This file is indexed.

/usr/include/deal.II/lac/trilinos_sparsity_pattern.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
// ---------------------------------------------------------------------
//
// Copyright (C) 2008 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__trilinos_sparsity_pattern_h
#define dealii__trilinos_sparsity_pattern_h


#include <deal.II/base/config.h>

#ifdef DEAL_II_WITH_TRILINOS

#  include <deal.II/base/subscriptor.h>
#  include <deal.II/base/index_set.h>
#  include <deal.II/lac/exceptions.h>

#  include <vector>
#  include <cmath>
#  include <memory>

#  include <deal.II/base/std_cxx11/shared_ptr.h>

DEAL_II_DISABLE_EXTRA_DIAGNOSTICS
#  include <Epetra_FECrsGraph.h>
#  include <Epetra_Map.h>
#  ifdef DEAL_II_WITH_MPI
#    include <Epetra_MpiComm.h>
#    include "mpi.h"
#  else
#    include "Epetra_SerialComm.h"
#  endif
DEAL_II_ENABLE_EXTRA_DIAGNOSTICS


DEAL_II_NAMESPACE_OPEN

// forward declarations
class SparsityPattern;
class DynamicSparsityPattern;

namespace TrilinosWrappers
{
  // forward declarations
  class SparsityPattern;

  namespace SparsityPatternIterators
  {
    // forward declaration
    class Iterator;

    /**
     * Accessor class for iterators into sparsity patterns. This class is also
     * the base class for both const and non-const accessor classes into
     * sparse matrices.
     *
     * Note that this class only allows read access to elements, providing
     * their row and column number. It does not allow modifying the sparsity
     * pattern itself.
     *
     * @ingroup TrilinosWrappers
     * @author Wolfgang Bangerth, Martin Kronbichler, Guido Kanschat
     * @date 2004, 2008, 2012
     */
    class Accessor
    {
    public:
      /**
       * Declare type for container size.
       */
      typedef dealii::types::global_dof_index size_type;

      /**
       * Constructor.
       */
      Accessor (const SparsityPattern *sparsity_pattern,
                const size_type        row,
                const size_type        index);

      /**
       * Copy constructor.
       */
      Accessor (const Accessor &a);

      /**
       * Row number of the element represented by this object.
       */
      size_type row() const;

      /**
       * Index in row of the element represented by this object.
       */
      size_type index() const;

      /**
       * Column number of the element represented by this object.
       */
      size_type column() const;

      /**
       * Exception
       */
      DeclException0 (ExcBeyondEndOfSparsityPattern);

      /**
       * Exception
       */
      DeclException3 (ExcAccessToNonlocalRow,
                      size_type, size_type, size_type,
                      << "You tried to access row " << arg1
                      << " of a distributed sparsity pattern, "
                      << " but only rows " << arg2 << " through " << arg3
                      << " are stored locally and can be accessed.");

    private:
      /**
       * The matrix accessed.
       */
      mutable SparsityPattern *sparsity_pattern;

      /**
       * Current row number.
       */
      size_type a_row;

      /**
       * Current index in row.
       */
      size_type a_index;

      /**
       * Cache where we store the column indices of the present row. This is
       * necessary, since Trilinos makes access to the elements of its
       * matrices rather hard, and it is much more efficient to copy all
       * column entries of a row once when we enter it than repeatedly asking
       * Trilinos for individual ones. This also makes some sense since it is
       * likely that we will access them sequentially anyway.
       *
       * In order to make copying of iterators/accessor of acceptable
       * performance, we keep a shared pointer to these entries so that more
       * than one accessor can access this data if necessary.
       */
      std_cxx11::shared_ptr<const std::vector<size_type> > colnum_cache;

      /**
       * Discard the old row caches (they may still be used by other
       * accessors) and generate new ones for the row pointed to presently by
       * this accessor.
       */
      void visit_present_row ();

      /**
       * Make enclosing class a friend.
       */
      friend class Iterator;
    };

    /**
     * Iterator class for sparsity patterns of type
     * TrilinosWrappers::SparsityPattern. Access to individual elements of the
     * sparsity pattern is handled by the Accessor class in this namespace.
     */
    class Iterator
    {
    public:
      /**
       * Declare type for container size.
       */
      typedef dealii::types::global_dof_index size_type;

      /**
       * Constructor. Create an iterator into the matrix @p matrix for the
       * given row and the index within it.
       */
      Iterator (const SparsityPattern *sparsity_pattern,
                const size_type        row,
                const size_type        index);

      /**
       * Copy constructor.
       */
      Iterator (const Iterator &i);

      /**
       * Prefix increment.
       */
      Iterator &operator++ ();

      /**
       * Postfix increment.
       */
      Iterator operator++ (int);

      /**
       * Dereferencing operator.
       */
      const Accessor &operator* () const;

      /**
       * Dereferencing operator.
       */
      const Accessor *operator-> () const;

      /**
       * Comparison. True, if both iterators point to the same matrix
       * position.
       */
      bool operator == (const Iterator &) const;

      /**
       * Inverse of <tt>==</tt>.
       */
      bool operator != (const Iterator &) const;

      /**
       * Comparison operator. Result is true if either the first row number is
       * smaller or if the row numbers are equal and the first index is
       * smaller.
       */
      bool operator < (const Iterator &) const;

      /**
       * Exception
       */
      DeclException2 (ExcInvalidIndexWithinRow,
                      size_type, size_type,
                      << "Attempt to access element " << arg2
                      << " of row " << arg1
                      << " which doesn't have that many elements.");

    private:
      /**
       * Store an object of the accessor class.
       */
      Accessor accessor;

      friend class TrilinosWrappers::SparsityPattern;
    };

  }


  /**
   * This class implements a wrapper class to use the Trilinos distributed
   * sparsity pattern class Epetra_FECrsGraph. This class is designed to be
   * used for construction of %parallel Trilinos matrices. The functionality
   * of this class is modeled after the existing sparsity pattern classes,
   * with the difference that this class can work fully in %parallel according
   * to a partitioning of the sparsity pattern rows.
   *
   * This class has many similarities to the  DynamicSparsityPattern, since it
   * can dynamically add elements to the pattern without any memory being
   * previously reserved for it. However, it also has a method
   * SparsityPattern::compress(), that finalizes the pattern and enables its
   * use with Trilinos sparse matrices.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Sparsity
   * @author Martin Kronbichler, 2008
   */
  class SparsityPattern : public Subscriptor
  {
  public:

    /**
     * Declare type for container size.
     */
    typedef dealii::types::global_dof_index size_type;

    /**
     * Declare a typedef for the iterator class.
     */
    typedef SparsityPatternIterators::Iterator const_iterator;

    /**
     * @name Basic constructors and initialization.
     */
//@{
    /**
     * Default constructor. Generates an empty (zero-size) sparsity pattern.
     */
    SparsityPattern ();

    /**
     * Generate a sparsity pattern that is completely stored locally, having
     * $m$ rows and $n$ columns. The resulting matrix will be completely
     * stored locally, too.
     *
     * It is possible to specify the number of columns entries per row using
     * the optional @p n_entries_per_row argument. However, this value does
     * not need to be accurate or even given at all, since one does usually
     * not have this kind of information before building the sparsity pattern
     * (the usual case when the function DoFTools::make_sparsity_pattern() is
     * called). The entries are allocated dynamically in a similar manner as
     * for the deal.II DynamicSparsityPattern classes. However, a good
     * estimate will reduce the setup time of the sparsity pattern.
     */
    SparsityPattern (const size_type  m,
                     const size_type  n,
                     const size_type  n_entries_per_row = 0);

    /**
     * Generate a sparsity pattern that is completely stored locally, having
     * $m$ rows and $n$ columns. The resulting matrix will be completely
     * stored locally, too.
     *
     * The vector <tt>n_entries_per_row</tt> specifies the number of entries
     * in each row (an information usually not available, though).
     */
    SparsityPattern (const size_type               m,
                     const size_type               n,
                     const std::vector<size_type> &n_entries_per_row);

    /**
     * Copy constructor. Sets the calling sparsity pattern to be the same as
     * the input sparsity pattern.
     */
    SparsityPattern (const SparsityPattern &input_sparsity_pattern);

    /**
     * Destructor. Made virtual so that one can use pointers to this class.
     */
    virtual ~SparsityPattern ();

    /**
     * Initialize a sparsity pattern that is completely stored locally, having
     * $m$ rows and $n$ columns. The resulting matrix will be completely
     * stored locally.
     *
     * The number of columns entries per row is specified as the maximum
     * number of entries argument.  This does not need to be an accurate
     * number since the entries are allocated dynamically in a similar manner
     * as for the deal.II DynamicSparsityPattern classes, but a good estimate
     * will reduce the setup time of the sparsity pattern.
     */
    void
    reinit (const size_type  m,
            const size_type  n,
            const size_type  n_entries_per_row = 0);

    /**
     * Initialize a sparsity pattern that is completely stored locally, having
     * $m$ rows and $n$ columns. The resulting matrix will be completely
     * stored locally.
     *
     * The vector <tt>n_entries_per_row</tt> specifies the number of entries
     * in each row.
     */
    void
    reinit (const size_type               m,
            const size_type               n,
            const std::vector<size_type> &n_entries_per_row);

    /**
     * Copy function. Sets the calling sparsity pattern to be the same as the
     * input sparsity pattern.
     */
    void
    copy_from (const SparsityPattern &input_sparsity_pattern);

    /**
     * Copy function from one of the deal.II sparsity patterns. If used in
     * parallel, this function uses an ad-hoc partitioning of the rows and
     * columns.
     */
    template<typename SparsityPatternType>
    void
    copy_from (const SparsityPatternType &nontrilinos_sparsity_pattern);

    /**
     * Copy operator. This operation is only allowed for empty objects, to
     * avoid potentially very costly operations automatically synthesized by
     * the compiler. Use copy_from() instead if you know that you really want
     * to copy a sparsity pattern with non-trivial content.
     */
    SparsityPattern &operator = (const SparsityPattern &input_sparsity_pattern);

    /**
     * Release all memory and return to a state just like after having called
     * the default constructor.
     *
     * This is a collective operation that needs to be called on all
     * processors in order to avoid a dead lock.
     */
    void clear ();

    /**
     * In analogy to our own SparsityPattern class, this function compresses
     * the sparsity pattern and allows the resulting pattern to be used for
     * actually generating a (Trilinos-based) matrix. This function also
     * exchanges non-local data that might have accumulated during the
     * addition of new elements. This function must therefore be called once
     * the structure is fixed. This is a collective operation, i.e., it needs
     * to be run on all processors when used in parallel.
     */
    void compress ();
//@}
    /**
     * @name Constructors and initialization using an Epetra_Map description
     */
//@{

    /**
     * Constructor for a square sparsity pattern using an Epetra_map for the
     * description of the %parallel partitioning. Moreover, the number of
     * nonzero entries in the rows of the sparsity pattern can be specified.
     * Note that this number does not need to be exact, and it is allowed that
     * the actual sparsity structure has more nonzero entries than specified
     * in the constructor (the usual case when the function
     * DoFTools::make_sparsity_pattern() is called). However it is still
     * advantageous to provide good estimates here since a good value will
     * avoid repeated allocation of memory, which considerably increases the
     * performance when creating the sparsity pattern.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparsityPattern (const Epetra_Map &parallel_partitioning,
                     const size_type   n_entries_per_row = 0) DEAL_II_DEPRECATED;

    /**
     * Same as before, but now use the exact number of nonzeros in each m row.
     * Since we know the number of elements in the sparsity pattern exactly in
     * this case, we can already allocate the right amount of memory, which
     * makes the creation process by the respective SparsityPattern::reinit
     * call considerably faster. However, this is a rather unusual situation,
     * since knowing the number of entries in each row is usually connected to
     * knowing the indices of nonzero entries, which the sparsity pattern is
     * designed to describe.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparsityPattern (const Epetra_Map             &parallel_partitioning,
                     const std::vector<size_type> &n_entries_per_row) DEAL_II_DEPRECATED;

    /**
     * This constructor is similar to the one above, but it now takes two
     * different Epetra maps for rows and columns. This interface is meant to
     * be used for generating rectangular sparsity pattern, where one map
     * describes the %parallel partitioning of the dofs associated with the
     * sparsity pattern rows and the other one of the sparsity pattern
     * columns. Note that there is no real parallelism along the columns
     * &ndash; the processor that owns a certain row always owns all the
     * column elements, no matter how far they might be spread out. The second
     * Epetra_Map is only used to specify the number of columns and for
     * specifying the correct domain space when performing matrix-vector
     * products with vectors based on the same column map.
     *
     * The number of columns entries per row is specified as the maximum
     * number of entries argument.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparsityPattern (const Epetra_Map   &row_parallel_partitioning,
                     const Epetra_Map   &col_parallel_partitioning,
                     const size_type     n_entries_per_row = 0) DEAL_II_DEPRECATED;

    /**
     * This constructor is similar to the one above, but it now takes two
     * different Epetra maps for rows and columns. This interface is meant to
     * be used for generating rectangular matrices, where one map specifies
     * the %parallel distribution of rows and the second one specifies the
     * distribution of degrees of freedom associated with matrix columns. This
     * second map is however not used for the distribution of the columns
     * themselves &ndash; rather, all column elements of a row are stored on
     * the same processor. The vector <tt>n_entries_per_row</tt> specifies the
     * number of entries in each row of the newly generated matrix.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    SparsityPattern (const Epetra_Map             &row_parallel_partitioning,
                     const Epetra_Map             &col_parallel_partitioning,
                     const std::vector<size_type> &n_entries_per_row) DEAL_II_DEPRECATED;

    /**
     * Reinitialization function for generating a square sparsity pattern
     * using an Epetra_Map for the description of the %parallel partitioning
     * and the number of nonzero entries in the rows of the sparsity pattern.
     * Note that this number does not need to be exact, and it is even allowed
     * that the actual sparsity structure has more nonzero entries than
     * specified in the constructor. However it is still advantageous to
     * provide good estimates here since this will considerably increase the
     * performance when creating the sparsity pattern.
     *
     * This function does not create any entries by itself, but provides the
     * correct data structures that can be used by the respective add()
     * function.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    void
    reinit (const Epetra_Map &parallel_partitioning,
            const size_type   n_entries_per_row = 0) DEAL_II_DEPRECATED;

    /**
     * Same as before, but now use the exact number of nonzeros in each m row.
     * Since we know the number of elements in the sparsity pattern exactly in
     * this case, we can already allocate the right amount of memory, which
     * makes process of adding entries to the sparsity pattern considerably
     * faster. However, this is a rather unusual situation, since knowing the
     * number of entries in each row is usually connected to knowing the
     * indices of nonzero entries, which the sparsity pattern is designed to
     * describe.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    void
    reinit (const Epetra_Map             &parallel_partitioning,
            const std::vector<size_type> &n_entries_per_row) DEAL_II_DEPRECATED;

    /**
     * This reinit function is similar to the one above, but it now takes two
     * different Epetra maps for rows and columns. This interface is meant to
     * be used for generating rectangular sparsity pattern, where one map
     * describes the %parallel partitioning of the dofs associated with the
     * sparsity pattern rows and the other one of the sparsity pattern
     * columns. Note that there is no real parallelism along the columns
     * &ndash; the processor that owns a certain row always owns all the
     * column elements, no matter how far they might be spread out. The second
     * Epetra_Map is only used to specify the number of columns and for
     * internal arrangements when doing matrix-vector products with vectors
     * based on that column map.
     *
     * The number of columns entries per row is specified by the argument
     * <tt>n_entries_per_row</tt>.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    void
    reinit (const Epetra_Map   &row_parallel_partitioning,
            const Epetra_Map   &col_parallel_partitioning,
            const size_type     n_entries_per_row = 0) DEAL_II_DEPRECATED;

    /**
     * This reinit function is similar to the one above, but it now takes two
     * different Epetra maps for rows and columns. This interface is meant to
     * be used for generating rectangular matrices, where one map specifies
     * the %parallel distribution of rows and the second one specifies the
     * distribution of degrees of freedom associated with matrix columns. This
     * second map is however not used for the distribution of the columns
     * themselves &ndash; rather, all column elements of a row are stored on
     * the same processor. The vector <tt>n_entries_per_row</tt> specifies the
     * number of entries in each row of the newly generated matrix.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    void
    reinit (const Epetra_Map             &row_parallel_partitioning,
            const Epetra_Map             &col_parallel_partitioning,
            const std::vector<size_type> &n_entries_per_row) DEAL_II_DEPRECATED;

    /**
     * Reinit function. Takes one of the deal.II sparsity patterns and a
     * %parallel partitioning of the rows and columns for initializing the
     * current Trilinos sparsity pattern. The optional argument @p
     * exchange_data can be used for reinitialization with a sparsity pattern
     * that is not fully constructed. This feature is only implemented for
     * input sparsity patterns of type DynamicSparsityPattern.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    template<typename SparsityPatternType>
    void
    reinit (const Epetra_Map          &row_parallel_partitioning,
            const Epetra_Map          &col_parallel_partitioning,
            const SparsityPatternType &nontrilinos_sparsity_pattern,
            const bool                 exchange_data = false) DEAL_II_DEPRECATED;

    /**
     * Reinit function. Takes one of the deal.II sparsity patterns and a
     * %parallel partitioning of the rows and columns for initializing the
     * current Trilinos sparsity pattern. The optional argument @p
     * exchange_data can be used for reinitialization with a sparsity pattern
     * that is not fully constructed. This feature is only implemented for
     * input sparsity patterns of type DynamicSparsityPattern.
     *
     * @deprecated Use the respective method with IndexSet argument instead.
     */
    template<typename SparsityPatternType>
    void
    reinit (const Epetra_Map          &parallel_partitioning,
            const SparsityPatternType &nontrilinos_sparsity_pattern,
            const bool                 exchange_data = false) DEAL_II_DEPRECATED;
//@}
    /**
     * @name Constructors and initialization using an IndexSet description
     */
//@{

    /**
     * Constructor for a square sparsity pattern using an IndexSet and an MPI
     * communicator for the description of the %parallel partitioning.
     * Moreover, the number of nonzero entries in the rows of the sparsity
     * pattern can be specified. Note that this number does not need to be
     * exact, and it is even allowed that the actual sparsity structure has
     * more nonzero entries than specified in the constructor. However it is
     * still advantageous to provide good estimates here since a good value
     * will avoid repeated allocation of memory, which considerably increases
     * the performance when creating the sparsity pattern.
     */
    SparsityPattern (const IndexSet  &parallel_partitioning,
                     const MPI_Comm  &communicator = MPI_COMM_WORLD,
                     const size_type  n_entries_per_row = 0);

    /**
     * Same as before, but now use the exact number of nonzeros in each m row.
     * Since we know the number of elements in the sparsity pattern exactly in
     * this case, we can already allocate the right amount of memory, which
     * makes the creation process by the respective SparsityPattern::reinit
     * call considerably faster. However, this is a rather unusual situation,
     * since knowing the number of entries in each row is usually connected to
     * knowing the indices of nonzero entries, which the sparsity pattern is
     * designed to describe.
     */
    SparsityPattern (const IndexSet                  &parallel_partitioning,
                     const MPI_Comm                  &communicator,
                     const std::vector<size_type> &n_entries_per_row);

    /**
     * This constructor is similar to the one above, but it now takes two
     * different index sets to describe the %parallel partitioning of rows and
     * columns. This interface is meant to be used for generating rectangular
     * sparsity pattern. Note that there is no real parallelism along the
     * columns &ndash; the processor that owns a certain row always owns all
     * the column elements, no matter how far they might be spread out. The
     * second Epetra_Map is only used to specify the number of columns and for
     * internal arrangements when doing matrix-vector products with vectors
     * based on that column map.
     *
     * The number of columns entries per row is specified as the maximum
     * number of entries argument.
     */
    SparsityPattern (const IndexSet  &row_parallel_partitioning,
                     const IndexSet  &col_parallel_partitioning,
                     const MPI_Comm  &communicator = MPI_COMM_WORLD,
                     const size_type  n_entries_per_row = 0);

    /**
     * This constructor is similar to the one above, but it now takes two
     * different index sets for rows and columns. This interface is meant to
     * be used for generating rectangular matrices, where one map specifies
     * the %parallel distribution of rows and the second one specifies the
     * distribution of degrees of freedom associated with matrix columns. This
     * second map is however not used for the distribution of the columns
     * themselves &ndash; rather, all column elements of a row are stored on
     * the same processor. The vector <tt>n_entries_per_row</tt> specifies the
     * number of entries in each row of the newly generated matrix.
     */
    SparsityPattern (const IndexSet               &row_parallel_partitioning,
                     const IndexSet               &col_parallel_partitioning,
                     const MPI_Comm               &communicator,
                     const std::vector<size_type> &n_entries_per_row);

    /**
     * This constructor constructs general sparsity patterns, possible non-
     * square ones. Constructing a sparsity pattern this way allows the user
     * to explicitly specify the rows into which we are going to add elements.
     * This set is required to be a superset of the first index set @p
     * row_parallel_partitioning that includes also rows that are owned by
     * another processor (ghost rows). Note that elements can only be added to
     * rows specified by @p writable_rows.
     *
     * This method is beneficial when the rows to which a processor is going
     * to write can be determined before actually inserting elements into the
     * matrix. For the typical parallel::distributed::Triangulation class used
     * in deal.II, we know that a processor only will add row elements for
     * what we call the locally relevant dofs (see
     * DoFTools::extract_locally_relevant_dofs). The other constructors
     * methods use general Trilinos facilities that allow to add elements to
     * arbitrary rows (as done by all the other reinit functions). However,
     * this flexibility come at a cost, the most prominent being that adding
     * elements into the same matrix from multiple threads in shared memory is
     * not safe whenever MPI is used. For these settings, the current method
     * is the one to choose: It will store the off-processor data as an
     * additional sparsity pattern (that is then passed to the Trilinos matrix
     * via the reinit mehtod) which can be organized in such a way that
     * thread-safety can be ensured (as long as the user makes sure to never
     * write into the same matrix row simultaneously, of course).
     */
    SparsityPattern (const IndexSet  &row_parallel_partitioning,
                     const IndexSet  &col_parallel_partitioning,
                     const IndexSet  &writable_rows,
                     const MPI_Comm  &communicator = MPI_COMM_WORLD,
                     const size_type  n_entries_per_row = 0);

    /**
     * Reinitialization function for generating a square sparsity pattern
     * using an IndexSet and an MPI communicator for the description of the
     * %parallel partitioning and the number of nonzero entries in the rows of
     * the sparsity pattern. Note that this number does not need to be exact,
     * and it is even allowed that the actual sparsity structure has more
     * nonzero entries than specified in the constructor. However it is still
     * advantageous to provide good estimates here since this will
     * considerably increase the performance when creating the sparsity
     * pattern.
     *
     * This function does not create any entries by itself, but provides the
     * correct data structures that can be used by the respective add()
     * function.
     */
    void
    reinit (const IndexSet  &parallel_partitioning,
            const MPI_Comm  &communicator = MPI_COMM_WORLD,
            const size_type  n_entries_per_row = 0);

    /**
     * Same as before, but now use the exact number of nonzeros in each m row.
     * Since we know the number of elements in the sparsity pattern exactly in
     * this case, we can already allocate the right amount of memory, which
     * makes process of adding entries to the sparsity pattern considerably
     * faster. However, this is a rather unusual situation, since knowing the
     * number of entries in each row is usually connected to knowing the
     * indices of nonzero entries, which the sparsity pattern is designed to
     * describe.
     */
    void
    reinit (const IndexSet               &parallel_partitioning,
            const MPI_Comm               &communicator,
            const std::vector<size_type> &n_entries_per_row);

    /**
     * This reinit function is similar to the one above, but it now takes two
     * different index sets for rows and columns. This interface is meant to
     * be used for generating rectangular sparsity pattern, where one index
     * set describes the %parallel partitioning of the dofs associated with
     * the sparsity pattern rows and the other one of the sparsity pattern
     * columns. Note that there is no real parallelism along the columns
     * &ndash; the processor that owns a certain row always owns all the
     * column elements, no matter how far they might be spread out. The second
     * IndexSet is only used to specify the number of columns and for internal
     * arrangements when doing matrix-vector products with vectors based on an
     * EpetraMap based on that IndexSet.
     *
     * The number of columns entries per row is specified by the argument
     * <tt>n_entries_per_row</tt>.
     */
    void
    reinit (const IndexSet  &row_parallel_partitioning,
            const IndexSet  &col_parallel_partitioning,
            const MPI_Comm  &communicator = MPI_COMM_WORLD,
            const size_type  n_entries_per_row = 0);

    /**
     * This reinit function is used to specify general matrices, possibly non-
     * square ones. In addition to the arguments of the other reinit method
     * above, it allows the user to explicitly specify the rows into which we
     * are going to add elements. This set is a superset of the first index
     * set @p row_parallel_partitioning that includes also rows that are owned
     * by another processor (ghost rows).
     *
     * This method is beneficial when the rows to which a processor is going
     * to write can be determined before actually inserting elements into the
     * matrix. For the typical parallel::distributed::Triangulation class used
     * in deal.II, we know that a processor only will add row elements for
     * what we call the locally relevant dofs (see
     * DoFTools::extract_locally_relevant_dofs). Trilinos matrices allow to
     * add elements to arbitrary rows (as done by all the other reinit
     * functions) and this is what all the other reinit methods do, too.
     * However, this flexibility come at a cost, the most prominent being that
     * adding elements into the same matrix from multiple threads in shared
     * memory is not safe whenever MPI is used. For these settings, the
     * current method is the one to choose: It will store the off-processor
     * data as an additional sparsity pattern (that is then passed to the
     * Trilinos matrix via the reinit method) which can be organized in such a
     * way that thread-safety can be ensured (as long as the user makes sure
     * to never write into the same matrix row simultaneously, of course).
     */
    void
    reinit (const IndexSet  &row_parallel_partitioning,
            const IndexSet  &col_parallel_partitioning,
            const IndexSet  &writeable_rows,
            const MPI_Comm  &communicator = MPI_COMM_WORLD,
            const size_type  n_entries_per_row = 0);

    /**
     * Same as before, but now using a vector <tt>n_entries_per_row</tt> for
     * specifying the number of entries in each row of the sparsity pattern.
     */
    void
    reinit (const IndexSet               &row_parallel_partitioning,
            const IndexSet               &col_parallel_partitioning,
            const MPI_Comm               &communicator,
            const std::vector<size_type> &n_entries_per_row);

    /**
     * Reinit function. Takes one of the deal.II sparsity patterns and the
     * %parallel partitioning of the rows and columns specified by two index
     * sets and a %parallel communicator for initializing the current Trilinos
     * sparsity pattern. The optional argument @p exchange_data can be used
     * for reinitialization with a sparsity pattern that is not fully
     * constructed. This feature is only implemented for input sparsity
     * patterns of type DynamicSparsityPattern.
     */
    template<typename SparsityPatternType>
    void
    reinit (const IndexSet            &row_parallel_partitioning,
            const IndexSet            &col_parallel_partitioning,
            const SparsityPatternType &nontrilinos_sparsity_pattern,
            const MPI_Comm            &communicator  = MPI_COMM_WORLD,
            const bool                 exchange_data = false);

    /**
     * Reinit function. Takes one of the deal.II sparsity patterns and a
     * %parallel partitioning of the rows and columns for initializing the
     * current Trilinos sparsity pattern. The optional argument @p
     * exchange_data can be used for reinitialization with a sparsity pattern
     * that is not fully constructed. This feature is only implemented for
     * input sparsity patterns of type DynamicSparsityPattern.
     */
    template<typename SparsityPatternType>
    void
    reinit (const IndexSet            &parallel_partitioning,
            const SparsityPatternType &nontrilinos_sparsity_pattern,
            const MPI_Comm            &communicator  = MPI_COMM_WORLD,
            const bool                 exchange_data = false);
//@}
    /**
     * @name Information on the sparsity pattern
     */
//@{

    /**
     * Returns the state of the sparsity pattern, i.e., whether compress()
     * needs to be called after an operation requiring data exchange.
     */
    bool is_compressed () const;

    /**
     * Gives the maximum number of entries per row on the current processor.
     */
    unsigned int max_entries_per_row () const;

    /**
     * Return the number of rows in this sparsity pattern.
     */
    size_type n_rows () const;

    /**
     * Return the number of columns in this sparsity pattern.
     */
    size_type n_cols () const;

    /**
     * Return the local dimension of the sparsity pattern, i.e. the number of
     * rows stored on the present MPI process. In the sequential case, this
     * number is the same as n_rows(), but for parallel matrices it may be
     * smaller.
     *
     * To figure out which elements exactly are stored locally, use
     * local_range().
     */
    unsigned int local_size () const;

    /**
     * Return a pair of indices indicating which rows of this sparsity pattern
     * are stored locally. The first number is the index of the first row
     * stored, the second the index of the one past the last one that is
     * stored locally. If this is a sequential matrix, then the result will be
     * the pair (0,n_rows()), otherwise it will be a pair (i,i+n), where
     * <tt>n=local_size()</tt>.
     */
    std::pair<size_type, size_type>
    local_range () const;

    /**
     * Return whether @p index is in the local range or not, see also
     * local_range().
     */
    bool in_local_range (const size_type index) const;

    /**
     * Return the number of nonzero elements of this sparsity pattern.
     */
    size_type n_nonzero_elements () const;

    /**
     * Number of entries in a specific row.
     */
    size_type row_length (const size_type row) const;

    /**
     * Compute the bandwidth of the matrix represented by this structure. The
     * bandwidth is the maximum of $|i-j|$ for which the index pair $(i,j)$
     * represents a nonzero entry of the matrix. Consequently, the maximum
     * bandwidth a $n\times m$ matrix can have is $\max\{n-1,m-1\}$.
     */
    size_type bandwidth () const;

    /**
     * Return whether the object is empty. It is empty if no memory is
     * allocated, which is the same as when both dimensions are zero.
     */
    bool empty () const;

    /**
     * Return whether the index (<i>i,j</i>) exists in the sparsity pattern
     * (i.e., it may be non-zero) or not.
     */
    bool exists (const size_type i,
                 const size_type j) const;

    /**
     * Determine an estimate for the memory consumption (in bytes) of this
     * object. Currently not implemented for this class.
     */
    std::size_t memory_consumption () const;

//@}
    /**
     * @name Adding entries
     */
//@{
    /**
     * Add the element (<i>i,j</i>) to the sparsity pattern.
     */
    void add (const size_type i,
              const size_type j);


    /**
     * Add several elements in one row to the sparsity pattern.
     */
    template <typename ForwardIterator>
    void add_entries (const size_type  row,
                      ForwardIterator  begin,
                      ForwardIterator  end,
                      const bool       indices_are_sorted = false);
//@}
    /**
     * @name Access of underlying Trilinos data
     */
//@{

    /**
     * Return a const reference to the underlying Trilinos Epetra_CrsGraph
     * data that stores the sparsity pattern.
     */
    const Epetra_FECrsGraph &trilinos_sparsity_pattern () const;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the parallel partitioning of the domain space of this sparsity
     * pattern, i.e., the partitioning of the vectors matrices based on this
     * sparsity pattern are multiplied with.
     *
     * @deprecated Use locally_owned_domain_indices() instead.
     */
    const Epetra_Map &domain_partitioner () const DEAL_II_DEPRECATED;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the partitioning of the range space of this sparsity pattern,
     * i.e., the partitioning of the vectors that are result from matrix-
     * vector products.
     *
     * @deprecated Use locally_owned_range_indices() instead.
     */
    const Epetra_Map &range_partitioner () const DEAL_II_DEPRECATED;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the partitioning of the sparsity pattern rows. Equal to the
     * partitioning of the range.
     *
     * @deprecated Use locally_owned_range_indices() instead.
     */
    const Epetra_Map &row_partitioner () const DEAL_II_DEPRECATED;

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the partitioning of the sparsity pattern columns. This is in
     * general not equal to the partitioner Epetra_Map for the domain because
     * of overlap in the matrix.
     *
     * @deprecated Usually not necessary. If desired, access via the
     * Epetra_FECrsGraph.
     */
    const Epetra_Map &col_partitioner () const DEAL_II_DEPRECATED;

    /**
     * Return a const reference to the communicator used for this object.
     *
     * @deprecated Use get_mpi_communicator instead.
     */
    const Epetra_Comm &trilinos_communicator () const DEAL_II_DEPRECATED;

    /**
     * Return the MPI communicator object in use with this matrix.
     */
    MPI_Comm get_mpi_communicator () const;
//@}

    /**
     * @name Partitioners
     */
//@{

    /**
     * Return the partitioning of the domain space of this pattern, i.e., the
     * partitioning of the vectors a matrix based on this sparsity pattern has
     * to be multiplied with.
     */
    IndexSet locally_owned_domain_indices() const;

    /**
     * Return the partitioning of the range space of this pattern, i.e., the
     * partitioning of the vectors that are the result from matrix-vector
     * products from a matrix based on this pattern.
     */
    IndexSet locally_owned_range_indices() const;

//@}

    /**
     * @name Iterators
     */
//@{

    /**
     * Iterator starting at the first entry.
     */
    const_iterator begin () const;

    /**
     * Final iterator.
     */
    const_iterator end () const;

    /**
     * Iterator starting at the first entry of row @p r.
     *
     * Note that if the given row is empty, i.e. does not contain any nonzero
     * entries, then the iterator returned by this function equals
     * <tt>end(r)</tt>. Note also that the iterator may not be dereferencable
     * in that case.
     */
    const_iterator begin (const size_type r) const;

    /**
     * Final iterator of row <tt>r</tt>. It points to the first element past
     * the end of line @p r, or past the end of the entire sparsity pattern.
     *
     * Note that the end iterator is not necessarily dereferencable. This is
     * in particular the case if it is the end iterator for the last row of a
     * matrix.
     */
    const_iterator end (const size_type r) const;

//@}
    /**
     * @name Input/Output
     */
//@{

    /**
     * Abstract Trilinos object that helps view in ASCII other Trilinos
     * objects. Currently this function is not implemented.  TODO: Not
     * implemented.
     */
    void write_ascii ();

    /**
     * Print (the locally owned part of) the sparsity pattern to the given
     * stream, using the format <tt>(line,col)</tt>. The optional flag outputs
     * the sparsity pattern in Trilinos style, where even the according
     * processor number is printed to the stream, as well as a summary before
     * actually writing the entries.
     */
    void print (std::ostream &out,
                const bool    write_extended_trilinos_info = false) const;

    /**
     * Print the sparsity of the matrix in a format that <tt>gnuplot</tt>
     * understands and which can be used to plot the sparsity pattern in a
     * graphical way. The format consists of pairs <tt>i j</tt> of nonzero
     * elements, each representing one entry of this matrix, one per line of
     * the output file. Indices are counted from zero on, as usual. Since
     * sparsity patterns are printed in the same way as matrices are
     * displayed, we print the negative of the column index, which means that
     * the <tt>(0,0)</tt> element is in the top left rather than in the bottom
     * left corner.
     *
     * Print the sparsity pattern in gnuplot by setting the data style to dots
     * or points and use the <tt>plot</tt> command.
     */
    void print_gnuplot (std::ostream &out) const;

//@}
    /**
     * @addtogroup Exceptions
     * @{
     */
    /**
     * Exception
     */
    DeclException1 (ExcTrilinosError,
                    int,
                    << "An error with error number " << arg1
                    << " occurred while calling a Trilinos function");

    /**
     * Exception
     */
    DeclException2 (ExcInvalidIndex,
                    size_type, size_type,
                    << "The entry with index <" << arg1 << ',' << arg2
                    << "> does not exist.");

    /**
     * Exception
     */
    DeclException0 (ExcSourceEqualsDestination);

    /**
     * Exception
     */
    DeclException4 (ExcAccessToNonLocalElement,
                    size_type, size_type, size_type, size_type,
                    << "You tried to access element (" << arg1
                    << "/" << arg2 << ")"
                    << " of a distributed matrix, but only rows "
                    << arg3 << " through " << arg4
                    << " are stored locally and can be accessed.");

    /**
     * Exception
     */
    DeclException2 (ExcAccessToNonPresentElement,
                    size_type, size_type,
                    << "You tried to access element (" << arg1
                    << "/" << arg2 << ")"
                    << " of a sparse matrix, but it appears to not"
                    << " exist in the Trilinos sparsity pattern.");
    //@}
  private:

    /**
     * Pointer to the user-supplied Epetra Trilinos mapping of the matrix
     * columns that assigns parts of the matrix to the individual processes.
     */
    std_cxx11::shared_ptr<Epetra_Map> column_space_map;

    /**
     * A sparsity pattern object in Trilinos to be used for finite element
     * based problems which allows for adding non-local elements to the
     * pattern.
     */
    std_cxx11::shared_ptr<Epetra_FECrsGraph> graph;

    /**
     * A sparsity pattern object for the non-local part of the sparsity
     * pattern that is going to be sent to the owning processor. Only used
     * when the particular constructor or reinit method with writable_rows
     * argument is set
     */
    std_cxx11::shared_ptr<Epetra_CrsGraph> nonlocal_graph;

    friend class SparseMatrix;
    friend class SparsityPatternIterators::Accessor;
    friend class SparsityPatternIterators::Iterator;
  };



// -------------------------- inline and template functions ----------------------


#ifndef DOXYGEN

  namespace SparsityPatternIterators
  {

    inline
    Accessor::Accessor (const SparsityPattern *sp,
                        const size_type        row,
                        const size_type        index)
      :
      sparsity_pattern(const_cast<SparsityPattern *>(sp)),
      a_row(row),
      a_index(index)
    {
      visit_present_row ();
    }


    inline
    Accessor::Accessor (const Accessor &a)
      :
      sparsity_pattern(a.sparsity_pattern),
      a_row(a.a_row),
      a_index(a.a_index),
      colnum_cache (a.colnum_cache)
    {}


    inline
    Accessor::size_type
    Accessor::row() const
    {
      Assert (a_row < sparsity_pattern->n_rows(), ExcBeyondEndOfSparsityPattern());
      return a_row;
    }



    inline
    Accessor::size_type
    Accessor::column() const
    {
      Assert (a_row < sparsity_pattern->n_rows(), ExcBeyondEndOfSparsityPattern());
      return (*colnum_cache)[a_index];
    }



    inline
    Accessor::size_type
    Accessor::index() const
    {
      Assert (a_row < sparsity_pattern->n_rows(), ExcBeyondEndOfSparsityPattern());
      return a_index;
    }



    inline
    Iterator::Iterator(const SparsityPattern *sp,
                       const size_type        row,
                       const size_type        index)
      :
      accessor(sp, row, index)
    {}


    inline
    Iterator::Iterator(const Iterator &i)
      :
      accessor(i.accessor)
    {}



    inline
    Iterator &
    Iterator::operator++ ()
    {
      Assert (accessor.a_row < accessor.sparsity_pattern->n_rows(),
              ExcIteratorPastEnd());

      ++accessor.a_index;

      // If at end of line: do one
      // step, then cycle until we
      // find a row with a nonzero
      // number of entries.
      if (accessor.a_index >= accessor.colnum_cache->size())
        {
          accessor.a_index = 0;
          ++accessor.a_row;

          while ((accessor.a_row < accessor.sparsity_pattern->n_rows())
                 &&
                 (accessor.sparsity_pattern->row_length(accessor.a_row) == 0))
            ++accessor.a_row;

          accessor.visit_present_row();
        }
      return *this;
    }



    inline
    Iterator
    Iterator::operator++ (int)
    {
      const Iterator old_state = *this;
      ++(*this);
      return old_state;
    }



    inline
    const Accessor &
    Iterator::operator* () const
    {
      return accessor;
    }



    inline
    const Accessor *
    Iterator::operator-> () const
    {
      return &accessor;
    }



    inline
    bool
    Iterator::operator == (const Iterator &other) const
    {
      return (accessor.a_row == other.accessor.a_row &&
              accessor.a_index == other.accessor.a_index);
    }



    inline
    bool
    Iterator::operator != (const Iterator &other) const
    {
      return ! (*this == other);
    }



    inline
    bool
    Iterator::operator < (const Iterator &other) const
    {
      return (accessor.row() < other.accessor.row() ||
              (accessor.row() == other.accessor.row() &&
               accessor.index() < other.accessor.index()));
    }

  }



  inline
  SparsityPattern::const_iterator
  SparsityPattern::begin() const
  {
    return const_iterator(this, 0, 0);
  }



  inline
  SparsityPattern::const_iterator
  SparsityPattern::end() const
  {
    return const_iterator(this, n_rows(), 0);
  }



  inline
  SparsityPattern::const_iterator
  SparsityPattern::begin(const size_type r) const
  {
    Assert (r < n_rows(), ExcIndexRangeType<size_type>(r, 0, n_rows()));
    if (row_length(r) > 0)
      return const_iterator(this, r, 0);
    else
      return end (r);
  }



  inline
  SparsityPattern::const_iterator
  SparsityPattern::end(const size_type r) const
  {
    Assert (r < n_rows(), ExcIndexRangeType<size_type>(r, 0, n_rows()));

    // place the iterator on the first entry
    // past this line, or at the end of the
    // matrix
    for (size_type i=r+1; i<n_rows(); ++i)
      if (row_length(i) > 0)
        return const_iterator(this, i, 0);

    // if there is no such line, then take the
    // end iterator of the matrix
    return end();
  }



  inline
  bool
  SparsityPattern::in_local_range (const size_type index) const
  {
    TrilinosWrappers::types::int_type begin, end;
#ifndef DEAL_II_WITH_64BIT_INDICES
    begin = graph->RowMap().MinMyGID();
    end = graph->RowMap().MaxMyGID()+1;
#else
    begin = graph->RowMap().MinMyGID64();
    end = graph->RowMap().MaxMyGID64()+1;
#endif

    return ((index >= static_cast<size_type>(begin)) &&
            (index < static_cast<size_type>(end)));
  }



  inline
  bool
  SparsityPattern::is_compressed () const
  {
    return graph->Filled();
  }



  inline
  bool
  SparsityPattern::empty () const
  {
    return ((n_rows() == 0) && (n_cols() == 0));
  }



  inline
  void
  SparsityPattern::add (const size_type i,
                        const size_type j)
  {
    add_entries (i, &j, &j+1);
  }



  template <typename ForwardIterator>
  inline
  void
  SparsityPattern::add_entries (const size_type row,
                                ForwardIterator begin,
                                ForwardIterator end,
                                const bool      /*indices_are_sorted*/)
  {
    if (begin == end)
      return;

    // verify that the size of the data type Trilinos expects matches that the
    // iterator points to. we allow for some slippage between signed and
    // unsigned and only compare that they are both either 32 or 64 bit. to
    // write this test properly, not that we cannot compare the size of
    // '*begin' because 'begin' may be an iterator and '*begin' may be an
    // accessor class. consequently, we need to somehow get an actual value
    // from it which we can by evaluating an expression such as when
    // multiplying the value produced by 2
    Assert (sizeof(TrilinosWrappers::types::int_type) ==
            sizeof((*begin)*2),
            ExcNotImplemented());

    TrilinosWrappers::types::int_type *col_index_ptr =
      (TrilinosWrappers::types::int_type *)(&*begin);
    const int n_cols = static_cast<int>(end - begin);

    int ierr;
    if ( graph->RowMap().LID(static_cast<TrilinosWrappers::types::int_type>(row)) != -1)
      ierr = graph->InsertGlobalIndices (row, n_cols, col_index_ptr);
    else if (nonlocal_graph.get() != 0)
      {
        // this is the case when we have explicitly set the off-processor rows
        // and want to create a separate matrix object for them (to retain
        // thread-safety)
        Assert (nonlocal_graph->RowMap().LID(static_cast<TrilinosWrappers::types::int_type>(row)) != -1,
                ExcMessage("Attempted to write into off-processor matrix row "
                           "that has not be specified as being writable upon "
                           "initialization"));
        ierr = nonlocal_graph->InsertGlobalIndices (row, n_cols, col_index_ptr);
      }
    else
      ierr = graph->InsertGlobalIndices
             (1, (TrilinosWrappers::types::int_type *)&row, n_cols, col_index_ptr);

    AssertThrow (ierr >= 0, ExcTrilinosError(ierr));
  }



  inline
  const Epetra_FECrsGraph &
  SparsityPattern::trilinos_sparsity_pattern () const
  {
    return *graph;
  }



  inline
  IndexSet
  SparsityPattern::locally_owned_domain_indices () const
  {
    return IndexSet(static_cast<const Epetra_Map &>(graph->DomainMap()));
  }



  inline
  IndexSet
  SparsityPattern::locally_owned_range_indices () const
  {
    return IndexSet(static_cast<const Epetra_Map &>(graph->RangeMap()));
  }

#endif // DOXYGEN
}


DEAL_II_NAMESPACE_CLOSE


#endif // DEAL_II_WITH_TRILINOS


/*--------------------   trilinos_sparsity_pattern.h     --------------------*/

#endif
/*--------------------   trilinos_sparsity_pattern.h     --------------------*/