This file is indexed.

/usr/include/deal.II/lac/trilinos_vector_base.h is in libdeal.ii-dev 8.4.2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
// ---------------------------------------------------------------------
//
// Copyright (C) 2008 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__trilinos_vector_base_h
#define dealii__trilinos_vector_base_h


#include <deal.II/base/config.h>

#ifdef DEAL_II_WITH_TRILINOS

#include <deal.II/base/utilities.h>
#  include <deal.II/base/std_cxx11/shared_ptr.h>
#  include <deal.II/base/subscriptor.h>
#  include <deal.II/lac/exceptions.h>
#  include <deal.II/lac/vector.h>

#  include <vector>
#  include <utility>
#  include <memory>

DEAL_II_DISABLE_EXTRA_DIAGNOSTICS
#  define TrilinosScalar double
#  include "Epetra_ConfigDefs.h"
#  ifdef DEAL_II_WITH_MPI // only if MPI is installed
#    include "mpi.h"
#    include "Epetra_MpiComm.h"
#  else
#    include "Epetra_SerialComm.h"
#  endif
#  include "Epetra_FEVector.h"
DEAL_II_ENABLE_EXTRA_DIAGNOSTICS

DEAL_II_NAMESPACE_OPEN

// forward declaration
template <typename number> class Vector;


/**
 * @addtogroup TrilinosWrappers
 * @{
 */
namespace TrilinosWrappers
{
  // forward declaration
  class VectorBase;

  /**
   * @cond internal
   */

  /**
   * A namespace for internal implementation details of the TrilinosWrapper
   * members.
   *
   * @ingroup TrilinosWrappers
   */
  namespace internal
  {
    /**
     * Declare type for container size.
     */
    typedef dealii::types::global_dof_index size_type;

    /**
     * This class implements a wrapper for accessing the Trilinos vector in
     * the same way as we access deal.II objects: it is initialized with a
     * vector and an element within it, and has a conversion operator to
     * extract the scalar value of this element. It also has a variety of
     * assignment operator for writing to this one element.
     *
     * @ingroup TrilinosWrappers
     */
    class VectorReference
    {
    private:
      /**
       * Constructor. It is made private so as to only allow the actual vector
       * class to create it.
       */
      VectorReference (VectorBase     &vector,
                       const size_type  index);

    public:

      /**
       * This looks like a copy operator, but does something different than
       * usual. In particular, it does not copy the member variables of this
       * reference. Rather, it handles the situation where we have two vectors
       * @p v and @p w, and assign elements like in <tt>v(i)=w(i)</tt>. Here,
       * both left and right hand side of the assignment have data type
       * VectorReference, but what we really mean is to assign the vector
       * elements represented by the two references. This operator implements
       * this operation. Note also that this allows us to make the assignment
       * operator const.
       */
      const VectorReference &
      operator = (const VectorReference &r) const;

      /**
       * Same as above but for non-const reference objects.
       */
      const VectorReference &
      operator = (const VectorReference &r);

      /**
       * Set the referenced element of the vector to <tt>s</tt>.
       */
      const VectorReference &
      operator = (const TrilinosScalar &s) const;

      /**
       * Add <tt>s</tt> to the referenced element of the vector->
       */
      const VectorReference &
      operator += (const TrilinosScalar &s) const;

      /**
       * Subtract <tt>s</tt> from the referenced element of the vector->
       */
      const VectorReference &
      operator -= (const TrilinosScalar &s) const;

      /**
       * Multiply the referenced element of the vector by <tt>s</tt>.
       */
      const VectorReference &
      operator *= (const TrilinosScalar &s) const;

      /**
       * Divide the referenced element of the vector by <tt>s</tt>.
       */
      const VectorReference &
      operator /= (const TrilinosScalar &s) const;

      /**
       * Convert the reference to an actual value, i.e. return the value of
       * the referenced element of the vector.
       */
      operator TrilinosScalar () const;

      /**
       * Exception
       */
      DeclException1 (ExcTrilinosError,
                      int,
                      << "An error with error number " << arg1
                      << " occurred while calling a Trilinos function");

    private:
      /**
       * Point to the vector we are referencing.
       */
      VectorBase   &vector;

      /**
       * Index of the referenced element of the vector.
       */
      const size_type  index;

      /**
       * Make the vector class a friend, so that it can create objects of the
       * present type.
       */
      friend class ::dealii::TrilinosWrappers::VectorBase;
    };
  }
  /**
   * @endcond
   */


  /**
   * Base class for the two types of Trilinos vectors, the distributed memory
   * vector MPI::Vector and a localized vector Vector. The latter is designed
   * for use in either serial implementations or as a localized copy on each
   * processor.  The implementation of this class is based on the Trilinos
   * vector class Epetra_FEVector, the (parallel) partitioning of which is
   * governed by an Epetra_Map. This means that the vector type is generic and
   * can be done in this base class, while the definition of the partition map
   * (and hence, the constructor and reinit function) will have to be done in
   * the derived classes. The Epetra_FEVector is precisely the kind of vector
   * we deal with all the time - we probably get it from some assembly
   * process, where also entries not locally owned might need to written and
   * hence need to be forwarded to the owner. The only requirement for this
   * class to work is that Trilinos is installed with the same compiler as is
   * used for compilation of deal.II.
   *
   * The interface of this class is modeled after the existing Vector class in
   * deal.II. It has almost the same member functions, and is often
   * exchangeable. However, since Trilinos only supports a single scalar type
   * (double), it is not templated, and only works with that type.
   *
   * Note that Trilinos only guarantees that operations do what you expect if
   * the function @p GlobalAssemble has been called after vector assembly in
   * order to distribute the data. Therefore, you need to call
   * Vector::compress() before you actually use the vectors.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Vectors
   * @author Martin Kronbichler, 2008
   */
  class VectorBase : public Subscriptor
  {
  public:
    /**
     * Declare some of the standard types used in all containers. These types
     * parallel those in the <tt>C</tt> standard libraries
     * <tt>vector<...></tt> class.
     */
    typedef TrilinosScalar                  value_type;
    typedef TrilinosScalar                  real_type;
    typedef dealii::types::global_dof_index size_type;
    typedef value_type                     *iterator;
    typedef const value_type               *const_iterator;
    typedef internal::VectorReference       reference;
    typedef const internal::VectorReference const_reference;

    /**
     * @name 1: Basic Object-handling
     */
    //@{

    /**
     * Default constructor that generates an empty (zero size) vector. The
     * function <tt>reinit()</tt> will have to give the vector the correct
     * size and distribution among processes in case of an MPI run.
     */
    VectorBase ();

    /**
     * Copy constructor. Sets the dimension to that of the given vector, and
     * copies all the elements.
     */
    VectorBase (const VectorBase &v);

    /**
     * Destructor
     */
    virtual ~VectorBase ();

    /**
     * Release all memory and return to a state just like after having called
     * the default constructor.
     */
    void clear ();

    /**
     * Reinit functionality, sets the dimension and possibly the parallel
     * partitioning (Epetra_Map) of the calling vector to the settings of the
     * input vector.
     */
    void reinit (const VectorBase &v,
                 const bool        omit_zeroing_entries = false);

    /**
     * Compress the underlying representation of the Trilinos object, i.e.
     * flush the buffers of the vector object if it has any. This function is
     * necessary after writing into a vector element-by-element and before
     * anything else can be done on it.
     *
     * The (defaulted) argument can be used to specify the compress mode
     * (<code>Add</code> or <code>Insert</code>) in case the vector has not
     * been written to since the last time this function was called. The
     * argument is ignored if the vector has been added or written to since
     * the last time compress() was called.
     *
     * See
     * @ref GlossCompress "Compressing distributed objects"
     * for more information.
     */
    void compress (::dealii::VectorOperation::values operation);

    /**
     * Returns the state of the vector, i.e., whether compress() has already
     * been called after an operation requiring data exchange.
     *
     * This function is deprecated.
     */
    bool is_compressed () const DEAL_II_DEPRECATED;

    /**
     * Set all components of the vector to the given number @p s. Simply pass
     * this down to the Trilinos Epetra object, but we still need to declare
     * this function to make the example given in the discussion about making
     * the constructor explicit work.
     *
     * Since the semantics of assigning a scalar to a vector are not
     * immediately clear, this operator should really only be used if you want
     * to set the entire vector to zero. This allows the intuitive notation
     * <tt>v=0</tt>. Assigning other values is deprecated and may be
     * disallowed in the future.
     */
    VectorBase &
    operator = (const TrilinosScalar s);

    /**
     * Copy function. This function takes a VectorBase vector and copies all
     * the elements. The target vector will have the same parallel
     * distribution as the calling vector.
     */
    VectorBase &
    operator = (const VectorBase &v);

    /**
     * Another copy function. This one takes a deal.II vector and copies it
     * into a TrilinosWrapper vector. Note that since we do not provide any
     * Epetra_map that tells about the partitioning of the vector among the
     * MPI processes, the size of the TrilinosWrapper vector has to be the
     * same as the size of the input vector. In order to change the map, use
     * the reinit(const Epetra_Map &input_map) function.
     */
    template <typename Number>
    VectorBase &
    operator = (const ::dealii::Vector<Number> &v);

    /**
     * Test for equality. This function assumes that the present vector and
     * the one to compare with have the same size already, since comparing
     * vectors of different sizes makes not much sense anyway.
     */
    bool operator == (const VectorBase &v) const;

    /**
     * Test for inequality. This function assumes that the present vector and
     * the one to compare with have the same size already, since comparing
     * vectors of different sizes makes not much sense anyway.
     */
    bool operator != (const VectorBase &v) const;

    /**
     * Return the global dimension of the vector.
     */
    size_type size () const;

    /**
     * Return the local dimension of the vector, i.e. the number of elements
     * stored on the present MPI process. For sequential vectors, this number
     * is the same as size(), but for parallel vectors it may be smaller.
     *
     * To figure out which elements exactly are stored locally, use
     * local_range().
     *
     * If the vector contains ghost elements, they are included in this
     * number.
     */
    size_type local_size () const;

    /**
     * Return a pair of indices indicating which elements of this vector are
     * stored locally. The first number is the index of the first element
     * stored, the second the index of the one past the last one that is
     * stored locally. If this is a sequential vector, then the result will be
     * the pair <code>(0,N)</code>, otherwise it will be a pair
     * <code>(i,i+n)</code>, where <code>n=local_size()</code> and
     * <code>i</code> is the first element of the vector stored on this
     * processor, corresponding to the half open interval $[i,i+n)$
     *
     * @note The description above is true most of the time, but not always.
     * In particular, Trilinos vectors need not store contiguous ranges of
     * elements such as $[i,i+n)$. Rather, it can store vectors where the
     * elements are distributed in an arbitrary way across all processors and
     * each processor simply stores a particular subset, not necessarily
     * contiguous. In this case, this function clearly makes no sense since it
     * could, at best, return a range that includes all elements that are
     * stored locally. Thus, the function only succeeds if the locally stored
     * range is indeed contiguous. It will trigger an assertion if the local
     * portion of the vector is not contiguous.
     */
    std::pair<size_type, size_type> local_range () const;

    /**
     * Return whether @p index is in the local range or not, see also
     * local_range().
     *
     * @note The same limitation for the applicability of this function
     * applies as listed in the documentation of local_range().
     */
    bool in_local_range (const size_type index) const;

    /**
     * Return an index set that describes which elements of this vector are
     * owned by the current processor. Note that this index set does not
     * include elements this vector may store locally as ghost elements but
     * that are in fact owned by another processor. As a consequence, the
     * index sets returned on different processors if this is a distributed
     * vector will form disjoint sets that add up to the complete index set.
     * Obviously, if a vector is created on only one processor, then the
     * result would satisfy
     * @code
     *   vec.locally_owned_elements() == complete_index_set (vec.size())
     * @endcode
     */
    IndexSet locally_owned_elements () const;

    /**
     * Return if the vector contains ghost elements. This answer is true if
     * there are ghost elements on at least one process.
     *
     * @see
     * @ref GlossGhostedVector "vectors with ghost elements"
     */
    bool has_ghost_elements() const;

    /**
     * Return the scalar (inner) product of two vectors. The vectors must have
     * the same size.
     */
    TrilinosScalar operator * (const VectorBase &vec) const;

    /**
     * Return square of the $l_2$-norm.
     */
    real_type norm_sqr () const;

    /**
     * Mean value of the elements of this vector.
     */
    TrilinosScalar mean_value () const;

    /**
     * Compute the minimal value of the elements of this vector.
     *
     * This function is deprecated use min() instead.
     */
    TrilinosScalar minimal_value () const DEAL_II_DEPRECATED;

    /**
     * Compute the minimal value of the elements of this vector.
     */
    TrilinosScalar min () const;

    /**
     * Compute the maximal value of the elements of this vector.
     */
    TrilinosScalar max () const;

    /**
     * $l_1$-norm of the vector.  The sum of the absolute values.
     */
    real_type l1_norm () const;

    /**
     * $l_2$-norm of the vector.  The square root of the sum of the squares of
     * the elements.
     */
    real_type l2_norm () const;

    /**
     * $l_p$-norm of the vector. The <i>p</i>th root of the sum of the
     * <i>p</i>th powers of the absolute values of the elements.
     */
    real_type lp_norm (const TrilinosScalar p) const;

    /**
     * Maximum absolute value of the elements.
     */
    real_type linfty_norm () const;

    /**
     * Performs a combined operation of a vector addition and a subsequent
     * inner product, returning the value of the inner product. In other
     * words, the result of this function is the same as if the user called
     * @code
     * this->add(a, V);
     * return_value = *this * W;
     * @endcode
     *
     * The reason this function exists is for compatibility with deal.II's own
     * vector classes which can implement this functionality with less memory
     * transfer. However, for Trilinos vectors such a combined operation is
     * not natively supported and thus the cost is completely equivalent as
     * calling the two methods separately.
     */
    TrilinosScalar add_and_dot (const TrilinosScalar a,
                                const VectorBase    &V,
                                const VectorBase    &W);

    /**
     * Return whether the vector contains only elements with value zero. This
     * is a collective operation. This function is expensive, because
     * potentially all elements have to be checked.
     */
    bool all_zero () const;

    /**
     * Return @p true if the vector has no negative entries, i.e. all entries
     * are zero or positive. This function is used, for example, to check
     * whether refinement indicators are really all positive (or zero).
     */
    bool is_non_negative () const;
    //@}


    /**
     * @name 2: Data-Access
     */
    //@{

    /**
     * Provide access to a given element, both read and write.
     *
     * When using a vector distributed with MPI, this operation only makes
     * sense for elements that are actually present on the calling processor.
     * Otherwise, an exception is thrown. This is different from the
     * <code>el()</code> function below that always succeeds (but returns zero
     * on non-local elements).
     */
    reference
    operator () (const size_type index);

    /**
     * Provide read-only access to an element.
     *
     * When using a vector distributed with MPI, this operation only makes
     * sense for elements that are actually present on the calling processor.
     * Otherwise, an exception is thrown. This is different from the
     * <code>el()</code> function below that always succeeds (but returns zero
     * on non-local elements).
     */
    TrilinosScalar
    operator () (const size_type index) const;

    /**
     * Provide access to a given element, both read and write.
     *
     * Exactly the same as operator().
     */
    reference
    operator [] (const size_type index);

    /**
     * Provide read-only access to an element.
     *
     * Exactly the same as operator().
     */
    TrilinosScalar
    operator [] (const size_type index) const;

    /**
     * A collective get operation: instead of getting individual elements of a
     * vector, this function allows to get a whole set of elements at once.
     * The indices of the elements to be read are stated in the first
     * argument, the corresponding values are returned in the second.
     */
    void extract_subvector_to (const std::vector<size_type> &indices,
                               std::vector<TrilinosScalar> &values) const;

    /**
     * Just as the above, but with pointers.  Useful in minimizing copying of
     * data around.
     */
    template <typename ForwardIterator, typename OutputIterator>
    void extract_subvector_to (ForwardIterator          indices_begin,
                               const ForwardIterator    indices_end,
                               OutputIterator           values_begin) const;

    /**
     * Return the value of the vector entry <i>i</i>. Note that this function
     * does only work properly when we request a data stored on the local
     * processor. In case the elements sits on another process, this function
     * returns 0 which might or might not be appropriate in a given situation.
     * If you rely on consistent results, use the access functions () or []
     * that throw an assertion in case a non-local element is used.
     *
     * This function is deprecated.
     */
    TrilinosScalar el (const size_type index) const DEAL_II_DEPRECATED;

    /**
     * Make the Vector class a bit like the <tt>vector<></tt> class of the C++
     * standard library by returning iterators to the start and end of the
     * locally owned elements of this vector. The ordering of local elements
     * corresponds to the one given by the global indices in case the vector
     * is constructed from an IndexSet or other methods in deal.II (note that
     * an Epetra_Map can contain elements in arbitrary orders, though).
     *
     * It holds that end() - begin() == local_size().
     */
    iterator begin ();

    /**
     * Return constant iterator to the start of the locally owned elements of
     * the vector.
     */
    const_iterator begin () const;

    /**
     * Return an iterator pointing to the element past the end of the array of
     * locally owned entries.
     */
    iterator end ();

    /**
     * Return a constant iterator pointing to the element past the end of the
     * array of the locally owned entries.
     */
    const_iterator end () const;

    //@}


    /**
     * @name 3: Modification of vectors
     */
    //@{

    /**
     * A collective set operation: instead of setting individual elements of a
     * vector, this function allows to set a whole set of elements at once.
     * The indices of the elements to be set are stated in the first argument,
     * the corresponding values in the second.
     */
    void set (const std::vector<size_type>    &indices,
              const std::vector<TrilinosScalar>  &values);

    /**
     * This is a second collective set operation. As a difference, this
     * function takes a deal.II vector of values.
     */
    void set (const std::vector<size_type>        &indices,
              const ::dealii::Vector<TrilinosScalar> &values);

    /**
     * This collective set operation is of lower level and can handle anything
     * else &mdash; the only thing you have to provide is an address where all
     * the indices are stored and the number of elements to be set.
     */
    void set (const size_type       n_elements,
              const size_type      *indices,
              const TrilinosScalar *values);

    /**
     * A collective add operation: This function adds a whole set of values
     * stored in @p values to the vector components specified by @p indices.
     */
    void add (const std::vector<size_type>      &indices,
              const std::vector<TrilinosScalar> &values);

    /**
     * This is a second collective add operation. As a difference, this
     * function takes a deal.II vector of values.
     */
    void add (const std::vector<size_type>           &indices,
              const ::dealii::Vector<TrilinosScalar> &values);

    /**
     * Take an address where <tt>n_elements</tt> are stored contiguously and
     * add them into the vector. Handles all cases which are not covered by
     * the other two <tt>add()</tt> functions above.
     */
    void add (const size_type       n_elements,
              const size_type      *indices,
              const TrilinosScalar *values);

    /**
     * Multiply the entire vector by a fixed factor.
     */
    VectorBase &operator *= (const TrilinosScalar factor);

    /**
     * Divide the entire vector by a fixed factor.
     */
    VectorBase &operator /= (const TrilinosScalar factor);

    /**
     * Add the given vector to the present one.
     */
    VectorBase &operator += (const VectorBase &V);

    /**
     * Subtract the given vector from the present one.
     */
    VectorBase &operator -= (const VectorBase &V);

    /**
     * Addition of @p s to all components. Note that @p s is a scalar and not
     * a vector.
     */
    void add (const TrilinosScalar s);

    /**
     * Simple vector addition, equal to the <tt>operator +=</tt>.
     *
     * Though, if the second argument <tt>allow_different_maps</tt> is set,
     * then it is possible to add data from a vector that uses a different
     * map, i.e., a vector whose elements are split across processors
     * differently. This may include vectors with ghost elements, for example.
     * In general, however, adding vectors with a different element-to-
     * processor map requires communicating data among processors and,
     * consequently, is a slower operation than when using vectors using the
     * same map.
     */
    void add (const VectorBase &V,
              const bool        allow_different_maps = false);

    /**
     * Simple addition of a multiple of a vector, i.e. <tt>*this += a*V</tt>.
     */
    void add (const TrilinosScalar  a,
              const VectorBase     &V);

    /**
     * Multiple addition of scaled vectors, i.e. <tt>*this += a*V + b*W</tt>.
     */
    void add (const TrilinosScalar  a,
              const VectorBase     &V,
              const TrilinosScalar  b,
              const VectorBase     &W);

    /**
     * Scaling and simple vector addition, i.e.  <tt>*this = s*(*this) +
     * V</tt>.
     */
    void sadd (const TrilinosScalar  s,
               const VectorBase     &V);

    /**
     * Scaling and simple addition, i.e.  <tt>*this = s*(*this) + a*V</tt>.
     */
    void sadd (const TrilinosScalar  s,
               const TrilinosScalar  a,
               const VectorBase     &V);

    /**
     * Scaling and multiple addition.
     *
     * This function is deprecated.
     */
    void sadd (const TrilinosScalar  s,
               const TrilinosScalar  a,
               const VectorBase     &V,
               const TrilinosScalar  b,
               const VectorBase     &W) DEAL_II_DEPRECATED;

    /**
     * Scaling and multiple addition.  <tt>*this = s*(*this) + a*V + b*W +
     * c*X</tt>.
     *
     * This function is deprecated.
     */
    void sadd (const TrilinosScalar  s,
               const TrilinosScalar  a,
               const VectorBase     &V,
               const TrilinosScalar  b,
               const VectorBase     &W,
               const TrilinosScalar  c,
               const VectorBase     &X) DEAL_II_DEPRECATED;

    /**
     * Scale each element of this vector by the corresponding element in the
     * argument. This function is mostly meant to simulate multiplication (and
     * immediate re-assignment) by a diagonal scaling matrix.
     */
    void scale (const VectorBase &scaling_factors);

    /**
     * Assignment <tt>*this = a*V</tt>.
     */
    void equ (const TrilinosScalar  a,
              const VectorBase     &V);

    /**
     * Assignment <tt>*this = a*V + b*W</tt>.
     *
     * This function is deprecated.
     */
    void equ (const TrilinosScalar  a,
              const VectorBase     &V,
              const TrilinosScalar  b,
              const VectorBase     &W) DEAL_II_DEPRECATED;

    /**
     * Compute the elementwise ratio of the two given vectors, that is let
     * <tt>this[i] = a[i]/b[i]</tt>. This is useful for example if you want to
     * compute the cellwise ratio of true to estimated error.
     *
     * This vector is appropriately scaled to hold the result.
     *
     * If any of the <tt>b[i]</tt> is zero, the result is undefined. No
     * attempt is made to catch such situations.
     */
    void ratio (const VectorBase &a,
                const VectorBase &b) DEAL_II_DEPRECATED;
    //@}


    /**
     * @name 4: Mixed stuff
     */
    //@{

    /**
     * Return a const reference to the underlying Trilinos Epetra_MultiVector
     * class.
     */
    const Epetra_MultiVector &trilinos_vector () const;

    /**
     * Return a (modifyable) reference to the underlying Trilinos
     * Epetra_FEVector class.
     */
    Epetra_FEVector &trilinos_vector ();

    /**
     * Return a const reference to the underlying Trilinos Epetra_Map that
     * sets the parallel partitioning of the vector.
     */
    const Epetra_Map &vector_partitioner () const;

    /**
     * Output of vector in user-defined format in analogy to the
     * dealii::Vector class.
     *
     * This function is deprecated.
     */
    void print (const char *format = 0) const DEAL_II_DEPRECATED;

    /**
     * Print to a stream. @p precision denotes the desired precision with
     * which values shall be printed, @p scientific whether scientific
     * notation shall be used. If @p across is @p true then the vector is
     * printed in a line, while if @p false then the elements are printed on a
     * separate line each.
     */
    void print (std::ostream       &out,
                const unsigned int  precision  = 3,
                const bool          scientific = true,
                const bool          across     = true) const;

    /**
     * Swap the contents of this vector and the other vector @p v. One could
     * do this operation with a temporary variable and copying over the data
     * elements, but this function is significantly more efficient since it
     * only swaps the pointers to the data of the two vectors and therefore
     * does not need to allocate temporary storage and move data around. Note
     * that the vectors need to be of the same size and base on the same map.
     *
     * This function is analog to the the @p swap function of all C standard
     * containers. Also, there is a global function <tt>swap(u,v)</tt> that
     * simply calls <tt>u.swap(v)</tt>, again in analogy to standard
     * functions.
     */
    void swap (VectorBase &v);

    /**
     * Estimate for the memory consumption in bytes.
     */
    std::size_t memory_consumption () const;

    /**
     * Return a reference to the MPI communicator object in use with this
     * object.
     */
    const MPI_Comm &get_mpi_communicator () const;
    //@}

    /**
     * Exception
     */
    DeclException0 (ExcDifferentParallelPartitioning);

    /**
     * Exception
     */
    DeclException1 (ExcTrilinosError,
                    int,
                    << "An error with error number " << arg1
                    << " occurred while calling a Trilinos function");

    /**
     * Exception
     */
    DeclException4 (ExcAccessToNonLocalElement,
                    size_type, size_type, size_type, size_type,
                    << "You tried to access element " << arg1
                    << " of a distributed vector, but this element is not stored "
                    << "on the current processor. Note: There are "
                    << arg2 << " elements stored "
                    << "on the current processor from within the range "
                    << arg3 << " through " << arg4
                    << " but Trilinos vectors need not store contiguous "
                    << "ranges on each processor, and not every element in "
                    << "this range may in fact be stored locally.");


  private:
    /**
     * Trilinos doesn't allow to mix additions to matrix entries and
     * overwriting them (to make synchronisation of parallel computations
     * simpler). The way we do it is to, for each access operation, store
     * whether it is an insertion or an addition. If the previous one was of
     * different type, then we first have to flush the Trilinos buffers;
     * otherwise, we can simply go on.  Luckily, Trilinos has an object for
     * this which does already all the parallel communications in such a case,
     * so we simply use their model, which stores whether the last operation
     * was an addition or an insertion.
     */
    Epetra_CombineMode last_action;

    /**
     * A boolean variable to hold information on whether the vector is
     * compressed or not.
     */
    bool compressed;

    /**
     * Whether this vector has ghost elements. This is true on all processors
     * even if only one of them has any ghost elements.
     */
    bool has_ghosts;

    /**
     * Pointer to the actual Epetra vector object. This may represent a vector
     * that is in fact distributed among multiple processors. The object
     * requires an existing Epetra_Map for storing data when setting it up.
     */
    std_cxx11::shared_ptr<Epetra_FEVector> vector;

    /**
     * A vector object in Trilinos to be used for collecting the non-local
     * elements if the vector was constructed with an additional IndexSet
     * describing ghost elements.
     */
    std_cxx11::shared_ptr<Epetra_MultiVector> nonlocal_vector;

    /**
     * Make the reference class a friend.
     */
    friend class internal::VectorReference;
    friend class Vector;
    friend class MPI::Vector;
  };




// ------------------- inline and template functions --------------

  /**
   * Global function swap which overloads the default implementation of the C
   * standard library which uses a temporary object. The function simply
   * exchanges the data of the two vectors.
   *
   * @relates TrilinosWrappers::VectorBase
   * @author Martin Kronbichler, Wolfgang Bangerth, 2008
   */
  inline
  void swap (VectorBase &u, VectorBase &v)
  {
    u.swap (v);
  }


#ifndef DOXYGEN

  namespace internal
  {
    inline
    VectorReference::VectorReference (VectorBase      &vector,
                                      const size_type  index)
      :
      vector (vector),
      index (index)
    {}


    inline
    const VectorReference &
    VectorReference::operator = (const VectorReference &r) const
    {
      // as explained in the class
      // documentation, this is not the copy
      // operator. so simply pass on to the
      // "correct" assignment operator
      *this = static_cast<TrilinosScalar> (r);

      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator = (const VectorReference &r)
    {
      // as above
      *this = static_cast<TrilinosScalar> (r);

      return *this;
    }


    inline
    const VectorReference &
    VectorReference::operator = (const TrilinosScalar &value) const
    {
      vector.set (1, &index, &value);
      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator += (const TrilinosScalar &value) const
    {
      vector.add (1, &index, &value);
      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator -= (const TrilinosScalar &value) const
    {
      TrilinosScalar new_value = -value;
      vector.add (1, &index, &new_value);
      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator *= (const TrilinosScalar &value) const
    {
      TrilinosScalar new_value = static_cast<TrilinosScalar>(*this) * value;
      vector.set (1, &index, &new_value);
      return *this;
    }



    inline
    const VectorReference &
    VectorReference::operator /= (const TrilinosScalar &value) const
    {
      TrilinosScalar new_value = static_cast<TrilinosScalar>(*this) / value;
      vector.set (1, &index, &new_value);
      return *this;
    }
  }



  inline
  bool
  VectorBase::is_compressed () const
  {
    return compressed;
  }



  inline
  bool
  VectorBase::in_local_range (const size_type index) const
  {
    std::pair<size_type, size_type> range = local_range();

    return ((index >= range.first) && (index <  range.second));
  }



  inline
  IndexSet
  VectorBase::locally_owned_elements() const
  {
    IndexSet is (size());

    // easy case: local range is contiguous
    if (vector->Map().LinearMap())
      {
        const std::pair<size_type, size_type> x = local_range();
        is.add_range (x.first, x.second);
      }
    else if (vector->Map().NumMyElements() > 0)
      {
        const size_type n_indices = vector->Map().NumMyElements();
#ifndef DEAL_II_WITH_64BIT_INDICES
        unsigned int *vector_indices = (unsigned int *)vector->Map().MyGlobalElements();
#else
        size_type *vector_indices = (size_type *)vector->Map().MyGlobalElements64();
#endif
        is.add_indices(vector_indices, vector_indices+n_indices);
        is.compress();
      }

    return is;
  }



  inline
  bool
  VectorBase::has_ghost_elements() const
  {
    return has_ghosts;
  }



  inline
  internal::VectorReference
  VectorBase::operator () (const size_type index)
  {
    return internal::VectorReference (*this, index);
  }



  inline
  internal::VectorReference
  VectorBase::operator [] (const size_type index)
  {
    return operator() (index);
  }


  inline
  TrilinosScalar
  VectorBase::operator [] (const size_type index) const
  {
    return operator() (index);
  }



  inline
  void VectorBase::extract_subvector_to (const std::vector<size_type> &indices,
                                         std::vector<TrilinosScalar>  &values) const
  {
    for (size_type i = 0; i < indices.size(); ++i)
      values[i] = operator()(indices[i]);
  }



  template <typename ForwardIterator, typename OutputIterator>
  inline
  void VectorBase::extract_subvector_to (ForwardIterator          indices_begin,
                                         const ForwardIterator    indices_end,
                                         OutputIterator           values_begin) const
  {
    while (indices_begin != indices_end)
      {
        *values_begin = operator()(*indices_begin);
        indices_begin++;
        values_begin++;
      }
  }



  inline
  VectorBase::iterator
  VectorBase::begin()
  {
    return (*vector)[0];
  }



  inline
  VectorBase::iterator
  VectorBase::end()
  {
    return (*vector)[0]+local_size();
  }



  inline
  VectorBase::const_iterator
  VectorBase::begin() const
  {
    return (*vector)[0];
  }



  inline
  VectorBase::const_iterator
  VectorBase::end() const
  {
    return (*vector)[0]+local_size();
  }



  inline
  void
  VectorBase::reinit (const VectorBase &v,
                      const bool        omit_zeroing_entries)
  {
    Assert (vector.get() != 0,
            ExcMessage("Vector has not been constructed properly."));

    if (omit_zeroing_entries == false ||
        vector_partitioner().SameAs(v.vector_partitioner())==false)
      vector.reset (new Epetra_FEVector(*v.vector));

    if (v.nonlocal_vector.get() != 0)
      nonlocal_vector.reset(new Epetra_MultiVector(v.nonlocal_vector->Map(), 1));
  }



  inline
  VectorBase &
  VectorBase::operator = (const TrilinosScalar s)
  {
    AssertIsFinite(s);

    const int ierr = vector->PutScalar(s);

    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    if (nonlocal_vector.get() != 0)
      nonlocal_vector->PutScalar(0.);

    return *this;
  }



  inline
  void
  VectorBase::set (const std::vector<size_type>      &indices,
                   const std::vector<TrilinosScalar>  &values)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    Assert (indices.size() == values.size(),
            ExcDimensionMismatch(indices.size(),values.size()));

    set (indices.size(), &indices[0], &values[0]);
  }



  inline
  void
  VectorBase::set (const std::vector<size_type>           &indices,
                   const ::dealii::Vector<TrilinosScalar> &values)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    Assert (indices.size() == values.size(),
            ExcDimensionMismatch(indices.size(),values.size()));

    set (indices.size(), &indices[0], values.begin());
  }



  inline
  void
  VectorBase::set (const size_type       n_elements,
                   const size_type      *indices,
                   const TrilinosScalar *values)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    if (last_action == Add)
      vector->GlobalAssemble(Add);

    if (last_action != Insert)
      last_action = Insert;

    for (size_type i=0; i<n_elements; ++i)
      {
        const size_type row = indices[i];
        const TrilinosWrappers::types::int_type local_row = vector->Map().LID(static_cast<TrilinosWrappers::types::int_type>(row));
        if (local_row != -1)
          (*vector)[0][local_row] = values[i];
        else
          {
            const int ierr = vector->ReplaceGlobalValues (1,
                                                          (const TrilinosWrappers::types::int_type *)(&row),
                                                          &values[i]);
            AssertThrow (ierr == 0, ExcTrilinosError(ierr));
            compressed = false;
          }
        // in set operation, do not use the pre-allocated vector for nonlocal
        // entries even if it exists. This is to ensure that we really only
        // set the elements touched by the set() method and not all contained
        // in the nonlocal entries vector (there is no way to distinguish them
        // on the receiving processor)
      }
  }



  inline
  void
  VectorBase::add (const std::vector<size_type>      &indices,
                   const std::vector<TrilinosScalar>  &values)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (indices.size() == values.size(),
            ExcDimensionMismatch(indices.size(),values.size()));

    add (indices.size(), &indices[0], &values[0]);
  }



  inline
  void
  VectorBase::add (const std::vector<size_type>           &indices,
                   const ::dealii::Vector<TrilinosScalar> &values)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (indices.size() == values.size(),
            ExcDimensionMismatch(indices.size(),values.size()));

    add (indices.size(), &indices[0], values.begin());
  }



  inline
  void
  VectorBase::add (const size_type       n_elements,
                   const size_type      *indices,
                   const TrilinosScalar *values)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    if (last_action != Add)
      {
        if (last_action == Insert)
          vector->GlobalAssemble(Insert);
        last_action = Add;
      }

    for (size_type i=0; i<n_elements; ++i)
      {
        const size_type row = indices[i];
        const TrilinosWrappers::types::int_type local_row = vector->Map().LID(static_cast<TrilinosWrappers::types::int_type>(row));
        if (local_row != -1)
          (*vector)[0][local_row] += values[i];
        else if (nonlocal_vector.get() == 0)
          {
            const int ierr = vector->SumIntoGlobalValues (1,
                                                          (const TrilinosWrappers::types::int_type *)(&row),
                                                          &values[i]);
            AssertThrow (ierr == 0, ExcTrilinosError(ierr));
            compressed = false;
          }
        else
          {
            // use pre-allocated vector for non-local entries if it exists for
            // addition operation
            const TrilinosWrappers::types::int_type my_row = nonlocal_vector->Map().LID(static_cast<TrilinosWrappers::types::int_type>(row));
            Assert(my_row != -1,
                   ExcMessage("Attempted to write into off-processor vector entry "
                              "that has not be specified as being writable upon "
                              "initialization"));
            (*nonlocal_vector)[0][my_row] += values[i];
            compressed = false;
          }
      }
  }



  inline
  VectorBase::size_type
  VectorBase::size () const
  {
#ifndef DEAL_II_WITH_64BIT_INDICES
    return (size_type) (vector->Map().MaxAllGID() + 1 - vector->Map().MinAllGID());
#else
    return (size_type) (vector->Map().MaxAllGID64() + 1 - vector->Map().MinAllGID64());
#endif
  }



  inline
  VectorBase::size_type
  VectorBase::local_size () const
  {
    return (size_type) vector->Map().NumMyElements();
  }



  inline
  std::pair<VectorBase::size_type, VectorBase::size_type>
  VectorBase::local_range () const
  {
#ifndef DEAL_II_WITH_64BIT_INDICES
    const TrilinosWrappers::types::int_type begin = vector->Map().MinMyGID();
    const TrilinosWrappers::types::int_type end = vector->Map().MaxMyGID()+1;
#else
    const TrilinosWrappers::types::int_type begin = vector->Map().MinMyGID64();
    const TrilinosWrappers::types::int_type end = vector->Map().MaxMyGID64()+1;
#endif

    Assert (end-begin == vector->Map().NumMyElements(),
            ExcMessage ("This function only makes sense if the elements that this "
                        "vector stores on the current processor form a contiguous range. "
                        "This does not appear to be the case for the current vector."));

    return std::make_pair (begin, end);
  }



  inline
  TrilinosScalar
  VectorBase::operator * (const VectorBase &vec) const
  {
    Assert (vector->Map().SameAs(vec.vector->Map()),
            ExcDifferentParallelPartitioning());
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    TrilinosScalar result;

    const int ierr = vector->Dot(*(vec.vector), &result);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return result;
  }



  inline
  VectorBase::real_type
  VectorBase::norm_sqr () const
  {
    const TrilinosScalar d = l2_norm();
    return d*d;
  }



  inline
  TrilinosScalar
  VectorBase::mean_value () const
  {
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    TrilinosScalar mean;
    const int ierr = vector->MeanValue (&mean);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return mean;
  }



  inline
  TrilinosScalar
  VectorBase::minimal_value () const
  {
    return min();
  }



  inline
  TrilinosScalar
  VectorBase::min () const
  {
    TrilinosScalar min_value;
    const int ierr = vector->MinValue (&min_value);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return min_value;
  }



  inline
  TrilinosScalar
  VectorBase::max () const
  {
    TrilinosScalar max_value;
    const int ierr = vector->MaxValue (&max_value);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return max_value;
  }



  inline
  VectorBase::real_type
  VectorBase::l1_norm () const
  {
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    TrilinosScalar d;
    const int ierr = vector->Norm1 (&d);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return d;
  }



  inline
  VectorBase::real_type
  VectorBase::l2_norm () const
  {
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    TrilinosScalar d;
    const int ierr = vector->Norm2 (&d);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return d;
  }



  inline
  VectorBase::real_type
  VectorBase::lp_norm (const TrilinosScalar p) const
  {
    Assert (!has_ghost_elements(), ExcGhostsPresent());

    TrilinosScalar norm = 0;
    TrilinosScalar sum=0;
    const size_type n_local = local_size();

    // loop over all the elements because
    // Trilinos does not support lp norms
    for (size_type i=0; i<n_local; i++)
      sum += std::pow(std::fabs((*vector)[0][i]), p);

    norm = std::pow(sum, static_cast<TrilinosScalar>(1./p));

    return norm;
  }



  inline
  VectorBase::real_type
  VectorBase::linfty_norm () const
  {
    // while we disallow the other
    // norm operations on ghosted
    // vectors, this particular norm
    // is safe to run even in the
    // presence of ghost elements
    TrilinosScalar d;
    const int ierr = vector->NormInf (&d);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return d;
  }



  inline
  TrilinosScalar
  VectorBase::add_and_dot (const TrilinosScalar a,
                           const VectorBase &V,
                           const VectorBase &W)
  {
    this->add(a, V);
    return *this * W;
  }



  // inline also scalar products, vector
  // additions etc. since they are all
  // representable by a single Trilinos
  // call. This reduces the overhead of the
  // wrapper class.
  inline
  VectorBase &
  VectorBase::operator *= (const TrilinosScalar a)
  {
    AssertIsFinite(a);

    const int ierr = vector->Scale(a);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return *this;
  }



  inline
  VectorBase &
  VectorBase::operator /= (const TrilinosScalar a)
  {
    AssertIsFinite(a);

    const TrilinosScalar factor = 1./a;

    AssertIsFinite(factor);

    const int ierr = vector->Scale(factor);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return *this;
  }



  inline
  VectorBase &
  VectorBase::operator += (const VectorBase &v)
  {
    Assert (size() == v.size(),
            ExcDimensionMismatch(size(), v.size()));
    Assert (vector->Map().SameAs(v.vector->Map()),
            ExcDifferentParallelPartitioning());

    const int ierr = vector->Update (1.0, *(v.vector), 1.0);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return *this;
  }



  inline
  VectorBase &
  VectorBase::operator -= (const VectorBase &v)
  {
    Assert (size() == v.size(),
            ExcDimensionMismatch(size(), v.size()));
    Assert (vector->Map().SameAs(v.vector->Map()),
            ExcDifferentParallelPartitioning());

    const int ierr = vector->Update (-1.0, *(v.vector), 1.0);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));

    return *this;
  }



  inline
  void
  VectorBase::add (const TrilinosScalar s)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    AssertIsFinite(s);

    size_type n_local = local_size();
    for (size_type i=0; i<n_local; i++)
      (*vector)[0][i] += s;
  }



  inline
  void
  VectorBase::add (const TrilinosScalar  a,
                   const VectorBase     &v)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (local_size() == v.local_size(),
            ExcDimensionMismatch(local_size(), v.local_size()));

    AssertIsFinite(a);

    const int ierr = vector->Update(a, *(v.vector), 1.);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
  }



  inline
  void
  VectorBase::add (const TrilinosScalar  a,
                   const VectorBase     &v,
                   const TrilinosScalar  b,
                   const VectorBase     &w)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (local_size() == v.local_size(),
            ExcDimensionMismatch(local_size(), v.local_size()));
    Assert (local_size() == w.local_size(),
            ExcDimensionMismatch(local_size(), w.local_size()));

    AssertIsFinite(a);
    AssertIsFinite(b);

    const int ierr = vector->Update(a, *(v.vector), b, *(w.vector), 1.);

    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
  }



  inline
  void
  VectorBase::sadd (const TrilinosScalar  s,
                    const VectorBase     &v)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (size() == v.size(),
            ExcDimensionMismatch (size(), v.size()));

    AssertIsFinite(s);

    // We assume that the vectors have the same Map
    // if the local size is the same and if the vectors are not ghosted
    if (local_size() == v.local_size() && !v.has_ghost_elements())
      {
        Assert (this->vector->Map().SameAs(v.vector->Map())==true,
                ExcDifferentParallelPartitioning());
        const int ierr = vector->Update(1., *(v.vector), s);
        AssertThrow (ierr == 0, ExcTrilinosError(ierr));
      }
    else
      {
        (*this) *= s;
        this->add(v, true);
      }
  }



  inline
  void
  VectorBase::sadd (const TrilinosScalar  s,
                    const TrilinosScalar  a,
                    const VectorBase     &v)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (size() == v.size(),
            ExcDimensionMismatch (size(), v.size()));
    AssertIsFinite(s);
    AssertIsFinite(a);

    // We assume that the vectors have the same Map
    // if the local size is the same and if the vectors are not ghosted
    if (local_size() == v.local_size() && !v.has_ghost_elements())
      {
        Assert (this->vector->Map().SameAs(v.vector->Map())==true,
                ExcDifferentParallelPartitioning());
        const int ierr = vector->Update(a, *(v.vector), s);
        AssertThrow (ierr == 0, ExcTrilinosError(ierr));
      }
    else
      {
        (*this) *= s;
        VectorBase tmp = v;
        tmp *= a;
        this->add(tmp, true);
      }
  }



  inline
  void
  VectorBase::sadd (const TrilinosScalar  s,
                    const TrilinosScalar  a,
                    const VectorBase     &v,
                    const TrilinosScalar  b,
                    const VectorBase     &w)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (size() == v.size(),
            ExcDimensionMismatch (size(), v.size()));
    Assert (size() == w.size(),
            ExcDimensionMismatch (size(), w.size()));
    AssertIsFinite(s);
    AssertIsFinite(a);
    AssertIsFinite(b);

    // We assume that the vectors have the same Map
    // if the local size is the same and if the vectors are not ghosted
    if (local_size() == v.local_size() && !v.has_ghost_elements() &&
        local_size() == w.local_size() && !w.has_ghost_elements())
      {
        Assert (this->vector->Map().SameAs(v.vector->Map())==true,
                ExcDifferentParallelPartitioning());
        Assert (this->vector->Map().SameAs(w.vector->Map())==true,
                ExcDifferentParallelPartitioning());
        const int ierr = vector->Update(a, *(v.vector), b, *(w.vector), s);
        AssertThrow (ierr == 0, ExcTrilinosError(ierr));
      }
    else
      {
        this->sadd( s, a, v);
        this->sadd(1., b, w);
      }
  }



  inline
  void
  VectorBase::sadd (const TrilinosScalar  s,
                    const TrilinosScalar  a,
                    const VectorBase     &v,
                    const TrilinosScalar  b,
                    const VectorBase     &w,
                    const TrilinosScalar  c,
                    const VectorBase     &x)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (size() == v.size(),
            ExcDimensionMismatch (size(), v.size()));
    Assert (size() == w.size(),
            ExcDimensionMismatch (size(), w.size()));
    Assert (size() == x.size(),
            ExcDimensionMismatch (size(), x.size()));
    AssertIsFinite(s);
    AssertIsFinite(a);
    AssertIsFinite(b);
    AssertIsFinite(c);

    // We assume that the vectors have the same Map
    // if the local size is the same and if the vectors are not ghosted
    if (local_size() == v.local_size() && !v.has_ghost_elements() &&
        local_size() == w.local_size() && !w.has_ghost_elements() &&
        local_size() == x.local_size() && !x.has_ghost_elements())
      {
        Assert (this->vector->Map().SameAs(v.vector->Map())==true,
                ExcDifferentParallelPartitioning());
        Assert (this->vector->Map().SameAs(w.vector->Map())==true,
                ExcDifferentParallelPartitioning());
        Assert (this->vector->Map().SameAs(x.vector->Map())==true,
                ExcDifferentParallelPartitioning());

        // Update member can only
        // input two other vectors so
        // do it in two steps
        const int ierr = vector->Update(a, *(v.vector), b, *(w.vector), s);
        AssertThrow (ierr == 0, ExcTrilinosError(ierr));

        const int jerr = vector->Update(c, *(x.vector), 1.);
        Assert (jerr == 0, ExcTrilinosError(jerr));
        (void)jerr; // removes -Wunused-parameter warning in optimized mode
      }
    else
      {
        this->sadd( s, a, v);
        this->sadd(1., b, w);
        this->sadd(1., c, x);
      }
  }



  inline
  void
  VectorBase::scale (const VectorBase &factors)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    Assert (local_size() == factors.local_size(),
            ExcDimensionMismatch(local_size(), factors.local_size()));

    const int ierr = vector->Multiply (1.0, *(factors.vector), *vector, 0.0);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
  }



  inline
  void
  VectorBase::equ (const TrilinosScalar  a,
                   const VectorBase     &v)
  {
    // if we have ghost values, do not allow
    // writing to this vector at all.
    Assert (!has_ghost_elements(), ExcGhostsPresent());
    AssertIsFinite(a);

    // If we don't have the same map, copy.
    if (vector->Map().SameAs(v.vector->Map())==false)
      {
        this->sadd(0., a, v);
      }
    else
      {
        // Otherwise, just update
        int ierr = vector->Update(a, *v.vector, 0.0);
        AssertThrow (ierr == 0, ExcTrilinosError(ierr));

        last_action = Zero;
      }

  }



  inline
  void
  VectorBase::ratio (const VectorBase &v,
                     const VectorBase &w)
  {
    Assert (v.local_size() == w.local_size(),
            ExcDimensionMismatch (v.local_size(), w.local_size()));
    Assert (local_size() == w.local_size(),
            ExcDimensionMismatch (local_size(), w.local_size()));

    const int ierr = vector->ReciprocalMultiply(1.0, *(w.vector),
                                                *(v.vector), 0.0);

    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
  }



  inline
  const Epetra_MultiVector &
  VectorBase::trilinos_vector () const
  {
    return static_cast<const Epetra_MultiVector &>(*vector);
  }



  inline
  Epetra_FEVector &
  VectorBase::trilinos_vector ()
  {
    return *vector;
  }



  inline
  const Epetra_Map &
  VectorBase::vector_partitioner () const
  {
    return static_cast<const Epetra_Map &>(vector->Map());
  }



  inline
  const MPI_Comm &
  VectorBase::get_mpi_communicator () const
  {
    static MPI_Comm comm;

#ifdef DEAL_II_WITH_MPI

    const Epetra_MpiComm *mpi_comm
      = dynamic_cast<const Epetra_MpiComm *>(&vector->Map().Comm());
    comm = mpi_comm->Comm();

#else

    comm = MPI_COMM_SELF;

#endif

    return comm;
  }



#endif // DOXYGEN

}

/*@}*/

DEAL_II_NAMESPACE_CLOSE

#endif // DEAL_II_WITH_TRILINOS

/*----------------------------   trilinos_vector_base.h     ---------------------------*/

#endif
/*----------------------------   trilinos_vector_base.h     ---------------------------*/