated vectors.
       */
      ~TmpVectors();

      /**
       * Get vector number @p i. If this vector was unused before, an error
       * occurs.
       */
      VectorType &operator[] (const unsigned int i) const;

      /**
       * Get vector number @p i. Allocate it if necessary.
       *
       * If a vector must be allocated, @p temp is used to reinit it to the
       * proper dimensions.
       */
      VectorType &operator() (const unsigned int i,
                              const VectorType   &temp);

    private:
      /**
       * Pool were vectors are obtained from.
       */
      VectorMemory<VectorType> &mem;

      /**
       * Field for storing the vectors.
       */
      std::vector<VectorType *> data;

      /**
       * Offset of the first vector. This is for later when vector rotation
       * will be implemented.
       */
      unsigned int offset;
    };
  }
}

/**
 * Implementation of the Restarted Preconditioned Direct Generalized Minimal
 * Residual Method. The stopping criterion is the norm of the residual.
 *
 * The AdditionalData structure contains the number of temporary vectors used.
 * The size of the Arnoldi basis is this number minus three. Additionally, it
 * allows you to choose between right or left preconditioning. The default is
 * left preconditioning. Finally it includes a flag indicating whether or not
 * the default residual is used as stopping criterion.
 *
 *
 * <h3>Left versus right preconditioning</h3>
 *
 * @p AdditionalData allows you to choose between left and right
 * preconditioning. As expected, this switches between solving for the systems
 * <i>P<sup>-1</sup>A</i> and <i>AP<sup>-1</sup></i>, respectively.
 *
 * A second consequence is the type of residual which is used to measure
 * convergence. With left preconditioning, this is the <b>preconditioned</b>
 * residual, while with right preconditioning, it is the residual of the
 * unpreconditioned system.
 *
 * Optionally, this behavior can be overridden by using the flag
 * AdditionalData::use_default_residual. A <tt>true</tt> value refers to the
 * behavior described in the previous paragraph, while <tt>false</tt> reverts
 * it. Be aware though that additional residuals have to be computed in this
 * case, impeding the overall performance of the solver.
 *
 *
 * <h3>The size of the Arnoldi basis</h3>
 *
 * The maximal basis size is controlled by AdditionalData::max_n_tmp_vectors,
 * and it is this number minus 2. If the number of iteration steps exceeds
 * this number, all basis vectors are discarded and the iteration starts anew
 * from the approximation obtained so far.
 *
 * Note that the minimizing property of GMRes only pertains to the Krylov
 * space spanned by the Arnoldi basis. Therefore, restarted GMRes is
 * <b>not</b> minimizing anymore. The choice of the basis length is a trade-
 * off between memory consumption and convergence speed, since a longer basis
 * means minimization over a larger space.
 *
 * For the requirements on matrices and vectors in order to work with this
 * class, see the documentation of the Solver base class.
 *
 *
 * <h3>Observing the progress of linear solver iterations</h3>
 *
 * The solve() function of this class uses the mechanism described in the
 * Solver base class to determine convergence. This mechanism can also be used
 * to observe the progress of the iteration.
 *
 *
 * <h3>Eigenvalue and condition number estimates</h3>
 *
 * This class can estimate eigenvalues and condition number during the
 * solution process. This is done by creating the Hessenberg matrix during the
 * inner iterations. The eigenvalues are estimated as the eigenvalues of the
 * Hessenberg matrix and the condition number is estimated as the ratio of the
 * largest and smallest singular value of the Hessenberg matrix. The estimates
 * can be obtained by connecting a function as a slot using @p
 * connect_condition_number_slot and @p connect_eigenvalues_slot. These slots
 * will then be called from the solver with the estimates as argument.
 *
 *
 * @author Wolfgang Bangerth, Guido Kanschat, Ralf Hartmann.
 */
template <class VectorType = Vector<double> >
class SolverGMRES : public Solver<VectorType>
{
public:
  /**
   * Standardized data struct to pipe additional data to the solver.
   */
  struct AdditionalData
  {
    /**
     * Constructor. By default, set the number of temporary vectors to 30,
     * i.e. do a restart every 28 iterations. Also set preconditioning from
     * left, the residual of the stopping criterion to the default residual,
     * and re-orthogonalization only if necessary.
     */
    explicit
    AdditionalData (const unsigned int max_n_tmp_vectors = 30,
                    const bool right_preconditioning = false,
                    const bool use_default_residual = true,
                    const bool force_re_orthogonalization = false);

    /**
     * Constructor.
     * @deprecated To obtain the estimated eigenvalues instead use:
     * connect_eigenvalues_slot
     */
    AdditionalData (const unsigned int max_n_tmp_vectors,
                    const bool right_preconditioning,
                    const bool use_default_residual,
                    const bool force_re_orthogonalization,
                    const bool compute_eigenvalues) DEAL_II_DEPRECATED;

    /**
     * Maximum number of temporary vectors. This parameter controls the size
     * of the Arnoldi basis, which for historical reasons is
     * #max_n_tmp_vectors-2.
     */
    unsigned int    max_n_tmp_vectors;

    /**
     * Flag for right preconditioning.
     *
     * @note Change between left and right preconditioning will also change
     * the way residuals are evaluated. See the corresponding section in the
     * SolverGMRES.
     */
    bool right_preconditioning;

    /**
     * Flag for the default residual that is used to measure convergence.
     */
    bool use_default_residual;

    /**
     * Flag to force re-orthogonalization of orthonormal basis in every step.
     * If set to false, the solver automatically checks for loss of
     * orthogonality every 5 iterations and enables re-orthogonalization only
     * if necessary.
     */
    bool force_re_orthogonalization;

    /**
     * Compute all eigenvalues of the Hessenberg matrix generated while
     * solving, i.e., the projected system matrix. This gives an approximation
     * of the eigenvalues of the (preconditioned) system matrix. Since the
     * Hessenberg matrix is thrown away at restart, the eigenvalues are
     * printed for every 30 iterations.
     *
     * @note Requires LAPACK support.
     */
    bool compute_eigenvalues;
  };

  /**
   * Constructor.
   */
  SolverGMRES (SolverControl            &cn,
               VectorMemory<VectorType> &mem,
               const AdditionalData     &data=AdditionalData());

  /**
   * Constructor. Use an object of type GrowingVectorMemory as a default to
   * allocate memory.
   */
  SolverGMRES (SolverControl        &cn,
               const AdditionalData &data=AdditionalData());

  /**
   * Solve the linear system $Ax=b$ for x.
   */
  template<typename MatrixType, typename PreconditionerType>
  void
  solve (const MatrixType         &A,
         VectorType               &x,
         const VectorType         &b,
         const PreconditionerType &precondition);

  /**
   * Connect a slot to retrieve the estimated condition number. Called on each
   * outer iteration if every_iteration=true, otherwise called once when
   * iterations are ended (i.e., either because convergence has been achieved,
   * or because divergence has been detected).
   */
  boost::signals2::connection
  connect_condition_number_slot(const std_cxx11::function<void (double)> &slot,
                                const bool every_iteration=false);

  /**
   * Connect a slot to retrieve the estimated eigenvalues. Called on each
   * outer iteration if every_iteration=true, otherwise called once when
   * iterations are ended (i.e., either because convergence has been achieved,
   * or because divergence has been detected).
   */
  boost::signals2::connection
  connect_eigenvalues_slot(
    const std_cxx11::function<void (const std::vector<std::complex<double> > &)> &slot,
    const bool every_iteration=false);


  DeclException1 (ExcTooFewTmpVectors,
                  int,
                  << "The number of temporary vectors you gave ("
                  << arg1 << ") is too small. It should be at least 10 for "
                  << "any results, and much more for reasonable ones.");

protected:

  /**
   * Includes the maximum number of tmp vectors.
   */
  AdditionalData additional_data;

  /**
   * Signal used to retrieve the estimated condition number. Called once when
   * all iterations are ended.
   */
  boost::signals2::signal<void (double)> condition_number_signal;

  /**
   * Signal used to retrieve the estimated condition numbers. Called on each
   * outer iteration.
   */
  boost::signals2::signal<void (double)> all_condition_numbers_signal;

  /**
   * Signal used to retrieve the estimated eigenvalues. Called once when all
   * iterations are ended.
   */
  boost::signals2::signal<void (const std::vector<std::complex<double> > &)> eigenvalues_signal;

  /**
   * Signal used to retrieve the estimated eigenvalues. Called on each outer
   * iteration.
   */
  boost::signals2::signal<void (const std::vector<std::complex<double> > &)> all_eigenvalues_signal;


  /**
   * Implementation of the computation of the norm of the residual.
   */
  virtual double criterion();

  /**
   * Transformation of an upper Hessenberg matrix into tridiagonal structure
   * by givens rotation of the last column
   */
  void givens_rotation (Vector<double> &h,  Vector<double> &b,
                        Vector<double> &ci, Vector<double> &si,
                        int col) const;

  /**
   * Orthogonalize the vector @p vv against the @p dim (orthogonal) vectors
   * given by the first argument using the modified Gram-Schmidt algorithm.
   * The factors used for orthogonalization are stored in @p h. The boolean @p
   * re_orthogonalize specifies whether the modified Gram-Schmidt algorithm
   * should be applied twice. The algorithm checks loss of orthogonality in
   * the procedure every fifth step and sets the flag to true in that case.
   * All subsequent iterations use re-orthogonalization.
   */
  static double
  modified_gram_schmidt (const internal::SolverGMRES::TmpVectors<VectorType> &orthogonal_vectors,
                         const unsigned int                                  dim,
                         const unsigned int                                  accumulated_iterations,
                         VectorType                                          &vv,
                         Vector<double>                                      &h,
                         bool                                                &re_orthogonalize);

  /**
   * Estimates the eigenvalues from the Hessenberg matrix, H_orig, generated
   * during the inner iterations. Uses these estimate to compute the condition
   * number. Calls the signals eigenvalues_signal and cond_signal with these
   * estimates as arguments. Outputs the eigenvalues to deallog if
   * log_eigenvalues is true.
   */
  static void
  compute_eigs_and_cond(
    const FullMatrix<double> &H_orig ,
    const unsigned int dim,
    const boost::signals2::signal<void (const std::vector<std::complex<double> > &)> &eigenvalues_signal,
    const boost::signals2::signal<void(double)> &cond_signal,
    const bool log_eigenvalues);

  /**
   * Projected system matrix
   */
  FullMatrix<double> H;

  /**
   * Auxiliary matrix for inverting @p H
   */
  FullMatrix<double> H1;


private:
  /**
   * No copy constructor.
   */
  SolverGMRES (const SolverGMRES<VectorType> &);
};

/**
 * Implementation of the Generalized minimal residual method with flexible
 * preconditioning method.
 *
 * This version of the GMRES method allows for the use of a different
 * preconditioner in each iteration step. Therefore, it is also more robust
 * with respect to inaccurate evaluation of the preconditioner. An important
 * application is also the use of a Krylov space method inside the
 * preconditioner. As opposed to SolverGMRES which allows one to choose
 * between left and right preconditioning, this solver always applies the
 * preconditioner from the right.
 *
 * FGMRES needs two vectors in each iteration steps yielding a total of
 * <tt>2*SolverFGMRES::AdditionalData::max_basis_size+1</tt> auxiliary
 * vectors.
 *
 * Caveat: Documentation of this class is not up to date. There are also a few
 * parameters of GMRES we would like to introduce here.
 *
 * @author Guido Kanschat, 2003
 */
template <class VectorType = Vector<double> >
class SolverFGMRES : public Solver<VectorType>
{
public:
  /**
   * Standardized data struct to pipe additional data to the solver.
   */
  struct AdditionalData
  {
    /**
     * Constructor. By default, set the maximum basis size to 30.
     */
    explicit
    AdditionalData(const unsigned int max_basis_size = 30,
                   const bool /*use_default_residual*/ = true)
      :
      max_basis_size(max_basis_size)
    {}

    /**
     * Maximum number of tmp vectors.
     */
    unsigned int    max_basis_size;
  };

  /**
   * Constructor.
   */
  SolverFGMRES (SolverControl            &cn,
                VectorMemory<VectorType> &mem,
                const AdditionalData     &data=AdditionalData());

  /**
   * Constructor. Use an object of type GrowingVectorMemory as a default to
   * allocate memory.
   */
  SolverFGMRES (SolverControl        &cn,
                const AdditionalData &data=AdditionalData());

  /**
   * Solve the linear system $Ax=b$ for x.
   */
  template<typename MatrixType, typename PreconditionerType>
  void
  solve (const MatrixType         &A,
         VectorType               &x,
         const VectorType         &b,
         const PreconditionerType &precondition);

private:

  /**
   * Additional flags.
   */
  AdditionalData additional_data;

  /**
   * Projected system matrix
   */
  FullMatrix<double> H;

  /**
   * Auxiliary matrix for inverting @p H
   */
  FullMatrix<double> H1;
};

/*@}*/
/* --------------------- Inline and template functions ------------------- */


#ifndef DOXYGEN
namespace internal
{
  namespace SolverGMRES
  {
    template <class VectorType>
    inline
    TmpVectors<VectorType>::
    TmpVectors (const unsigned int       max_size,
                VectorMemory<VectorType> &vmem)
      :
      mem(vmem),
      data (max_size, 0),
      offset(0)
    {}


    template <class VectorType>
    inline
    TmpVectors<VectorType>::~TmpVectors ()
    {
      for (typename std::vector<VectorType *>::iterator v = data.begin();
           v != data.end(); ++v)
        if (*v != 0)
          mem.free(*v);
    }


    template <class VectorType>
    inline VectorType &
    TmpVectors<VectorType>::operator[] (const unsigned int i) const
    {
      Assert (i+offset<data.size(),
              ExcIndexRange(i, -offset, data.size()-offset));

      Assert (data[i-offset] != 0, ExcNotInitialized());
      return *data[i-offset];
    }


    template <class VectorType>
    inline VectorType &
    TmpVectors<VectorType>::operator() (const unsigned int i,
                                        const VectorType       &temp)
    {
      Assert (i+offset<data.size(),
              ExcIndexRange(i,-offset, data.size()-offset));
      if (data[i-offset] == 0)
        {
          data[i-offset] = mem.alloc();
          data[i-offset]->reinit(temp);
        }
      return *data[i-offset];
    }

    // A comparator for better printing eigenvalues
    inline
    bool complex_less_pred(const std::complex<double> &x,
                           const std::complex<double> &y)
    {
      return x.real() < y.real() || (x.real() == y.real() && x.imag() < y.imag());
    }
  }
}



template <class VectorType>
inline
SolverGMRES<VectorType>::AdditionalData::
AdditionalData (const unsigned int max_n_tmp_vectors,
                const bool         right_preconditioning,
                const bool         use_default_residual,
                const bool         force_re_orthogonalization)
  :
  max_n_tmp_vectors(max_n_tmp_vectors),
  right_preconditioning(right_preconditioning),
  use_default_residual(use_default_residual),
  force_re_orthogonalization(force_re_orthogonalization),
  compute_eigenvalues(false)
{}



template <class VectorType>
inline
SolverGMRES<VectorType>::AdditionalData::
AdditionalData (const unsigned int max_n_tmp_vectors,
                const bool         right_preconditioning,
                const bool         use_default_residual,
                const bool         force_re_orthogonalization,
                const bool         compute_eigenvalues)
  :
  max_n_tmp_vectors(max_n_tmp_vectors),
  right_preconditioning(right_preconditioning),
  use_default_residual(use_default_residual),
  force_re_orthogonalization(force_re_orthogonalization),
  compute_eigenvalues(compute_eigenvalues)
{}



template <class VectorType>
SolverGMRES<VectorType>::SolverGMRES (SolverControl            &cn,
                                      VectorMemory<VectorType> &mem,
                                      const AdditionalData     &data)
  :
  Solver<VectorType> (cn,mem),
  additional_data(data)
{}



template <class VectorType>
SolverGMRES<VectorType>::SolverGMRES (SolverControl        &cn,
                                      const AdditionalData &data) :
  Solver<VectorType> (cn),
  additional_data(data)
{}



template <class VectorType>
inline
void
SolverGMRES<VectorType>::givens_rotation (Vector<double> &h,
                                          Vector<double> &b,
                                          Vector<double> &ci,
                                          Vector<double> &si,
                                          int            col) const
{
  for (int i=0 ; i<col ; i++)
    {
      const double s = si(i);
      const double c = ci(i);
      const double dummy = h(i);
      h(i)   =  c*dummy + s*h(i+1);
      h(i+1) = -s*dummy + c*h(i+1);
    };

  const double r = 1./std::sqrt(h(col)*h(col) + h(col+1)*h(col+1));
  si(col) = h(col+1) *r;
  ci(col) = h(col)   *r;
  h(col)  =  ci(col)*h(col) + si(col)*h(col+1);
  b(col+1)= -si(col)*b(col);
  b(col) *=  ci(col);
}



template <class VectorType>
inline
double
SolverGMRES<VectorType>::modified_gram_schmidt
(const internal::SolverGMRES::TmpVectors<VectorType> &orthogonal_vectors,
 const unsigned int                                  dim,
 const unsigned int                                  accumulated_iterations,
 VectorType                                          &vv,
 Vector<double>                                      &h,
 bool                                                &re_orthogonalize)
{
  Assert(dim > 0, ExcInternalError());
  const unsigned int inner_iteration = dim - 1;

  // need initial norm for detection of re-orthogonalization, see below
  double norm_vv_start = 0;
  if (re_orthogonalize == false && inner_iteration % 5 == 4)
    norm_vv_start = vv.l2_norm();

  // Orthogonalization
  h(0) = vv * orthogonal_vectors[0];
  for (unsigned int i=1 ; i<dim ; ++i)
    h(i) = vv.add_and_dot(-h(i-1), orthogonal_vectors[i-1], orthogonal_vectors[i]);
  double norm_vv = std::sqrt(vv.add_and_dot(-h(dim-1), orthogonal_vectors[dim-1], vv));

  // Re-orthogonalization if loss of orthogonality detected. For the test, use
  // a strategy discussed in C. T. Kelley, Iterative Methods for Linear and
  // Nonlinear Equations, SIAM, Philadelphia, 1995: Compare the norm of vv
  // after orthogonalization with its norm when starting the
  // orthogonalization. If vv became very small (here: less than the square
  // root of the machine precision times 10), it is almost in the span of the
  // previous vectors, which indicates loss of precision.
  if (re_orthogonalize == false && inner_iteration % 5 == 4)
    {
      if (norm_vv > 10. * norm_vv_start *
          std::sqrt(std::numeric_limits<typename VectorType::value_type>::epsilon()))
        return norm_vv;

      else
        {
          re_orthogonalize = true;
          deallog << "Re-orthogonalization enabled at step "
                  << accumulated_iterations << std::endl;
        }
    }

  if (re_orthogonalize == true)
    {
      double htmp = vv * orthogonal_vectors[0];
      h(0) += htmp;
      for (unsigned int i=1 ; i<dim ; ++i)
        {
          htmp = vv.add_and_dot(-htmp, orthogonal_vectors[i-1], orthogonal_vectors[i]);
          h(i) += htmp;
        }
      norm_vv = std::sqrt(vv.add_and_dot(-htmp, orthogonal_vectors[dim-1], vv));
    }

  return norm_vv;
}



template<class VectorType>
inline void
SolverGMRES<VectorType>::compute_eigs_and_cond
(const FullMatrix<double>                     &H_orig,
 const unsigned int                           dim,
 const boost::signals2::signal<void (const std::vector<std::complex<double> > &)> &eigenvalues_signal,
 const boost::signals2::signal<void (double)> &cond_signal,
 const bool                                   log_eigenvalues)
{
  //Avoid copying the Hessenberg matrix if it isn't needed.
  if (!eigenvalues_signal.empty() || !cond_signal.empty() || log_eigenvalues )
    {
      LAPACKFullMatrix<double> mat(dim,dim);
      for (unsigned int i=0; i<dim; ++i)
        for (unsigned int j=0; j<dim; ++j)
          mat(i,j) = H_orig(i,j);
      //Avoid computing eigenvalues if they are not needed.
      if (!eigenvalues_signal.empty() || log_eigenvalues )
        {
          //Copy mat so that we can compute svd below. Necessary since
          //compute_eigenvalues will leave mat in state LAPACKSupport::unusable.
          LAPACKFullMatrix<double> mat_eig(mat);
          mat_eig.compute_eigenvalues();
          std::vector<std::complex<double> > eigenvalues(dim);
          for (unsigned int i=0; i<mat_eig.n(); ++i)
            eigenvalues[i] = mat_eig.eigenvalue(i);
          //Sort eigenvalues for nicer output.
          std::sort(eigenvalues.begin(), eigenvalues.end(),
                    internal::SolverGMRES::complex_less_pred);
          eigenvalues_signal(eigenvalues);
          if (log_eigenvalues)
            {
              deallog << "Eigenvalue estimate: ";
              for (unsigned int i=0; i<mat_eig.n(); ++i)
                deallog << ' ' << eigenvalues[i];
              deallog << std::endl;
            }
        }
      //Calculate condition number, avoid calculating the svd if a slot
      //isn't connected. Need at least a 2-by-2 matrix to do the estimate.
      if (!cond_signal.empty() && (mat.n()>1))
        {
          mat.compute_svd();
          double condition_number=mat.singular_value(0)/mat.singular_value(mat.n()-1);
          cond_signal(condition_number);
        }
    }
}



template<class VectorType>
template<typename MatrixType, typename PreconditionerType>
void
SolverGMRES<VectorType>::solve (const MatrixType         &A,
                                VectorType               &x,
                                const VectorType         &b,
                                const PreconditionerType &precondition)
{
  // this code was written a very long time ago by people not associated with
  // deal.II. we don't make any guarantees to its optimality or that it even
  // works as expected...

//TODO:[?] Check, why there are two different start residuals.
//TODO:[GK] Make sure the parameter in the constructor means maximum basis size

  deallog.push("GMRES");
  const unsigned int n_tmp_vectors = additional_data.max_n_tmp_vectors;

  // Generate an object where basis vectors are stored.
  internal::SolverGMRES::TmpVectors<VectorType> tmp_vectors (n_tmp_vectors, this->memory);

  // number of the present iteration; this
  // number is not reset to zero upon a
  // restart
  unsigned int accumulated_iterations = 0;

  const bool do_eigenvalues=
    !condition_number_signal.empty()
    |!all_condition_numbers_signal.empty()
    |!eigenvalues_signal.empty()
    |!all_eigenvalues_signal.empty()
    |additional_data.compute_eigenvalues;
  // for eigenvalue computation, need to collect the Hessenberg matrix (before
  // applying Givens rotations)
  FullMatrix<double> H_orig;
  if (do_eigenvalues)
    H_orig.reinit(n_tmp_vectors, n_tmp_vectors-1);

  // matrix used for the orthogonalization process later
  H.reinit(n_tmp_vectors, n_tmp_vectors-1);

  // some additional vectors, also used in the orthogonalization
  dealii::Vector<double>
  gamma(n_tmp_vectors),
        ci   (n_tmp_vectors-1),
        si   (n_tmp_vectors-1),
        h    (n_tmp_vectors-1);


  unsigned int dim = 0;

  SolverControl::State iteration_state = SolverControl::iterate;
  double last_res = -std::numeric_limits<double>::max();

  // switch to determine whether we want a left or a right preconditioner. at
  // present, left is default, but both ways are implemented
  const bool left_precondition = !additional_data.right_preconditioning;

  // Per default the left preconditioned GMRes uses the preconditioned
  // residual and the right preconditioned GMRes uses the unpreconditioned
  // residual as stopping criterion.
  const bool use_default_residual = additional_data.use_default_residual;

  // define two aliases
  VectorType &v = tmp_vectors(0, x);
  VectorType &p = tmp_vectors(n_tmp_vectors-1, x);

  // Following vectors are needed
  // when not the default residuals
  // are used as stopping criterion
  VectorType *r=0;
  VectorType *x_=0;
  dealii::Vector<double> *gamma_=0;
  if (!use_default_residual)
    {
      r=this->memory.alloc();
      x_=this->memory.alloc();
      r->reinit(x);
      x_->reinit(x);

      gamma_ = new dealii::Vector<double> (gamma.size());
    }

  bool re_orthogonalize = additional_data.force_re_orthogonalization;

  ///////////////////////////////////////////////////////////////////////////
  // outer iteration: loop until we either reach convergence or the maximum
  // number of iterations is exceeded. each cycle of this loop amounts to one
  // restart
  do
    {
      // reset this vector to the right size
      h.reinit (n_tmp_vectors-1);

      if (left_precondition)
        {
          A.vmult(p,x);
          p.sadd(-1.,1.,b);
          precondition.vmult(v,p);
        }
      else
        {
          A.vmult(v,x);
          v.sadd(-1.,1.,b);
        };

      double rho = v.l2_norm();

      // check the residual here as well since it may be that we got the exact
      // (or an almost exact) solution vector at the outset. if we wouldn't
      // check here, the next scaling operation would produce garbage
      if (use_default_residual)
        {
          last_res = rho;
          iteration_state = this->iteration_status (accumulated_iterations, rho, x);

          if (iteration_state != SolverControl::iterate)
            break;
        }
      else
        {
          deallog << "default_res=" << rho << std::endl;

          if (left_precondition)
            {
              A.vmult(*r,x);
              r->sadd(-1.,1.,b);
            }
          else
            precondition.vmult(*r,v);

          double res = r->l2_norm();
          last_res = res;
          iteration_state = this->iteration_status (accumulated_iterations, res, x);

          if (iteration_state != SolverControl::iterate)
            break;
        }

      gamma(0) = rho;

      v *= 1./rho;

      // inner iteration doing at most as many steps as there are temporary
      // vectors. the number of steps actually been done is propagated outside
      // through the @p dim variable
      for (unsigned int inner_iteration=0;
           ((inner_iteration < n_tmp_vectors-2)
            &&
            (iteration_state==SolverControl::iterate));
           ++inner_iteration)
        {
          ++accumulated_iterations;
          // yet another alias
          VectorType &vv = tmp_vectors(inner_iteration+1, x);

          if (left_precondition)
            {
              A.vmult(p, tmp_vectors[inner_iteration]);
              precondition.vmult(vv,p);
            }
          else
            {
              precondition.vmult(p, tmp_vectors[inner_iteration]);
              A.vmult(vv,p);
            }

          dim = inner_iteration+1;

          const double s = modified_gram_schmidt(tmp_vectors, dim,
                                                 accumulated_iterations,
                                                 vv, h, re_orthogonalize);
          h(inner_iteration+1) = s;

          //s=0 is a lucky breakdown, the solver will reach convergence,
          //but we must not divide by zero here.
          if (s != 0)
            vv *= 1./s;

          // for eigenvalues, get the resulting coefficients from the
          // orthogonalization process
          if (do_eigenvalues)
            for (unsigned int i=0; i<dim+1; ++i)
              H_orig(i,inner_iteration) = h(i);

          //  Transformation into tridiagonal structure
          givens_rotation(h,gamma,ci,si,inner_iteration);

          //  append vector on matrix
          for (unsigned int i=0; i<dim; ++i)
            H(i,inner_iteration) = h(i);

          //  default residual
          rho = std::fabs(gamma(dim));

          if (use_default_residual)
            {
              last_res = rho;
              iteration_state = this->iteration_status (accumulated_iterations, rho, x);
            }
          else
            {
              deallog << "default_res=" << rho << std::endl;

              dealii::Vector<double> h_(dim);
              *x_=x;
              *gamma_=gamma;
              H1.reinit(dim+1,dim);

              for (unsigned int i=0; i<dim+1; ++i)
                for (unsigned int j=0; j<dim; ++j)
                  H1(i,j) = H(i,j);

              H1.backward(h_,*gamma_);

              if (left_precondition)
                for (unsigned int i=0 ; i<dim; ++i)
                  x_->add(h_(i), tmp_vectors[i]);
              else
                {
                  p = 0.;
                  for (unsigned int i=0; i<dim; ++i)
                    p.add(h_(i), tmp_vectors[i]);
                  precondition.vmult(*r,p);
                  x_->add(1.,*r);
                };
              A.vmult(*r,*x_);
              r->sadd(-1.,1.,b);
              // Now *r contains the unpreconditioned residual!!
              if (left_precondition)
                {
                  const double res=r->l2_norm();
                  last_res = res;

                  iteration_state = this->iteration_status (accumulated_iterations, res, x);
                }
              else
                {
                  precondition.vmult(*x_, *r);
                  const double preconditioned_res=x_->l2_norm();
                  last_res = preconditioned_res;

                  iteration_state = this->iteration_status (accumulated_iterations,
                                                            preconditioned_res, x);
                }
            }
        };
      // end of inner iteration. now calculate the solution from the temporary
      // vectors
      h.reinit(dim);
      H1.reinit(dim+1,dim);

      for (unsigned int i=0; i<dim+1; ++i)
        for (unsigned int j=0; j<dim; ++j)
          H1(i,j) = H(i,j);

      compute_eigs_and_cond(H_orig,dim,all_eigenvalues_signal,
                            all_condition_numbers_signal,
                            additional_data.compute_eigenvalues);

      H1.backward(h,gamma);

      if (left_precondition)
        for (unsigned int i=0 ; i<dim; ++i)
          x.add(h(i), tmp_vectors[i]);
      else
        {
          p = 0.;
          for (unsigned int i=0; i<dim; ++i)
            p.add(h(i), tmp_vectors[i]);
          precondition.vmult(v,p);
          x.add(1.,v);
        };
      // end of outer iteration. restart if no convergence and the number of
      // iterations is not exceeded
    }
  while (iteration_state == SolverControl::iterate);

  compute_eigs_and_cond(H_orig,dim,eigenvalues_signal,condition_number_signal,
                        false);
  if (!use_default_residual)
    {
      this->memory.free(r);
      this->memory.free(x_);

      delete gamma_;
    }

  deallog.pop();

  // in case of failure: throw exception
  AssertThrow(iteration_state == SolverControl::success,
              SolverControl::NoConvergence (accumulated_iterations,
                                            last_res));
}



template<class VectorType>
boost::signals2::connection
SolverGMRES<VectorType>::connect_condition_number_slot
(const std_cxx11::function<void(double)> &slot,
 const bool every_iteration)
{
  if (every_iteration)
    {
      return all_condition_numbers_signal.connect(slot);
    }
  else
    {
      return condition_number_signal.connect(slot);
    }
}



template<class VectorType>
boost::signals2::connection
SolverGMRES<VectorType>::connect_eigenvalues_slot
(const std_cxx11::function<void (const std::vector<std::complex<double> > &)> &slot,
 const bool every_iteration)
{
  if (every_iteration)
    {
      return all_eigenvalues_signal.connect(slot);
    }
  else
    {
      return eigenvalues_signal.connect(slot);
    }
}



template<class VectorType>
double
SolverGMRES<VectorType>::criterion ()
{
  // dummy implementation. this function is not needed for the present
  // implementation of gmres
  Assert (false, ExcInternalError());
  return 0;
}


//----------------------------------------------------------------------//

template <class VectorType>
SolverFGMRES<VectorType>::SolverFGMRES (SolverControl            &cn,
                                        VectorMemory<VectorType> &mem,
                                        const AdditionalData     &data)
  :
  Solver<VectorType> (cn, mem),
  additional_data(data)
{}



template <class VectorType>
SolverFGMRES<VectorType>::SolverFGMRES (SolverControl        &cn,
                                        const AdditionalData &data)
  :
  Solver<VectorType> (cn),
  additional_data(data)
{}



template<class VectorType>
template<typename MatrixType, typename PreconditionerType>
void
SolverFGMRES<VectorType>::solve (const MatrixType         &A,
                                 VectorType               &x,
                                 const VectorType         &b,
                                 const PreconditionerType &precondition)
{
  deallog.push("FGMRES");

  SolverControl::State iteration_state = SolverControl::iterate;

  const unsigned int basis_size = additional_data.max_basis_size;

  // Generate an object where basis vectors are stored.
  typename internal::SolverGMRES::TmpVectors<VectorType> v (basis_size, this->memory);
  typename internal::SolverGMRES::TmpVectors<VectorType> z (basis_size, this->memory);

  // number of the present iteration; this number is not reset to zero upon a
  // restart
  unsigned int accumulated_iterations = 0;

  // matrix used for the orthogonalization process later
  H.reinit(basis_size+1, basis_size);

  // Vectors for projected system
  Vector<double> projected_rhs;
  Vector<double> y;

  // Iteration starts here
  double res = -std::numeric_limits<double>::max();

  VectorType *aux = this->memory.alloc();
  aux->reinit(x);
  do
    {
      A.vmult(*aux, x);
      aux->sadd(-1., 1., b);

      double beta = aux->l2_norm();
      res = beta;
      iteration_state = this->iteration_status(accumulated_iterations, res, x);
      if (iteration_state == SolverControl::success)
        break;

      H.reinit(basis_size+1, basis_size);
      double a = beta;

      for (unsigned int j=0; j<basis_size; ++j)
        {
          if (a != 0) // treat lucky breakdown
            v(j,x).equ(1./a, *aux);
          else
            v(j,x) = 0.;


          precondition.vmult(z(j,x), v[j]);
          A.vmult(*aux, z[j]);

          // Gram-Schmidt
          H(0,j) = *aux * v[0];
          for (unsigned int i=1; i<=j; ++i)
            H(i,j) = aux->add_and_dot(-H(i-1,j), v[i-1], v[i]);
          H(j+1,j) = a = std::sqrt(aux->add_and_dot(-H(j,j), v[j], *aux));

          // Compute projected solution

          if (j>0)
            {
              H1.reinit(j+1,j);
              projected_rhs.reinit(j+1);
              y.reinit(j);
              projected_rhs(0) = beta;
              H1.fill(H);

              // check convergence. note that the vector 'x' we pass to the
              // criterion is not the final solution we compute if we
              // decide to jump out of the iteration (we update 'x' again
              // right after the current loop)
              Householder<double> house(H1);
              res = house.least_squares(y, projected_rhs);
              iteration_state = this->iteration_status(++accumulated_iterations, res, x);
              if (iteration_state != SolverControl::iterate)
                break;
            }
        }

      // Update solution vector
      for (unsigned int j=0; j<y.size(); ++j)
        x.add(y(j), z[j]);
    }
  while (iteration_state == SolverControl::iterate);

  this->memory.free(aux);

  deallog.pop();
  // in case of failure: throw exception
  if (iteration_state != SolverControl::success)
    AssertThrow(false, SolverControl::NoConvergence (accumulated_iterations,
                                                     res));
}

#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif