/usr/include/NTL/FFT.h is in libntl-dev 9.9.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | #ifndef NTL_FFT__H
#define NTL_FFT__H
#include <NTL/ZZ.h>
#include <NTL/vector.h>
#include <NTL/vec_long.h>
#include <NTL/SmartPtr.h>
#include <NTL/LazyTable.h>
NTL_OPEN_NNS
#define NTL_FFTFudge (4)
// This constant is used in selecting the correct
// number of FFT primes for polynomial multiplication
// in ZZ_pX and zz_pX. Set at 4, this allows for
// two FFT reps to be added or subtracted once,
// before performing CRT, and leaves a reasonable margin for error.
// Don't change this!
#define NTL_FFTMaxRootBnd (NTL_SP_NBITS-2)
// Absolute maximum root bound for FFT primes.
// Don't change this!
#if (25 <= NTL_FFTMaxRootBnd)
#define NTL_FFTMaxRoot (25)
#else
#define NTL_FFTMaxRoot NTL_FFTMaxRootBnd
#endif
// Root bound for FFT primes. Held to a maximum
// of 25 to avoid large tables and excess precomputation,
// and to keep the number of FFT primes needed small.
// This means we can multiply polynomials of degree less than 2^24.
// This can be increased, with a slight performance penalty.
class FFTVectorPair {
public:
Vec<long> wtab_precomp;
Vec<mulmod_precon_t> wqinvtab_precomp;
};
typedef LazyTable<FFTVectorPair, NTL_FFTMaxRoot+1> FFTMultipliers;
class FFTMulTabs {
public:
FFTMultipliers MulTab[2];
};
class zz_pInfoT; // forward reference, defined in lzz_p.h
struct FFTPrimeInfo {
long q; // the prime itself
mulmod_t qinv; // 1/((wide_double) q) -- but subject to change!!
double qrecip; // 1/double(q)
SmartPtr<zz_pInfoT> zz_p_context;
// pointer to corresponding zz_p context, which points back to this
// object in the case of a non-user FFT prime
Vec<long> RootTable[2];
// RootTable[0][j] = w^{2^{MaxRoot-j}},
// where w is a primitive 2^MaxRoot root of unity
// for q
// RootInvTable[1][j] = 1/RootTable[0][j] mod q
Vec<long> TwoInvTable;
// TwoInvTable[j] = 1/2^j mod q
Vec<mulmod_precon_t> TwoInvPreconTable;
// mulmod preconditioning data
UniquePtr< FFTMulTabs > bigtab;
};
void InitFFTPrimeInfo(FFTPrimeInfo& info, long q, long w, bool bigtab);
#define NTL_MAX_FFTPRIMES (20000)
// for a thread-safe implementation, it is most convenient to
// impose a reasonabel upper bound on he number of FFT primes.
// without this restriction, a growing table would have to be
// relocated in one thread, leaving dangling pointers in
// another thread. Each entry in the table is just a poiner,
// so this does not incur too much space overhead.
// One could alo implement a 2D-table, which would allocate
// rows on demand, thus reducing wasted space at the price
// of extra arithmetic to actually index into the table.
// This may be an option to consider at some point.
// At the current setting of 20000, on 64-bit machines with 50-bit
// FFT primes, this allows for polynomials with 20*50/2 = 500K-bit
// coefficients, while the table itself takes 160KB.
typedef LazyTable<FFTPrimeInfo, NTL_MAX_FFTPRIMES> FFTTablesType;
extern FFTTablesType FFTTables;
// a truly GLOBAL variable, shared among all threads
static inline
long GetFFTPrime(long i)
{
return FFTTables[i]->q;
}
static inline
mulmod_t GetFFTPrimeInv(long i)
{
return FFTTables[i]->qinv;
}
static inline
double GetFFTPrimeRecip(long i)
{
return FFTTables[i]->qrecip;
}
long CalcMaxRoot(long p);
// calculates max power of two supported by this FFT prime.
void UseFFTPrime(long index);
// allocates and initializes information for FFT prime
void FFT(long* A, const long* a, long k, const FFTPrimeInfo& info, long dir);
// the low-level FFT routine.
// computes a 2^k point FFT modulo q = info.q
// dir == 0 => forward direction (using roots)
// dir == 1 => backwards direction (using inverse roots)
static inline
void FFTFwd(long* A, const long *a, long k, const FFTPrimeInfo& info)
// Slightly higher level interface...using the ith FFT prime
{
FFT(A, a, k, info, 0);
}
static inline
void FFTFwd(long* A, const long *a, long k, long i)
{
FFTFwd(A, a, k, *FFTTables[i]);
}
static inline
void FFTRev(long* A, const long *a, long k, const FFTPrimeInfo& info)
// Slightly higher level interface...using the ith FFT prime
{
FFT(A, a, k, info, 1);
}
static inline
void FFTRev(long* A, const long *a, long k, long i)
{
FFTRev(A, a, k, *FFTTables[i]);
}
static inline
void FFTMulTwoInv(long* A, const long *a, long k, const FFTPrimeInfo& info)
{
VectorMulModPrecon(1L << k, A, a, info.TwoInvTable[k], info.q,
info.TwoInvPreconTable[k]);
}
static inline
void FFTMulTwoInv(long* A, const long *a, long k, long i)
{
FFTMulTwoInv(A, a, k, *FFTTables[i]);
}
static inline
void FFTRev1(long* A, const long *a, long k, const FFTPrimeInfo& info)
// FFTRev + FFTMulTwoInv
{
FFTRev(A, a, k, info);
FFTMulTwoInv(A, A, k, info);
}
static inline
void FFTRev1(long* A, const long *a, long k, long i)
{
FFTRev1(A, a, k, *FFTTables[i]);
}
long IsFFTPrime(long n, long& w);
// tests if n is an "FFT prime" and returns corresponding root
NTL_CLOSE_NNS
#endif
|