This file is indexed.

/usr/include/NTL/BasicThreadPool.h is in libntl-dev 9.9.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
#ifndef NTL_BasicThreadPool__H
#define NTL_BasicThreadPool__H

#include <NTL/tools.h>
#include <NTL/vector.h>
#include <NTL/SmartPtr.h>
#include <NTL/thread.h>


NTL_OPEN_NNS


inline long AvailableThreads();

struct PartitionInfo {
   long nintervals;  // number of intervals
   long intervalsz;  // interval size
   long nsintervals; // number of small intervals

   explicit
   PartitionInfo(long sz, long nt = AvailableThreads()) 
   // partitions [0..sz) into nintervals intervals,
   // so that there are nsintervals of size intervalsz-1
   // and nintervals-nsintervals of size intervalsz
   {
      if (sz <= 0) {
         nintervals = intervalsz = nsintervals = 0;
         return;
      }

      if (nt <= 0) LogicError("PartitionInfo: bad args");

      // NOTE: this overflow check probably unnecessary
      if (NTL_OVERFLOW(sz, 1, 0) || NTL_OVERFLOW(nt, 1, 0))
         ResourceError("PartitionInfo: arg too big");

      if (sz < nt) {
         nintervals = sz;
         intervalsz = 1;
         nsintervals = 0;
         return;
      }

      nintervals = nt;

      long q, r;
      q = sz/nt;
      r = sz - nt*q;

      if (r == 0) {
         intervalsz = q;
         nsintervals = 0;
      }
      else {
         intervalsz = q+1;
         nsintervals = nt - r;
      }
   }

   long NumIntervals() const { return nintervals; }

   void interval(long& first, long& last, long i) const
   // [first..last) is the ith interval -- no range checking is done
   {

#if 0
      // this is the logic, naturally expressed
      if (i < nsintervals) {
         first = i*(intervalsz-1);
         last = first + (intervalsz-1);
      }
      else {
         first = nsintervals*(intervalsz-1) + (i-nsintervals)*intervalsz;
         last = first + intervalsz;
      }
#else
      // this is the same logic, but branch-free (and portable)
      // ...probably unnecessary optimization
      
      long mask = -long(cast_unsigned(i-nsintervals) >> (NTL_BITS_PER_LONG-1));
      // mask == -1 if i < nsintervals, 0 o/w
 
      long lfirst = i*(intervalsz-1);
      lfirst += long((~cast_unsigned(mask)) & cast_unsigned(i-nsintervals));
      // lfirst += max(0, i-nsintervals)

      long llast = lfirst + intervalsz + mask;

      first = lfirst;
      last = llast;
#endif
   }

};



NTL_CLOSE_NNS



#ifdef NTL_THREADS


#include <thread>
#include <condition_variable>
#include <exception>


NTL_OPEN_NNS

/*************************************************************

Some simple thread pooling.

You create a thread pool by constructing a BasicThreadPool object.
For example:

   long nthreads = 4;
   BasicThreadPool pool(nthreads);

creates a thread pool of 4 threads.  These threads will exist
until the destructor for pool is called.  

The simplest way to use a thread pools is as follows.
Suppose you have a task that consists of N subtasks,
indexed 0..N-1.  Then you can write:


   pool.exec_range(N, 
      [&](long first, long last) {
         for (long i = first; i < last; i++) {
            ... code to process subtask i ...
         }
      }
   );

The second argument to exec1 is a C++11 "lambda".
The "[&]" indicates that all local variables in the calling
context are captured by reference, so the lambda body can 
reference all visible local variables directly.

A lower-level interface is also provided.
One can write:

   pool.exec_index(n,
      [&](long index) {
         ... code to process index i ...
      }
   );

This will activate n threads with indices 0..n-1, and execute
the given code on each index.  The parameter n must be
in the range 1..nthreads, otherwise an error is raised.

This lower-level interface is useful in some cases,
especially when memory is managed in some special way.
For convenience, a method is provided to break
subtasks up into smaller, almost-equal-sized groups
of subtasks:

   Vec<long> pvec;
   long n = pool.SplitProblems(N, pvec);

can be used for this.  N is the number of subtasks, indexed 0..N-1.
This method will compute n as needed by exec, and 
the range of subtasks to be processed by a given index in the range
0..n-1 is pvec[index]..pvec[index+1]-1
Thus, the logic of the above exec1 example can be written
using the lower-level exec interface as follows:

   
   Vec<long> pvec;
   long n = pool.SplitProblems(N, pvec);
   pool.exec_index(n,
      [&](long index) {
         long first = pvec[index];
         long last = pvec[index+1];
         for (long i = first; i < last; i++) {
            ... code to process subtask i ...
         }
      }
   );

However, with this approach, memory or other resources can be
assigned to each index = 0..n-1, and managed externally. 




*************************************************************/


class BasicThreadPool {
private:

// lots of nested stuff

   template<class T>
   class SimpleSignal {
   private:
     T val; 
     std::mutex m;
     std::condition_variable cv;
   
     SimpleSignal(const SimpleSignal&); // disabled
     void operator=(const SimpleSignal&); // disabled
   
   public:
     SimpleSignal() : val(0) { }
   
     T wait() 
     {
       std::unique_lock<std::mutex> lock(m);
       cv.wait(lock, [&]() { return val; } );
       T old_val = val;
       val = 0;
       return old_val;
     }
   
     void send(T new_val)
     {
       std::lock_guard<std::mutex> lock(m);
       val = new_val;
       cv.notify_one();
     }
   };
   
   
   template<class T, class T1>
   class CompositeSignal {
   private:
     T val; 
     T1 val1;
     std::mutex m;
     std::condition_variable cv;
   
     CompositeSignal(const CompositeSignal&); // disabled
     void operator=(const CompositeSignal&); // disabled
   
   public:
     CompositeSignal() : val(0) { }
   
     T wait(T1& _val1) 
     {
       std::unique_lock<std::mutex> lock(m);
       cv.wait(lock, [&]() { return val; } );
       T _val = val;
       _val1 = val1;
       val = 0;
       return _val;
     }
   
     void send(T _val, T1 _val1)
     {
       std::lock_guard<std::mutex> lock(m);
       val = _val;
       val1 = _val1;
       cv.notify_one();
     }
   };
   
   
   
   class ConcurrentTask {
     BasicThreadPool *pool;
   public:
     ConcurrentTask(BasicThreadPool *_pool) : pool(_pool) { }
     BasicThreadPool *getBasicThreadPool() const { return pool; }
   
     virtual void run(long index) = 0;
   };
   
   
   
   // dummy class, used for signalling termination
   class ConcurrentTaskTerminate : public ConcurrentTask {
   public:
     ConcurrentTaskTerminate() : ConcurrentTask(0) { }
     void run(long index) { }
   };
   
   
   
   template<class Fct>
   class ConcurrentTaskFct : public ConcurrentTask {
   public:
     const Fct& fct;
   
     ConcurrentTaskFct(BasicThreadPool *_pool, const Fct& _fct) : 
       ConcurrentTask(_pool), fct(_fct) { }
   
     void run(long index) { fct(index); }
   };
   
   template<class Fct>
   class ConcurrentTaskFct1 : public ConcurrentTask {
   public:
      const Fct& fct;
      const PartitionInfo& pinfo;
 
      ConcurrentTaskFct1(BasicThreadPool *_pool, const Fct& _fct, 
         const PartitionInfo& _pinfo) : 
         ConcurrentTask(_pool), fct(_fct), pinfo(_pinfo)  { }
    
      void run(long index) 
      { 
         long first, last;
         pinfo.interval(first, last, index);
         fct(first, last); 
      }
   };
   
   
   
   struct AutomaticThread {
      CompositeSignal< ConcurrentTask *, long > localSignal;
      ConcurrentTaskTerminate term;
      std::thread t;
   
   
      AutomaticThread() : t(worker, &localSignal) 
      { 
         // cerr << "starting thread " << t.get_id() << "\n";
      }
   
      ~AutomaticThread()
      {
        // cerr << "stopping thread " << t.get_id() << "...";
        localSignal.send(&term, -1);
        t.join();
        // cerr << "\n";
      }
   };



// BasicThreadPool data members

  long nthreads;

  bool active_flag;

  std::atomic<long> counter;
  SimpleSignal<bool> globalSignal;

  Vec< UniquePtr<AutomaticThread> > threadVec;

  std::exception_ptr eptr;
  std::mutex eptr_guard;

// BasicThreadPool private member functions

  BasicThreadPool(const BasicThreadPool&); // disabled
  void operator=(const BasicThreadPool&); // disabled

  void launch(ConcurrentTask *task, long index)
  {
    threadVec[index]->localSignal.send(task, index);
  }

  void begin(long cnt)
  {

    active_flag = true;
    counter = cnt;
  }

  void end()
  {
    globalSignal.wait();

    active_flag = false;

    if (eptr) {
      std::exception_ptr eptr1 = eptr;
      eptr = nullptr;
      std::rethrow_exception(eptr1);
    }
  }

  static void runOneTask(ConcurrentTask *task, long index)
  {
    BasicThreadPool *pool = task->getBasicThreadPool();
  
    try {
       task->run(index);
    }
    catch (...) {
       std::lock_guard<std::mutex> lock(pool->eptr_guard);
       if (!pool->eptr) pool->eptr = std::current_exception();
    }

    if (--(pool->counter) == 0) pool->globalSignal.send(true);
  }

   static void worker(CompositeSignal< ConcurrentTask *, long > *localSignal)
   {
     for (;;) {
       long index = -1;
       ConcurrentTask *task = localSignal->wait(index);
       if (index == -1) return; 
   
       runOneTask(task, index);
     }
   }


public:


  long NumThreads() const { return nthreads; }
  bool active() const { return active_flag; }

  explicit
  BasicThreadPool(long _nthreads) : 
    nthreads(_nthreads), active_flag(false), counter(0)
  {
    if (nthreads <= 0) LogicError("BasicThreadPool::BasicThreadPool: bad args");

    if (NTL_OVERFLOW(nthreads, 1, 0)) 
      ResourceError("BasicThreadPool::BasicThreadPool: arg too big");

    threadVec.SetLength(nthreads-1);

    for (long i = 0; i < nthreads-1; i++) {
      threadVec[i].make();
    }
  }

  ~BasicThreadPool() 
  {
    if (active()) TerminalError("BasicThreadPool: destructor called while active");
  }
   

  // adding, deleting, moving threads

  void add(long n = 1)
  {
    if (active()) LogicError("BasicThreadPool: illegal operation while active");
    if (n <= 0) LogicError("BasicThreadPool::add: bad args");
    if (NTL_OVERFLOW(n, 1, 0)) 
      ResourceError("BasicThreadPool::add: arg too big");

    Vec< UniquePtr<AutomaticThread> > newThreads;

    newThreads.SetLength(n);
    for (long i = 0; i < n; i++)
      newThreads[i].make();

    threadVec.SetLength(n + nthreads - 1);
    for (long i = 0; i < n; i++)
      threadVec[nthreads-1+i].move(newThreads[i]); 

    nthreads += n;
  }


  void remove(long n = 1)
  {
    if (active()) LogicError("BasicThreadPool: illegal operation while active");
    if (n <= 0 || n >= nthreads) LogicError("BasicThreadPool::remove: bad args");

    for (long i = nthreads-1-n; i < nthreads-1; i++)
      threadVec[i] = 0;

    threadVec.SetLength(nthreads-1-n);
    nthreads -= n;
  }

  
  void move(BasicThreadPool& other, long n = 1) 
  {
    if (active() || other.active()) 
      LogicError("BasicThreadPool: illegal operation while active");
    if (n <= 0 || n >= other.nthreads) LogicError("BasicThreadPool::move: bad args");

    if (this == &other) return;

    threadVec.SetLength(n + nthreads - 1);
    for (long i = 0; i < n; i++)
       threadVec[nthreads-1+i].move(other.threadVec[other.nthreads-1-n+i]);

    other.threadVec.SetLength(other.nthreads-1-n);
    other.nthreads -= n;

    nthreads += n;
  }



  // High level interfaces, intended to be used with lambdas

  // In this version, fct takes one argument, which is
  // an index in [0..cnt)

  template<class Fct>
  void exec_index(long cnt, const Fct& fct) 
  {
    if (active()) LogicError("BasicThreadPool: illegal operation while active");
    if (cnt <= 0) return;
    if (cnt > nthreads) LogicError("BasicThreadPool::exec_index: bad args");

    ConcurrentTaskFct<Fct> task(this, fct);

    begin(cnt);
    for (long t = 0; t < cnt-1; t++) launch(&task, t);
    runOneTask(&task, cnt-1);
    end();
  }

  template<class Fct>
  static void relaxed_exec_index(BasicThreadPool *pool, long cnt, const Fct& fct) 
  {
    if (cnt <= 0) return;
    if (!pool || pool->active()) {
      if (cnt > 1) LogicError("relaxed_exec_index: not enough threads");
      fct(0);
    }
    else {
      pool->exec_index(cnt, fct);
    }
  }

  // even higher level version: sz is the number of subproblems,
  // and fct takes two args, first and last, so that subproblems
  // [first..last) are processed.

  template<class Fct>
  void exec_range(long sz, const Fct& fct) 
  {
    if (active()) LogicError("BasicThreadPool: illegal operation while active");
    if (sz <= 0) return;

    PartitionInfo pinfo(sz, nthreads);

    long cnt = pinfo.NumIntervals();
    ConcurrentTaskFct1<Fct> task(this, fct, pinfo);

    begin(cnt);
    for (long t = 0; t < cnt-1; t++) launch(&task, t);
    runOneTask(&task, cnt-1);
    end();
  }

  template<class Fct>
  static void relaxed_exec_range(BasicThreadPool *pool, long sz, const Fct& fct) 
  {
    if (sz <= 0) return;
    if (!pool || pool->active() || sz == 1) {
      fct(0, sz);
    }
    else {
      pool->exec_range(sz, fct);
    }
  }

};




NTL_CLOSE_NNS


#endif



#ifdef NTL_THREAD_BOOST

#ifndef NTL_THREADS
#error "NTL_THREAD_BOOST requires NTL_THREADS"
#endif

NTL_OPEN_NNS

extern
NTL_CHEAP_THREAD_LOCAL BasicThreadPool *NTLThreadPool_ptr;

inline
BasicThreadPool *GetThreadPool()
{
   return NTLThreadPool_ptr;
}

void ResetThreadPool(BasicThreadPool *pool = 0);
BasicThreadPool *ReleaseThreadPool();

inline void SetNumThreads(long n) 
{ 
   ResetThreadPool(MakeRaw<BasicThreadPool>(n));
}

inline long AvailableThreads()
{
   BasicThreadPool *pool = GetThreadPool();
   if (!pool || pool->active())
      return 1;
   else
      return pool->NumThreads();
}


NTL_CLOSE_NNS


#define NTL_EXEC_RANGE(n, first, last)  \
{  \
   NTL_NNS BasicThreadPool::relaxed_exec_range(NTL_NNS GetThreadPool(), (n), \
     [&](long first, long last) {  \


#define NTL_EXEC_RANGE_END  \
   } ); \
}  \


#define NTL_GEXEC_RANGE(seq, n, first, last)  \
{  \
   NTL_NNS BasicThreadPool::relaxed_exec_range((seq) ? 0 : NTL_NNS GetThreadPool(), (n), \
     [&](long first, long last) {  \


#define NTL_GEXEC_RANGE_END  \
   } ); \
}  \


#define NTL_EXEC_INDEX(n, index)  \
{  \
   NTL_NNS BasicThreadPool::relaxed_exec_index(NTL_NNS GetThreadPool(), (n), \
     [&](long index) {  \


#define NTL_EXEC_INDEX_END  \
   } ); \
}  \



// NOTE: at least with gcc >= 4.9.2, the GEXEC versions will evaluate seq, and
// if it is true, jump directly (more or less) to the body


#define NTL_TBDECL(x) static void basic_ ## x
#define NTL_TBDECL_static(x) static void basic_ ## x


#else

NTL_OPEN_NNS


inline void SetNumThreads(long n) { }

inline long AvailableThreads() { return 1; }


NTL_CLOSE_NNS

#define NTL_EXEC_RANGE(n, first, last)  \
{  \
   long _ntl_par_exec_n = (n);  \
   if (_ntl_par_exec_n > 0) {  \
      long first = 0;  \
      long last = _ntl_par_exec_n;  \
      {  \
   

#define NTL_EXEC_RANGE_END  }}}

#define NTL_GEXEC_RANGE(seq, n, first, last)  \
{  \
   long _ntl_par_exec_n = (n);  \
   if (_ntl_par_exec_n > 0) {  \
      long first = 0;  \
      long last = _ntl_par_exec_n;  \
      {  \
   

#define NTL_GEXEC_RANGE_END  }}}




#define NTL_EXEC_INDEX(n, index)  \
{  \
   long _ntl_par_exec_n = (n);  \
   if (_ntl_par_exec_n > 0) {  \
      if (_ntl_par_exec_n > 1) NTL_NNS LogicError("NTL_EXEC_INDEX: not enough threads"); \
      long index = 0;  \
      {  \

   
#define NTL_EXEC_INDEX_END  }}}



#define NTL_TBDECL(x) void x
#define NTL_TBDECL_static(x) static void x

#endif



#ifdef NTL_THREADS

#define NTL_IMPORT(x) auto _ntl_hidden_variable_IMPORT__ ## x = x; auto x = _ntl_hidden_variable_IMPORT__ ##x;

#else

#define NTL_IMPORT(x)


#endif



#endif