This file is indexed.

/usr/include/deal.II/lac/trilinos_sparse_matrix.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
// ---------------------------------------------------------------------
//
// Copyright (C) 2008 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__trilinos_sparse_matrix_h
#define dealii__trilinos_sparse_matrix_h


#include <deal.II/base/config.h>

#ifdef DEAL_II_WITH_TRILINOS

#  include <deal.II/base/std_cxx11/shared_ptr.h>
#  include <deal.II/base/subscriptor.h>
#  include <deal.II/base/index_set.h>
#  include <deal.II/lac/full_matrix.h>
#  include <deal.II/lac/exceptions.h>
#  include <deal.II/lac/trilinos_vector.h>
#  include <deal.II/lac/vector_view.h>

#  include <vector>
#  include <cmath>
#  include <memory>

#  define TrilinosScalar double

DEAL_II_DISABLE_EXTRA_DIAGNOSTICS
#  include <Epetra_FECrsMatrix.h>
#  include <Epetra_Map.h>
#  include <Epetra_CrsGraph.h>
#  include <Epetra_MultiVector.h>
#  ifdef DEAL_II_WITH_MPI
#    include <Epetra_MpiComm.h>
#    include "mpi.h"
#  else
#    include "Epetra_SerialComm.h"
#  endif
DEAL_II_ENABLE_EXTRA_DIAGNOSTICS

class Epetra_Export;

DEAL_II_NAMESPACE_OPEN

// forward declarations
template <typename MatrixType> class BlockMatrixBase;

template <typename number> class SparseMatrix;
class SparsityPattern;
class DynamicSparsityPattern;


namespace TrilinosWrappers
{
  // forward declarations
  class SparseMatrix;
  class SparsityPattern;

  /**
   * Iterators for Trilinos matrices
   */
  namespace SparseMatrixIterators
  {
    // forward declaration
    template <bool Constness> class Iterator;

    /**
     * Exception
     */
    DeclException0 (ExcBeyondEndOfMatrix);

    /**
     * Exception
     */
    DeclException3 (ExcAccessToNonlocalRow,
                    std::size_t, std::size_t, std::size_t,
                    << "You tried to access row " << arg1
                    << " of a distributed sparsity pattern, "
                    << " but only rows " << arg2 << " through " << arg3
                    << " are stored locally and can be accessed.");

    /**
     * Handling of indices for both constant and non constant Accessor objects
     *
     * For a regular dealii::SparseMatrix, we would use an accessor for the
     * sparsity pattern. For Trilinos matrices, this does not seem so simple,
     * therefore, we write a little base class here.
     *
     * @author Guido Kanschat
     * @date 2012
     */
    class AccessorBase
    {
    public:
      /**
       * Declare the type for container size.
       */
      typedef dealii::types::global_dof_index size_type;

      /**
       * Constructor.
       */
      AccessorBase (SparseMatrix *matrix,
                    const size_type  row,
                    const size_type  index);

      /**
       * Row number of the element represented by this object.
       */
      size_type row() const;

      /**
       * Index in row of the element represented by this object.
       */
      size_type index() const;

      /**
       * Column number of the element represented by this object.
       */
      size_type column() const;

    protected:
      /**
       * Pointer to the matrix object. This object should be handled as a
       * const pointer or non-const by the appropriate derived classes. In
       * order to be able to implement both, it is not const here, so handle
       * with care!
       */
      mutable SparseMatrix *matrix;
      /**
       * Current row number.
       */
      size_type a_row;

      /**
       * Current index in row.
       */
      size_type a_index;

      /**
       * Discard the old row caches (they may still be used by other
       * accessors) and generate new ones for the row pointed to presently by
       * this accessor.
       */
      void visit_present_row ();

      /**
       * Cache where we store the column indices of the present row. This is
       * necessary, since Trilinos makes access to the elements of its
       * matrices rather hard, and it is much more efficient to copy all
       * column entries of a row once when we enter it than repeatedly asking
       * Trilinos for individual ones. This also makes some sense since it is
       * likely that we will access them sequentially anyway.
       *
       * In order to make copying of iterators/accessor of acceptable
       * performance, we keep a shared pointer to these entries so that more
       * than one accessor can access this data if necessary.
       */
      std_cxx11::shared_ptr<std::vector<size_type> > colnum_cache;

      /**
       * Cache for the values of this row.
       */
      std_cxx11::shared_ptr<std::vector<TrilinosScalar> > value_cache;
    };

    /**
     * General template for sparse matrix accessors. The first template
     * argument denotes the underlying numeric type, the second the constness
     * of the matrix.
     *
     * The general template is not implemented, only the specializations for
     * the two possible values of the second template argument. Therefore, the
     * interface listed here only serves as a template provided since doxygen
     * does not link the specializations.
     */
    template <bool Constess>
    class Accessor : public AccessorBase
    {
      /**
       * Value of this matrix entry.
       */
      TrilinosScalar value() const;

      /**
       * Value of this matrix entry.
       */
      TrilinosScalar &value();
    };

    /**
     * The specialization for a const Accessor.
     */
    template<>
    class Accessor<true> : public AccessorBase
    {
    public:
      /**
       * Typedef for the type (including constness) of the matrix to be used
       * here.
       */
      typedef const SparseMatrix MatrixType;

      /**
       * Constructor. Since we use accessors only for read access, a const
       * matrix pointer is sufficient.
       */
      Accessor (MatrixType *matrix,
                const size_type  row,
                const size_type  index);

      /**
       * Copy constructor to get from a const or non-const accessor to a const
       * accessor.
       */
      template <bool Other>
      Accessor (const Accessor<Other> &a);

      /**
       * Value of this matrix entry.
       */
      TrilinosScalar value() const;

    private:
      /**
       * Make iterator class a friend.
       */
      template <bool> friend class Iterator;
    };

    /**
     * The specialization for a mutable Accessor.
     */
    template<>
    class Accessor<false> : public AccessorBase
    {
      class Reference
      {
      public:
        /**
         * Constructor.
         */
        Reference (const Accessor<false> &accessor);

        /**
         * Conversion operator to the data type of the matrix.
         */
        operator TrilinosScalar () const;

        /**
         * Set the element of the matrix we presently point to to @p n.
         */
        const Reference &operator = (const TrilinosScalar n) const;

        /**
         * Add @p n to the element of the matrix we presently point to.
         */
        const Reference &operator += (const TrilinosScalar n) const;

        /**
         * Subtract @p n from the element of the matrix we presently point to.
         */
        const Reference &operator -= (const TrilinosScalar n) const;

        /**
         * Multiply the element of the matrix we presently point to by @p n.
         */
        const Reference &operator *= (const TrilinosScalar n) const;

        /**
         * Divide the element of the matrix we presently point to by @p n.
         */
        const Reference &operator /= (const TrilinosScalar n) const;

      private:
        /**
         * Pointer to the accessor that denotes which element we presently
         * point to.
         */
        Accessor &accessor;
      };

    public:
      /**
       * Typedef for the type (including constness) of the matrix to be used
       * here.
       */
      typedef SparseMatrix MatrixType;

      /**
       * Constructor. Since we use accessors only for read access, a const
       * matrix pointer is sufficient.
       */
      Accessor (MatrixType *matrix,
                const size_type  row,
                const size_type  index);

      /**
       * Value of this matrix entry.
       */
      Reference value() const;

    private:
      /**
       * Make iterator class a friend.
       */
      template <bool> friend class Iterator;
      /**
       * Make Reference object a friend.
       */
      friend class Reference;
    };

    /**
     * This class acts as an iterator walking over the elements of Trilinos
     * matrices. The implementation of this class is similar to the one for
     * PETSc matrices.
     *
     * Note that Trilinos stores the elements within each row in ascending
     * order. This is opposed to the deal.II sparse matrix style where the
     * diagonal element (if it exists) is stored before all other values, and
     * the PETSc sparse matrices, where one can't guarantee a certain order of
     * the elements.
     *
     * @ingroup TrilinosWrappers
     * @author Martin Kronbichler, Wolfgang Bangerth, 2008
     */
    template <bool Constness>
    class Iterator
    {
    public:
      /**
       * Declare type for container size.
       */
      typedef dealii::types::global_dof_index size_type;

      /**
       * Typedef for the matrix type (including constness) we are to operate
       * on.
       */
      typedef typename Accessor<Constness>::MatrixType MatrixType;

      /**
       * Constructor. Create an iterator into the matrix @p matrix for the
       * given row and the index within it.
       */
      Iterator (MatrixType *matrix,
                const size_type  row,
                const size_type  index);

      /**
       * Copy constructor with optional change of constness.
       */
      template <bool Other>
      Iterator(const Iterator<Other> &other);

      /**
       * Prefix increment.
       */
      Iterator<Constness> &operator++ ();

      /**
       * Postfix increment.
       */
      Iterator<Constness> operator++ (int);

      /**
       * Dereferencing operator.
       */
      const Accessor<Constness> &operator* () const;

      /**
       * Dereferencing operator.
       */
      const Accessor<Constness> *operator-> () const;

      /**
       * Comparison. True, if both iterators point to the same matrix
       * position.
       */
      bool operator == (const Iterator<Constness> &) const;

      /**
       * Inverse of <tt>==</tt>.
       */
      bool operator != (const Iterator<Constness> &) const;

      /**
       * Comparison operator. Result is true if either the first row number is
       * smaller or if the row numbers are equal and the first index is
       * smaller.
       */
      bool operator < (const Iterator<Constness> &) const;

      /**
       * Comparison operator. The opposite of the previous operator
       */
      bool operator > (const Iterator<Constness> &) const;

      /**
       * Exception
       */
      DeclException2 (ExcInvalidIndexWithinRow,
                      size_type, size_type,
                      << "Attempt to access element " << arg2
                      << " of row " << arg1
                      << " which doesn't have that many elements.");

    private:
      /**
       * Store an object of the accessor class.
       */
      Accessor<Constness> accessor;

      template <bool Other> friend class Iterator;
    };

  }


  /**
   * This class implements a wrapper to use the Trilinos distributed sparse
   * matrix class Epetra_FECrsMatrix. This is precisely the kind of matrix we
   * deal with all the time - we most likely get it from some assembly
   * process, where also entries not locally owned might need to be written
   * and hence need to be forwarded to the owner process.  This class is
   * designed to be used in a distributed memory architecture with an MPI
   * compiler on the bottom, but works equally well also for serial processes.
   * The only requirement for this class to work is that Trilinos has been
   * installed with the same compiler as is used for generating deal.II.
   *
   * The interface of this class is modeled after the existing SparseMatrix
   * class in deal.II. It has almost the same member functions, and is often
   * exchangeable. However, since Trilinos only supports a single scalar type
   * (double), it is not templated, and only works with doubles.
   *
   * Note that Trilinos only guarantees that operations do what you expect if
   * the functions @p GlobalAssemble has been called after matrix assembly.
   * Therefore, you need to call SparseMatrix::compress() before you actually
   * use the matrix. This also calls @p FillComplete that compresses the
   * storage format for sparse matrices by discarding unused elements.
   * Trilinos allows to continue with assembling the matrix after calls to
   * these functions, though.
   *
   * <h3>Thread safety of Trilinos matrices</h3>
   *
   * When writing into Trilinos matrices from several threads in shared
   * memory, several things must be kept in mind as there is no built-in locks
   * in this class to prevent data races. Simultaneous access to the same
   * matrix row at the same time can lead to data races and must be explicitly
   * avoided by the user. However, it is possible to access <b>different</b>
   * rows of the matrix from several threads simultaneously under the
   * following three conditions:
   * <ul>
   * <li> The matrix uses only one MPI process.
   * <li> The matrix has been initialized with the reinit() method with a
   * DynamicSparsityPattern (that includes the set of locally relevant rows,
   * i.e., the rows that an assembly routine will possibly write into).
   * <li> The matrix has been initialized from a
   * TrilinosWrappers::SparsityPattern object that in turn has been
   * initialized with the reinit function specifying three index sets, one for
   * the rows, one for the columns and for the larger set of @p
   * writeable_rows, and the operation is an addition. At some point in the
   * future, Trilinos support might be complete enough such that initializing
   * from a TrilinosWrappers::SparsityPattern that has been filled by a
   * function similar to DoFTools::make_sparsity_pattern always results in a
   * matrix that allows several processes to write into the same matrix row.
   * However, Trilinos until version at least 11.12 does not correctly support
   * this feature.
   * </ul>
   *
   * Note that all other reinit methods and constructors of
   * TrilinosWrappers::SparsityPattern will result in a matrix that needs to
   * allocate off-processor entries on demand, which breaks thread-safety. Of
   * course, using the respective reinit method for the block Trilinos
   * sparsity pattern and block matrix also results in thread-safety.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Matrix1
   * @author Martin Kronbichler, Wolfgang Bangerth, 2008, 2009
   */
  class SparseMatrix : public Subscriptor
  {
  public:
    /**
     * Declare the type for container size.
     */
    typedef dealii::types::global_dof_index size_type;

    /**
     * A structure that describes some of the traits of this class in terms of
     * its run-time behavior. Some other classes (such as the block matrix
     * classes) that take one or other of the matrix classes as its template
     * parameters can tune their behavior based on the variables in this
     * class.
     */
    struct Traits
    {
      /**
       * It is safe to elide additions of zeros to individual elements of this
       * matrix.
       */
      static const bool zero_addition_can_be_elided = true;
    };

    /**
     * Declare a typedef for the iterator class.
     */
    typedef SparseMatrixIterators::Iterator<false> iterator;

    /**
     * Declare a typedef for the const iterator class.
     */
    typedef SparseMatrixIterators::Iterator<true> const_iterator;

    /**
     * Declare a typedef in analogy to all the other container classes.
     */
    typedef TrilinosScalar value_type;

    /**
     * @name Constructors and initialization.
     */
//@{
    /**
     * Default constructor. Generates an empty (zero-size) matrix.
     */
    SparseMatrix ();

    /**
     * Generate a matrix that is completely stored locally, having #m rows and
     * #n columns.
     *
     * The number of columns entries per row is specified as the maximum
     * number of entries argument.
     */
    SparseMatrix (const size_type  m,
                  const size_type  n,
                  const unsigned int  n_max_entries_per_row);

    /**
     * Generate a matrix that is completely stored locally, having #m rows and
     * #n columns.
     *
     * The vector <tt>n_entries_per_row</tt> specifies the number of entries
     * in each row.
     */
    SparseMatrix (const size_type                  m,
                  const size_type                  n,
                  const std::vector<unsigned int> &n_entries_per_row);

    /**
     * Generate a matrix from a Trilinos sparsity pattern object.
     */
    SparseMatrix (const SparsityPattern &InputSparsityPattern);

    /**
     * Destructor. Made virtual so that one can use pointers to this class.
     */
    virtual ~SparseMatrix ();

    /**
     * This function initializes the Trilinos matrix with a deal.II sparsity
     * pattern, i.e. it makes the Trilinos Epetra matrix know the position of
     * nonzero entries according to the sparsity pattern. This function is
     * meant for use in serial programs, where there is no need to specify how
     * the matrix is going to be distributed among different processors. This
     * function works in %parallel, too, but it is recommended to manually
     * specify the %parallel partitioning of the matrix using an Epetra_Map.
     * When run in %parallel, it is currently necessary that each processor
     * holds the sparsity_pattern structure because each processor sets its
     * rows.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    template<typename SparsityPatternType>
    void reinit (const SparsityPatternType &sparsity_pattern);

    /**
     * This function reinitializes the Trilinos sparse matrix from a (possibly
     * distributed) Trilinos sparsity pattern.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     *
     * If you want to write to the matrix from several threads and use MPI,
     * you need to use this reinit method with a sparsity pattern that has
     * been created with explicitly stating writeable rows. In all other
     * cases, you cannot mix MPI with multithreaded writing into the matrix.
     */
    void reinit (const SparsityPattern &sparsity_pattern);

    /**
     * This function copies the layout of @p sparse_matrix to the calling
     * matrix. The values are not copied, but you can use copy_from() for
     * this.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    void reinit (const SparseMatrix &sparse_matrix);

    /**
     * This function initializes the Trilinos matrix using the deal.II sparse
     * matrix and the entries stored therein. It uses a threshold to copy only
     * elements with modulus larger than the threshold (so zeros in the
     * deal.II matrix can be filtered away).
     *
     * The optional parameter <tt>copy_values</tt> decides whether only the
     * sparsity structure of the input matrix should be used or the matrix
     * entries should be copied, too.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a deadlock.
     *
     * @note If a different sparsity pattern is given in the last argument
     * (i.e., one that differs from the one used in the sparse matrix given in
     * the first argument), then the resulting Trilinos matrix will have the
     * sparsity pattern so given. This of course also means that all entries
     * in the given matrix that are not part of this separate sparsity pattern
     * will in fact be dropped.
     */
    template <typename number>
    void reinit (const ::dealii::SparseMatrix<number> &dealii_sparse_matrix,
                 const double                          drop_tolerance=1e-13,
                 const bool                            copy_values=true,
                 const ::dealii::SparsityPattern      *use_this_sparsity=0);

    /**
     * This reinit function takes as input a Trilinos Epetra_CrsMatrix and
     * copies its sparsity pattern. If so requested, even the content (values)
     * will be copied.
     */
    void reinit (const Epetra_CrsMatrix &input_matrix,
                 const bool              copy_values = true);
//@}
    /**
     * @name Constructors and initialization using an Epetra_Map description
     */
//@{
    /**
     * Constructor using an Epetra_Map to describe the %parallel partitioning.
     * The parameter @p n_max_entries_per_row sets the number of nonzero
     * entries in each row that will be allocated. Note that this number does
     * not need to be exact, and it is even allowed that the actual matrix
     * structure has more nonzero entries than specified in the constructor.
     * However it is still advantageous to provide good estimates here since
     * this will considerably increase the performance of the matrix setup.
     * However, there is no effect in the performance of matrix-vector
     * products, since Trilinos reorganizes the matrix memory prior to use (in
     * the compress() step).
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparseMatrix (const Epetra_Map  &parallel_partitioning,
                  const size_type    n_max_entries_per_row = 0) DEAL_II_DEPRECATED;

    /**
     * Same as before, but now set a value of nonzeros for each matrix row.
     * Since we know the number of elements in the matrix exactly in this
     * case, we can already allocate the right amount of memory, which makes
     * the creation process including the insertion of nonzero elements by the
     * respective SparseMatrix::reinit call considerably faster.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparseMatrix (const Epetra_Map                &parallel_partitioning,
                  const std::vector<unsigned int> &n_entries_per_row) DEAL_II_DEPRECATED;

    /**
     * This constructor is similar to the one above, but it now takes two
     * different Epetra maps for rows and columns. This interface is meant to
     * be used for generating rectangular matrices, where one map describes
     * the %parallel partitioning of the dofs associated with the matrix rows
     * and the other one the partitioning of dofs in the matrix columns. Note
     * that there is no real parallelism along the columns &ndash; the
     * processor that owns a certain row always owns all the column elements,
     * no matter how far they might be spread out. The second Epetra_Map is
     * only used to specify the number of columns and for internal
     * arrangements when doing matrix-vector products with vectors based on
     * that column map.
     *
     * The integer input @p n_max_entries_per_row defines the number of
     * columns entries per row that will be allocated.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparseMatrix (const Epetra_Map &row_parallel_partitioning,
                  const Epetra_Map &col_parallel_partitioning,
                  const size_type   n_max_entries_per_row = 0) DEAL_II_DEPRECATED;

    /**
     * This constructor is similar to the one above, but it now takes two
     * different Epetra maps for rows and columns. This interface is meant to
     * be used for generating rectangular matrices, where one map specifies
     * the %parallel distribution of degrees of freedom associated with matrix
     * rows and the second one specifies the %parallel distribution the dofs
     * associated with columns in the matrix. The second map also provides
     * information for the internal arrangement in matrix vector products
     * (i.e., the distribution of vector this matrix is to be multiplied
     * with), but is not used for the distribution of the columns &ndash;
     * rather, all column elements of a row are stored on the same processor
     * in any case. The vector <tt>n_entries_per_row</tt> specifies the number
     * of entries in each row of the newly generated matrix.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparseMatrix (const Epetra_Map                &row_parallel_partitioning,
                  const Epetra_Map                &col_parallel_partitioning,
                  const std::vector<unsigned int> &n_entries_per_row) DEAL_II_DEPRECATED;

    /**
     * This function is initializes the Trilinos Epetra matrix according to
     * the specified sparsity_pattern, and also reassigns the matrix rows to
     * different processes according to a user-supplied Epetra map. In
     * programs following the style of the tutorial programs, this function
     * (and the respective call for a rectangular matrix) are the natural way
     * to initialize the matrix size, its distribution among the MPI processes
     * (if run in %parallel) as well as the location of non-zero elements.
     * Trilinos stores the sparsity pattern internally, so it won't be needed
     * any more after this call, in contrast to the deal.II own object. The
     * optional argument @p exchange_data can be used for reinitialization
     * with a sparsity pattern that is not fully constructed. This feature is
     * only implemented for input sparsity patterns of type
     * DynamicSparsityPattern. If the flag is not set, each processor just
     * sets the elements in the sparsity pattern that belong to its rows.
     *
     * If the sparsity pattern given to this function is of type
     * DynamicSparsity pattern, then a matrix will be created that allows
     * several threads to write into different rows of the matrix at the same
     * also with MPI, as opposed to most other reinit() methods.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    template<typename SparsityPatternType>
    void reinit (const Epetra_Map          &parallel_partitioning,
                 const SparsityPatternType &sparsity_pattern,
                 const bool                 exchange_data = false) DEAL_II_DEPRECATED;

    /**
     * This function is similar to the other initialization function above,
     * but now also reassigns the matrix rows and columns according to two
     * user-supplied Epetra maps.  To be used for rectangular matrices. The
     * optional argument @p exchange_data can be used for reinitialization
     * with a sparsity pattern that is not fully constructed. This feature is
     * only implemented for input sparsity patterns of type
     * DynamicSparsityPattern.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    template<typename SparsityPatternType>
    void reinit (const Epetra_Map          &row_parallel_partitioning,
                 const Epetra_Map          &col_parallel_partitioning,
                 const SparsityPatternType &sparsity_pattern,
                 const bool                 exchange_data = false) DEAL_II_DEPRECATED;

    /**
     * This function initializes the Trilinos matrix using the deal.II sparse
     * matrix and the entries stored therein. It uses a threshold to copy only
     * elements with modulus larger than the threshold (so zeros in the
     * deal.II matrix can be filtered away). In contrast to the other reinit
     * function with deal.II sparse matrix argument, this function takes a
     * %parallel partitioning specified by the user instead of internally
     * generating it.
     *
     * The optional parameter <tt>copy_values</tt> decides whether only the
     * sparsity structure of the input matrix should be used or the matrix
     * entries should be copied, too.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    template <typename number>
    void reinit (const Epetra_Map                     &parallel_partitioning,
                 const ::dealii::SparseMatrix<number> &dealii_sparse_matrix,
                 const double                          drop_tolerance=1e-13,
                 const bool                            copy_values=true,
                 const ::dealii::SparsityPattern      *use_this_sparsity=0) DEAL_II_DEPRECATED;

    /**
     * This function is similar to the other initialization function with
     * deal.II sparse matrix input above, but now takes Epetra maps for both
     * the rows and the columns of the matrix. Chosen for rectangular
     * matrices.
     *
     * The optional parameter <tt>copy_values</tt> decides whether only the
     * sparsity structure of the input matrix should be used or the matrix
     * entries should be copied, too.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    template <typename number>
    void reinit (const Epetra_Map                      &row_parallel_partitioning,
                 const Epetra_Map                      &col_parallel_partitioning,
                 const ::dealii::SparseMatrix<number>  &dealii_sparse_matrix,
                 const double                           drop_tolerance=1e-13,
                 const bool                             copy_values=true,
                 const ::dealii::SparsityPattern      *use_this_sparsity=0) DEAL_II_DEPRECATED;
//@}
    /**
     * @name Constructors and initialization using an IndexSet description
     */
//@{
    /**
     * Constructor using an IndexSet and an MPI communicator to describe the
     * %parallel partitioning. The parameter @p n_max_entries_per_row sets the
     * number of nonzero entries in each row that will be allocated. Note that
     * this number does not need to be exact, and it is even allowed that the
     * actual matrix structure has more nonzero entries than specified in the
     * constructor. However it is still advantageous to provide good estimates
     * here since this will considerably increase the performance of the
     * matrix setup. However, there is no effect in the performance of matrix-
     * vector products, since Trilinos reorganizes the matrix memory prior to
     * use (in the compress() step).
     */
    SparseMatrix (const IndexSet    &parallel_partitioning,
                  const MPI_Comm    &communicator = MPI_COMM_WORLD,
                  const unsigned int n_max_entries_per_row = 0);

    /**
     * Same as before, but now set the number of nonzeros in each matrix row
     * separately. Since we know the number of elements in the matrix exactly
     * in this case, we can already allocate the right amount of memory, which
     * makes the creation process including the insertion of nonzero elements
     * by the respective SparseMatrix::reinit call considerably faster.
     */
    SparseMatrix (const IndexSet                  &parallel_partitioning,
                  const MPI_Comm                  &communicator,
                  const std::vector<unsigned int> &n_entries_per_row);

    /**
     * This constructor is similar to the one above, but it now takes two
     * different IndexSet partitions for row and columns. This interface is
     * meant to be used for generating rectangular matrices, where the first
     * index set describes the %parallel partitioning of the degrees of
     * freedom associated with the matrix rows and the second one the
     * partitioning of the matrix columns. The second index set specifies the
     * partitioning of the vectors this matrix is to be multiplied with, not
     * the distribution of the elements that actually appear in the matrix.
     *
     * The parameter @p n_max_entries_per_row defines how much memory will be
     * allocated for each row. This number does not need to be accurate, as
     * the structure is reorganized in the compress() call.
     */
    SparseMatrix (const IndexSet  &row_parallel_partitioning,
                  const IndexSet  &col_parallel_partitioning,
                  const MPI_Comm  &communicator = MPI_COMM_WORLD,
                  const size_type  n_max_entries_per_row = 0);

    /**
     * This constructor is similar to the one above, but it now takes two
     * different Epetra maps for rows and columns. This interface is meant to
     * be used for generating rectangular matrices, where one map specifies
     * the %parallel distribution of degrees of freedom associated with matrix
     * rows and the second one specifies the %parallel distribution the dofs
     * associated with columns in the matrix. The second map also provides
     * information for the internal arrangement in matrix vector products
     * (i.e., the distribution of vector this matrix is to be multiplied
     * with), but is not used for the distribution of the columns &ndash;
     * rather, all column elements of a row are stored on the same processor
     * in any case. The vector <tt>n_entries_per_row</tt> specifies the number
     * of entries in each row of the newly generated matrix.
     */
    SparseMatrix (const IndexSet                  &row_parallel_partitioning,
                  const IndexSet                  &col_parallel_partitioning,
                  const MPI_Comm                  &communicator,
                  const std::vector<unsigned int> &n_entries_per_row);

    /**
     * This function is initializes the Trilinos Epetra matrix according to
     * the specified sparsity_pattern, and also reassigns the matrix rows to
     * different processes according to a user-supplied index set and
     * %parallel communicator. In programs following the style of the tutorial
     * programs, this function (and the respective call for a rectangular
     * matrix) are the natural way to initialize the matrix size, its
     * distribution among the MPI processes (if run in %parallel) as well as
     * the location of non-zero elements. Trilinos stores the sparsity pattern
     * internally, so it won't be needed any more after this call, in contrast
     * to the deal.II own object. The optional argument @p exchange_data can
     * be used for reinitialization with a sparsity pattern that is not fully
     * constructed. This feature is only implemented for input sparsity
     * patterns of type DynamicSparsityPattern. If the flag is not set, each
     * processor just sets the elements in the sparsity pattern that belong to
     * its rows.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    template<typename SparsityPatternType>
    void reinit (const IndexSet            &parallel_partitioning,
                 const SparsityPatternType &sparsity_pattern,
                 const MPI_Comm            &communicator  = MPI_COMM_WORLD,
                 const bool                 exchange_data = false);

    /**
     * This function is similar to the other initialization function above,
     * but now also reassigns the matrix rows and columns according to two
     * user-supplied index sets.  To be used for rectangular matrices. The
     * optional argument @p exchange_data can be used for reinitialization
     * with a sparsity pattern that is not fully constructed. This feature is
     * only implemented for input sparsity patterns of type
     * DynamicSparsityPattern.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    template<typename SparsityPatternType>
    void reinit (const IndexSet            &row_parallel_partitioning,
                 const IndexSet            &col_parallel_partitioning,
                 const SparsityPatternType &sparsity_pattern,
                 const MPI_Comm            &communicator  = MPI_COMM_WORLD,
                 const bool                 exchange_data = false);

    /**
     * This function initializes the Trilinos matrix using the deal.II sparse
     * matrix and the entries stored therein. It uses a threshold to copy only
     * elements with modulus larger than the threshold (so zeros in the
     * deal.II matrix can be filtered away). In contrast to the other reinit
     * function with deal.II sparse matrix argument, this function takes a
     * %parallel partitioning specified by the user instead of internally
     * generating it.
     *
     * The optional parameter <tt>copy_values</tt> decides whether only the
     * sparsity structure of the input matrix should be used or the matrix
     * entries should be copied, too.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    template <typename number>
    void reinit (const IndexSet                       &parallel_partitioning,
                 const ::dealii::SparseMatrix<number> &dealii_sparse_matrix,
                 const MPI_Comm                       &communicator = MPI_COMM_WORLD,
                 const double                          drop_tolerance=1e-13,
                 const bool                            copy_values=true,
                 const ::dealii::SparsityPattern      *use_this_sparsity=0);

    /**
     * This function is similar to the other initialization function with
     * deal.II sparse matrix input above, but now takes index sets for both
     * the rows and the columns of the matrix. Chosen for rectangular
     * matrices.
     *
     * The optional parameter <tt>copy_values</tt> decides whether only the
     * sparsity structure of the input matrix should be used or the matrix
     * entries should be copied, too.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    template <typename number>
    void reinit (const IndexSet                        &row_parallel_partitioning,
                 const IndexSet                        &col_parallel_partitioning,
                 const ::dealii::SparseMatrix<number>  &dealii_sparse_matrix,
                 const MPI_Comm                        &communicator = MPI_COMM_WORLD,
                 const double                           drop_tolerance=1e-13,
                 const bool                             copy_values=true,
                 const ::dealii::SparsityPattern      *use_this_sparsity=0);
//@}
    /**
     * @name Information on the matrix
     */
//@{

    /**
     * Return the number of rows in this matrix.
     */
    size_type m () const;

    /**
     * Return the number of columns in this matrix.
     */
    size_type n () const;

    /**
     * Return the local dimension of the matrix, i.e. the number of rows
     * stored on the present MPI process. For sequential matrices, this number
     * is the same as m(), but for %parallel matrices it may be smaller.
     *
     * To figure out which elements exactly are stored locally, use
     * local_range().
     */
    unsigned int local_size () const;

    /**
     * Return a pair of indices indicating which rows of this matrix are
     * stored locally. The first number is the index of the first row stored,
     * the second the index of the one past the last one that is stored
     * locally. If this is a sequential matrix, then the result will be the
     * pair (0,m()), otherwise it will be a pair (i,i+n), where
     * <tt>n=local_size()</tt>.
     */
    std::pair<size_type, size_type>
    local_range () const;

    /**
     * Return whether @p index is in the local range or not, see also
     * local_range().
     */
    bool in_local_range (const size_type index) const;

    /**
     * Return the number of nonzero elements of this matrix.
     */
    size_type n_nonzero_elements () const;

    /**
     * Number of entries in a specific row.
     */
    unsigned int row_length (const size_type row) const;

    /**
     * Returns the state of the matrix, i.e., whether compress() needs to be
     * called after an operation requiring data exchange. A call to compress()
     * is also needed when the method set() has been called (even when working
     * in serial).
     */
    bool is_compressed () const;

    /**
     * Determine an estimate for the memory consumption (in bytes) of this
     * object. Note that only the memory reserved on the current processor is
     * returned in case this is called in an MPI-based program.
     */
    size_type memory_consumption () const;

    /**
     * Return the MPI communicator object in use with this matrix.
     */
    MPI_Comm get_mpi_communicator () const;

//@}
    /**
     * @name Modifying entries
     */
//@{

    /**
     * This operator assigns a scalar to a matrix. Since this does usually not
     * make much sense (should we set all matrix entries to this value?  Only
     * the nonzero entries of the sparsity pattern?), this operation is only
     * allowed if the actual value to be assigned is zero. This operator only
     * exists to allow for the obvious notation <tt>matrix=0</tt>, which sets
     * all elements of the matrix to zero, but keeps the sparsity pattern
     * previously used.
     */
    SparseMatrix &
    operator = (const double d);

    /**
     * Release all memory and return to a state just like after having called
     * the default constructor.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    void clear ();

    /**
     * This command does two things:
     * <ul>
     * <li> If the matrix was initialized without a sparsity pattern, elements
     * have been added manually using the set() command. When this process is
     * completed, a call to compress() reorganizes the internal data
     * structures (sparsity pattern) so that a fast access to data is possible
     * in matrix-vector products.
     * <li> If the matrix structure has already been fixed (either by
     * initialization with a sparsity pattern or by calling compress() during
     * the setup phase), this command does the %parallel exchange of data.
     * This is necessary when we perform assembly on more than one (MPI)
     * process, because then some non-local row data will accumulate on nodes
     * that belong to the current's processor element, but are actually held
     * by another. This command is usually called after all elements have been
     * traversed.
     * </ul>
     *
     * In both cases, this function compresses the data structures and allows
     * the resulting matrix to be used in all other operations like matrix-
     * vector products. This is a collective operation, i.e., it needs to be
     * run on all processors when used in %parallel.
     *
     * See
     * @ref GlossCompress "Compressing distributed objects"
     * for more information.
     */
    void compress (::dealii::VectorOperation::values operation);

    /**
     * Set the element (<i>i,j</i>) to @p value.
     *
     * This function is able to insert new elements into the matrix as long as
     * compress() has not been called, so the sparsity pattern will be
     * extended. When compress() is called for the first time (or in case the
     * matrix is initialized from a sparsity pattern), no new elements can be
     * added and an insertion of elements at positions which have not been
     * initialized will throw an exception.
     *
     * For the case that the matrix is constructed without a sparsity pattern
     * and new matrix entries are added on demand, please note the following
     * behavior imposed by the underlying Epetra_FECrsMatrix data structure:
     * If the same matrix entry is inserted more than once, the matrix entries
     * will be added upon calling compress() (since Epetra does not track
     * values to the same entry before the final compress() is called), even
     * if VectorOperation::insert is specified as argument to compress(). In
     * the case you cannot make sure that matrix entries are only set once,
     * initialize the matrix with a sparsity pattern to fix the matrix
     * structure before inserting elements.
     */
    void set (const size_type i,
              const size_type j,
              const TrilinosScalar value);

    /**
     * Set all elements given in a FullMatrix<double> into the sparse matrix
     * locations given by <tt>indices</tt>. In other words, this function
     * writes the elements in <tt>full_matrix</tt> into the calling matrix,
     * using the local-to-global indexing specified by <tt>indices</tt> for
     * both the rows and the columns of the matrix. This function assumes a
     * quadratic sparse matrix and a quadratic full_matrix, the usual
     * situation in FE calculations.
     *
     * This function is able to insert new elements into the matrix as long as
     * compress() has not been called, so the sparsity pattern will be
     * extended. After compress() has been called for the first time or the
     * matrix has been initialized from a sparsity pattern, extending the
     * sparsity pattern is no longer possible and an insertion of elements at
     * positions which have not been initialized will throw an exception.
     *
     * The optional parameter <tt>elide_zero_values</tt> can be used to
     * specify whether zero values should be inserted anyway or they should be
     * filtered away. The default value is <tt>false</tt>, i.e., even zero
     * values are inserted/replaced.
     *
     * For the case that the matrix is constructed without a sparsity pattern
     * and new matrix entries are added on demand, please note the following
     * behavior imposed by the underlying Epetra_FECrsMatrix data structure:
     * If the same matrix entry is inserted more than once, the matrix entries
     * will be added upon calling compress() (since Epetra does not track
     * values to the same entry before the final compress() is called), even
     * if VectorOperation::insert is specified as argument to compress(). In
     * the case you cannot make sure that matrix entries are only set once,
     * initialize the matrix with a sparsity pattern to fix the matrix
     * structure before inserting elements.
     */
    void set (const std::vector<size_type>     &indices,
              const FullMatrix<TrilinosScalar> &full_matrix,
              const bool                        elide_zero_values = false);

    /**
     * Same function as before, but now including the possibility to use
     * rectangular full_matrices and different local-to-global indexing on
     * rows and columns, respectively.
     */
    void set (const std::vector<size_type>     &row_indices,
              const std::vector<size_type>     &col_indices,
              const FullMatrix<TrilinosScalar> &full_matrix,
              const bool                        elide_zero_values = false);

    /**
     * Set several elements in the specified row of the matrix with column
     * indices as given by <tt>col_indices</tt> to the respective value.
     *
     * This function is able to insert new elements into the matrix as long as
     * compress() has not been called, so the sparsity pattern will be
     * extended. After compress() has been called for the first time or the
     * matrix has been initialized from a sparsity pattern, extending the
     * sparsity pattern is no longer possible and an insertion of elements at
     * positions which have not been initialized will throw an exception.
     *
     * The optional parameter <tt>elide_zero_values</tt> can be used to
     * specify whether zero values should be inserted anyway or they should be
     * filtered away. The default value is <tt>false</tt>, i.e., even zero
     * values are inserted/replaced.
     *
     * For the case that the matrix is constructed without a sparsity pattern
     * and new matrix entries are added on demand, please note the following
     * behavior imposed by the underlying Epetra_FECrsMatrix data structure:
     * If the same matrix entry is inserted more than once, the matrix entries
     * will be added upon calling compress() (since Epetra does not track
     * values to the same entry before the final compress() is called), even
     * if VectorOperation::insert is specified as argument to compress(). In
     * the case you cannot make sure that matrix entries are only set once,
     * initialize the matrix with a sparsity pattern to fix the matrix
     * structure before inserting elements.
     */
    void set (const size_type                    row,
              const std::vector<size_type>      &col_indices,
              const std::vector<TrilinosScalar> &values,
              const bool                         elide_zero_values = false);

    /**
     * Set several elements to values given by <tt>values</tt> in a given row
     * in columns given by col_indices into the sparse matrix.
     *
     * This function is able to insert new elements into the matrix as long as
     * compress() has not been called, so the sparsity pattern will be
     * extended. After compress() has been called for the first time or the
     * matrix has been initialized from a sparsity pattern, extending the
     * sparsity pattern is no longer possible and an insertion of elements at
     * positions which have not been initialized will throw an exception.
     *
     * The optional parameter <tt>elide_zero_values</tt> can be used to
     * specify whether zero values should be inserted anyway or they should be
     * filtered away. The default value is <tt>false</tt>, i.e., even zero
     * values are inserted/replaced.
     *
     * For the case that the matrix is constructed without a sparsity pattern
     * and new matrix entries are added on demand, please note the following
     * behavior imposed by the underlying Epetra_FECrsMatrix data structure:
     * If the same matrix entry is inserted more than once, the matrix entries
     * will be added upon calling compress() (since Epetra does not track
     * values to the same entry before the final compress() is called), even
     * if VectorOperation::insert is specified as argument to compress(). In
     * the case you cannot make sure that matrix entries are only set once,
     * initialize the matrix with a sparsity pattern to fix the matrix
     * structure before inserting elements.
     */
    void set (const size_type       row,
              const size_type       n_cols,
              const size_type      *col_indices,
              const TrilinosScalar *values,
              const bool            elide_zero_values = false);

    /**
     * Add @p value to the element (<i>i,j</i>).
     *
     * Just as the respective call in deal.II SparseMatrix<Number> class (but
     * in contrast to the situation for PETSc based matrices), this function
     * throws an exception if an entry does not exist in the sparsity pattern.
     * Moreover, if <tt>value</tt> is not a finite number an exception is
     * thrown.
     */
    void add (const size_type      i,
              const size_type      j,
              const TrilinosScalar value);

    /**
     * Add all elements given in a FullMatrix<double> into sparse matrix
     * locations given by <tt>indices</tt>. In other words, this function adds
     * the elements in <tt>full_matrix</tt> to the respective entries in
     * calling matrix, using the local-to-global indexing specified by
     * <tt>indices</tt> for both the rows and the columns of the matrix. This
     * function assumes a quadratic sparse matrix and a quadratic full_matrix,
     * the usual situation in FE calculations.
     *
     * Just as the respective call in deal.II SparseMatrix<Number> class (but
     * in contrast to the situation for PETSc based matrices), this function
     * throws an exception if an entry does not exist in the sparsity pattern.
     *
     * The optional parameter <tt>elide_zero_values</tt> can be used to
     * specify whether zero values should be added anyway or these should be
     * filtered away and only non-zero data is added. The default value is
     * <tt>true</tt>, i.e., zero values won't be added into the matrix.
     */
    void add (const std::vector<size_type>  &indices,
              const FullMatrix<TrilinosScalar> &full_matrix,
              const bool                        elide_zero_values = true);

    /**
     * Same function as before, but now including the possibility to use
     * rectangular full_matrices and different local-to-global indexing on
     * rows and columns, respectively.
     */
    void add (const std::vector<size_type>     &row_indices,
              const std::vector<size_type>     &col_indices,
              const FullMatrix<TrilinosScalar> &full_matrix,
              const bool                        elide_zero_values = true);

    /**
     * Set several elements in the specified row of the matrix with column
     * indices as given by <tt>col_indices</tt> to the respective value.
     *
     * Just as the respective call in deal.II SparseMatrix<Number> class (but
     * in contrast to the situation for PETSc based matrices), this function
     * throws an exception if an entry does not exist in the sparsity pattern.
     *
     * The optional parameter <tt>elide_zero_values</tt> can be used to
     * specify whether zero values should be added anyway or these should be
     * filtered away and only non-zero data is added. The default value is
     * <tt>true</tt>, i.e., zero values won't be added into the matrix.
     */
    void add (const size_type                    row,
              const std::vector<size_type>      &col_indices,
              const std::vector<TrilinosScalar> &values,
              const bool                         elide_zero_values = true);

    /**
     * Add an array of values given by <tt>values</tt> in the given global
     * matrix row at columns specified by col_indices in the sparse matrix.
     *
     * Just as the respective call in deal.II SparseMatrix<Number> class (but
     * in contrast to the situation for PETSc based matrices), this function
     * throws an exception if an entry does not exist in the sparsity pattern.
     *
     * The optional parameter <tt>elide_zero_values</tt> can be used to
     * specify whether zero values should be added anyway or these should be
     * filtered away and only non-zero data is added. The default value is
     * <tt>true</tt>, i.e., zero values won't be added into the matrix.
     */
    void add (const size_type       row,
              const size_type       n_cols,
              const size_type      *col_indices,
              const TrilinosScalar *values,
              const bool            elide_zero_values = true,
              const bool            col_indices_are_sorted = false);

    /**
     * Multiply the entire matrix by a fixed factor.
     */
    SparseMatrix &operator *= (const TrilinosScalar factor);

    /**
     * Divide the entire matrix by a fixed factor.
     */
    SparseMatrix &operator /= (const TrilinosScalar factor);

    /**
     * Copy the given (Trilinos) matrix (sparsity pattern and entries).
     */
    void copy_from (const SparseMatrix &source);

    /**
     * Add <tt>matrix</tt> scaled by <tt>factor</tt> to this matrix, i.e. the
     * matrix <tt>factor*matrix</tt> is added to <tt>this</tt>. If the
     * sparsity pattern of the calling matrix does not contain all the
     * elements in the sparsity pattern of the input matrix, this function
     * will throw an exception.
     */
    void add (const TrilinosScalar  factor,
              const SparseMatrix   &matrix);

    /**
     * Remove all elements from this <tt>row</tt> by setting them to zero. The
     * function does not modify the number of allocated nonzero entries, it
     * only sets the entries to zero.
     *
     * This operation is used in eliminating constraints (e.g. due to hanging
     * nodes) and makes sure that we can write this modification to the matrix
     * without having to read entries (such as the locations of non-zero
     * elements) from it &mdash; without this operation, removing constraints
     * on %parallel matrices is a rather complicated procedure.
     *
     * The second parameter can be used to set the diagonal entry of this row
     * to a value different from zero. The default is to set it to zero.
     *
     * @note If the matrix is stored in parallel across multiple processors
     * using MPI, this function only touches rows that are locally stored and
     * simply ignores all other row indices. Further, in the context of
     * parallel computations, you will get into trouble if you clear a row
     * while other processors still have pending writes or additions into the
     * same row. In other words, if another processor still wants to add
     * something to an element of a row and you call this function to zero out
     * the row, then the next time you call compress() may add the remote
     * value to the zero you just created. Consequently, you will want to call
     * compress() after you made the last modifications to a matrix and before
     * starting to clear rows.
     */
    void clear_row (const size_type      row,
                    const TrilinosScalar new_diag_value = 0);

    /**
     * Same as clear_row(), except that it works on a number of rows at once.
     *
     * The second parameter can be used to set the diagonal entries of all
     * cleared rows to something different from zero. Note that all of these
     * diagonal entries get the same value -- if you want different values for
     * the diagonal entries, you have to set them by hand.
     *
     * @note If the matrix is stored in parallel across multiple processors
     * using MPI, this function only touches rows that are locally stored and
     * simply ignores all other row indices. Further, in the context of
     * parallel computations, you will get into trouble if you clear a row
     * while other processors still have pending writes or additions into the
     * same row. In other words, if another processor still wants to add
     * something to an element of a row and you call this function to zero out
     * the row, then the next time you call compress() may add the remote
     * value to the zero you just created. Consequently, you will want to call
     * compress() after you made the last modifications to a matrix and before
     * starting to clear rows.
     */
    void clear_rows (const std::vector<size_type> &rows,
                     const TrilinosScalar          new_diag_value = 0);

    /**
     * Sets an internal flag so that all operations performed by the matrix,
     * i.e., multiplications, are done in transposed order. However, this does
     * not reshape the matrix to transposed form directly, so care should be
     * taken when using this flag.
     */
    void transpose ();

//@}
    /**
     * @name Entry Access
     */
//@{

    /**
     * Return the value of the entry (<i>i,j</i>).  This may be an expensive
     * operation and you should always take care where to call this function.
     * As in the deal.II sparse matrix class, we throw an exception if the
     * respective entry doesn't exist in the sparsity pattern of this class,
     * which is requested from Trilinos. Moreover, an exception will be thrown
     * when the requested element is not saved on the calling process.
     */
    TrilinosScalar operator () (const size_type i,
                                const size_type j) const;

    /**
     * Return the value of the matrix entry (<i>i,j</i>). If this entry does
     * not exist in the sparsity pattern, then zero is returned. While this
     * may be convenient in some cases, note that it is simple to write
     * algorithms that are slow compared to an optimal solution, since the
     * sparsity of the matrix is not used.  On the other hand, if you want to
     * be sure the entry exists, you should use operator() instead.
     *
     * The lack of error checking in this function can also yield surprising
     * results if you have a parallel matrix. In that case, just because you
     * get a zero result from this function does not mean that either the
     * entry does not exist in the sparsity pattern or that it does but has a
     * value of zero. Rather, it could also be that it simply isn't stored on
     * the current processor; in that case, it may be stored on a different
     * processor, and possibly so with a nonzero value.
     */
    TrilinosScalar el (const size_type i,
                       const size_type j) const;

    /**
     * Return the main diagonal element in the <i>i</i>th row. This function
     * throws an error if the matrix is not quadratic and it also throws an
     * error if <i>(i,i)</i> is not element of the local matrix.  See also the
     * comment in trilinos_sparse_matrix.cc.
     */
    TrilinosScalar diag_element (const size_type i) const;

//@}
    /**
     * @name Multiplications
     */
//@{

    /**
     * Matrix-vector multiplication: let <i>dst = M*src</i> with <i>M</i>
     * being this matrix.
     *
     * Source and destination must not be the same vector.
     *
     * This function can be called with several different vector objects,
     * namely TrilinosWrappers::Vector, TrilinosWrappers::MPI::Vector as well
     * as deal.II's own vector classes Vector<double> and
     * parallel::distributed::Vector<double>.
     *
     * Note that both vectors have to be distributed vectors generated using
     * the same Map as was used for the matrix in case you work on a
     * distributed memory architecture, using the interface in the
     * TrilinosWrappers::VectorBase class (or one of the two derived classes
     * Vector and MPI::Vector).
     *
     * In case of a localized Vector, this function will only work when
     * running on one processor, since the matrix object is inherently
     * distributed. Otherwise, and exception will be thrown.
     */
    template<typename VectorType>
    void vmult (VectorType       &dst,
                const VectorType &src) const;

    /**
     * Matrix-vector multiplication: let <i>dst = M<sup>T</sup>*src</i> with
     * <i>M</i> being this matrix. This function does the same as vmult() but
     * takes the transposed matrix.
     *
     * Source and destination must not be the same vector.
     *
     * This function can be called with several different vector objects,
     * namely TrilinosWrappers::Vector, TrilinosWrappers::MPI::Vector as well
     * as deal.II's own vector classes Vector<double> and
     * parallel::distributed::Vector<double>.
     *
     * Note that both vectors have to be distributed vectors generated using
     * the same Map as was used for the matrix in case you work on a
     * distributed memory architecture, using the interface in the
     * TrilinosWrappers::VectorBase class (or one of the two derived classes
     * Vector and MPI::Vector).
     *
     * In case of a localized Vector, this function will only work when
     * running on one processor, since the matrix object is inherently
     * distributed. Otherwise, and exception will be thrown.
     */
    template <typename VectorType>
    void Tvmult (VectorType       &dst,
                 const VectorType &src) const;

    /**
     * Adding matrix-vector multiplication. Add <i>M*src</i> on <i>dst</i>
     * with <i>M</i> being this matrix.
     *
     * Source and destination must not be the same vector.
     *
     * This function can be called with several different vector objects,
     * namely TrilinosWrappers::Vector, TrilinosWrappers::MPI::Vector as well
     * as deal.II's own vector classes Vector<double> and
     * parallel::distributed::Vector<double>.
     *
     * When using a vector of type TrilinosWrappers::MPI::Vector, both vectors
     * have to be distributed vectors generated using the same Map as was used
     * for the matrix rows and columns in case you work on a distributed
     * memory architecture, using the interface in the
     * TrilinosWrappers::VectorBase class.
     *
     * In case of a localized Vector (i.e., TrilinosWrappers::Vector or
     * Vector<double>), this function will only work when running on one
     * processor, since the matrix object is inherently distributed.
     * Otherwise, and exception will be thrown.
     *
     */
    template<typename VectorType>
    void vmult_add (VectorType       &dst,
                    const VectorType &src) const;

    /**
     * Adding matrix-vector multiplication. Add <i>M<sup>T</sup>*src</i> to
     * <i>dst</i> with <i>M</i> being this matrix. This function does the same
     * as vmult_add() but takes the transposed matrix.
     *
     * Source and destination must not be the same vector.
     *
     * This function can be called with several different vector objects,
     * namely TrilinosWrappers::Vector, TrilinosWrappers::MPI::Vector as well
     * as deal.II's own vector classes Vector<double> and
     * parallel::distributed::Vector<double>.
     *
     * When using a vector of type TrilinosWrappers::MPI::Vector, both vectors
     * have to be distributed vectors generated using the same Map as was used
     * for the matrix rows and columns in case you work on a distributed
     * memory architecture, using the interface in the
     * TrilinosWrappers::VectorBase class.
     *
     * In case of a localized Vector (i.e., TrilinosWrappers::Vector or
     * Vector<double>), this function will only work when running on one
     * processor, since the matrix object is inherently distributed.
     * Otherwise, and exception will be thrown.
     */
    template <typename VectorType>
    void Tvmult_add (VectorType       &dst,
                     const VectorType &src) const;

    /**
     * Return the square of the norm of the vector $v$ with respect to the
     * norm induced by this matrix, i.e., $\left(v,Mv\right)$. This is useful,
     * e.g. in the finite element context, where the $L_2$ norm of a function
     * equals the matrix norm with respect to the mass matrix of the vector
     * representing the nodal values of the finite element function.
     *
     * Obviously, the matrix needs to be quadratic for this operation.
     *
     * The implementation of this function is not as efficient as the one in
     * the @p SparseMatrix class used in deal.II (i.e. the original one, not
     * the Trilinos wrapper class) since Trilinos doesn't support this
     * operation and needs a temporary vector.
     *
     * Note that both vectors have to be distributed vectors generated using
     * the same Map as was used for the matrix in case you work on a
     * distributed memory architecture, using the interface in the
     * TrilinosWrappers::VectorBase class (or one of the two derived classes
     * Vector and MPI::Vector).
     *
     * In case of a localized Vector, this function will only work when
     * running on one processor, since the matrix object is inherently
     * distributed. Otherwise, and exception will be thrown.
     */
    TrilinosScalar matrix_norm_square (const VectorBase &v) const;

    /**
     * Compute the matrix scalar product $\left(u,Mv\right)$.
     *
     * The implementation of this function is not as efficient as the one in
     * the @p SparseMatrix class used in deal.II (i.e. the original one, not
     * the Trilinos wrapper class) since Trilinos doesn't support this
     * operation and needs a temporary vector.
     *
     * Note that both vectors have to be distributed vectors generated using
     * the same Map as was used for the matrix in case you work on a
     * distributed memory architecture, using the interface in the
     * TrilinosWrappers::VectorBase class (or one of the two derived classes
     * Vector and MPI::Vector).
     *
     * In case of a localized Vector, this function will only work when
     * running on one processor, since the matrix object is inherently
     * distributed. Otherwise, and exception will be thrown.
     */
    TrilinosScalar matrix_scalar_product (const VectorBase &u,
                                          const VectorBase &v) const;

    /**
     * Compute the residual of an equation <i>Mx=b</i>, where the residual is
     * defined to be <i>r=b-Mx</i>. Write the residual into @p dst. The
     * <i>l<sub>2</sub></i> norm of the residual vector is returned.
     *
     * Source <i>x</i> and destination <i>dst</i> must not be the same vector.
     *
     * Note that both vectors have to be distributed vectors generated using
     * the same Map as was used for the matrix in case you work on a
     * distributed memory architecture, using the interface in the
     * TrilinosWrappers::VectorBase class (or one of the two derived classes
     * Vector and MPI::Vector).
     *
     * In case of a localized Vector, this function will only work when
     * running on one processor, since the matrix object is inherently
     * distributed. Otherwise, and exception will be thrown.
     */
    TrilinosScalar residual (VectorBase       &dst,
                             const VectorBase &x,
                             const VectorBase &b) const;

    /**
     * Perform the matrix-matrix multiplication <tt>C = A * B</tt>, or, if an
     * optional vector argument is given, <tt>C = A * diag(V) * B</tt>, where
     * <tt>diag(V)</tt> defines a diagonal matrix with the vector entries.
     *
     * This function assumes that the calling matrix <tt>A</tt> and <tt>B</tt>
     * have compatible sizes. The size of <tt>C</tt> will be set within this
     * function.
     *
     * The content as well as the sparsity pattern of the matrix C will be
     * changed by this function, so make sure that the sparsity pattern is not
     * used somewhere else in your program. This is an expensive operation, so
     * think twice before you use this function.
     */
    void mmult (SparseMatrix       &C,
                const SparseMatrix &B,
                const VectorBase   &V = VectorBase()) const;


    /**
     * Perform the matrix-matrix multiplication with the transpose of
     * <tt>this</tt>, i.e., <tt>C = A<sup>T</sup> * B</tt>, or, if an optional
     * vector argument is given, <tt>C = A<sup>T</sup> * diag(V) * B</tt>,
     * where <tt>diag(V)</tt> defines a diagonal matrix with the vector
     * entries.
     *
     * This function assumes that the calling matrix <tt>A</tt> and <tt>B</tt>
     * have compatible sizes. The size of <tt>C</tt> will be set within this
     * function.
     *
     * The content as well as the sparsity pattern of the matrix C will be
     * changed by this function, so make sure that the sparsity pattern is not
     * used somewhere else in your program. This is an expensive operation, so
     * think twice before you use this function.
     */
    void Tmmult (SparseMatrix       &C,
                 const SparseMatrix &B,
                 const VectorBase   &V = VectorBase()) const;

//@}
    /**
     * @name Matrix norms
     */
//@{

    /**
     * Return the <i>l</i><sub>1</sub>-norm of the matrix, that is $|M|_1=
     * \max_{\mathrm{all\ columns\ } j} \sum_{\mathrm{all\ rows\ } i}
     * |M_{ij}|$, (max. sum of columns).  This is the natural matrix norm that
     * is compatible to the l1-norm for vectors, i.e.  $|Mv|_1 \leq |M|_1
     * |v|_1$.  (cf. Haemmerlin-Hoffmann: Numerische Mathematik)
     */
    TrilinosScalar l1_norm () const;

    /**
     * Return the linfty-norm of the matrix, that is
     * $|M|_\infty=\max_{\mathrm{all\ rows\ } i}\sum_{\mathrm{all\ columns\ }
     * j} |M_{ij}|$, (max. sum of rows).  This is the natural matrix norm that
     * is compatible to the linfty-norm of vectors, i.e.  $|Mv|_\infty \leq
     * |M|_\infty |v|_\infty$.  (cf. Haemmerlin-Hoffmann: Numerische
     * Mathematik)
     */
    TrilinosScalar linfty_norm () const;

    /**
     * Return the frobenius norm of the matrix, i.e. the square root of the
     * sum of squares of all entries in the matrix.
     */
    TrilinosScalar frobenius_norm () const;

//@}
    /**
     * @name Access to underlying Trilinos data
     */
//@{

    /**
     * Return a const reference to the underlying Trilinos Epetra_CrsMatrix
     * data.
     */
    const Epetra_CrsMatrix &trilinos_matrix () const;

    /**
     * Return a const reference to the underlying Trilinos Epetra_CrsGraph
     * data that stores the sparsity pattern of the matrix.
     */
    const Epetra_CrsGraph &trilinos_sparsity_pattern () const;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the partitioning of the domain space of this matrix, i.e., the
     * partitioning of the vectors this matrix has to be multiplied with.
     *
     * @deprecated Use locally_owned_domain_indices() instead.
     */
    const Epetra_Map &domain_partitioner ()  const DEAL_II_DEPRECATED;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the partitioning of the range space of this matrix, i.e., the
     * partitioning of the vectors that are result from matrix-vector
     * products.
     *
     * @deprecated Use locally_owned_range_indices() instead.
     */
    const Epetra_Map &range_partitioner () const DEAL_II_DEPRECATED;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the partitioning of the matrix rows. Equal to the partitioning of
     * the range.
     *
     * @deprecated Use locally_owned_range_indices() instead.
     */
    const Epetra_Map &row_partitioner () const DEAL_II_DEPRECATED;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the partitioning of the matrix columns. This is in general not
     * equal to the partitioner Epetra_Map for the domain because of overlap
     * in the matrix.
     *
     * @deprecated Usually not necessary. If desired, access it via the
     * Epetra_CrsMatrix.
     */
    const Epetra_Map &col_partitioner () const DEAL_II_DEPRECATED;
//@}

    /**
     * @name Partitioners
     */
//@{

    /**
     * Return the partitioning of the domain space of this matrix, i.e., the
     * partitioning of the vectors this matrix has to be multiplied with.
     */
    IndexSet locally_owned_domain_indices() const;

    /**
     * Return the partitioning of the range space of this matrix, i.e., the
     * partitioning of the vectors that are result from matrix-vector
     * products.
     */
    IndexSet locally_owned_range_indices() const;

//@}

    /**
     * @name Iterators
     */
//@{

    /**
     * Return an iterator pointing to the first element of the matrix.
     *
     * The elements accessed by iterators within each row are ordered in the
     * way in which Trilinos stores them, though the implementation guarantees
     * that all elements of one row are accessed before the elements of the
     * next row. If your algorithm relies on visiting elements within one row,
     * you will need to consult with the Trilinos documentation on the order
     * in which it stores data. It is, however, generally not a good and long-
     * term stable idea to rely on the order in which receive elements if you
     * iterate over them.
     *
     * When you iterate over the elements of a parallel matrix, you will only
     * be able to access the locally owned rows. (You can access the other
     * rows as well, but they will look empty.) In that case, you probably
     * want to call the begin() function that takes the row as an argument to
     * limit the range of elements to loop over.
     */
    const_iterator begin () const;

    /**
     * Like the function above, but for non-const matrices.
     */
    iterator begin ();

    /**
     * Return an iterator pointing the element past the last one of this
     * matrix.
     */
    const_iterator end () const;

    /**
     * Like the function above, but for non-const matrices.
     */
    iterator end ();

    /**
     * Return an iterator pointing to the first element of row @p r.
     *
     * Note that if the given row is empty, i.e. does not contain any nonzero
     * entries, then the iterator returned by this function equals
     * <tt>end(r)</tt>. The returned iterator may not be dereferencable in
     * that case if neither row @p r nor any of the following rows contain any
     * nonzero entries.
     *
     * The elements accessed by iterators within each row are ordered in the
     * way in which Trilinos stores them, though the implementation guarantees
     * that all elements of one row are accessed before the elements of the
     * next row. If your algorithm relies on visiting elements within one row,
     * you will need to consult with the Trilinos documentation on the order
     * in which it stores data. It is, however, generally not a good and long-
     * term stable idea to rely on the order in which receive elements if you
     * iterate over them.
     *
     * @note When you access the elements of a parallel matrix, you can only
     * access the elements of rows that are actually stored locally. (You can
     * access the other rows as well, but they will look empty.) Even then, if
     * another processor has since written into, or added to, an element of
     * the matrix that is stored on the current processor, then you will still
     * see the old value of this entry unless you have called compress()
     * between modifying the matrix element on the remote processor and
     * accessing it on the current processor. See the documentation of the
     * compress() function for more information.
     */
    const_iterator begin (const size_type r) const;

    /**
     * Like the function above, but for non-const matrices.
     */
    iterator begin (const size_type r);

    /**
     * Return an iterator pointing the element past the last one of row @p r ,
     * or past the end of the entire sparsity pattern if none of the rows
     * after @p r contain any entries at all.
     *
     * Note that the end iterator is not necessarily dereferencable. This is
     * in particular the case if it is the end iterator for the last row of a
     * matrix.
     */
    const_iterator end (const size_type r) const;

    /**
     * Like the function above, but for non-const matrices.
     */
    iterator end (const size_type r);

//@}
    /**
     * @name Input/Output
     */
//@{

    /**
     * Abstract Trilinos object that helps view in ASCII other Trilinos
     * objects. Currently this function is not implemented.  TODO: Not
     * implemented.
     */
    void write_ascii ();

    /**
     * Print the matrix to the given stream, using the format <tt>(line,col)
     * value</tt>, i.e. one nonzero entry of the matrix per line. The optional
     * flag outputs the sparsity pattern in Trilinos style, where the data is
     * sorted according to the processor number when printed to the stream, as
     * well as a summary of the matrix like the global size.
     */
    void print (std::ostream &out,
                const bool    write_extended_trilinos_info = false) const;

//@}
    /**
     * @addtogroup Exceptions
     *
     */
//@{
    /**
     * Exception
     */
    DeclException1 (ExcTrilinosError,
                    int,
                    << "An error with error number " << arg1
                    << " occurred while calling a Trilinos function");

    /**
     * Exception
     */
    DeclException2 (ExcInvalidIndex,
                    size_type, size_type,
                    << "The entry with index <" << arg1 << ',' << arg2
                    << "> does not exist.");

    /**
     * Exception
     */
    DeclException0 (ExcSourceEqualsDestination);

    /**
     * Exception
     */
    DeclException0 (ExcMatrixNotCompressed);

    /**
     * Exception
     */
    DeclException4 (ExcAccessToNonLocalElement,
                    size_type, size_type, size_type, size_type,
                    << "You tried to access element (" << arg1
                    << "/" << arg2 << ")"
                    << " of a distributed matrix, but only rows "
                    << arg3 << " through " << arg4
                    << " are stored locally and can be accessed.");

    /**
     * Exception
     */
    DeclException2 (ExcAccessToNonPresentElement,
                    size_type, size_type,
                    << "You tried to access element (" << arg1
                    << "/" << arg2 << ")"
                    << " of a sparse matrix, but it appears to not"
                    << " exist in the Trilinos sparsity pattern.");
//@}



  protected:

    /**
     * For some matrix storage formats, in particular for the PETSc
     * distributed blockmatrices, set and add operations on individual
     * elements can not be freely mixed. Rather, one has to synchronize
     * operations when one wants to switch from setting elements to adding to
     * elements.  BlockMatrixBase automatically synchronizes the access by
     * calling this helper function for each block.  This function ensures
     * that the matrix is in a state that allows adding elements; if it
     * previously already was in this state, the function does nothing.
     */
    void prepare_add();

    /**
     * Same as prepare_add() but prepare the matrix for setting elements if
     * the representation of elements in this class requires such an
     * operation.
     */
    void prepare_set();



  private:
    /**
     * Copy constructor is disabled.
     */
    SparseMatrix (const SparseMatrix &);
    /**
     * operator= is disabled.
     */
    SparseMatrix &operator = (const SparseMatrix &);

    /**
     * Pointer to the user-supplied Epetra Trilinos mapping of the matrix
     * columns that assigns parts of the matrix to the individual processes.
     */
    std_cxx11::shared_ptr<Epetra_Map> column_space_map;

    /**
     * A sparse matrix object in Trilinos to be used for finite element based
     * problems which allows for assembling into non-local elements.  The
     * actual type, a sparse matrix, is set in the constructor.
     */
    std_cxx11::shared_ptr<Epetra_FECrsMatrix> matrix;

    /**
     * A sparse matrix object in Trilinos to be used for collecting the non-
     * local elements if the matrix was constructed from a Trilinos sparsity
     * pattern with the respective option.
     */
    std_cxx11::shared_ptr<Epetra_CrsMatrix> nonlocal_matrix;

    /**
     * An export object used to communicate the nonlocal matrix.
     */
    std_cxx11::shared_ptr<Epetra_Export>    nonlocal_matrix_exporter;

    /**
     * Trilinos doesn't allow to mix additions to matrix entries and
     * overwriting them (to make synchronisation of %parallel computations
     * simpler). The way we do it is to, for each access operation, store
     * whether it is an insertion or an addition. If the previous one was of
     * different type, then we first have to flush the Trilinos buffers;
     * otherwise, we can simply go on. Luckily, Trilinos has an object for
     * this which does already all the %parallel communications in such a
     * case, so we simply use their model, which stores whether the last
     * operation was an addition or an insertion.
     */
    Epetra_CombineMode last_action;

    /**
     * A boolean variable to hold information on whether the vector is
     * compressed or not.
     */
    bool compressed;

    /**
     * To allow calling protected prepare_add() and prepare_set().
     */
    friend class BlockMatrixBase<SparseMatrix>;
  };



// -------------------------- inline and template functions ----------------------


#ifndef DOXYGEN

  namespace SparseMatrixIterators
  {
    inline
    AccessorBase::AccessorBase(SparseMatrix *matrix, size_type row, size_type index)
      :
      matrix(matrix),
      a_row(row),
      a_index(index)
    {
      visit_present_row ();
    }


    inline
    AccessorBase::size_type
    AccessorBase::row() const
    {
      Assert (a_row < matrix->m(), ExcBeyondEndOfMatrix());
      return a_row;
    }


    inline
    AccessorBase::size_type
    AccessorBase::column() const
    {
      Assert (a_row < matrix->m(), ExcBeyondEndOfMatrix());
      return (*colnum_cache)[a_index];
    }


    inline
    AccessorBase::size_type
    AccessorBase::index() const
    {
      Assert (a_row < matrix->m(), ExcBeyondEndOfMatrix());
      return a_index;
    }


    inline
    Accessor<true>::Accessor (MatrixType *matrix,
                              const size_type  row,
                              const size_type  index)
      :
      AccessorBase(const_cast<SparseMatrix *>(matrix), row, index)
    {}


    template <bool Other>
    inline
    Accessor<true>::Accessor(const Accessor<Other> &other)
      :
      AccessorBase(other)
    {}


    inline
    TrilinosScalar
    Accessor<true>::value() const
    {
      Assert (a_row < matrix->m(), ExcBeyondEndOfMatrix());
      return (*value_cache)[a_index];
    }


    inline
    Accessor<false>::Reference::Reference (
      const Accessor<false> &acc)
      :
      accessor(const_cast<Accessor<false>&>(acc))
    {}


    inline
    Accessor<false>::Reference::operator TrilinosScalar () const
    {
      return (*accessor.value_cache)[accessor.a_index];
    }

    inline
    const Accessor<false>::Reference &
    Accessor<false>::Reference::operator = (const TrilinosScalar n) const
    {
      (*accessor.value_cache)[accessor.a_index] = n;
      accessor.matrix->set(accessor.row(), accessor.column(),
                           static_cast<TrilinosScalar>(*this));
      return *this;
    }


    inline
    const Accessor<false>::Reference &
    Accessor<false>::Reference::operator += (const TrilinosScalar n) const
    {
      (*accessor.value_cache)[accessor.a_index] += n;
      accessor.matrix->set(accessor.row(), accessor.column(),
                           static_cast<TrilinosScalar>(*this));
      return *this;
    }


    inline
    const Accessor<false>::Reference &
    Accessor<false>::Reference::operator -= (const TrilinosScalar n) const
    {
      (*accessor.value_cache)[accessor.a_index] -= n;
      accessor.matrix->set(accessor.row(), accessor.column(),
                           static_cast<TrilinosScalar>(*this));
      return *this;
    }


    inline
    const Accessor<false>::Reference &
    Accessor<false>::Reference::operator *= (const TrilinosScalar n) const
    {
      (*accessor.value_cache)[accessor.a_index] *= n;
      accessor.matrix->set(accessor.row(), accessor.column(),
                           static_cast<TrilinosScalar>(*this));
      return *this;
    }


    inline
    const Accessor<false>::Reference &
    Accessor<false>::Reference::operator /= (const TrilinosScalar n) const
    {
      (*accessor.value_cache)[accessor.a_index] /= n;
      accessor.matrix->set(accessor.row(), accessor.column(),
                           static_cast<TrilinosScalar>(*this));
      return *this;
    }


    inline
    Accessor<false>::Accessor (MatrixType *matrix,
                               const size_type  row,
                               const size_type  index)
      :
      AccessorBase(matrix, row, index)
    {}


    inline
    Accessor<false>::Reference
    Accessor<false>::value() const
    {
      Assert (a_row < matrix->m(), ExcBeyondEndOfMatrix());
      return Reference(*this);
    }



    template <bool Constness>
    inline
    Iterator<Constness>::Iterator(MatrixType *matrix,
                                  const size_type  row,
                                  const size_type  index)
      :
      accessor(matrix, row, index)
    {}


    template <bool Constness>
    template <bool Other>
    inline
    Iterator<Constness>::Iterator(const Iterator<Other> &other)
      :
      accessor(other.accessor)
    {}


    template <bool Constness>
    inline
    Iterator<Constness> &
    Iterator<Constness>::operator++ ()
    {
      Assert (accessor.a_row < accessor.matrix->m(), ExcIteratorPastEnd());

      ++accessor.a_index;

      // If at end of line: do one
      // step, then cycle until we
      // find a row with a nonzero
      // number of entries.
      if (accessor.a_index >= accessor.colnum_cache->size())
        {
          accessor.a_index = 0;
          ++accessor.a_row;

          while ((accessor.a_row < accessor.matrix->m())
                 &&
                 ((accessor.matrix->in_local_range (accessor.a_row) == false)
                  ||
                  (accessor.matrix->row_length(accessor.a_row) == 0)))
            ++accessor.a_row;

          accessor.visit_present_row();
        }
      return *this;
    }


    template <bool Constness>
    inline
    Iterator<Constness>
    Iterator<Constness>::operator++ (int)
    {
      const Iterator<Constness> old_state = *this;
      ++(*this);
      return old_state;
    }



    template <bool Constness>
    inline
    const Accessor<Constness> &
    Iterator<Constness>::operator* () const
    {
      return accessor;
    }



    template <bool Constness>
    inline
    const Accessor<Constness> *
    Iterator<Constness>::operator-> () const
    {
      return &accessor;
    }



    template <bool Constness>
    inline
    bool
    Iterator<Constness>::operator == (const Iterator<Constness> &other) const
    {
      return (accessor.a_row == other.accessor.a_row &&
              accessor.a_index == other.accessor.a_index);
    }



    template <bool Constness>
    inline
    bool
    Iterator<Constness>::operator != (const Iterator<Constness> &other) const
    {
      return ! (*this == other);
    }



    template <bool Constness>
    inline
    bool
    Iterator<Constness>::operator < (const Iterator<Constness> &other) const
    {
      return (accessor.row() < other.accessor.row() ||
              (accessor.row() == other.accessor.row() &&
               accessor.index() < other.accessor.index()));
    }


    template <bool Constness>
    inline
    bool
    Iterator<Constness>::operator > (const Iterator<Constness> &other) const
    {
      return (other < *this);
    }

  }



  inline
  SparseMatrix::const_iterator
  SparseMatrix::begin() const
  {
    return begin(0);
  }



  inline
  SparseMatrix::const_iterator
  SparseMatrix::end() const
  {
    return const_iterator(this, m(), 0);
  }



  inline
  SparseMatrix::const_iterator
  SparseMatrix::begin(const size_type r) const
  {
    Assert (r < m(), ExcIndexRange(r, 0, m()));
    if (in_local_range (r)
        &&
        (row_length(r) > 0))
      return const_iterator(this, r, 0);
    else
      return end (r);
  }



  inline
  SparseMatrix::const_iterator
  SparseMatrix::end(const size_type r) const
  {
    Assert (r < m(), ExcIndexRange(r, 0, m()));

    // place the iterator on the first entry
    // past this line, or at the end of the
    // matrix
    for (size_type i=r+1; i<m(); ++i)
      if (in_local_range (i)
          &&
          (row_length(i) > 0))
        return const_iterator(this, i, 0);

    // if there is no such line, then take the
    // end iterator of the matrix
    return end();
  }



  inline
  SparseMatrix::iterator
  SparseMatrix::begin()
  {
    return begin(0);
  }



  inline
  SparseMatrix::iterator
  SparseMatrix::end()
  {
    return iterator(this, m(), 0);
  }



  inline
  SparseMatrix::iterator
  SparseMatrix::begin(const size_type r)
  {
    Assert (r < m(), ExcIndexRange(r, 0, m()));
    if (in_local_range (r)
        &&
        (row_length(r) > 0))
      return iterator(this, r, 0);
    else
      return end (r);
  }



  inline
  SparseMatrix::iterator
  SparseMatrix::end(const size_type r)
  {
    Assert (r < m(), ExcIndexRange(r, 0, m()));

    // place the iterator on the first entry
    // past this line, or at the end of the
    // matrix
    for (size_type i=r+1; i<m(); ++i)
      if (in_local_range (i)
          &&
          (row_length(i) > 0))
        return iterator(this, i, 0);

    // if there is no such line, then take the
    // end iterator of the matrix
    return end();
  }



  inline
  bool
  SparseMatrix::in_local_range (const size_type index) const
  {
    TrilinosWrappers::types::int_type begin, end;
#ifndef DEAL_II_WITH_64BIT_INDICES
    begin = matrix->RowMap().MinMyGID();
    end = matrix->RowMap().MaxMyGID()+1;
#else
    begin = matrix->RowMap().MinMyGID64();
    end = matrix->RowMap().MaxMyGID64()+1;
#endif

    return ((index >= static_cast<size_type>(begin)) &&
            (index < static_cast<size_type>(end)));
  }



  inline
  bool
  SparseMatrix::is_compressed () const
  {
    return compressed;
  }



  // Inline the set() and add() functions, since they will be called
  // frequently, and the compiler can optimize away some unnecessary loops
  // when the sizes are given at compile time.
  inline
  void
  SparseMatrix::set (const size_type      i,
                     const size_type      j,
                     const TrilinosScalar value)
  {

    AssertIsFinite(value);

    set (i, 1, &j, &value, false);
  }



  inline
  void
  SparseMatrix::set (const std::vector<size_type>  &indices,
                     const FullMatrix<TrilinosScalar> &values,
                     const bool                        elide_zero_values)
  {
    Assert (indices.size() == values.m(),
            ExcDimensionMismatch(indices.size(), values.m()));
    Assert (values.m() == values.n(), ExcNotQuadratic());

    for (size_type i=0; i<indices.size(); ++i)
      set (indices[i], indices.size(), &indices[0], &values(i,0),
           elide_zero_values);
  }



  inline
  void
  SparseMatrix::add (const size_type      i,
                     const size_type      j,
                     const TrilinosScalar value)
  {
    AssertIsFinite(value);

    if (value == 0)
      {
        // we have to check after Insert/Add in any case to be consistent
        // with the MPI communication model (see the comments in the
        // documentation of TrilinosWrappers::Vector), but we can save some
        // work if the addend is zero. However, these actions are done in case
        // we pass on to the other function.

        // TODO: fix this (do not run compress here, but fail)
        if (last_action == Insert)
          {
            int ierr;
            ierr = matrix->GlobalAssemble(*column_space_map,
                                          matrix->RowMap(), false);

            Assert (ierr == 0, ExcTrilinosError(ierr));
            (void)ierr; // removes -Wunused-but-set-variable in optimized mode
          }

        last_action = Add;

        return;
      }
    else
      add (i, 1, &j, &value, false);
  }



  // inline "simple" functions that are called frequently and do only involve
  // a call to some Trilinos function.
  inline
  SparseMatrix::size_type
  SparseMatrix::m () const
  {
#ifndef DEAL_II_WITH_64BIT_INDICES
    return matrix->NumGlobalRows();
#else
    return matrix->NumGlobalRows64();
#endif
  }



  inline
  SparseMatrix::size_type
  SparseMatrix::n () const
  {
    // If the matrix structure has not been fixed (i.e., we did not have a
    // sparsity pattern), it does not know about the number of columns so we
    // must always take this from the additional column space map
    Assert(column_space_map.get() != 0, ExcInternalError());
#ifndef DEAL_II_WITH_64BIT_INDICES
    return column_space_map->NumGlobalElements();
#else
    return column_space_map->NumGlobalElements64();
#endif
  }



  inline
  unsigned int
  SparseMatrix::local_size () const
  {
    return matrix -> NumMyRows();
  }



  inline
  std::pair<SparseMatrix::size_type, SparseMatrix::size_type>
  SparseMatrix::local_range () const
  {
    size_type begin, end;
#ifndef DEAL_II_WITH_64BIT_INDICES
    begin = matrix->RowMap().MinMyGID();
    end = matrix->RowMap().MaxMyGID()+1;
#else
    begin = matrix->RowMap().MinMyGID64();
    end = matrix->RowMap().MaxMyGID64()+1;
#endif

    return std::make_pair (begin, end);
  }



  inline
  SparseMatrix::size_type
  SparseMatrix::n_nonzero_elements () const
  {
#ifndef DEAL_II_WITH_64BIT_INDICES
    return matrix->NumGlobalNonzeros();
#else
    return matrix->NumGlobalNonzeros64();
#endif
  }



  template <typename SparsityPatternType>
  inline
  void SparseMatrix::reinit (const IndexSet            &parallel_partitioning,
                             const SparsityPatternType &sparsity_pattern,
                             const MPI_Comm            &communicator,
                             const bool                 exchange_data)
  {
    reinit (parallel_partitioning, parallel_partitioning,
            sparsity_pattern, communicator, exchange_data);
  }



  template <typename number>
  inline
  void SparseMatrix::reinit (const IndexSet                       &parallel_partitioning,
                             const ::dealii::SparseMatrix<number> &sparse_matrix,
                             const MPI_Comm                       &communicator,
                             const double                          drop_tolerance,
                             const bool                            copy_values,
                             const ::dealii::SparsityPattern      *use_this_sparsity)
  {
    Epetra_Map map = parallel_partitioning.make_trilinos_map (communicator, false);
    reinit (parallel_partitioning, parallel_partitioning, sparse_matrix,
            drop_tolerance, copy_values, use_this_sparsity);
  }



  inline
  const Epetra_CrsMatrix &
  SparseMatrix::trilinos_matrix () const
  {
    return static_cast<const Epetra_CrsMatrix &>(*matrix);
  }



  inline
  const Epetra_CrsGraph &
  SparseMatrix::trilinos_sparsity_pattern () const
  {
    return matrix->Graph();
  }



  inline
  IndexSet
  SparseMatrix::locally_owned_domain_indices () const
  {
    return IndexSet(matrix->DomainMap());
  }



  inline
  IndexSet
  SparseMatrix::locally_owned_range_indices () const
  {
    return IndexSet(matrix->RangeMap());
  }



  inline
  void
  SparseMatrix::prepare_add()
  {
    //nothing to do here
  }



  inline
  void
  SparseMatrix::prepare_set()
  {
    //nothing to do here
  }



#endif // DOXYGEN

}


DEAL_II_NAMESPACE_CLOSE


#endif // DEAL_II_WITH_TRILINOS


/*-----------------------   trilinos_sparse_matrix.h     --------------------*/

#endif
/*-----------------------   trilinos_sparse_matrix.h     --------------------*/