/usr/include/NTL/ZZ_pXFactoring.h is in libntl-dev 9.9.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | #ifndef NTL_ZZ_pXFactoring__H
#define NTL_ZZ_pXFactoring__H
#include <NTL/ZZ.h>
#include <NTL/ZZ_p.h>
#include <NTL/ZZ_pX.h>
#include <NTL/pair_ZZ_pX_long.h>
NTL_OPEN_NNS
/************************************************************
factorization routines
************************************************************/
void SquareFreeDecomp(vec_pair_ZZ_pX_long& u, const ZZ_pX& f);
inline vec_pair_ZZ_pX_long SquareFreeDecomp(const ZZ_pX& f)
{ vec_pair_ZZ_pX_long x; SquareFreeDecomp(x, f); return x; }
// Performs square-free decomposition.
// f must be monic.
// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).
// The list is is increasing order of i, with trivial terms
// (i.e., g_i = 1) deleted.
void FindRoots(vec_ZZ_p& x, const ZZ_pX& f);
inline vec_ZZ_p FindRoots(const ZZ_pX& f)
{ vec_ZZ_p x; FindRoots(x, f); return x; }
// f is monic, and has deg(f) distinct roots.
// returns the list of roots
void FindRoot(ZZ_p& root, const ZZ_pX& f);
inline ZZ_p FindRoot(const ZZ_pX& f)
{ ZZ_p x; FindRoot(x, f); return x; }
// finds a single root of f.
// assumes that f is monic and splits into distinct linear factors
void SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX SFBerlekamp(const ZZ_pX& f, long verbose=0)
{ vec_ZZ_pX x; SFBerlekamp(x, f, verbose); return x; }
// Assumes f is square-free and monic.
// returns list of factors of f.
// Uses "Berlekamp" appraoch.
void berlekamp(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, long verbose=0);
inline vec_pair_ZZ_pX_long
berlekamp(const ZZ_pX& f, long verbose=0)
{ vec_pair_ZZ_pX_long x; berlekamp(x, f, verbose); return x; }
// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Berlekamp" appraoch.
extern NTL_CHEAP_THREAD_LOCAL long ZZ_pX_BlockingFactor;
// Controls GCD blocking for DDF.
void DDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,
long verbose=0);
inline vec_pair_ZZ_pX_long DDF(const ZZ_pX& f, const ZZ_pX& h,
long verbose=0)
{ vec_pair_ZZ_pX_long x; DDF(x, f, h, verbose); return x; }
// Performs distinct-degree factorization.
// Assumes f is monic and square-free, and h = X^p mod f
// Obsolete: see NewDDF, below.
extern NTL_CHEAP_THREAD_LOCAL long ZZ_pX_GCDTableSize; /* = 4 */
// Controls GCD blocking for NewDDF
extern NTL_CHEAP_THREAD_LOCAL double ZZ_pXFileThresh;
// external files are used for baby/giant steps if size
// of these tables exceeds ZZ_pXFileThresh KB.
void NewDDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,
long verbose=0);
inline vec_pair_ZZ_pX_long NewDDF(const ZZ_pX& f, const ZZ_pX& h,
long verbose=0)
{ vec_pair_ZZ_pX_long x; NewDDF(x, f, h, verbose); return x; }
// same as above, but uses baby-step/giant-step method
void EDF(vec_ZZ_pX& factors, const ZZ_pX& f, const ZZ_pX& b,
long d, long verbose=0);
inline vec_ZZ_pX EDF(const ZZ_pX& f, const ZZ_pX& b,
long d, long verbose=0)
{ vec_ZZ_pX x; EDF(x, f, b, d, verbose); return x; }
// Performs equal-degree factorization.
// f is monic, square-free, and all irreducible factors have same degree.
// b = X^p mod f.
// d = degree of irreducible factors of f
// Space for the trace-map computation can be controlled via ComposeBound.
void RootEDF(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX RootEDF(const ZZ_pX& f, long verbose=0)
{ vec_ZZ_pX x; RootEDF(x, f, verbose); return x; }
// EDF for d==1
void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX SFCanZass(const ZZ_pX& f, long verbose=0)
{ vec_ZZ_pX x; SFCanZass(x, f, verbose); return x; }
// Assumes f is monic and square-free.
// returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach.
void CanZass(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f,
long verbose=0);
inline vec_pair_ZZ_pX_long CanZass(const ZZ_pX& f, long verbose=0)
{ vec_pair_ZZ_pX_long x; CanZass(x, f, verbose); return x; }
// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Cantor/Zassenhaus" approach.
void mul(ZZ_pX& f, const vec_pair_ZZ_pX_long& v);
inline ZZ_pX mul(const vec_pair_ZZ_pX_long& v)
{ ZZ_pX x; mul(x, v); return x; }
// multiplies polynomials, with multiplicities
/*************************************************************
irreducible poly's: tests and constructions
**************************************************************/
long ProbIrredTest(const ZZ_pX& f, long iter=1);
// performs a fast, probabilistic irreduciblity test
// the test can err only if f is reducible, and the
// error probability is bounded by p^{-iter}.
long DetIrredTest(const ZZ_pX& f);
// performs a recursive deterministic irreducibility test
// fast in the worst-case (when input is irreducible).
long IterIrredTest(const ZZ_pX& f);
// performs an iterative deterministic irreducibility test,
// based on DDF. Fast on average (when f has a small factor).
void BuildIrred(ZZ_pX& f, long n);
inline ZZ_pX BuildIrred_ZZ_pX(long n)
{ ZZ_pX x; BuildIrred(x, n); NTL_OPT_RETURN(ZZ_pX, x); }
// Build a monic irreducible poly of degree n.
void BuildRandomIrred(ZZ_pX& f, const ZZ_pX& g);
inline ZZ_pX BuildRandomIrred(const ZZ_pX& g)
{ ZZ_pX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(ZZ_pX, x); }
// g is a monic irreducible polynomial.
// constructs a random monic irreducible polynomial f of the same degree.
long ComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);
// f = F.f is assumed to be an "equal degree" polynomial
// h = X^p mod f
// the common degree of the irreducible factors of f is computed
// This routine is useful in counting points on elliptic curves
long ProbComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);
// same as above, but uses a slightly faster probabilistic algorithm
// the return value may be 0 or may be too big, but for large p
// (relative to n), this happens with very low probability.
void TraceMap(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F,
const ZZ_pX& b);
inline ZZ_pX TraceMap(const ZZ_pX& a, long d, const ZZ_pXModulus& F,
const ZZ_pX& b)
{ ZZ_pX x; TraceMap(x, a, d, F, b); return x; }
// w = a+a^q+...+^{q^{d-1}} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)
void PowerCompose(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F);
inline ZZ_pX PowerCompose(const ZZ_pX& a, long d, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerCompose(x, a, d, F); return x; }
// w = X^{q^d} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)
NTL_CLOSE_NNS
#endif
|